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ABSTRACT

A number of methods for recognizing protein coding
genes in DNA sequence have been published over the
last 13 years, and new, more comprehensive
algorithms, drawing on the repertoire of existing
techniques, continue to be developed. To optimize
continued development, it is valuable to systematically
review and evaluate published techniques. At the core
of most gene recognition algorithms is one or more
coding measures — functions which produce, given
any sample window of sequence, a number or vector
intended to measure the degree to which a sample
sequence resembles a window of ‘typical’ exonic DNA.
In this paper we review and synthesize the underlying
coding measures from published algorithms. A
standardized benchmark is described, and each of the
measures is evaluated according to this benchmark.
Our main conclusion is that a very simple and obvious
measure — counting oligomers — is more effective
than any of the more sophisticated measures. Different
measures contain different information. However there
is a great deal of redundancy in the current suite of
measures. We show that in future development of gene
recognition algorithms, attention can probably be
limited to six of the twenty or so measures proposed
to date.

INTRODUCTION

A (protein-coding) gene may be defined as any pattern in a DNA
sequence which results (under proper conditions) in the generation
of a protein product. The problem of gene recognition is to define
an algorithm which takes as input DNA sequence and produces
as output a feature table describing the location and structure of
the patterns making up any genes present in the sequence.

In practice, a systematic approach to building and evaluating
gene recognition algorithms must depend heavily on information
from many laboratories, uniformly presented, as, for example,
in the GenBank™/EMBL/DDBI international collection of
nucleotide sequence data (1—3). In fact, almost the only form
of the general gene recognition problem that is well defined and
for which solutions are generally testable is the problem of
automatically regenerating .the annotation of such databases.
Clearly this leaves out important aspects of the general problem;
for example, there are doubtless genes that have not yet been
discovered to lie in reported sequences. Also, data on the

conditions under which genes are expressed is currently very
sparse in the public databases. Nevertheless, even an algorithm
which could reliably reproduce most of the database annotation,
given the bare sequence, would be a significant advance over
what is available today.

Important aspects of gene recognition methods have been
reviewed in (4-9).

A natural overall approach to building gene recognition
algorithms is to first construct component algorithms that
recognize the major features of genes: statistical bias in exon
sequence, the patterns at intron junctions, promoters, enhancers,
etc., and then to build a combined algorithm that recognizes when
all these component patterns occur in a pattern consistent with
that present in a gene (c.f. 10, 11). A great many ideas have
been suggested for recognition of the components of genes, but
for a systematic approach to building a comprehensive recognition
algorithm one thing is still missing, namely an objective
comparison and evaluation of the competing recognition
techniques that have been put forward over the last decade or so.

At the core of most gene recognition algorithms are one or
more coding measures—functions which calculate, for any
window of sequence, a number or vector intended to measure
the ‘codingness’ of the sequence. Common examples include the
codon usage vector, the base composition vector, and some type
of fourier transform of the sequence. In this paper we review,
synthesize, and evaluate the coding measures from the published
literature.

An exon recognition method includes both a coding measure
and a decision method which deduces a ‘coding’ or ‘noncoding’
decision from each such vector. For the moment we ignore the
variety of decision methods used in published algorithms.
Narrowing attention to the coding measures themselves, we define
a uniform benchmarking procedure to assess these alone. This
systematic approach to one module of the general gene
recognition problem reflects a focus on laying the foundation for
the next generation of algorithms. However some of our results
will also be useful to the consumer of the current generation of
recognition algorithms.

Currently a number of investigators advocate combining several
of the measures reviewed here to obtain higher accuracy. We
demonstrate that indeed there is more information in the ensemble
of the measures than in any one of them alone. However, there
is a great deal of redundancy in the set of measures published
to date, and we show that, for future development, attention can
probably be narrowed to only a few of the measures.
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In the following sections we present first, a review of the
literature and a synthesis of the coding measures proposed to date,
second, a uniform benchmark and resulting assessment of those
measures, third, the ensemble results just mentioned, and fourth,
a discussion of the results and suggestions for how they may be
used.

SYNTHESIS OF PUBLISHED CODING MEASURES

In this section we survey the literature and describe the coding
measures to be evaluated. The grouping of the measures in what
follows is only for purposes of convenient exposition, and is not
important to the results of this study.

Several published measures are slight variants, or special cases,
of others. Thus we have generalized and synthesized the
measures. This has been done in such a way that for each
published algorithm, one of the coding measures we test is at
least as discriminatory as the one implicit in the published
description of the algorithm.

In the definitions that follow, the ‘test-codons’ of an arbitrary
sample window of sequence are defined as the successive non-
overlapping trinucleotides of the window, beginning with the first
base.

Codon usage (and counts of in-phase ‘words’)

Define the Codon Usage Measure to be the 64 element vector
giving the frequencies, among the test-codons, of each of the
64 possible codons. Most coding measures are summarizing, in
one way or another, the effects of unequal usage of codons. Thus
the codon usage measure is in some sense the most fundamental
of coding measures; it has been widely used.

Staden & McLachlan (12) calculate a probability of occurrence
of the codon usage vector for each window. First the frequency
of occurrence of each possible codon in some reference set of
actual genes is noted. Then the product of these frequency values,
over the test-codons of a sample windows, is taken as the
probability of the window. To find coding regions the
probabilities of successive windows, offset by a single nucleotide,
are compared. (Because of the difficulty of choosing the correct
reference set to compute the codon usage standard, Staden (13)
suggests that one might begin with the average amino acid
composition for all proteins and reverse translate, using
synonymous codons equally, to get a universal codon usage
standard. See the discussion of McCaldon and Argos’ work (14)
below.)

Gribskov, Devereux & Burgess (15; cf. also 16) use a
likelihood ratio approach. The conditional probabilities of the
sequence, given the translated amino acid sequence, under a
coding and under a noncoding (random sequence) hypothesis,
are compared. Thus set f(abc) = frequency in a reference set
of coding regions of the codon abc, r(abc) = probability of
occurrence of abc in random sequences (independently occurring
nucleotides with the same frequencies as in the reference set),
F(abc) = sum over synonymous codons of f(abc), R(abc) = sum
over synonymous codons of r(abc). Then set preference(abe) =
[f(abc)/F(abc)l/[r(abe)/R(abe)], and preference(window) =
II(preference(test-codons))(1/(window length)). The reference set
taken is one of highly expressed genes, and the suggestion is made
that the preference function defined above is also correlated with
expression level.

Hinds and Blake (17) set, for any trinucleotide abc, p(abc) =
(frequency of abc in-phase in coding regions)/(frequency of abc

overall). Then they score a window with the average p-values
of the ‘codons’ in it, and smooth the score-versus-position curve
over all windows.

Kolaskar & Reddy (18) combine tests for initiators and for
codon bias. The idea of the codon bias test is basically to count
the number of highly marked test-codons in an open reading
frame, where markedness is defined as follows. If w is an
arbitrary oligonucleotide let f(w,i) be the frequency of w in
phase i of coding regions (of some reference set)—that is with
the first base of w occurring in ‘codon’ position i. Now let
abc be an arbitrary trinucleotide and define P;(abc) =
f(abc,1)/[f(ab,1)f(c,3)], P,(abc) = f(abc,2)/[f(ab,2)f(c,1)],
Py(abc) = f(abc,3)/[f(ab,3)f(c,2)]. A trinucleotide is highly
marked if P, is very different from 1 but P, and P; are near 1,
i.e. if within coding regions the third base depends strongly on
the first two, but outside of coding regions the third base is
relatively independent.

Borodovsky et al. (19—21) construct four separate Markov
models for DNA, one for noncoding regions, and three for the
three phases of coding regions. Then they calculate the probability
of each window of the sequence, based on each of the four
models. Finally, a probability of each model, given the window,
is calculated by Bayes’ theorem. The Markov models used are
of step lengths 1, 2, or 3. More recently, Borodovsky and
McIninch have extended these results to Markov processes with
step length up to 5 (personal communication). The Markov model
of step length 5, considered the most accurate, is based on phase-
specific counts for oligonucleotides of length 6. Thus for n=0,
1, 2 we define the Hexamer-n Measure to be the counts of all
hexamers offset by n from the starting base of a test-codon.

Claverie and Bougueleret (22) (cf. also 23) use the differences
in frequency of occurrence of all hexamers between intron and
exon sequences. They define, for each possible hexamer w, p(w)
= frequency of occurrence of w in exons, q(w) = frequency
of occurrence of w in introns, and d(w) = p(w) /(p(w) + q(w)),
or, later, d'(w) = p(w)—q(w). d(w) is plotted for each successive
hexamer in the test sequence. In a later paper (Claverie, Sauvaget
and Bougueleret, 24) d(w) is computed separately for hexamer
counts in each of the three possible reading frames, and smoothed
by averaging over a window. The phase-dependent methods
depend on the Hexamer-n measures; define also the Hexamer
Measure to be the frequency count in the window of all
hexamers.

In Fichant and Gautier (25) codon usage vectors (ignoring stop
codons) in a sliding window are thought of as points in
61-dimensional space. Correspondence analysis (CA; see, e.g.,
26), applied to the set of vectors from one contiguous sequence,
is used to make a projection on a one-dimensional subspace which
(usually) differentiates between coding and noncoding. (The
assumption is that codon usage is even more uniform within a
gene than within a genome.) Then two things are used to make
a coding/noncoding judgment. First, the variance of CA scores
of three windows offset by one tells whether the windows cover
genuine coding regions. Second, the window with the lowest CA
score gives the correct frame.

Lapedes et al. (27) explore several neural net approaches (for
an introduction to neural nets see 28). They find that a neural
net with one layer of hidden neurons, looking at a raw window
of sequence, uses the hidden layer to summarize codon usage
data. This confirms that the codon usage vector is a very natural
coding measure. Their final results use a one layer net (essentially
a perceptron; cf. 29) on codon usage vectors in 64-space. Farber,



Lapedes, and Sirotkin (30) extend these results, using a neural
net with all di-test-codon frequencies as input. Thus we also define
the Dicodon Usage Measure (equivalent to the Hexamer-0
Measure), with the frequencies of all in-frame hexamers from
the sample window.

Methods related to the encoded amino acid sequence

A very natural measure, used in some form by most investigators,
is simply the presence or absence of in-frame stop codons. We
define the Open Reading Frame Measure as the length of the
longest stretch of sense test-codons in the window.

McCaldon & Argos (14) use an approach closely related to
those based on observed codon usage. They begin by grouping
the PIR database into a new set of superfamilies, with the property
that no two superfamilies share highly similar sequences. This
grouping is used to make frequency tables for oligopeptides which
they believe to be representative of proteins in general. From
this they make a two step Markov model for amino acid
sequences, and thence a two step Markov model for codon choice
in protein coding regions. Then for any window on a DNA
sequence, they calculate the probability of occurrence of that
window, based on the Markov model. As in (12, 13), this
probability is compared for a triplet of overlapping windows,
offset by 1.

The McCaldon and Argos model assumes equal codon usage
within a family of synonymous codons, so that all of the
information actually used is in oligopeptide frequency counts.
It would be natural to define coding measures for the amino acid
frequencies (corresponding to Staden’s method) and the tripeptide
frequencies (for McCaldon and Argos’ method). Since McCaldon
and Argos indicate that similar results were obtained with a
Bernoulli process (corresponding to the use of the single amino
acid frequencies), we test here the mono- and di-amino acid
frequency counts as coding measures.

Define the Amino Acid Usage Measure to be the 21-vector
obtained by translating the sample window of sequence, beginning
with the first base, according to the appropriate genetic code,
and counting the frequencies of the 20 amino acids and ‘stop’.
Define the Diamino Acid Usage Measure to be the 441-vector
given by translating the window and counting all the (overlapping)
dipeptides (including ‘stop’ as an ‘amino acid’).

Tramontano and Macchiato (31) select hydrophobicity as a
significant measure of protein function. They suggest that a
mutation in a genuine codon is likely to result in a smaller change
in hydrophobicity (in the encoded amino acid) than is a mutation
in a trinucleotide of a noncoding region (in its corresponding
amino acid). So they define the information value of a codon
as iy 3[Ei= ni(pi*dj))/n;, where n; is the number of sense
mutations of the codon, p; is the probability of the ith mutation,
and d; is the difference in hydrophobicity caused by the
mutation (see the paper for tabulated values for dy). The
information value of a window is then the average information
value of the test-codons in that window. We define the Stability
of Hydrophobicity Measure as this average. The authors show
that this measure is little affected by the existence of overlapping
coding regions.

Tramontano and Macchiato make a prediction based on the
assumption that an unknown sequence is drawn from two
populations of equal size, each having a normal distribution of
the information value indicator, one with mean and standard
deviation matching the coding regions in their database, one with
mean and standard deviation matching the noncoding regions.
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Moody and Fristensky (32) refine the model by allowing the two
populations from which the sample comes to be of different sizes.
They again use the same stability of hydrophobicity measure.

Base compositional bias between codon positions

The next few methods are based, directly or indirectly, on the
asymmetry of the base composition in the three codon positions.
As a basis for all of these, define the Composition Measure:
[f(b,i)], where for each base b = A,C,G,T and each test-codon
position i=1,2,3, f(b,i) is the frequency of b in position i.

Shepherd (33) notes that the most frequently used codons are
of the form RNY. He tests for the existence and frame of a coding
region by measuring the number of differences between the
sequence and the pattern RNYRNY...RNY. In fact, a number
of investigators have noticed prototypical properties of codons,
¢.g. that they are often of the form RNY or WWS, or that a
certain base is more common in one position than in another.
The following measure is one natural generalization of all of these
observations.

Codon Prototype Measure: Let p(b,i) be the probability of
finding base b at position i in an actual codon. Let q(b,i) be the
probability of finding nucleotide b at position i in a trinucleotide
that is not a codon. Consider p and q to be 4 X3 matrices, with
rows indexed by the bases b=A,C,G,T. Let B be the matrix with
element (b,i) = p(b,i)—q(b,i). B can be considered a linear
function on trinucleotides in an obvious way: each base b of a
trinucleotide may be considered a column vector of a 3 X4 matrix,
with a 1 in the bth row. Then B of that trinucleotide is the dot
product of B and the matrix representation of the trinucleotide.
Elementary calculus shows that, up to a multiplicative constant,
B is the matrix which maximizes the average of the difference
B(codons) —B(noncoding trinucleotides). We define the codon
prototype measure to be the sumn, over the window, of the dot
product of B and the test-codons of the window. (This is very
close to the ‘Frame Bias Matrix” measure of Mural, Mann, and
Uberbacher (34)).

Fickett (35) takes eight measurements on a window. Four of
them are simply the frequencies of the bases. The other four
measure the asymmetry of the base composition in the three codon
positions. That is, with f(b,i) as above, define assym(b) =
max(fib, 1),f(b,2),f(b,3))/[ 1 + min(f(b, 1),f(b,2),f(b,3))]. Each of
these is used to make an estimate of coding likelihood, and the
separate estimates are all combined using a linear weighted sum.
(Staden (13) uses the following variant of the asymmetry measure.
For each base he calculates u(b) = Z(f(b,))/3 and diff(b) =
Li([f(b,i)—u(b)|). His measure is then I (diff(b)).)

Both Fickett (35) and Staden (13) are giving ad hoc measures
of how much f(b,i) varies with i. For the Position Asymmetry
Measure we use a standard measure of the spread of data points,
(a multiple of) the sample variance. Define u(b) = E;(f(b,1))/3
and asymm(b) = IZ(f(b,i)—u(b))? Then define the position
asymmetry measure to be [asymm(A),asymm(C),asymm(G),
asymm(T)].

Bibb, Findlay and Johnson (36) calculate C+G content at each
of the three test-codon positions. Staden (13), in a variant of
Shepherd’s (33) method, finds base compositions of each position
in a prototypical codon by reverse translation from a prototypical
protein. That is, he calculates a prototypical amino acid frequency
distribution by averaging over all proteins, derives from this a
prototypical codon frequency distribution by assuming equal use
of synonymous codons, and from this calculates a prototypical
base composition for each codon position. The correlation
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between this and the base composition for each codon position
in the window is used as a discriminator. The codon prototype
measure, defined above, covers these cases as well.

Almagor (37) measures bias from random of f(b,i) as a function
of b, using entropy in the sense of information theory. That
is, given f(b,i) as above, define entropy(i) = Z[f(b,i)In(f(b,i))].
If the three values of entropy(i) are significantly different a
coding region is predicted, and the one with the largest difference
from random is predicted to be third codon position. We
define the Entropy Measure to be [entropy(l),entropy(2),
entropy(3)].

Trifonov (38) compiled frequency tables for each base in each
codon position for 130 species, and found that the frequency of
G in first codon position is universally greater that the frequency
of G in second codon position. The codon prototype measure
is again implied.

Imperfect periodicity in base occurrences

Michel (39) bases an exon recognition algorithm on the T
autocorrelation function. Let T; be the number of pairs of T
nucleotides separated by i bases, L the length of the window,
and D; = T;/L. Linear discriminant analysis is used to show that
D,, Ds, D,, D;, D3, Dg are the most telling six of the first ten
D;’s. Linear discriminant analysis is again applied to these six
to make a coding/noncoding decision.

It seems likely that the autocorrelation functions of all four
bases could contribute significant information to the coding
decision. Thus we define the Autocorrelation Measure as
follows. Let auto(b,i) be the number of pairs of base b with i
intervening bases. For the measure we correct for the number
of such pairs expected on the basis of base composition alone,
giving the matrix [auto(b,i)/(window__length-i—1)
(frequency__of__b)?], where b=A,C,G,T and i=0,...9.

Silverman and Linsker (40) define a Fourier transform on a
DNA sequence which depends only on the overall patterns of
periodicity in the sequence and not on which bases are involved
in the periodic patterns. The vertices of a regular tetrahedron
centered at the origin in 3-spac e are labeled with A, C, G, and
T. Then the function f(m) is defined to be the vector from the
origin to the vertex labeled with the m™ base of the sequence.
If the window length is 2M then the Fourier decomposition of
f(m) may be written as f(m) = I [C, e*i"™M] The scalar
transform is g(n) = |C,|2. This turns out to be the same as g(n)
= (1/@AM?)L[L(f(m) f(m—p)Je™i"P™, j.e. the ordinary
Fourier transform of a natural 3-dimensional autocorrelation
function. Silverman and Linsker point out that the periodicity
of 3 in coding regions appears as a peak at g(2M/3).

An approach essentially equivalent to that of Silverman and
Linsker is to represent the four bases as the four basis vectors
in 4-space. This latter representation results in a somewhat cleaner
analysis (and is easier to generalize to symbol strings over
different size alphabets). We may then alter their equation 3.4
as follows. Let the window be 2M long. Let EQ(x,y) be the
function which is 1 if x=y and 0 otherwise. Define the nth
Fourier coefficient (dropping the constant 1/4M2 for simplicity)
by: FC(n) = L[ (EQ(base m,base m-p)))e™™™. Then define
the Fourier Measure to be [FC(2M/2), FC(2M/3),...,FC(2M/9]
(i.e. the Fourier coefficients of the autocorrelation function for
periods 2 to 9).

Arques & Michel (41). When the frequency of R(i—other-
bases)YR in eukaryotic coding sequences is plotted as a function
of i, there is a clear separation of the points according to the
remainder of i upon division by three. The first new result in

this paper is that when the focus is narrowed to i congruent to
0 modulo 3, clear peaks in the frequency are observed at i =
9, 18, 27 (but not 36). The authors then specialize the above
pattern to R(j—other-bases)RYR (j here corresponds to i—1
above). The second new result is that the frequency of this pattern
shows a clear peak at j=8 not only in protein coding, but in tRNA
genes. The periodicity of 9 is absent in rRNA genes, prokaryotic
protein coding genes and introns. (Similar results obtain if Y and
R are reversed.). Based on these observations we define {(j) =
frequency of R(j —other-bases)RYR and Period 9 Measure as
the vector of values [f(5),f(8),f(11)].

Konopka (42) combines a measure of entropy (in a manner
similar to Almagor (37); cf. the entropy measure) with a ratio
of two measures of periodicity that are essentially equivalent to
Fourier coefficients (cf. the Fourier measure).

Other global patterns

Erickson & Altman (43) examine both non-uniform codon usage
(cf. the Codon Usage Measure) and the relationship between
successive codons. For the latter, they point out that the
dependency of the first base of a codon on the third base of the
previous codon. Shulman, Steinberg, and Westmoreland (44) take
this a step further, noting a higher dependency between
nucleotides in codon positions 1 & 2, and between positions 2
& 3, than between positions 3 & 1. This effect is measured with
a chi-squared test. Although there is not enough data in a window
of tens of codons for a valid chi-squared test, one may still use
the chi-squared function for a natural indicator of difference
between two distributions. We define the Dinucleotide Frame
Measure as follows: Make three frequency distributions of
dinucleotides in the window: test-codon positions 1 & 2, positions
2 & 3, and positions 3 & 1. The indicator will be the three chi-
squared values measuring bias of these distributions from the
overall dinucleotide distribution of the training set (coding and
noncoding).

Shulman, Steinberg, and Westmoreland (44) also suggest two
other tests. First, they point out that G is found more frequently
in codon position 1 than in codon position 2 (cf. the codon
prototype measure). Second, they show that the set of ‘words’
obtained by dividing a coding region into codons has a more
biased distribution than that obtained by dividing it into words
of another size, or in another frame. It appears from other resuits
(e.g. Konopka & Smythers (45) and Arques & Michel (46)) that
the most significant of these differences is between words of
length 2 and words of length 3. Thus we define the Word
Measure as follows: Divide the window into successive, non-
overlapping words of length 2, and also into words of length 3.
The measure is the pair of chi-squared values comparing the
frequency distributions of these words with the uniform
distribution.

Blaisdell (47) finds that both coding and noncoding sequences
have longer than expected runs of R and Y, and shorter than
expected runs of W and S. However the tendency toward longer
than expected runs of R and Y is stronger in noncoding than in
coding, and the trend toward shorter than expected runs of W
and S is stronger in coding than in noncoding. (This may be
connected with the observation of Wada and Suyama (48) that
the predicted melting temperature of coding regions is both higher
and more uniform than that of noncoding regions.) In partial
explanation of these results, Blaisdell notes that many codons
are WWS, and that the WWS pattern is even further from random
than the RNY one. The WWS pattern is dealt with by the codon
prototype measure.



For the observation concerning run length, we define a Run
Measure as follows. Let S;, S,,... S;4 be the nontrivial subsets
of the set {A,C,G,T]. For each §; construct a new sequence by
replacing each base in S; with 1 and replacing each base not in
S; with 0. Using this sequence define r;; to be the number of runs
of 1 of length j, for j=1,2,3,4,5, and let ;¢ be the number of
runs of 1 of length greater than 5. The run measure will be the
set of values [ry].

Blake & Early (49) find a number of notable characteristics
of coding regions in E.coli: (a) Coding regions (both RNA and
protein genes) are embedded in segments of uniform G+C
content of about 53%, about 1000 bases long; noncoding
sequences are embedded in segments about 500 bases long of
average G+C content 46% (cf. the composition measure). (b)
There is less bias in nearest neighbor frequency in coding than
in noncoding regions: WW and SS nearest neighbors are about
7% more frequent than expected and WS and SW are about 7%
less frequent than expected, in noncoding. A similar statement,
with 7% replaced by 4%, holds for coding. To make a general
measure, let f(w), for any possible word w, be the frequency
of w in the sample window. Now for each dinucleotide ab let
bias(ab) = [f(ab)—f(a)f(b)]/f(a)f(b). The Dinucleotide Bias
Measure will be the bias values for the 16 dinucleotides.

Mural, Mann, and Uberbacher (34) use both a version of the
codon prototype measure (mentioned above) and a measure
termed the dinucleotide usage fractal dimension. The latter is
based on the relationship between the frequencies with which
dinucleotides occur overall and the frequencies with which they
occur together in the same trinucleotide, but details on calculating
the actual value of this measure on a window are not specified.

Uberbacher and Mural (50) combine a number of coding
measures using a two layer neural net. The measures include the
codon prototype measure, the TESTCODE algorithm output (cf.
the position asymmetry measure), the dinucleotide fractal
dimension (see above), and the hexamer measure, the latter
calculated on three different reference sets. The first reference
set for the hexamer measure is coding (on either strand and in
any frame) versus noncoding. The second is coding (correct
strand and phase only) versus noncoding, the third is actual versus
random DNA, and the fourth is repetitive versus non-repetitive
DNA. The hexamer measure, as defined above, covers the first
of these, and the dicodon measure covers the second. The third
is very close to the first and will not be tested separately for this
study. There are problems in characterizing the repetitive
elements of many genomes, including the human, both because
the variation of individual repeats from the consensus is
incompletely known, and because new repetitive elements are
constantly being discovered. Thus for the fourth case above, we
simply take all hexamers which occur, on average, more than
twice every 4096 bases to be in the ‘repetitive’ set (we are
indebted to N.Doggett for suggesting this approach (personal
communication)). Using only the counts of these hexamers (324
in human, 247 in E. coli), in the coding and noncoding reference
sets, gives the Repeat Measure.

MATERIALS AND METHODS

In this section we describe a benchmark by which the relative
usefulness of any coding measure may be evaluated. Of course
the usefulness of a measure may vary, depending on the context
in which it is applied. We will show that the benchmark is
reasonably general, by testing several variants of it on the set
of measures defined above, and showing that while the absolute
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accuracies vary with incidental factors, yet our overall conclusions
hold in the several variant contexts.

Some measures are most naturally used to differentiate only
between coding and noncoding regions, irrespective of frame,
while others are more specific. Thus we make use of two different
definitions of ‘coding’, as follows. A (single-stranded) window
of DNA sequence is ‘phase-coding’ if the successive trinucleotides
of the window, beginning with the first base, are used as codons
in some gene. A window is ‘region-coding’ if every nucleotide,
or its complement, is in a codon (irrespective of frame) of some
gene. The benchmark includes an evaluation of the measure for
both of these definitions of ‘coding’.

In brief, the benchmark is defined as follows. Homogeneous
(fully coding or fully noncoding) windows of fixed size were
taken from GenBank. The data corpus was split in half, and the
first part was used as a training set. Discriminant analysis was
used to define a linear function of the measure which
discriminates coding from noncoding. A threshold was then set
to equalize the error rates on the coding and noncoding training
sets. Then the performance of the algorithm so defined was
evaluated on the other half of the data as test set. The average
accuracy on the coding and noncoding parts of the test set was
taken as the overall accuracy of the measure. A more detailed
description follows.

The data

All data were taken from the GenBank™/EMBL/DDBJ
international collection of nucleotide sequence data, in the form
of the on-line relational GenBank database (1). Genomic human
sequences were extracted 30 May 1992, and E.coli sequences
were extracted on 28 June 1992. For the primary benchmark,
successive, non-overlapping windows of length 54 bases were
taken from all human genomic sequences (with partial windows
at sequence ends discarded). Variants of the benchmark also used
54 base windows from E. coli sequences and windows of length
108 and 162 from genomic human sequences. (The particular
lengths chosen are not particularly significant, but were chosen
to simplify some of the calculations.)

Each set of windows was split into two, with the first half to
be used for training, or parametrizing the algorithm, and the
second half to be used for testing, or evaluating its accuracy.
It is critical to separate the training and testing sets. See (27)
for examples.

Within each train and test set, only homogeneous (fully coding
or fully noncoding) windows with no ambiguous bases were used.
Table 1 shows the numbers of windows used in each set.

Evaluation of measures

All existing algorithms which incorporate a vector valued coding
measure (as we have defined them) use (with minor variations)
some linear combination of the vector elements as the basis of
a coding/noncoding decision. That is, there is some coefficient
vector ¢ and some threshold t such that the sample window with
coding measure vector m is thought to be coding if and only if
c-m > t (or, in some cases, if and only if ke'm > t for some
constant k).

For this study, it was desirable to have one simple, uniform
method for deriving such a coefficient vector ¢. For reasons
discussed below, we used Linear Discriminant Analysis (LDA,
a standard technique in multivariate analysis; see, e.g. 51, 52).
Classical LDA finds a coefficient vector ¢ such that the ratio of
the between-population variation of ¢+m to the within-population
variation of ¢-m is maximized. One begins by defining the total
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Table 1. Numbers of windows, in thousands, used in the sixteen train and test sets

Hum 54 Hum 108 Hum 162 Eco 54
Region Train 20.5/125.1 7.1/58.1 3.5/36.5 40.3/14.2
Region Test 22.9/122.1 8.2/57.0 4.3/35.6 38.8/15.7
Phase Train 4.2/152.0 1.5/73.3 .8/47.4 8.7/48.7
Phase Test 4.7/151.2 1.7/72.9 .9/46.9 8.3/49.1

Each entry of the table shows first the number of coding windows, then the number of noncoding.

covariance matrix T and the within-population covariance matrix
W, as follows: let Xy, be the value of the m scalar component
of the measure on the wi window of function f (f=0 for
noncoding, f=1 for coding). Let X, be the mean of x4, over
w, and X, the mean of Xyq, over both f and w. Then the
element in the r row and ¢™ column of T is t, =
Ll o Xwie — X)) (Xwic —X,)- And the element in the rth row and cth
column of W is w,. = (£, (Xufr — X)) Xwie—Xic)- T and W can
be calculated with a single pass through the data, using the
formulae S;; = EiZo(Xut*Xute), te = Sre—(Mp + ny) *X; *X,,
and w,, = S,.—Xq * Xoo * ng—X,; * X, * ny, where ng is the
number of non-coding windows, and n; is the number of
coding windows. Next we define the between-population
covariance matrix as B = T—W, and diagonalize W-!B to
find its eigenvalues. The eigenvector corresponding to the largest
eigenvalue of W-1B is the desired coefficient vector ¢.

Classical LDA requires the inversion of the within-sample
covariance matrix W. For many of the measures defined above,
especially those with hundreds or thousands of elements, this
presents a problem. High redundancy of information in a measure
leads to a covariance matrix that is very nearly singular, making
standard inversion algorithms highly unstable (small perturbations
in the data result in large perturbations in the discriminant vector).
Thus for the primary benchmark we used a form of LDA where
one ignores all off-diagonal elements of the covariance matrix.
In this case each scalar component of the discriminant vector is
calculated from the means and variances of the corresponding
component variable on the noncoding and coding sets, by the
formula (pegs—pinea) /(Vegs + Viea)- Classical LDA was used as
one of the variants of the benchmark, in those cases where it
could be applied.

The form of LDA which ignores off-diagonal elements of the
covariance matrix is equivalent to classification on the basis of
Penrose distance (53), and we term the resulting coefficient vector
the Penrose Discriminant vector. Geometrically, Penrose
discrimination amounts to rescaling each axis of the space of
observations so that all variables have the same average within-
set variance (i.e. the average of the variance within the coding
and within the noncoding sets), and then projecting all points onto
a line between the centroid of the two sets. Classical LDA is
similar, except that the rescaling may also move the axes of the
observation space relative to each other.

Given a scalar measure, or a vector-valued measures and a
discriminant vector, a pass through the training set was made
to choose an appropriate threshold by which to make the
coding/noncoding decision. In the case of scalar measures m,
the threshold was simply applied to m; in the case of vector
measures m, the threshold was applied to ¢-m. In each case the
threshold was chosen so that the fraction of errors on the coding
windows (i.e. the false negative rate), was equal to the fraction
of errors on the noncoding windows (the false positive rate).

Note that both the mean and variance of many of the following
indicators depend on the window length, so the above procedure
must be carried out separately for each window length.

Finally, the resulting real-valued function on sequence
windows, either m or ¢+m, with the appropriate threshold for
obtaining a coding/noncoding decision, was applied to the testing
set. The resulting accuracy was taken to be the average of the
correct prediction rate on the true coding and true noncoding
subsets, i.e. the accuracy is the average of the sensitivity and
the specificity.

RESULTS

We applied the primary benchmark and four variants to each of
the measures defined above. The primary benchmark is made
by applying a Penrose discriminant function to 54 base windows
of human genomic sequences. In the four variants, one condition
of the benchmark is varied at a time: window length, discriminant
function, or organism. In the first two variants, the window length
is varied to 108 and 162 bases. In the third variant just the
organism is changed, to E.coli. In the fourth variant the
discriminant method is changed to classical linear discriminant
analysis.

For classical linear discriminant analysis the variables making
up the measure must not be linearly dependent. Thus for the
fourth variant we used a subset of the variables in some of the
measures, as follows: for amino acid usage, we removed the
‘stop’ count; for codon usage, the TTT count; for composition,
the three T counts; and for run, we used only the counts for R,
Y, W and S.

Results of the tests are shown in Table 2 (for the ‘region’
definition of coding) and Table 3 (for the ‘phase’ definition of
coding). Both tables are ordered according to results on the
primary benchmark.

Many of the measures are independent of coding phase, and
it might have been thought that these would perform much better
on the region coding test. But in fact all such measures performed
either better on the phase coding test, or only slightly worse.
This leads to the pleasing conclusion that it will probably not
be necessary to apply certain measures in a region coding test,
others in a phase coding test, and to combine the results in a
post-processing step. Rather, all measures can simply be used
to discriminate coding regions in phase.

There is a great deal of redundancy in the suite of measures
proposed to date. In some cases two measures are sensing very
similar things (e.g. autocorrelation and fourier). In many cases
one measure is derivable from, or a specialization of, another
(e.g. composition can be derived from codon usage counts).
Figure 1 shows which measures can be derived from others.

The tree in the right half of Figure 1 contains most of the
measures currently used. It is remarkable that, without exception,
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Table 2. Percentage accuracy (average of specificity and sensitivity) of the coding measures in predicting region coding

Measure Human 54 Human 108 Human 162 E.coli 54 Human 54
Penrose Penrose Penrose Penrose Classical
Hexamer 70.5 73.1 74.2 67.5 -
Position Asymmetry 70.2 76.6 80.6 61.6 70.3
Dicodon Usage 70.2 72.9 73.9 67.5 -
Fourier 69.9 76.5 80.8 61.3 69.9
Hexamer-1 69.9 72.6 73.8 66.8 -
Hexamer-2 69.9 72.6 73.8 66.7 -
Run 66.6 70.3 71.3 63.6 67.9
Codon Usage 65.2 68.0 69.5 64.1 66.
Repeat 65.1 69.9 73.1 62.4 -
Autocorrelation 64.9 71.1 71.0 58.2 64.9
Dinucleotide Bias 62.9 55.5 50.7 55.9 62.7
Diamino Acid Usage 62.8 66.3 67.8 61.3 -
Composition 61.7 64.1 65.9 61.7 61.3
Amino Acid Usage 60.6 63.4 64.7 59.7 61.3
Word 59.5 66.4 71.4 56.6 - 61.0
Entropy 58.4 63.1 66.2 55.0 58.4
Dinucleotide Frame 58.0 62.9 66.6 54.6 58.0
Open Reading Frame 57.8 59.2 60.7 57.4 57.8
Stability Hydrophobicity 55.5 57.5 58.7 55.5 55.5
Codon Prototype 54.7 56.1 56.4 54.7 54.7
Period 9 52.5 53.0 52.8 51.8 524

Data from five benchmark situations are shown, with varying data set (Human or E. coli), window length (54, 108, or 162) and decision

method (Penrose discriminant or Classical linear discriminant).

Table 3. Percentage accuracy (average of specificity and sensitivity) of the coding measures in predicting phase-specific coding

Measure Human 54 Human 108 Human 162 E.coli 54 Human 54
Penrose Penrose Penrose Penrose Classical
Dicodon Usage 80.7 84.3 85.4 88.7 -
Hexamer-2 79.5 82.8 84.2 87.2 -
Hexamer-1 78.6 82.0 83.3 87.1 -
Codon Usage 78.0 81.0 82.1 86.9 81.7
Diamino Acid Usage 77.2 84.9 87.7 84.2 -
Amino Acid Usage 75.3 81.1 83.6 83.3 76.2
Codon Prototype 74.3 78.2 80.5 78.8 74.3
Open Reading Frame 729 83.3 88.0 75.6 72.9
Composition 72.2 74.7 75.9 78.8 75.0
Hexamer 71.7 74.3 75.4 70.5 -
Position Asymmetry 68.1 74.7 71.5 59.7 68.3
Fourier 67.8 74.8 77.6 54.7 67.5
Run 66.1 69.6 71.1 62.5 67.0
Repeat 65.5 70.4 73.8 63.0 -
Autocorrelation 64.5 71.4 76.3 58.6 64.6
Dinucleotide Bias 61.9 56.4 55.5 50.3 61.4
Entropy 61.1 64.7 69.2 56.2 61.2
Stability Hydrophobicity 59.8 62.5 63.8 60.4 59.8
Word 58.4 65.6 72.9 57.6 60.7
Dinucleotide Frame 58.4 62.6 65.7 52.1 56.5
Period 9 55.0 58.4 58.9 539 55.0

Data from five benchmark situations are shown, with varying data set (Human or E. coli), window length (54, 108, or 162) and decision

method (Penrose discriminant or Classical linear discriminant).

measures higher in this tree have higher accuracy than those
below (and derived from) them. That is, in every case, if we
derive an exon recognition function directly from a measure by
using the Penrose discriminant, the result is higher accuracy than
if we try to extract information from the measure in some clever
way, and apply the Penrose discriminant procedure to the result.
This is very clearly the case for most of the measures. One case
which is less clear is that of the diamino (or amino) acid usage
measure, which with the Penrose discriminant on longer human
windows scores higher than the dicodon (respectively, codon)

usage measure. There are several reasons, however, for
preferring the in-phase hexamer (including dicodon usage)
measure. First, the Penrose discriminant can be improved upon
significantly for measures with high redundancy of information.
We may note that while the score of the amino acid usage measure
improves by only 0.9 percentage points when the classical linear
discriminant is used in place of Penrose, the accuracy of the codon
usage measure improves by 3.7 percentage points. So when more
sophisticated techniques are used to take advantage of the
information in the measure, we think that the in-phase hexamer
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Figure 1. Derivability of measures. Whenever two measures are connected by
a line, the lower one is a function of the higher one. The hexamer measure is
derivable from the dicodon, hexamer-1 and hexamer-2 measures together. The
Fourier measure is derivable from the autocorrelation function (as we have defined
it), together with the base composition of the window.

measures will outperform the diamino acid measure even for
longer windows. Second, the in-phase hexamer measures very
clearly outperform the diamino acid measure on 54 base
windows, in both species tested. There are already algorithms
that work well on longer windows; we think the direction of
research should be to develop algorithms for shorter windows.

Of the measures not in the main tree at the right of Figure 1,
the period 9 measure and the word measure yield rather poor
results, and the autocorrelation measure is essentially equivalent
to the Fourier measure. Taking all the results together thus
suggests that of the measures tested here, future algorithms should
be based on Fourier, run, ORF, and the in-phase hexamer
measures.

Combining several measures does improve accuracy. The
highest score of any measure in the region-specific prediction
of coding function on 108 base human windows was 76.6%. But
E.Uberbacher kindly applied the Coding Recognition Module of
GRAIL (50) to the 108 base human test set (using only the first
100 bases of each window), and when a threshold was set to
equalize sensitivity and specificity the resulting accuracy was
79%. For phase-specific discrimination we combined the six
measures just discussed, again using classical linear discriminant
analysis, and obtained 87.8% accuracy on human 108 base
windows (compared to 84.9% for the most accurate individual
measure). This last combination was also applied to human 54
base windows, giving 82.4% accuracy (compared to 80.7%
accuracy for the highest individual measure).

All discriminant vectors, as well as values for thresholds,
sensitivity, and specificity may be obtained by sending an e-mail
message containing only the text ‘cds__discriminant’ to
bioserve@genome.lanl.gov.

DISCUSSION

Computer-assisted recognition of genes in DNA sequences is
widely recognized as a central problem in computational
molecular biology. Many techniques applicable to this problem
have been developed in the past decade or so, and much current

effort is being directed at combining component techniques into
integrated algorithms. This has been, and will continue to be,
a very fruitful line of work, yet it has suffered seriously from
one weakness. Namely, it is often the case that the component
techniques have not been carefully assessed for their effectiveness.
We propose that one of the best ways to improve the accuracy
of gene recognition algorithms is to reverse this situation.

A natural place to begin this process is in the systematic
evaluation of what we have termed coding measures—scalar or
vector-valued functions on windows of sequence, intended to
measure resemblance to typical exonic DNA. Our aim has been
to assess the value of all coding measures from the literature,
apart, as much as possible, from both their algorithmic and their
application context, so that in building the next generation of
integrated algorithms we may with some confidence know what
are the most informative coding measures. (One method for
discovering genes, namely similarity searches on sequence
databases, is not amenable to the same sort of accuracy assessment
that we have carried out here, because a negative result means
little. Cf., however, 54 and 55.)

The conceptual model by which we divide an algorithm into
a coding measure and a decision method is a natural one. Many
general decision methods fit well in this context: neural nets,
discriminant analysis, and many probability calculations take a
vector of measurements and produce a single number by which
a decision may be made. Of course many algorithms process the
data in several stages, so that there is some ambiguity in dividing
the algorithm into a coding measure and a decision method. Our
criteria in defining the coding measure used by a published
algorithm have been (a) that any biological insights of the authors
be represented in the coding measure we extract, and (b) that
the final statistic by which the authors make the coding decision
be a linear function of our coding measure or a slight variant
thereof.

One may note that many of the measures are linear
combinations of other measures. Thus for example choosing a
set of coefficients for the amino acid usage measure is just one
way of choosing a set of coefficients for the codon usage measure.
Nevertheless, since no one way of choosing the coefficient vector
is guaranteed to maximize the accuracy, we felt it important to
test all the measures.

Our benchmarking procedure was defined not to obtain the
utmost accuracy from each measure, but to provide a
straightforward assessment of how well each measure already
accomplishes the task of summarizing important information
about codingness. Linear discriminant analysis is simple,
relatively uncontroversial in its mode of application, and easily
reproduced. In addition, it is reasonably effective, as seen by
the fact that the linear discriminant of each measure was more
accurate than the linear discriminant of other measures derived
from the given one. Classical linear discriminant analysis corrects
the greatest weakness of the Penrose discriminant in that the
former takes into account inter-variable correlations. But the
average increase in accuracy made by using the classical
discriminant was only 0.6%.

All this is only to say that the Penrose discriminant is well
suited to comparative benchmarking. Naturally, much more
sophisticated decision methods will be used to build state-of-the-
art gene recognition algorithms.

Human sequence is a natural choice for the primary benchmark
both because of its intrinsic interest and because it is a significant
challenge: most algorithms don’t work as well on human as on



prokaryotic or simpler eukaryotic sequence (data not shown). The
choice of window size was similarly based: good algorithms
already exist for 100 base windows; windows of half that size
are an important and significant challenge. In other words, we
believe that discrimination of human sequence windows of about
50 bases is a significant and difficult, but achievable, goal. Results
using the variants of the primary benchmark show that for the
purposes of this study these choices are not critical.

Most known human DNA sequence is in the vicinity of highly
expressed genes, and it is possible that some of our conclusions
may need refinement as more sequence is determined from
random genomic locations. We do not expect major changes in
the conclusions reached here, for two reasons. First, preliminary
results on genomic sequencing of yeast and the nematode indicate
that there is far less intergenic DNA than was once supposed,
even in eukaryotes (56, 57). So known noncoding DNA is likely
to be a reasonable approximation to genomic noncoding DNA.
Second, in a separate study (Fickett and Guigo, manuscript in
preparation) we have compared the distribution of the codon
usage measure on the recently determined yeast chromosome II1
sequence as against previously known yeast sequences, and found
that the two distributions are very similar. So while weakly
expressed genes will give a somewhat lower signal with most
coding measures, the difference in performance will likely not
be great.

There is no standard definition for the accuracy of a recognition
algorithm. The most important feature of the measure we chose
is that it gives equal weight to the coding and noncoding sets
(many definitions of accuracy give equal weight to each window;
in this study that would have given too much emphasis to
noncoding windows). The other main choice we made was to
use the number of true positives rather than the number of
predicted positives in the denominator of the sensitivity fraction,
and similarly for specificity.

Source code, instructions for anonymous ftp retrieval of data,
and instructions for carrying out the primary benchmark described
here may be obtained by sending e-mail containing only the text
‘cds__benchmark’ to bioserve@genome.lanl.gov.

Our most important conclusion is that a measure which seems
to embody little biological understanding—counts of in-phase
hexanucleotides—is in fact the most effective one. (One might
of course distinguish between the goals of biological insight about
coding regions and accuracy in discriminating coding regions;
in this paper we are concerned with the latter.) In-phase word
count measures have a long history. The first use we know of
the codon usage measure in a published algorithm is by Staden
and McLachlan (12). Separate word counts of different lengths
for each phase were considered by Borodovsky et al. (17—-21).
These papers considered words of length 1, 2 and 3. More
recently the same author (personal communication) has extended
his work to include words of length 6. Claverie, Sauvaget, and
Bougeleret (24) were the first (as far as we know) to use the in-
phase hexamer count measures.

Our second main conclusion is that it is probably most useful
to discriminate the coding region and its phase in a single step,
rather than doing the two tasks separately and combining results.

The third main conclusion of this study is that for accurate
exon discrimination most of the measures have been superceded.
Either they have low accuracy, or they are measuring just one
facet of what a more general, and more accurate measure, is
sensing. We think that, of the measures surveyed here, future
development can be limited to application of the in-phase word
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count measures, the ORF measure, the Fourier measure, and the
run measure.

Other useful measures may of course be discovered. New
measures, as well as new algorithms, will be most valuable if
they are carefully benchmarked. While the benchmark we have
introduced should suffice for many purposes, different
benchmarks may of course be appropriate in different situations.
When a different benchmark is desired it would be very useful
if developers would benchmark their own measure, decision
method, or full algorithm, together with its main competitors,
in a uniform way. It is unfortunate, and difficult for users, that
the accuracy figures for different algorithms are calculated on
different sets and by different means, so that a meaningful
comparison is rarely possible.

For further development of coding region recognition methods
it will also be very valuable to systematically compare the
methods by which a decision is deduced from the values of one
or more measures. Now that it is fairly clear which are the best
measures, a systematic evaluation of methods for making use
of those measures is a natural next step.
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