
Vol.:(0123456789)1 3

European Radiology 
https://doi.org/10.1007/s00330-023-09768-w

EDITORIAL

Assessment of RadiomIcS rEsearch (ARISE): a brief guide for authors, 
reviewers, and readers from the Scientific Editorial Board of European 
Radiology

Burak Kocak1  · Leonid L. Chepelev2  · Linda C. Chu3  · Renato Cuocolo4  · Brendan S. Kelly5,6  · 
Philipp Seeböck7  · Yee Liang Thian8  · Robbert W. van Hamersvelt9  · Alan Wang10  · Stuart Williams11  · 
Jan Witowski12  · Zhongyi Zhang13  · Daniel Pinto dos Santos14,15 

Received: 7 March 2023 / Revised: 24 March 2023 / Accepted: 14 April 2023 
© The Author(s), under exclusive licence to European Society of Radiology 2023

Introduction

A simple PubMed search using the term “radiomics” on 
February 28, 2023, reveals 7857 publications at the time 
of the writing, with no time filter applied. Despite this level 
of research activity, there is a substantial gap between the 
number of radiomics-based publications and their actual 
clinical use [1]. A typical radiomics workflow consists of 
numerous steps, each of which may be influenced by a vari-
ety of factors [2]. This ultimately leads to variability that has 
a significant impact on reproducibility, and in turn clinical 
translation, resulting in the well-known “reproducibility cri-
sis” in radiomics [3].

According to the same PubMed search, European Radiol-
ogy (435/7,857; 5.5%) is one of the leading journals in terms 

of the number of radiomics-related publications. Consider-
ing all journal categories, it ranks second after Frontiers 
in Oncology (729/7,857; 9.3%) and is followed by Cancers 
(Basel) (309/7,857; 3.9%).

In order to improve the quality of radiomics publica-
tions, the European Radiology editorial board members in 
the Imaging Informatics and Artificial Intelligence section 
propose 13 consensus recommendations for future radiomics 
submissions, which relate to design, data, radiomics meth-
odology, metrics, and reporting of research (Table 1). These 
are listed briefly below for the authors, but reviewers and 
readers may also find them helpful.
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Recommendations

Design

1. Have a real-world purpose and unmet need for the radi-
omics method being proposed.

The objective and unmet need of a radiomics study must 
be aligned with clinical needs. There should be a robust 
clinical research question with enough available data to 
answer the question using radiomics methods and the com-
bined clinical and computer science expertise to apply these 
methods to answer the question. We encourage submissions 
that explore the application of radiomics in actual clinical 
settings, such as the impact on patient management path-
ways, radiology workflow, and service provision.

2. Use and adhere to the checklists, guidelines, and quality 
scoring tools.

Following the checklists and guidelines is a simple way to 
avoid omitting vital details when designing and reporting a 
study. The use of existing checklists or guidelines in the fol-
lowing references is strongly recommended [4–10]. Among 
those, CLEAR checklist has recently been developed as a 
single documentation tool for transparent reporting of radi-
omics research and endorsed by ESR and EuSoMII [10]. In 
addition to checklists and guidelines, quality scoring tools 
can also be utilized [11, 12].

Data

3. Split your data into training, validation, and test sets at 
the beginning of the study with care to prevent informa-

tion leakage and include a precise description of data 
partitions.

The dataset must be split appropriately before perform-
ing any action on the imaging data set, such as image and 
radiomics feature preprocessing and feature dimensionality 
reduction [13]. Data can be split into training, validation, 
and test sets. Using a resampling approach for validation 
such as cross-validation or bootstrapping is highly rec-
ommended. The training and validation sets are typically 
merged in resampling and referred to as development set 
or simply as training data. Utmost care should be taken to 
perform a patient-level split. In other words, the data of a 
particular patient may only appear in exactly one particular 
data partition. Data partitions must be described with their 
intended purpose and source. The training and validation 
sets are used for tuning, experimenting, and model selec-
tion. The test set is used to evaluate the generalization 
performance of the selected model in previously unseen 
internal and/or external data.

4. Have internal and/or external test data, use them only 
once, and never use them for experiments.

Whether internal and/or external, unbiased testing of 
the final model should be performed to properly assess its 
generalization performance. All iterative experiments must 
be performed using the training and validation sets alone 
(i.e., development/construction set). After selecting the best 
model according to validation metrics (ideally with resam-
pling methods such as cross-validation or bootstrapping), 
the test data should only be used once to assess its perfor-
mance. In other words, no alterations to the pipeline should 

Table 1  List of ARISE recommendations

Sections No Recommendations

Design 1 Have a real-world purpose and unmet need for the radiomics method being proposed
2 Use and adhere to the checklists, guidelines, and quality scoring tools

Data 3 Split your data into training, validation, and test sets at the beginning of the study with care to prevent informa-
tion leakage and include a precise description of data partitions

4 Have internal and/or external test data, use them only once, and never use them for experiments
5 Be sure your imaging data is heterogeneous with distributional similarity among data partitions
6 Be sure you have a robust reference standard for the prediction target (i.e., outcome or event) with a similar 

prevalence to epidemiological data
Radiomics methodology 7 Report parameters of preprocessing steps and radiomics feature extraction process transparently to ensure 

experiment reproducibility
8 Ensure values of the radiomics features are stable
9 Process the radiomics data properly and describe it transparently
10 Justify the feature set dimensionality considering your sample size

Metrics and reporting 11 Report the predictive performance properly with special consideration for uncertainty estimation
12 Analyze the clinical usefulness of your radiomics approach supported by the reported study findings
13 Be transparent with sharing your data, code, and model
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be performed after obtaining model output on test set data 
to improve performance. These rules also apply to multiple 
testing (e.g., performing both internal and external testing or 
multiple external testing). If any test data is used for experi-
ments, this should be acknowledged with reasons.

5. Be sure your imaging data is heterogeneous with distri-
butional similarity among data partitions.

In order to be more generalizable, data should be hetero-
geneous enough in terms of demographics (e.g., age, gender, 
ethnicity), vendors, and imaging protocols, preferably for each 
data partition and modeling phase. These can be presented 
with well-designed partition distribution tables. On the other 
hand, potential sources of model bias should be accounted for 
to avoid simply learning noise or biased distribution patterns. 
For example, in the case of an uneven distribution of MRI 
manufacturers during the training phase, a model may differ-
entiate between manufacturers rather than clinically significant 
subgroups. Sensitivity and multiparametric analyses should 
be considered as part of data partitioning to identify the key 
parameters which should be controlled for during partition-
ing. Any sort of innate bias within the dataset (e.g., ethnic 
homogeneity of the local patient population compared to other 
geographical areas) should be analyzed, acknowledged, and 
properly discussed if it is present and cannot be avoided.

6. Be sure you have a robust reference standard for the 
prediction target (i.e., outcome or event) with a similar 
prevalence to epidemiological data.

Radiomic models should be based on the most reliable 
reference standards (i.e., outcome or event) that can be rea-
sonably attained. In some cases, using radiology and clinical 
reports to establish the reference standard or labels may result 
in models that are not robust. The use of a single expert’s 
evaluation or a system that is susceptible to interobserver 
variability also represents a risk of introducing bias within a 
model. Where possible, it is recommended to utilize multiple 
expert evaluations, consensus evaluations, and interobserver 
variability-resistant systems (e.g., histopathological grading 
system). This recommendation is mandatory for the test set, 
while weaker labeling strategies (such as with clinical reports) 
may be acceptable when using large-scale datasets to train 
the model. Furthermore, the prevalence of prediction targets 
should match epidemiological data, at least for the test set(s).

Radiomics methodology

7. Report parameters of preprocessing steps and radiomics 
feature extraction process transparently to ensure experi-
ment reproducibility.

All aspects of image processing preceding the extrac-
tion of radiomics features should be described in detail to 
ensure the reproducibility of experiments, as these may 
have a significant impact on feature values [14]. Gray-level 
scaling and discretization techniques, de-noising, MRI 
bias field correction, image interpolation and resampling, 
motion correction, and thresholding are typical preproc-
essing techniques. The discretization method must include 
information about the bin width or bin count, the intended 
number of gray levels, and the intensity range with mini-
mum bound (particularly useful for the bin width method) 
[15]. Keeping in mind that the default configuration of 
the software might not be the optimal choice, care must 
be taken in setting the discretization parameters (i.e., bin 
width or bin count) to achieve a reasonable number of gray 
levels (e.g., 16–128). After preprocessing details, all steps 
required to reproduce the feature extraction procedure 
should also be described. In this respect, the following 
details should be included at a minimum: software-specific 
information (name, version, and compliance to standards, 
such as IBSI [16]), 2D or 3D feature extraction, number 
of features or class names, filters and their parameters, and 
whether all features are open source.

8. Ensure values of the radiomics features are stable.

When a manual or semi-automatic segmentation method is 
used, intra- and inter-reader feature reproducibility should 
be evaluated by performing multiple segmentations of the 
same region of interest. In the case of fully automated seg-
mentation methods, one should always check the segmenta-
tion to ensure accuracy. In contrast to the methods already 
verified, if a fully automated method is developed as part 
of the study of interest, a Dice score or Hausdorff distance 
comparison with ground truth [17] or a further radiomics fea-
ture reproducibility analysis (e.g., intraclass correlation) can 
be performed to ensure algorithm consistency and stability. 
Furthermore, the stability of the features can also be assessed 
by perturbing the images, by test-retest imaging analysis if 
applicable, or by using different software programs.

9. Process the radiomics data properly and describe it 
transparently.

Typically, radiomics data is processed before modeling. 
Several algorithms perform better when feature values are in 
a common scale (i.e., feature scaling), which must be fitted 
exclusively to the training data [18]. If a significant class 
or label imbalance exists, techniques such as under-/over-
sampling or the use of a specific cost function should be 
considered. Feature selection or data transformations should 
also be applied to reduce the dimensionality of the data. It is 
essential to emphasize that steps such as oversampling and 
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feature selection must be performed using only the training 
set, with the utmost care to prevent information leakage into 
the test data, which is also called “double dipping.” In the 
event of cross-validation before the final testing, one must 
also avoid leakage of relevant information between training 
and validation folds [19].

 10. Justify the feature set dimensionality considering your 
sample size.

Based on a common rule of thumb, the final number of 
features for one of the classes should be no more than one-
tenth of the number of instances (e.g., patients and tumors) 
[20]. In case of class imbalance, the least represented class 
should be considered. For instance, if a study involves 100 
instances for each class, the number of features after dimen-
sion reduction should not exceed 10. However, this rule of 
thumb only permits a rough and post hoc evaluation of the 
dimension and sample size suitability. Although uncom-
mon in radiomics literature, it should be noted that there 
are additional a priori sample size calculation strategies for 
multivariable models [21]. The number of features selected 
should always be appropriately discussed with reference to 
the sample size.

Metrics and reporting

 11. Report the predictive performance properly with spe-
cial consideration for uncertainty estimation.

Relevant metrics must be provided based on the purpose 
of the model (i.e., classification or regression), with particu-
lar consideration for imbalanced datasets [22]. To evaluate 
classification models, metrics that capture precision, recall, 
and true/false positive rates should be reported, such as 
AUC-ROC (area under the receiver operating characteristic 
curve), AUC-PR (area under the precision-recall curve), or 
confusion matrix. If a fixed threshold is set to binarize pre-
dictions, the threshold must not be optimized on the test set. 
To address performance uncertainty, confidence intervals 
or standard deviations must also be calculated, as appropri-
ate. In the case of multiple models, a statistical comparison 
of the model performance can be provided, with particu-
lar care for multiplicity correction if a frequentist statisti-
cal approach is used in comparisons. It is also crucial to 
note here again that the test set should only be used once 
for the final performance evaluation after the best model 
is selected with resampling of training and validation data 
(e.g., cross-validation).

 12. Analyze the clinical usefulness of your radiomics 
approach supported by the reported study findings.

The potential clinical value of the radiomics approach 
should be supported by formal analyses within the experi-
mental design. For example, incorporating a non-radiomics 
strategy for comparison can enable the demonstration of 
the actual or added value of the proposed method. These 
may include a widely utilized traditional method in clini-
cal practice (e.g., TNM staging), expert evaluation (radi-
ologists’ reading), and clinical or laboratory variables (e.g., 
PSA values). Comparisons can be based on both predictive 
performance and clinical utility (e.g., decision curve analysis 
with an explained clinical rationale).

 13. Be transparent with sharing your data, code, and 
model.

Due to the significance of data, code, and model specifics 
in the reproducibility of radiomics research, their availabil-
ity could be used to improve, validate, and disseminate the 
scientific knowledge generated [11, 23]. Imaging, segmen-
tation, and radiomics feature values are examples of data 
that can be shared. Code and models should be made avail-
able in sufficient detail to enable the replication of experi-
ments. Also, it is relatively simple to wrap a machine learn-
ing model into an interface (e.g., by “containerization” of 
the model) as a ready-to-use system or tool [23]. Providing 
a containerized model in a public repository allows for an 
easy independent evaluation of these models without sharing 
data or re-implementing models. Specifically, the sharing of 
imaging data is a sensitive issue that must be considered in 
accordance with institutional and territorial ethical regula-
tions. In contrast, other data types, in addition to code and 
model, could potentially be made accessible to the public. 
If data, code, and model cannot be provided, the reason for 
non-availability must be provided.

Conclusion

Given the disparity between the number of publications and 
their actual clinical application, we believe this concise con-
sensus guide will be useful to the radiomics community by 
providing the most essential concepts. In addition, we plan 
to develop systematic publication appraisal tools with the 
involvement of the European Radiology editorial board in 
the near future.
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