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Abstract- In-situ electromagnetic (EM) radio frequency (RF) exposure to base stations of 

emerging wireless technologies is assessed at 311 locations, 68 indoor and 243 outdoor, 

spread over 35 areas in three European countries (Belgium, The Netherlands, and 

Sweden) by performing narrowband spectrum analyzer measurements. The locations 

are selected to characterize 6 different environmental categories (rural, residential, 

urban, suburban, office, and industrial). The maximal total field value was measured in 

a residential environment and equal to 3.9 V/m, mainly due to GSM900 signals and 11 
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times below the ICNIRP reference levels for electric field strength. Exposure ratios for 

maximal electric field values with respect to ICNIRP reference levels, range from 0.5 % 

(WiMAX) to 9.3 % (GSM900) for the 311 measurement locations. Exposure ratios for 

total field values vary from 3.1 % for rural environments to 9.4 % for residential 

environments. Exposures are lognormally distributed and are the lowest in rural 

environments and the highest in urban environments. Highest median exposures were 

obtained in urban environments (0.74 V/m), followed by office (0.51 V/m), industrial 

(0.49 V/m), suburban (0.46 V/m), residential (0.40 V/m), and rural (0.09 V/m) 

environments. The average contribution to the total electric field is for GSM more than 

60 %. Except for the rural environment, average contributions of UMTS-HSPA are 

more than 3 %. Contributions of the emerging technologies LTE and WiMAX are on 

average less than 1 %. The dominating outdoor source is GSM900 (95
th

 percentile of 

1.9 V/m), indoor DECT dominates (95
th

 percentile of 1.5 V/m).  

 

Key Words- RF exposure, base station, exposure of general public, measurement, 

telecommunication, UMTS, HSPA, LTE, WiMAX, DECT, environment, emerging 

technology. 

 

I. INTRODUCTION 

The WHO International EMF Project’s RF Research Agenda identified as a research topic a need 

for measurement surveys to characterize population exposures from all radio-frequency (RF) 

sources, with a particular emphasis on new wireless technologies (WHO 2010). There is a need 
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to conduct measurements to assess the typical range of exposures from existing and emerging 

wireless network technologies such as WiMAX (Worldwide Interoperability for Microwave 

Access), HSPA (High Speed Packet Access), and LTE (Long Term Evolution) in a range of 

common locations (outside public areas, within buildings, homes, etc.) and compare the exposure 

contributions to existing exposures from e.g., FM, TV, GSM, etc. 

 

Procedures for measurements in the vicinity of GSM (Global System for Mobile 

Communications) and UMTS (Universal Mobile Telecommunications System) base stations 

have been developed in (Kim et al. 2008, Lehmann et al. 2002, Joseph et al. 2006, Neubauer 

et al. 2002, Olivier and Martens 2007). Bornkessel et al. 2007 provided results of temporal 

and spatial measurements of GSM and UMTS signals. Measurements in the neighborhood of 

WiMAX base stations are investigated in Joseph et al. 2008. Foster 2007 investigated 

exposure of Wi-Fi access points and checked compliance with international guidelines 

(ICNIRP 1998, IEEE C95.1 2005, FCC 2001). Also Kühn et al. 2007, Myhr 2004, Schmid et 

al. 2007, and Verloock et al. 2010 investigated short-period exposures caused by Wi-Fi access 

points. Exposures from TV and radio transmitters have been studied in e.g., Joseph and 

Martens 2006 and Sirav and Seyhan 2009. Tomitsch et al. 2010 measured exposures in 

bedrooms of residences: highest values were caused by DECT telephone base stations 

(3.31 V/m or 28,979 W/m2) and mobile phone base stations (1.36 V/m or 4,872 W/m2). 

Finally, exposures from LTE have recently been investigated in Joseph et al. 2010b.  

Procedures for RF exposure measurements in the vicinity of base stations have thus already 

been developed and a standard has been written for the in-situ measurement of 

electromagnetic-field strength related to human exposure in the vicinity of base stations 
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(CENELEC, 2008) but assessment of exposure to electromagnetic fields of emerging wireless 

systems such as HSPA, LTE, and mobile WiMAX and the characterization of exposure 

distributions and variability in different environments are missing. 

Measurement campaigns of RF exposures using personal exposimeters and their results have 

been presented (Frei et al. 2009, Joseph et al. 2008b, 2010c, Knafl et al. 2008, Neubauer et al. 

2007, Roösli et al. 2008, Viel et al. 2009). Exposimeters are not suitable for accurate field 

assessment and current personal exposimeters cannot measure accurately e.g., LTE and 

WiMAX (Bolte et al. 2011), but one can use these to obtain an idea about exposure 

distributions.  

 

In this paper a methodology and design of measurement campaign will be presented to 

experimentally determine in-situ electromagnetic field exposure of general public due to new 

wireless sources in various environments. The purpose of this study is to provide a range of 

typical RF exposure values from base stations, investigate the exposure distributions, compare 

the contribution of the various RF sources, and check compliance with the ICNIRP guidelines 

for general public exposure (ICNIRP 1998). Moreover, LTE exposures in the first commercial 

deployment (Stockholm, Sweden) and mobile WiMAX exposure (IEEE 802.16e 2005) 

(Amsterdam, The Netherlands) were assessed during this measurement campaign. Only 

exposures due to base stations are considered here and not due to mobile handsets. The 

results, procedures, and methodologies of this paper can be used by authorities and 

epidemiologists to estimate the exposure from RF emitting sources and gain insight in which 

environments highest exposures occur and due to which sources. Moreover, the exposure 
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variability that can be expected between different environments is presented here. Knowledge 

about these exposure distributions and variability is useful for the planning of future studies. 

II. MATERIALS AND METHOD  

A. Measurement locations 

The 311 different measurement locations, spread over 35 areas or sites, are subdivided into 6 

different categories depending on the type of environment, population density, the available 

wireless technologies (e.g., mobile WiMAX in the urban environment of Amsterdam, The 

Netherlands and LTE in Stockholm, Sweden), and the expected amount and time of traffic: 

rural, residential, urban, suburban, office, and industrial environments. Table 1 summarizes 

the categories and the number of indoor and outdoor measurement locations per category. 

Also a short description of the categories is added. These sites are geographically spread 

across Belgium, The Netherlands, and Sweden. 243 outdoor locations and 68 indoor locations 

were selected. Fig. 1 shows the measurement locations on different maps: in Fig. 1 (a) the 

numbers 1-35 represent areas or sites in Belgium and The Netherlands where about 8-10 

measurements are performed per site (corresponding with measurements executed during a 

day, Joseph et al. 2008, 2010b), Fig. 1 (b) shows the 30 measurement locations in and around 

Stockholm, Sweden. In order to compare base station exposure of different sources, these 

measurement locations were randomly selected, spread over the three countries. The 

measurements were performed in the period September 2009 - April 2010. 
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B. Measurement procedure 

Electromagnetic-field measurements in the band 80 MHz – 6 GHz were performed at 311 

different locations with a spectrum analyzer (SA) (noted as narrowband measurements). 

“Max-hold measurements” of all present signals are executed for about 30 minutes at each 

location, depending on the number of frequency bands to be measured. A max-hold 

measurement is defined here as a narrowband measurement of a signal with the maximum-

hold setting kept during a time interval until the SA reading stabilizes. Typically, narrowband 

measurements (in- and outdoor) are executed at 8 to 10 locations per site. The measurement 

probe is positioned at 1.5 m above the ground (CENELEC 2008). 

The measurement setup of the narrowband measurements consisted of tri-axial Rohde and 

Schwarz R&S TS-EMF Isotropic Antennas (dynamic range of 1 mV/m – 100 V/m for the 

frequency range of 80 MHz – 3 GHz, and 2.5 mV/m – 200 V/m for the frequency range of 

2 GHz – 6 GHz) in combination with a spectrum analyzer (SA) of type R&S FSL6 (frequency 

range of 9 kHz – 6 GHz) (http://www2.rohde-schwarz.com, R&S Belgium, Excelsiorlaan 31 

1930 Zaventem Belgium). The measurement uncertainty for the electric field is ± 3 dB for the 

considered setup (CENELEC 2008). This uncertainty represents the expanded uncertainty 

evaluated using a confidence interval of 95 %.  

Current wireless RF sources are mainly operating in the frequency range of 80 MHz up to 

6 GHz. After allocating the present signals by a spectral survey, these signals were measured 

more in detail. Base station exposures of the 12 following different RF signals in the band 

80 MHz – 6 GHz are determined (explanation of abbreviations is listed below Table 2), 

namely FM, T-DAB, TETRA, PMR, DVB-T, GSM900 and GSM1800, DECT, UMTS-HSPA, 

WiFi, LTE, and WiMAX. The narrowband measurements were executed during daytime at 

http://www2.rohde-schwarz.com/
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weekdays. The used setup for narrowband measurements enables the most accurate 

assessment of in-situ exposure from various sources (CENELEC, 2008). 

Table 2 lists the different RF signals, while the sensitivities of the measurement system for the 

various signals are provided in Table 3: they vary from 0.002 V/m for TETRA/PMR/GSM900 

to 0.013 V/m for WiMAX. These sensitivities depend upon the frequency due to the varying 

antenna factor (sensitivity) of the tri-axial measurement probes in the considered frequency 

range. 

 

C. Settings of measurement equipment 

If the SA-settings for narrowband max-hold measurements are discussed in literature, almost 

never all parameters (and certainly not the sweep time) are discussed or only vaguely 

specified. These settings have a huge influence on the measurement results. Therefore, it is 

very important to specify these (Verloock et al. 2010). To determine the (optimal) settings to 

check compliance of the different signals with the ICNIRP guidelines, the method of 

Verloock et al. 2010 is used. After investigations, we obtained the settings listed in Table 3 to 

perform exposure assessment of the various signals. The most important settings are these of 

detector mode (rms or root-mean-square), resolution bandwidth RBW, and sweep time SWT. 

Concerning the video bandwidth VBW, CENELEC 2008 recommends that VBW > 3·RBW. 

These settings have been determined and tested in-lab and in-situ. Methods and details for 

these settings can be found in CENELEC, 2008, in recommendation ITU-R. 1708 of 

ITU 2005, Joseph et al. 2008, Verloock et al. 2010, and Joseph et al. 2010b. These references 

for optimal exposure assessment of the different technologies are also provided in Table 3. 
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We have to remark that the use of max-hold measurements may result in larger 

overestimations for GSM and DECT than for other signals. The SA’s maximum-hold setting 

retains the maximum measured values, resulting in an overestimation of e.g., hopping GSM 

signals because it is assumed that all maxima are simultaneously present using this setting 

(this is thus a kind of worst-case measurement). Also base station exposure to DECT is 

overestimated as DECT is a TDD system (Time-Division Duplex) and thus uplink traffic due 

to DECT mobile phones is also measured. 

 

D. Data analysis 

We consider in this paper as exposure metrics the electric-field strength E [V/m] of an RF 

signal, the total electric field Etot [V/m] of all RF signals present, and the power density S 

[W/m2]. Furthermore exposure ratios ER and average (AC) and maximal (MC) contributions 

are defined. 

The exposure ratio ER of an RF signal is defined as the ratio between the maximal measured 

electric field value for the considered signal type over the 311 locations and the corresponding 

ICNIRP reference level: 

 [%]  (1) 

With max() the maximum value over N locations (N = 311 when considering all data), Esignal,i 

[V/m] the field strength of an RF signal (e.g., FM, GSM, LTE, etc.) at location i, respectively, 

LE the corresponding ICNIRP reference levels for electric-field strength in V/m. A ratio 

smaller than 100 % means that the ICNIRP reference levels are satisfied. 

The exposure ratio can also be defined with respect to power densities (denoted as ERS):  
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 [%]  (2) 

With max() the maximum value over N locations, Ssignal,i [W/m2] the power density of an RF 

signal at location i, and LS the corresponding ICNIRP reference levels for power density in 

W/m2. 

The exposure ratio  is defined as the maximal cumulative ratio between total electric 

field values in an environment and the corresponding ICNIRP reference levels: 

 [%]  (3) 

With max() the maximum value over Nenv locations per environment (env), Ej,i [V/m] the total 

field strength of RF signal j present at location i and Lj the corresponding ICNIRP reference 

level.  is thus the maximal cumulative ratio for multiple frequencies per environment in 

ICNIRP, 1998. 

The average (AC) and maximal (MC) power density contribution [%] of each signal to the 

total power density value are defined as the average and maximum of the ratio of the power 

density of each signal and the total signal: 

 [%]  (4) 

With X = AC or MC, u(.) representing a function: maximum or average, Ssignal,i [W/m2] the 

power density of an RF signal (e.g., FM, GSM, LTE, etc.) at a location i (i = 1,…, N), N is the 

considered number of measurement locations, and Stot,i the total power density for all signals 

at the considered measurement location i. 
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III. RESULTS AND DISCUSSION 

A. General overview of measurements 

Fig. 1 (a) shows the maximal measured total electric-field strengths [V/m] per area on 

the map Belgium and The Netherlands, respectively. The maximal total value Etot is 3.9 V/m 

(residential site 7). Fig. 1 (b) illustrates the total electric field exposures in Stockholm (urban 

environment) with a maximal field value of 2.6 V/m.  

Table 2 lists the ranges of the different RF exposures for all 311 measurement 

locations. Emin denotes the minimal electric field values above the sensitivity of the equipment, 

Emax represents the maximal values for each RF signal type. Total (cumulative) exposure 

varies between 0.023 and 3.9 V/m. Highest average fields Eavg are obtained for GSM900 

(0.5 V/m) and GSM1800 (0.2 V/m). Average total exposures over 311 locations are equal to 

Eavg = 0.7 V/m (Table 2). Maximal contributions MC range from 6.9 % (T-DAB) to 100.0 % 

(GSM900). Average contributions AC range from 0.2 % (WiMAX, T-DAB) to 53.2 % 

(GSM900).  

Table 4 summarizes the narrowband measurements for the different environments: the 50th 

percentile (p50), 95th percentile, maximum (max) and the standard deviation (σ) of the electric-

field values are listed. For each environment also the percentage of the number of locations 

(n) where a certain signal was above the sensitivity of the measurement system (and thus 

present), is mentioned. All measured electric-field values satisfy the ICNIRP guidelines 

(ICNIRP 1998). The maximal total value was measured in a residential environment and 

equals 3.9 V/m (Table 4). This value is 11 times below the ICNIRP guidelines and mainly due 

to the GSM900 signal (3.85 V/m). From Table 4 it can be seen that mobile telecommunication 
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signals (GSM, UMTS-HSPA) were measured almost at all locations in each environment and 

dominate the RF-exposures in all environments due to the presence of the high amount of 

base station antennas nowadays and the common mobile phone use among people. For the 

GSM900 signal n equals 100 % in every environment and n is more than 70 % for the 

GSM1800 signal. The UMTS-HSPA signal was also measured more than 70 % in all 

environments except in the rural environment. GSM dominates the wireless 

telecommunication exposures from base stations. Because of the use of frequency hopping an 

overestimation is made for these signals by performing max-hold measurements (see 

Section II.B). Standard deviations σ of total exposures vary from 7 to 10 dB for all 

environments. These are typical standard deviations σ for large sets of field values (Plets et al. 

2009). 

B. Field distributions per environment 

Fig. 2 shows the cumulative distribution functions (CDF) of the total exposures (all RF 

sources) for the different environments (i.e., Prob[Etot [V/m] < abscissa]). Clearly lowest 

exposures occur for the rural areas, as this distribution is situated most to the left. Highest 

exposures occur in general in urban environments as much more RF sources and base stations 

are present in these environments. Differences between residential, suburban, industrial, and 

office environments are limited. These distributions are in between the rural (lowest) and 

urban (highest) exposures.  

Exposure data in dBV/m (per environment) passed a Lilliefors test for normality at 

significance level of 5 %. (Kutner et al. 2005) The exposure values in V/m are converted to 

dBV/m values and maximum likelihood estimates of the mean and standard deviation of a 



 
 
 

 12 

normal distribution are calculated. Fig. 3 shows, based on this procedure, the excellent 

agreement between empirical and estimated lognormal CDF for Etot (all data). Different 

distributions were compared (lognormal, exponential, Rayleigh, Rice, etc.) and for the 

lognormal distribution the best agreement was obtained. This results for Etot in estimates 

est = -7.4 dBV/m of the mean value and est = 9.4 dB of the standard deviation of the 

lognormal distribution function. Table 5 summarizes est, est for the different environments. 

These values are listed in dBV/m and dB because of the lognormal behavior. The mean values 

vary from -4.1 dBV/m (urban) to -17.3 dBV/m (rural) and standard deviations vary from 7.0 

to 10.6 dB. These distribution functions provide a basis for classification of future 

measurements (Tomitsch et al. 2010). Moreover, this is very useful for epidemiological 

studies.  

C. Exposures and ER per environment 

Fig. 4 shows a histogram with median p50 and 95th percentile p95 exposures for the different 

environments. The error bars in Fig. 4 are calculated from the uncertainties of the experimental 

values. Exposures are clearly the lowest in the rural environment. This can be explained by the 

fact that less RF (telecommunication) signals and base stations are present in rural areas due to 

the lower population density. For the median values, highest exposures were measured in 

urban environments (0.74 V/m), followed by office (0.51 V/m), industrial (0.49 V/m), 

suburban (0.46 V/m), residential (0.40 V/m), and rural environments (0.09 V/m). These values 

are comparable with those of Tomitsch et al. 2010 where median values in bedrooms of houses 

for the RF frequency range of 40.3 μW/m2 (0.12 V/m) are obtained, which agrees well with 

the rural exposures of 0.09 V/m. The majority of the houses in Tomitsch et al. 2010 were 
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located in rural areas (154 of the 226 houses). Tomitsch et al. 2010 also obtained significant 

lower exposures in rural areas.  

Exposures are compared with the ICNIRP guidelines using exposure ratios ER (eq. (1)) in 

Fig. 5. Fig. 5 (a) compares the exposure ratios for the different RF signals. ER values, 

determined using maximal field values, range from 0.5 % (WiMAX) to 9.3 % (GSM900) for 

the 311 measurement locations. Thus individual exposures are maximally 9.3 % of the 

ICNIRP reference levels for field values. Highest ERs occur for GSM900, followed by DVB-

T, FM, DECT, and GSM1800. ER values for emerging technologies UMTS-HSPA (2.3 %), 

LTE (1.2 %), and WiMAX (0.5 %) are lower as these are new systems and are deployed less 

than e.g., GSM. The exposure ratios are also listed in Table 2. For power densities, the highest 

exposure ratio ERS occurs for GSM900 and is 0.9 %.  

Fig. 5 (b) compares  for total field values per environment. In residential and urban 

environments the highest exposure ratios occur. For all environments exposure ratios are lower 

than 10 % of the ICNIRP reference values for electric fields. Again, lowest ERs are obtained 

for rural environments: the ratios for total exposures vary from 3.1 % for the rural 

environment to 9.4 % for the residential environment.  

D. Exposure per type of RF signal 

Highest exposures occur for GSM900 (p95 up to 2.2 V/m, suburban), followed by GSM1800 

(p95 up to 1.4 V/m, urban), and UMTS-HSPA (p95 up to 1.1 V/m, urban) (Table 4). The 

exposure levels are lower for UMTS-HSPA than for GSM. This can be explained by the 

limited coverage of UMTS-HSPA in the various environments especially in the rural 

environment and the less usage of UMTS-HSPA by the general public. LTE was only 

 env

totER
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measured in Stockholm (Sweden) in an urban, office, and suburban environment where the 

first commercial LTE network is deployed (Joseph et al. 2010b). LTE exposures (max 

0.8 V/m) are significantly higher than the exposure due to WiMAX (max 0.3 V/m) for the 

urban, the suburban and the office environment. WiMAX (fixed and mobile) was mainly 

measured in the urban environment (n = 16.9 %) and at some locations in the suburban 

(n = 10.0 %), the office (n = 2.4 %), and the industrial environment (n = 1.9 %). Only in 

Amsterdam, The Netherlands, mobile WiMAX (IEEE 802.16e 2005) is present while 

elsewhere fixed WiMAX (IEEE 802.16d 2004) and WiMAX-like technologies (proprietary 

systems) are deployed. WiMAX causes lower exposures because coverage is limited and only 

for a few cities in Belgium and The Netherlands.  

 

Exposures to WiFi (p95 up to 0.1 V/m, urban) and DECT (p95 up to 1.3 V/m, residential), 

which are indoor sources, were measured in each environment in- and outdoor. Exposure to 

DECT is overestimated here as DECT is a TDD system and thus uplink traffic is also 

measured (Section II.C). In Tomitsch et al. 2010 median exposures to DECT of 2.68 μW/m2 

(0.032 V/m) and to WiFi of 0.84 μW/m2 (0.018 V/m) were measured in houses. These values 

agree again well with the results for rural areas in Table 4, where median values of 0.03 V/m 

were obtained for DECT and WiFi in rural areas.  

 

In each environment the majority of the signals FM, T-DAB, TETRA, PMR and 

Analogue TV – DVB-T were measured (and thus present). From these signals, the highest 

exposure was obtained for the FM (maximally 1.4 V/m) and Analogue TV – DVB-T 

(maximally 1.7 V/m) in residential and urban environments (Table 4). Although the FM 
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signal was present at each location in the different environments, the signal could not be 

measured at some locations (n does not equal 100 % in every environment, Table 4). At these 

locations the signal level of FM was below the sensitivity of the measurement equipment 

(Table 3).  

E. Exposure contributions per category/environment 

Fig. 6 shows the average power density contribution of each signal in the various 

environments. It can clearly be seen that the main contribution in all environments is due to 

the GSM signals as these telecommunication signals are most used up to now, and use 

typically higher powers than the newer technologies such as UMTS, HSPA, and LTE. The 

average contribution (AC) for GSM (900+1800) is more than 60 % (Table 2, Fig. 6). Except 

for the rural environment, average contributions of UMTS-HSPA are more than 3 % (from 

3.7 % in residential environments to 11.4 % in urban environments). The average 

contributions of LTE and WiMAX are less than 1 % (Table 2) (Joseph et al. 2010b). As these 

technologies are new and emerging, their deployment and resulting exposures are limited. 

In residential and suburban environments DECT results in the second highest exposure 

contributions (after GSM900) of 15.7 and 23.8 %, respectively (Fig. 6). Average contributions 

due to WiFi are limited and lower than 2 % for all environments. Furthermore in each 

environment the DECT and WiFi signals are present. Fig. 6 illustrates again that the exposure 

to DECT is significantly higher than to WiFi. Also in Tomitsch et al. 2010, DECT caused the 

highest exposures in bedrooms: a maximal value of 4872 μW/m2 (1.4 V/m) was measured. 

Here we obtained values up to 2.7 V/m: in our study more different types of environments and 

both indoor and outdoor exposures are considered. 
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In each environment the FM, T-DAB, PMR, and Analogue TV – DVB-T signals were 

measured, these signals contribute on average less than 20 % to the total value.  

F. Outdoor versus indoor exposure 

In this section indoor and outdoor exposures are discussed. Table 6 lists the 50th percentile 

(p50) and the 95th percentile (p95) of the different signals in all environments. The dominating 

outdoor source is GSM900 (p95 = 1.9 V/m), indoor DECT dominates (p95 = 1.5 V/m). 95th 

percentiles for total indoor and outdoor exposures do not differ much and are about 2.2 V/m. 

Higher total outdoor values (p50 and p95) of mobile telecommunication signals were obtained 

than at indoor locations (last row of Table 6). For the emerging technologies UMTS-HSPA 

(outdoor p95 = 0.6 V/m, indoor p95 = 0.4 V/m) and LTE (outdoor p95 = 0.7 V/m and indoor 

p95 = 0.1 V/m), similar conclusions can be drawn. Total outdoor exposure of mobile 

telecommunications is higher than indoor exposure because only exposure of base stations is 

considered (handset exposures are not included in the study), which are outdoor sources and 

are dominant outdoor. The propagation of base station signals into houses and buildings is 

subject to penetration losses (Plets et al. 2009).  

 

Fig. 7 shows the average power density contribution of each signal for the indoor and outdoor 

measurements. Outdoor as well as indoor, the mobile telecommunication signals produce the 

highest contributions: on average GSM900 (out: 57.5 %, in: 42.4 %) produced the highest 

contribution followed by GSM1800 (out: 16.9 %, in: 7.2 %), UMTS-HSPA (out: 5.4 %, in: 

3.5 %), LTE (< 1 %) and WiMAX (< 1 %). DECT is important at indoor locations (28.9 %, 

also Table 6). 
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For DECT and WiFi higher percentiles in Table 6 are obtained indoor than outdoor: DECT 

and WiFi signals are indoor sources and the access points for these technologies are installed 

indoor. The average contribution of DECT equals 6.2% outdoor while indoor the contribution 

is 28.9 % (Fig. 7). For WiFi the average contribution is 0.4 % outdoor while indoor 3.4 %. 

Fig. 7 shows that the FM, T-DAB, TETRA, PMR and Analogue TV – DVB-T signals were 

measured indoor as well as outdoor. There is no significant difference between the 

contributions of these signals indoor and outdoor. 

G. Comparison with related research 

Median RF exposures in Tomitsch et al. 2010, where exposure in bedrooms of mainly rural 

houses was investigated, agree well with the values of Table 4 in rural areas. In Tomitsch et 

al. 2010 the following median exposures were obtained: 4.42 μW/m2 (0.041 V/m) for 

GSM900, 0.81 μW/m2 (0.018 V/m) for GSM1800, 0.60 μW/m2 (0.015 V/m) for UMTS. We 

obtained 0.08, 0.03, and 0.02 V/m for GSM900, GSM1800, and UMTS, respectively (p50 

values for rural environments in Table 4). According to Bornkessel et al. 2007, exposures in 

the surrounding of GSM and UMTS base stations are mainly in the range below 2 % of 

ICNIRP field strength limits and may reach more than 10 %. This agrees with our results for 

GSM (max 9.3 %) and UMTS-HSPA (2.3 %). Highest values of about 5 V/m were measured 

for both GSM and UMTS for 11 specific scenarios (not randomly as in our study). Also GSM 

exposures are mostly higher than UMTS in Bornkessel et al. 2007 (85 %), as in our 

measurements. Electric-field values for WiMAX up to 0.8 V/m were found in Bornkessel et 

al. 2008, which is higher than in our study (0.3 V/m, Table 2) but of the same order. The 

higher fields in Bornkessel et al. 2008 can be explained by the fact that fields around specific 
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WiMAX base station sites were investigated. Exposures to the different signals are 

comparable to results in literature, but will not be discussed here in detail (Lehmann et al. 

2002, Joseph et al. 2006, Neubauer et al. 2002). Higher exposures to TV and radio 

transmitters are possible in specific regions (Sirav and Seyhan, 2009). Field distributions have 

not been modelled in Tomitsch et al. 2010, in contrary to our results of Section III.B. 

Here we obtained significant lower exposures in rural areas. This is consistent with Tomitsch 

et al. 2010 and Lönn et al. 2004, where higher mobile phone output powers were found in rural 

compared to urban areas, indicating lower base station signal intensity in rural areas. 

Measurement campaigns of RF exposures using personal exposimeters and their results have 

been presented in Frei et al., 2009, Joseph et al., 2008b, 2010, 2010c, Knafl et al., 2008, 

Neubauer et al., 2007, Roösli et al., 2008, Viel et al., 2009. Exposimeters are not suitable for 

accurate field assessment and current personal exposimeters cannot measure LTE, but one can 

use these to obtain a rough idea about exposure distributions. Also in Joseph et al., 2008b and 

Viel et al., 2009 it was concluded that exposures and especially downlink GSM exposures are 

higher in urban areas than in rural areas. 

IV. CONCLUSIONS 

In-situ electromagnetic radio frequency exposure to existing and emerging wireless 

technologies is accurately assessed using spectrum analyzer measurements at 311 locations 

(68 indoor, 243 outdoor), subdivided into 6 different categories (rural, residential, urban, 

suburban, office, and industrial) and geographically spread across Belgium, The Netherlands, 

and Sweden. Measurement procedures and settings of measurement equipment are provided.  
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The maximal total value was measured in a residential environment and equals 3.9 V/m 

mainly due to the GSM900 signal (11 times below the ICNIRP reference levels). Exposure 

ratios for maximal electric-field values, range from 0.5 % (WiMAX) to 9.3 % (GSM900) for 

the 311 measurement locations. The exposure ratios for total exposures vary from 3.1 % for 

the rural environment to 9.4 % for the residential environment. Exposures are lognormally 

distributed and are in general the lowest in rural environments and the highest in urban 

environments. The dominating outdoor source is GSM900 (95th percentile of 1.9 V/m), indoor 

DECT dominates (95th percentile 1.5 V/m) if present. 

The average contribution to the total electric field is for GSM more than 60 %. Except for the 

rural environment average contributions of UMTS-HSPA are more than 3 %. The 

contributions of LTE and WiMAX are on average less than 1 %.  

Future research will consist of the investigation of the temporal behavior of RF signals and 

the influence of usage traffic. As exposures vary during time, future exposure assessment will 

have to take this into account. Also comparison of narrowband measurements with 

exposimeter data is part of future research. 
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Table 1: Considered environments, description, and number of measurement locations. 

category #meas. 

locations 

#indoor #outdoor description 

 

rural 41 9 32 open areas with low population density (< 400 
persons/km2), countryside and villages 

residential 47 13 34 areas with houses and villas with gardens  
(no industry and commercial sites) 

urban 77 13 64 city centre; areas with a high population density (> 700 
persons/km2), a lot of buildings and houses 

suburban 50 12 38 areas outside the city centre with row houses, and 
small apartments, lower population density than urban 
areas (between 400 and 700 persons/km2) 

office 42 10 32 areas with office buildings with multiple stories 

industrial 54 11 43 area with many industrial buildings 

all 311 68 243 all sites together 

#meas. locations: number of measurement locations 
#indoor: number of indoor locations 
#outdoor: number of outdoor locations 
 

Table



Table 2: Electric-field strengths [V/m] for the different RF signals for the different locations, the 

exposure ratio, and the average and maximal power density contribution. 

 

RF signal Frequency 

band 

[MHz] 

Variation 311 

meas. locations ICNIRP 

 ref. level  

[V/m] 

Eavg 

[V/m] 

Exposure 

ratio ER
1
 

[%] 

ERS
2
 

[%] 

AC
3
 

[%] 

MC
4
 

[%] 

Emin 

[V/m] 

Emax 

[V/m] 

FM 100 0.005 1.44 28 0.15 5.14 0.26 7.6 96.7 
T-DAB 220 0.011 0.28 28 0.04 1.01 0.01 0.1 6.9 
TETRA 390 0.002 0.45 28 0.04 1.59 0.03 0.5 19.0 

PMR 
146 – 174 
406 – 470 

0.002 0.29 28-29.8 0.03 0.99 0.01 0.3 39.2 

Analogue TV 
 – DVB-T 

174 – 223 
470 – 830 

0.003 1.65 28-39.6 0.09 4.17 0.35 4.7 92.0 

GSM900 900 0.013 3.85 41.3 0.49 9.33 0.87 53.2 100.0 
GSM1800 1800 0.007 2.15 58.3 0.24 3.68 0.14 15.1 86.8 
DECT 1880 0.008 2.67 59.6 0.15 4.48 0.20 11.3 99.9 
UMTS-HSPA 2100 0.011 1.41 61 0.16 2.31 0.05 5.7 89.5 
WiFi 2400 0.000 0.54 61 0.03 0.88 0.01 1.1 72.6 
LTE 2600 0.024 0.76 61 0.19 1.24 0.02 0.4 23.2 
WiMAX 3500 0.014 0.28 61 0.07 0.46 0.002 0.2 38.8 
Total all 

signals
 - 0.023 3.90 - 0.71 - - - - 

1 Exposure ratio ER = maximal field value/ICNIRP reference level. 
2 Exposure ratio ERS = maximal power density/ICNIRP reference level. 
3 AC = average power density contribution over 30 locations. 
4 MC = maximal power density contribution over 30 locations. 
FM = frequency modulation, T-DAB = Terrestrial - Digital Audio Broadcasting, TETRA = Terrestrial Trunked Radio, PMR = 
Private Mobile Radio, DVB-T = Digital Video Broadcasting - Terrestrial, GSM = Global System for Mobile Communications, 
UMTS = Universal Mobile Telecommunications System, DECT = Digital Enhanced Cordless Telecommunications, HSPA = 
High Speed Packet Access, WiFi = Wireless Fidelity 802.11, LTE = Long Term Evolution, WiMAX = Worldwide 
Interoperability for Microwave Access 
 

Table



Table 3: Settings of spectrum analyzer for exposure assessment of different RF signals using 

max-hold setting. 

RF signal detector 
mode 

RBW SWT sensitivity 
[V/m] 

explanation/reference 
 

FM rms/peak 300 kHz 2.5 ms 0.004 constant signal; rms  and peak detector 
give similar results (ITU 2005) 

T-DAB rms 3 MHz 100 ms 0.009 RBW of 2 or 3 MHz statisfies 

TETRA rms/ peak 30 kHz 25 ms 0.002 RBW in ITU 2005, CENELEC 2008 

PMR rms/ peak 30 kHz 25 ms 0.002 RBW in ITU 2005, CENELEC 2008 

Analogue TV rms/ peak 300 kHz 2.5 ms 0.003 RBW in ITU 2005, CENELEC 2008 

DVB-T rms 5 MHz 0.8 s 0.003 ITU 2005, CENELEC 2008 

GSM900 rms/ peak 200 kHz 125 ms 0.002 -RBW equal to GSM channel 
bandwidth of 200 kHz 
-broadcast control channel can be 
measured by rms or peak detector 

GSM1800 rms 200 kHz 125 ms 0.004 similar as GSM900 

DECT rms 3 MHz 200 ms 0.005 channel BW of 1.7 MHz: RBW of 2 or 
3 MHz 

UMTS-HSPA rms 5 MHz 0.8 s 0.006 settings available in (CENELEC 2008, 
ITU-R. 1708 in ITU 2005) 

WiFi rms 1 MHz 10 ms 0.005 determination duty cycle is required 
(Verloock et al. 2010) 
SWT [ms] = 10 if signal is not known 
SWT [ms] = tactive×n if signal is known 

LTE rms 1 MHz 20 s 0.005 appropriate selection of span (Joseph 
et al. 2010b). 

WiMAX rms 5 MHz 0.8 s 0.013 Joseph et al. 2008 

n: the number of display points of the SA (n = 455 for the considered SA)  
tactive: active duration (Verloock et al. 2010) 
peak: positive peak (PP) detector 
 

Table



Table 4: Summary of narrowband measurements with spectrum analyzer in different environments. 

environment  FM T-DAB TETR
A 

PMR DVB-
T 

GSM900 GSM1800 DECT UMTS-
HSPA 

WiFi LTE WiMAX tot 

rural  n [%] 43.9 0 14.6 7.3 56.1 100.0 73.2 14.6 4.9 9.8 0 0 - 
(41 locations) p50 [V/m] 0.02 - 0.01 0.00 0.03 0.08 0.03 0.03 0.02 0.03 - - 0.09 
 p95 [V/m] 0.10 - 0.01 0.01 0.09 1.16 0.23 0.38 0.03 0.11 - - 1.16 
 max [V/m] 0.11 - 0.01 0.01 0.11 1.25 0.38 0.41 0.03 0.11 - - 1.30 
 σ [dB] 5.65 - 3.55 2.81 6.44 11.10 8.17 10.74 3.53 10.31 - - 9.45 
residential n [%] 74.5 36.2 21.3 19.2 68.1 100.0 74.5 74.5 76.6 21.3 0 0 - 
(47 locations) p50 [V/m] 0.16 0.03 0.02 0.01 0.03 0.18 0.09 0.06 0.04 0.01 - - 0.40 
 p95 [V/m] 0.95 0.21 0.20 0.12 0.91 1.93 0.37 1.28 0.31 0.04 - - 2.48 
 max [V/m] 1.44 0.28 0.20 0.12 1.65 3.85 0.50 2.54 0.33 0.04 - - 3.90 
 σ [dB] 12.50 7.71 10.00 10.14 11.67 11.00 10.58 11.39 9.22 12.73 - - 10.57 

Urban n [%] 72.7 51.9 81.8 58.4 90.9 100.0 100.0 93.5 93.5 63.6 31.2 16.9 - 
(77 locations ) p50 [V/m] 0.06 0.02 0.02 0.01 0.04 0.32 0.19 0.08 0.12 0.02 0.06 0.05 0.74 
 p95 [V/m] 0.57 0.13 0.12 0.07 0.81 1.90 1.39 0.27 1.09 0.12 0.73 0.27 2.44 
 max [V/m] 1.17 0.28 0.37 0.29 1.65 3.56 2.15 1.18 1.41 0.54 0.76 0.28 3.61 
 σ [dB] 8.19 6.60 8.01 9.47 13.09 9.86 10.66 6.99 10.39 10.32 9.52 6.06 8.52 

Suburban n [%] 70.0 4.0 36.0 26.0 80.0 100.0 100.0 96.0 86.0 48.0 2.0 10.0 - 
(50 locations) p50 [V/m] 0.10 0.04 0.01 0.02 0.03 0.22 0.14 0.09 0.10 0.02 0.29 0.05 0.46 
 p95 [V/m] 0.46 0.07 0.05 0.04 0.14 2.18 0.79 0.45 0.53 0.12 0.29 0.07 2.21 
 max [V/m] 0.62 0.07 0.07 0.05 0.34 2.33 1.01 1.54 1.23 0.16 0.29 0.07 2.55 
 σ [dB] 8.33 8.46 6.03 7.52 7.55 10.94 9.18 7.26 9.20 10.61 0.00 5.49 7.57 
office n [%] 90.5 26.2 57.1 54.8 59.5 100.0 100.0 47.6 100.0 35.7 9.5 2.4 - 
(42 locations) p50 [V/m] 0.08 0.02 0.01 0.01 0.05 0.33 0.19 0.03 0.07 0.02 0.21 0.04 0.51 
 p95 [V/m] 0.47 0.21 0.14 0.19 0.48 2.09 0.80 0.27 0.42 0.11 0.48 0.04 2.24 
 max [V/m] 0.70 0.22 0.16 0.22 1.26 2.21 1.64 0.39 0.68 0.11 0.48 0.04 3.13 
 σ [dB] 11.27 7.37 10.04 13.06 10.55 8.63 9.80 8.38 9.10 15.28 6.76 0.00 6.96 

Industrial n [%] 50.0 16.7 37.0 14.8 63.0 100.0 98.2 55.6 96.3 33.3 0 1.85 - 
(54 locations) p50 [V/m] 0.05 0.02 0.02 0.02 0.02 0.31 0.11 0.05 0.07 0.01 - 0.03 0.49 
 p95 [V/m] 0.52 0.04 0.38 0.09 0.22 1.78 0.55 0.51 0.51 0.08 - 0.03 2.04 
 max [V/m] 1.16 0.04 0.45 0.09 0.25 3.10 0.81 2.67 0.67 0.08 - 0.03 3.12 
 σ [dB] 8.75 4.45 11.61 11.98 9.49 8.67 8.57 10.61 8.54 10.49 - 0.00 7.70 

 

Table



Table 5: Average value and standard deviation for lognormal fits (all data and per 

environment). 

environment est  
[dBV/m] 

est  
[dB] 

rural -17.33 9.45 
residential -8.79 10.57 
urban -4.12 8.52 
suburban -6.62 7.57 
office -5.43 6.96 
industrial -5.71 7.70 
all data -7.42 9.41 

 

Table



Table 6: Comparison of indoor and outdoor exposures. 

 indoor outdoor all 
frequency band p50 

[V/m] 
p95 

[V/m] 
p50 

[V/m] 
p95 

[V/m] 
p50 

[V/m] 
p95 

[V/m] 
FM 0.06 0.71 0.07 0.59 0.07 0.59 
T-DAB 0.02 0.11 0.02 0.16 0.02 0.13 
TETRA 0.01 0.17 0.01 0.17 0.01 0.17 
PMR 0.01 0.19 0.01 0.13 0.01 0.13 
Analogue TV – DVB-T 0.02 0.47 0.03 0.32 0.03 0.33 
GSM900 0.10 0.91 0.29 1.90 0.24 1.85 
GSM1800 0.04 0.49 0.15 0.81 0.13 0.79 
DECT 0.12 1.50 0.06 0.22 0.07 0.49 
UMTS-HSPA 0.03 0.44 0.10 0.61 0.08 0.54 
WiFi 0.04 0.16 0.01 0.10 0.02 0.11 
LTE 0.10 0.12 0.07 0.73 0.08 0.72 
WiMAX 0.18 0.28 0.05 0.15 0.05 0.24 

Total GSM/UMTS-
HSPA/LTE/WiMAX 0.11 1.31 0.40 2.20 0.32 2.14 

Total all signals 0.28  2.18 0.51 2.22 0.45 2.22 
 

Table
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