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Abstract 

Rainfall variability change under global warming is a crucial issue that may have a 

substantial impact on society and the environment, as it can directly impact biodiversity, 

agriculture, and water resources. Observed precipitation trends and climate change 

projections over Brazil indicate that many sectors of society are potentially highly 

vulnerable to the impacts of climate change. The purpose of this study is to assess 

model projections of the change in rainfall variability at various temporal scales over 

sub-regions of Brazil. For this, daily data from 30 CMIP5 models for historical (1900-

2005) and future (2050-2100) experiments under a high-emission scenario are used. We 

assess the change in precipitation variability, applying a band-passfilter to isolate 

variability on daily, weekly, monthly, intra-seasonal, and ENSO time scales. For 

historical climate, simulated precipitation is evaluated against observations to establish 

model reliability. The results show that models largely agree on increases in variability 

This article is protected by copyright. All rights reserved.

This is the author manuscript accepted for publication and has undergone full peer review buthas not been through the copyediting, typesetting, pagination and proofreading process, whichmay lead to differences between this version and the Version of Record. Please cite this articleas doi: 10.1002/joc.6818

http://orcid.org/0000-0001-8259-2262
http://dx.doi.org/10.1002/joc.6818
http://dx.doi.org/10.1002/joc.6818


 

on all timescales in all sub-regions, except on ENSO timescales where models do not 

agree on the sign of future change. Brazil will experience more rainfall variability in the 

future i.e., drier or more frequent dry periods and wetter wet periods on daily, weekly, 

monthly and intra-seasonal timescales, even in sub-regions where future changes in 

mean rainfall are currently uncertain. This may provide useful information for climate 

change adaptation across, for example, the agriculture and water resource sectors in 

Brazil. 

Keywords: rainfall, variability, climate change, climate extremes, Brazil. 

1. Introduction 

Brazil has important physical features as well as natural and human systems, such as the 

Amazon, the largest rainforest in the world (Marengo et al., 2018), the semiarid region 

of Northeast Brazil (NEB) that occupies an area of about 18 % of the area of Brazil and 

is the world’s most densely populated dry land region  (ALVALÁ et al., 2017), the La 

Plata basin in southeastern South America, which is the fifth largest watershed in the 

world and an environment of great economic and demographic significance (Llopart et 

al., 2014), and the Pantanal region, one of the worlds largest wetlands, located in a large 

floodplain in the center of the upper Paraguay river basin (Marengo et al., 2015). 

Furthermore, the South America Monsoon System (SAMS) plays a vital role in the 

precipitation over many Brazilian regions, affecting the economy through impacts on 

the agriculture and hydrology sectors (Marengo et al., 2012). In addition, geographic 

features along with remote oceanic-climatic drivers, such as El Nino Southern 

Oscillation ENSO and Atlantic sea surface temperatures (SST), as well as local drivers 

such as soil moisture and moisture recycling from vegetation, contribute to a wide 

variety of climate conditions and their variability over Brazil. 

During recent decades Brazil has experienced extreme rainfall events on a range of time 

scales, with subsequent impacts on natural and human systems. For example, drought in 

2005, 2010, 2015-16 (Lewis et al., 2011; Marengo et al., 2018) and flood in 2009, 2013 

and 2014 in Amazônia (Marengo et al., 2016, 2018), drought in semiarid Northeast 
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Brazil in 2012-2017 (Brito et al., 2018; Cunha et al., 2018), and drought and water 

crisis during 2014-15 in South America’s largest city, São Paulo (Nobre et al., 2016). 

About 70% of the disasters are hydro-meteorological in nature, particularly droughts 

and floods (Santos, 2007). The frequency and severity of other natural disasters include 

flash floods and landslides have increased, affecting millions in the last decade (CEPED 

UFSC, 2013). For example, during the Santa Catarina floods in 2008 a landslide killed 

113 people (Xavier et al., 2014), Alagoas and Pernambuco experienced the most intense 

rainy season in 20 years affecting 1 million people, and Rio de Janeiro 2011 flash floods 

and landslides killed 1000 people (Marengo et al., 2013). Several studies have shown 

that Brazil can be profoundly impacted by changes in extremes of rainfall and 

temperature in the present and in the future. This is mostly noted in the north, northeast 

and southern regions (Marengo et al., 2010b, 2010a; Torres et al., 2012; Christensen et 

al., 2013; Sillmann et al., 2013). 

In recent years, several studies have been conducted using projections of future 

precipitation change over Brazil derived from global and regional climate models 

(Alves and Marengo, 2010; Marengo et al., 2010a; Blázquez et al., 2012; Joetzjer et al., 

2013; Chou et al., 2014a; Vera and Díaz, 2015; Gulizia and Camilloni, 2015; Sánchez 

et al., 2015; Yoon, 2016; Cavalcanti and Silveira, 2016; Ambrizzi et al., 2019; Solman 

and Blázquez, 2019; Díaz et al., 2020). They found a consistent pattern of intense 

rainfall increases in southern and southeastern Brazil and more dry spells and drought in 

Amazonia and Northeast Brazil.    

Global and regional projections based on Coupled Model Intercomparison Project 

(CMIP5; Taylor et al., 2012) using the high emission Representative Concentration 

Pathway RCP8.5 (van Vuuren et al., 2011) generally agree on future regional warming 

over all Brazilian regions. However, there is much less agreement about mean 

precipitation changes. Nevertheless, on average, the models largely agree on a 

precipitation decrease in much of Amazonia and Northeast Brazil in the future. They 

also agree on increased precipitation in southern Brazil around La Plata basin (Malhi et 

This article is protected by copyright. All rights reserved.



 

al., 2009; Chou et al., 2014a, 2014b; Ambrizzi et al., 2019), while there are more 

uncertainties over the South America Monsoon region. 

Torres and Marengo (2013) evaluated the uncertainties in the projections of 

precipitation changes (future minus present) in South America from CMIP3 and CMIP5 

models and concluded that, in general, the models were be able to reproduce the 

climatological patterns of precipitation, such as the seasonal mean and annual cycle. In 

these studies, none of the models showed an overall superior performance in 

reproducing the present climate. The skill of the models varied according to the region, 

time scale, and variables analyzed. 

Changes in the variability of Brazil rainfall coupled with land use changes, notably 

deforestation, desertification and urbanization, would greatly increase Brazilian 

vulnerability to climate change. For example, extreme events combined with the mean 

increase in temperature, as observed during the 2005, 2010 and 2015-16 Amazon 

droughts, caused a decrease in river flow, an increase in tree mortality and in the 

number of fires (Aragão et al., 2007, 2018; Marengo et al., 2008; Phillips et al., 2009).  

In this context, it is noted that most of the studies have focused on changes of average 

annual or seasonal rainfall, or differences between the rainy and dry seasons. However, 

none of these studies have analyzed the future change of daily to interannual 

precipitation variability of Brazil under a high emissions scenario. Future changes in 

rainfall variability (intensity and frequency), may have significant impacts on Brazilian 

society. Therefore, describing and understanding these patterns in the long-term trends 

is important. In addition, despite the great environmental and socioeconomic 

implications, they are not yet fully explored in the literature. 

A number of previous studies have examined present-day and future changes in rainfall 

variability on global or regional scales, primarily at the daily or monthly timescale (Lau 

et al., 2013; Pendergrass and Hartmann, 2014). Model projections generally show 

increased daily and monthly precipitation variability, with an increase in both the 

number of dry periods (Polade et al., 2015), conditional wet-period rainfall intensity 
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(Giorgi et al., 2011; Polade et al., 2015), and extreme daily rainfall values (O’Gorman, 

2015; Pfahl et al., 2017). This increased variability is due to both warming and the plant 

physiological response to CO2 (Skinner et al., 2017). Recently, Brown et al., (2017) 

introduced a framework for assessing rainfall variability change across timescales from 

daily to decadal. They applied this method to the Australian, Indian and East Asian 

monsoon regions, where they found increased variability on daily to decadal timescales. 

(Pendergrass et al., 2017) also found a global increase in precipitation variability across 

a range of timescales. 

The current study is motivated by the opportunity to increase our knowledge about 

climate variability in Brazil. Specifically, the purpose of this study is to assess model 

projections of the future change in rainfall variability and extremes over subregions of 

Brazil. For this, daily data from global climate model (GCM) projections carried out as 

part of the CMIP5 program (Taylor et al., 2012) under a high-emission scenario, 

Representative Concentration Pathway 8.5 (RCP8.5) are used. We assess the future 

change in precipitation variability by applying a band pass-filter approach (Brown et al., 

2017). For this, we use the method proposed by Brown et al., (2017) and apply it 

regionally to the daily precipitation data from observed datasets and simulated from the 

CMIP5 global climate model under a high-emission scenario. A fuller description of 

this method can be found in the next section. 

2. Observations, simulations, and analysis methods 

a) Observations 

Various gridded observational datasets for precipitation are available in the literature 

and have been widely used for regional climate studies and model assessment in the 

study region. For instance, Carvalho et al., (2012) analyzed the South American 

monsoon from multiple precipitation datasets. They concluded that, in general, most of 

them have an adequate estimation of the major regional features mainly because they 

adopt the same approach based on satellite information and rain gauge observations. In 

this study we have used two independent gridded observational datasets as a reference 
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because they provide high spatial resolution and long-term daily precipitation records 

required for the current study. 

Daily rainfall time series was obtained from the INPE/CPTEC merged satellite and rain-

gauge product (Rozante et al., 2010) with a spatial resolution of 0.2o for the period 

1998-2018 (hereafter called MERGE). The dataset combines Tropical Rainfall 

Measuring Mission (TRMM) satellite precipitation estimates with rain gauge 

observations over the South American regions using a successive correction algorithm, 

which provides better estimates of land surface precipitation over areas with sparse 

observations. The second observational dataset used is the Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS) (Funk et al., 2014, 2015). CHIRPS 

is a relatively new rainfall product with a spatial resolution of 0.05°, starting from 1981 

to near present. This dataset integrates satellite imagery with in situ rain gauge station 

data to create gridded rainfall time series. This dataset has a good performance in 

several regions of the world (Maidment et al., 2015; Zambrano et al., 2017; Zittis, 2018; 

Espinoza et al., 2019; Rivera et al., 2019).  

b) Simulations 

We also have used daily precipitation data from 30 global coupled climate models for 

historical (1950-2000) and future (2050-2100) under a high-emission scenario, 

Representative Concentration Pathway 8.5 (RCP8.5) for CMIP5 (Table 1; Taylor et al., 

2012). All data (models and observation) were regridded to 2.5 degree horizontal 

resolution, in order to perform a fair comparison across different products. All models 

results are from the experiment using the r1i1p1 ensemble member. 

Table 1 – List of CMIP5 models used in this study 

c) Analysis 

The main focus of this analysis is to assess the future change in precipitation variability 

for 30 coupled models from the CMIP5 archive over Brazil applying a band pass-

filtered technique developed by Brown et al., (2017) using the following bands: “daily” 
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(1-5 days), “weekly” (5-10 days), “monthly” (25-35 days), “intraseasonal” (30-80 days), 

and “ENSO” (2-8 years) to isolate variability on these time scales. For historical 

climate, simulated precipitation is first evaluated against observations to establish model 

reliability. The period 2050-2100 is used for RCP8.5 models. The present-day period is 

a hybrid though, to match up the same time period between models and observation. For 

all timescales except ENSO this is 1998-2018 for CHIRPS, Merge and models (which 

concatenate historical and RCP8.5 runs to get this time period). For ENSO is used 

1981-2018 for CHIRPS and models. 

A fast Fourier transformation was used to transform detrended data from observations 

and historical and future model experiments into the frequency (spectral) domain. Data 

detrending technique is applied to precipitation time series in order for the bandpass 

filter to cleanly separate different timescales of variability and avoid long-term trend 

introduce errors into the filtered time-series. For each frequency band of interest, all 

frequencies outside that band were set to zero and the remaining data were transformed 

back to the time domain. 

The band-pass filtering was performed separately on each observational/model grid-

point, and the standard deviation of each band-pass filtered time-series was calculated at 

each grid-point. The standard deviations were then spatially averaged over several key 

areas of Brazil, as highlighted in Figure 1 during the peak rainy season and following 

domains: (NAZ) northern Amazon (JFMAM, 5oS-5oN, 70oW-45oW), (SAZ) southern 

Amazon (NDJFM, 12.5oS-5oS, 70oW-45oW), (NEB) northeast Brazil (FMAM, 15oS-

2oS, 45oS-34oW), (SAM) South America Monsoon (NDJFM, 20oS-10oS, 55oW-45oW), 

(LPB) La Plata Basin (NDJFM, 35oS-20oS, 65oW-45oW). These regions were used in 

several previous regional syntheses of observed and model projection analyses 

(Marengo et al., 2003; Raia and Cavalcanti, 2008; Nobre et al., 2016; Alves et al., 

2017). These areas were selected because they exhibit a well-identified seasonal cycle 

of precipitation and represent sub-continental regions of broadly climatic coherency in 
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all the domains and reflecting the relevance of these areas to the studies of the Brazilian 

biomes, climatic, hydrological, and social systems. 

3. Results 

Several studies have evaluated the performance of CMIP5 models in simulating 

precipitation variability over South America for the present-day (Yin et al., 2012; Jones 

and Carvalho, 2013b; Knutti and Sedlacek, 2013; Torres and Marengo, 2013). The 

climate model performance to represent the mean climate variability is discussed 

compared to observed (MERGE and CHIRPS datasets), and the CMIP5 ensemble mean 

precipitation for the historical period (Figure 2).  

The results show that the multi-model ensemble reproduces the observed climatology 

features of precipitation over South America, such as spatial variability of the 

precipitation over central South America reasonably (Figure 2a-c). However, even with 

substantial progress made during the last decade in the development of climate models, 

the results show systematic errors (dry biases) in simulating precipitation variability 

over the Amazon and La Plata remains in CMIP5 models. Similar results were also 

noted by previous studies (Jones and Carvalho, 2013b; Gulizia and Camilloni, 2015). 

The dry-day fraction (Figure 2g-i) patterns are smoothed in the ensemble mean 

compared to the observations patterns, especially across NEB and SAM regions. Also, 

for conditional wet-day rainfall (days with rainfall > 1mm/day), the multi-model 

ensemble tends to underestimate intense rainfall (Figure 2j-l). 

While the focus is on band-pass-filtered analysis over several key areas of Brazil, first 

we present a broader geographical perspective, showing the future changes in mean 

rainfall, unfiltered daily rainfall variability, dry-day fraction and conditional wet-day 

intensity in the models (Figure 3). The dry-day threshold is 1mm/day. The wet-day 

intensity is the mean precipitation on days with rainfall above the dry-day threshold. 

The rainfall variability on all timescales is defined using the standard deviation. The 

dry-day fraction (%) is the percentage of days in each season that have rainfall less than 

the dry-day threshold.  
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In general, model projections show that precipitation changes will occur in rainfall 

amount, intensity, and frequency. Some regional differences are noted, with some areas 

having significant increases, and others decrease. A wetter mean climate is projected for 

southern Brazil, and a drier mean climate for the Amazon and northeastern Brazil. 

Despite model disagreement on mean rainfall changes over many parts of Brazil, there 

is strong model agreement on an increase in the standard deviation of daily precipitation 

across all of Brazil, though the reason for this may differ by region. There are 

widespread increases in the intensity of wet days for the period 2050-2100 as compared 

to present-day in southern Brazil, and even in areas where significant decreases in 

rainfall are projected, like northeast Brazil (Figure 3d). On the other hand, the 

percentage of dry days is projected to increase more than 8 %/year, a result the models 

agree on (Figure 3c) in parts of northern Brazil. The multi-model mean changes indicate 

that southern Brazil will have higher rainfall variability (Figure 3b and d), as well as 

high mean rainfall amounts (Figure 3a) in future climate. 

 

The analysis is now extended to assess the skill and projected changes by climate 

models to simulate the rainfall variability for a range of time scales from daily to 

ENSO. The variability over each of the Brazil selected areas was calculated using band-

pass-filtered daily anomalies for 50 years of the historical (HIST) and future climate 

(RCP8.5) simulations, following the method described in section 2 and for wet season 

months only (January-May, JFMAM, for northern Amazonia (NAZ), February-May, 

FMAM for northeast Brazil (NEB), and November-March, NDJFM for southern 

Amazonia (SAZ), South America Monsoon (SAM) and La Plata basin (LPB).  

 

Figure 4 shows a set of box plots of the standard deviation of daily rainfall anomalies in 

each of the time bands for the spread of model variability in the HIST simulation (blue 

boxes), the RCP8.5 simulation (pink boxes) and the difference RCP8.5 minus HIST 

(grey boxes) as well as for observational gridded datasets from CHIRPS (red squares) 
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and MERGE (blue squares) observations overlaid on the HIST box plots. Note that the 

value for the ENSO time band is multiplied by 5 in Figure 4 for more precise 

visualization. 

On short time scales (daily (1-5 days) and weekly (5-10 days)) the models show most 

substantial variability in their respective wet seasons over all regions and, as a whole, 

there is a lack of model agreement in rainfall variability, with the observations lying 

outside the interquartile range, particularly in daily rainfall variability and in the 

northern Amazonia. On the other hand, the model variability and observations show 

reasonably good agreement at the weekly, monthly (25-35 days) and intra-seasonal (30-

80 days) time bands for all regions investigated in this study, i.e, we note that the 

observation values fell within the inter-quartile range of GCMs.  

This result may be because CMIP5 ensemble have shown improvements to the 

simulation of regional patterns of precipitation compared to previous generation of 

climate models (Sperber et al., 2013), particularly due to substantial improvement in 

representations of sub-grid scale processes, such as convection (Neale et al., 2008) or 

representation of cloud physics (Khairoutdinov et al., 2005), in conjunction with an 

increase in atmospheric resolution (Ploshay and Lau, 2010; Delworth et al., 2012). It is 

also likely to be because the models are better able to capture large-scale patterns of 

circulation and variability than individual smaller scale synoptic and convective rainfall 

events (Flato et al., 2013). However, although the previous results suggest with 

confidence that models reproduce regional rainfall variability on a wide range of time 

scales, several studies have shown that GCMs don’t simulate rainfall variability well on 

daily-to-weekly time scales, particularly in the tropics (Westra et al., 2014).  

These results pose a challenge for interpreting the sign of projections of changes in 

mean rainfall due to future climate change because this suggests that the coarsest-

resolution models do not replicate mesoscale circulations induced by regional features 

that are associated with convective precipitation and subgrid convection 

parameterization schemes (Watson et al., 2017). Furthermore, it is essential to note that 
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the lack of adequate and robust observational information on precipitation, especially 

over northern Amazonia, also poses great difficulties in validating climate model 

outputs. Another possible cause of the aforementioned model-observation disagreement 

may be the horizontal resolution differences, since the biases usually are highly 

sensitive to model spatial resolution.  

 

There are significant regional differences. For instance, southern Amazonia (Figure 4b) 

has more variability compared with northern Amazonia (Figure 4a) and this difference 

is associated with the annual cycle of rainfall where rainfall in northern peaks in March-

May and that in southern peaks in December-February. These differences are also 

associated with land atmosphere interactions and sea surface variability over both the 

Atlantic and Pacific oceans (Marengo et al., 2001; Fu and Li, 2004). More recent, 

Espinoza et al., (2019) also show climatic differences between regions, for instance, 

while southern Amazonia exhibits negative trends in total rainfall and extremes, the 

opposite is found in Northern Amazonia. 

Strong interannual rainfall variability is a major climatological feature in northeast 

Brazil (NEB). It is influenced by the SST in the tropical Pacific and Atlantic oceans 

(Marengo et al., 2020). Furthermore, the mean precipitation during the wet season 

(FMAM) is primarily influenced by north-south displacements of the Intertropical 

Convergence Zone (ITCZ) (Hastenrath, 2012). In Figure 4c, the variability for the NEB 

rainy season is shown. It is interesting to note that a large model spread is observed for 

all timescales. Another feature noted is reasonable agreement between models and 

observations for all except mean and ENSO time-scales. Concerning median change 

(gray boxes), for NEB, coherently positive values were found for all time scales, 

indicating an increase in rainfall variability. On the other hand, some models do project 

a decrease in rainfall variability for the NEB.  

Additionally, both South America Monsoon (SAM) (Figure 4b) and La Plata basin 

(LPB) (Figure 4e) areas overall show similar rainfall variability characteristics for all-
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time bands. However, there are significant regional differences in the intensities and 

variability (interquartile range), particularly among mean, daily (1-5 days) and weekly 

(5–10 days) time scales. Frontal systems and the South Atlantic Convergence Zone 

(SACZ) (Raia and Cavalcanti, 2008; Jones and Carvalho, 2013a) particularly affect the 

rainfall variability within the rainy season in the SAM, between December and 

February. On the other hand, the LPB is associated with incursions of frontal systems 

and Mesoscale Convective Complexes (MCCs) (Silva and Berbery, 2006). It is also 

noteworthy that the main feature of rainfall variability in these regions occurs in a 

dipole pattern because, when it is wet over the SAM region, the LPB is relatively dry, 

and vice-versa, which appears in all timescales, from intraseasonal to interdecadal 

(Grimm and Saboia, 2015). In general, the models are able to simulate the observed 

rainfall variability for various time bands, although the model rainfall variability may be 

somewhat underestimated at daily and weekly timescales. The median change (gray 

boxes) in SAM and LPB rainfall variability is positive for almost all time scales, 

indicating that rainfall variability is increased in more than half of climate models. 

Negative values at the lower tail are present for all time scales, especially in the SAM 

region, indicating that some models project reduced future rainfall variability. 

Though this study provides a clear picture of how rainfall over Brazil will respond to 

climate change and offer robust policy-relevant climate projections, there remain many 

outstanding issues that illustrate the need of future work to address them. These include 

the impact of internal variability (Hawkins and Sutton, 2009), potential effects of 

different stressor, such as land-use change and fires (Spracklen et al., 2018), ocean-

atmosphere feedbacks (Cai et al., 2020) and high-resolution simulations, based on 

Regional Climate Models (RCMs) (Giorgi et al., 2012) and Convection-Permitting 

Models (CPMs) (Coppola et al., 2020), which could lead to a better representation of 

both the spatial patterns and magnitudes of mean climate and climate extremes, 

especially in regions of strong surface heterogeneity. 

This article is protected by copyright. All rights reserved.



 

Figure 5 illustrates similarities and differences in rainfall variability change for each of 

the Brazilian sub-regions. Overall, all projected changes are fairly similar across 

different regions, i.e., an increase in rainfall variability, generally about 10% for all 

study regions and for all time scales, which is consistent with previous studies that 

found climate models generally project large rainfall changes over the twenty-first 

century under global warming (Brown et al., 2017; Pendergrass et al., 2017). While 

significant inter-model uncertainty in the future projections is observed on the daily and 

weekly time scale, models project an increase in the median change in variability for all 

sub-annual time bands in most regions – in other words, rainfall variability is increased 

in the majority of models for all timescales except “ENSO” variability. Despite ENSO 

variability being a key feature for Brazilian climate (Grimm, 2011) there is also no 

consistent signal of ENSO precipitation change, consistent with Power and Delage 

(2018). Similarly, there is no consistent signal of mean precipitation change in most 

regions.  

In summary, the results varies with regions, however, model projections indicate that 

the response of precipitation variability due to global warming could be substantially 

increased in most of the sub-regions (Figure 5), leading to an increase in extremes over 

the coming century (Figure 3). This is consistent with previous research showing 

projected hydroclimatic changes (Junquas et al., 2012; Collins et al., 2013; Hegerl et 

al., 2015; Ambrizzi et al., 2019) which can have multiple and significant impacts on the 

hydrological cycle and a variety of sectors (Magrin et al., 2014). 

 4. Summary and Conclusions 

This study assesses the rainfall variability and future change across Brazilian regions 

from the model projections of climate change available through the CMIP5 under the 

RCP8.5 scenario for a range of time scales from daily to ENSO. Band-pass-filtering was 

used to isolate variability on each time scale, and the range of model rainfall standard 

deviations was calculated for historical (HIST) and future (RCP8.5) climates.  

In general, a comparison of the various climate model data used in this assessment 
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provides a consistent picture of the large-scale projected precipitation changes across 

Brazil. This analysis suggests Brazil will experience more rainfall variability in the 

future i.e., the numbers of dry periods are increased, and the intensity of rainfall when it 

does rain is increased. However, the number/length of wet periods are not increased, 

primarily over the Amazonia, northeast Brazil and La Plata basin (Figure 3) areas 

already pointed as socio-climatic hotspots (Torres et al., 2012) . 

There is also a model consensus on the change in rainfall variability at all sub-annual 

timescales. GCMs robustly project increased rainfall variability (measured by the mean 

standard deviation) from daily to intra-seasonal timescales over all study areas (Figure 

5). In most regions, the increase in precipitation variability is at least as large and in 

many cases greater than the increase in mean precipitation, even in regions where the 

future change in mean rainfall is currently uncertain. Similar results are found by 

Pendergrass et al., (2017) and are attributed to a robust emergent aspect of the water 

cycle that is changing as a result of anthropogenic warming.  

Overall, CMIP5 model projections indicate that both the frequency and intensity of the 

strong ENSO events will increase under high emissions scenarios (Cai et al., 2018; 

Wang et al., 2019). However, the results show that there is no robust change in 

precipitation variability at ENSO timescales over Brazil, in contrast with the results of 

Brown et al., (2017) for the Indian, East Asian, and Australian monsoon regions. 

This may provide useful information to policymakers for advising some suitable 

adaptation and mitigation policies to cope with anticipated climate variability and 

climate change, especially in the agriculture and water resource sectors in Brazil as well 

on the risk of fire and natural disasters of hydro meteorological nature.  

On the other hand, at the regional scales, in recent years there have been an increasing 

number of observed studies that showed the precipitation distribution, including both 

spatial pattern and extreme rainfall is change under the ongoing anthropogenic warming 

(Meehl et al., 2007; Zhang et al., 2013; Zhang and Zhou, 2019). These studies have also 

demonstrated local land surface-atmospheric processes have played an important role in 
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driving intensity and frequency of rainfall variability at a regional scale. However, a 

comprehensive assessment of land surface feedbacks on climate variability and climate 

change in the current climate models is still a challenge, mainly due to the low spatial 

resolution of the models. 

Thus, further work is required to investigate the local and regional drivers of these 

changes, for instance, land use and cover change and fire, associated with climate model 

improvements and long-term regional climate observations to better understand the 

underlying rainfall variability and change in Brazil. Further research is recommended to 

explore a wider set of plausible outcomes include use of high-resolution simulations, 

such as Regional Climate Models (RCMs) and Convection-Permitting Model (CPM), 

potentially providing more useful information to policymakers than is currently 

available for advising on suitable adaptation and mitigation policies to cope with 

anticipated climate variability and climate change, especially in the agriculture and 

water resource sectors in Brazil as well on the risk of fire and natural disasters of hydro 

meteorological nature. 
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ASSESSMENT OF RAINFALL VARIABILITY AND FUTURE CHANGE IN 
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There is a model consensus on the change in rainfall variability at all sub-annual 
timescales. GCMs robustly project increased rainfall variability (measured by the 

mean standard deviation) from daily to intra-seasonal timescales over all Brazil areas. 
In most regions, the increase in precipitation variability is at least as large and in 

many cases greater than the increase in mean precipitation, even in regions where the 
future change in mean rainfall is currently uncertain. 
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Model Name Modeling center (or group) 

ACCESS1.0 
Commonwealth Scientic and Industrial Research 
Organisation and Bureau of Meteorology, Australia 

ACCESS1-3 
Commonwealth Scientic and Industrial Research 
Organisation and Bureau of Meteorology, Australia 

bcc.csm1.1.m 
Beijing Climate Center, China Meteorological 
Administration 

BNU.ESM Beijing Normal University, China 

CanESM2 
Canadian Centre for Climate Modelling and Analysis, 
Canada 

CCSM4 
National Center for Atmospheric Research (NCAR), 
USA 

CESM1.BGC 
National Science Foundation–Department of Energy–
National Center for Atmosphere Research/United 
States 

CMCC.CESM Centro Euro-Mediterraneo per I Cambia-menti, Italy 

CMCC.CM Centro Euro-Mediterraneo per I Cambia-menti, Italy 

CMCC.CMS Centro Euro-Mediterraneo per I Cambia-menti, Italy 

CNRM.CM5 
Centre National de Recherches Meteorologiques, 
Meteo-France, France 

CSIRO.Mk3.6.0 
Australian Commonwealth Scientific and Industrial 
Research Organization, Australia 

EC.EARTH 
Royal Netherlands Meteorological Institute, 
Netherlands 

FGOALS.g2 
Instute of Atmospheric Physics, Chinese Academy of 
Sciences, China 

FGOALS.s2 
Instute of Atmospheric Physics, Chinese Academy of 
Sciences, China 

GFDL.CM3 Geophysical Fluid Dynamics Laboratory, USA 

GFDL.ESM2G Geophysical Fluid Dynamics Laboratory, USA 

GFDL.ESM2M Geophysical Fluid Dynamics Laboratory, USA 

GISS.E2.R Goddard Institute for Space Studies, USA 

inmcm4 Institute of Numerical Mathematics Russia  

IPSL.CM5A.LR Institut Pierre-Simon Laplace, France 

IPSL.CM5A.MR Institut Pierre-Simon Laplace, France 

IPSL.CM5B.LR Institut Pierre-Simon Laplace, France 

MIROC5 AORI, NIES, JAMSTEC, Japan 

MIROC.ESM.CHEM AORI, NIES, JAMSTEC, Japan 
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MIROC.ESM AORI, NIES, JAMSTEC, Japan 

MPI.ESM.LR Max Planck Institute for Meteorology, Germany 

MPI.ESM.MR Max Planck Institute for Meteorology, Germany 

MRI.CGCM3 Meteorological Research Institute, Japan 

NorESM1.M Norwegian Climate Centre, Norway 

 

Table 1: List of CMIP5 models used in this study 
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