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ASSESSMENT OF SAMPLING STABILITY IN ECOLOGICAL 

APPLICATIONS OF DISCRIMINANT ANALYSIS' 

BYRON K. WILLIAMS2 

United States Fish and Wildlife Service, Patuxent Wildlife Research Center, 
Laurel, Maryland 20708 USA 

AND 

KIMBERLY TITUS3 

'irginia Cooperatite Fish and Wildlife Research Unit, Department of Fisheries and Wildlife Sciences, 

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 USA 

Abstract. A simulation study was undertaken to assess the sampling stability of the 
variable loadings in linear discriminant function analysis. A factorial design was used for 

the factors of multivariate dimensionality, dispersion structure, configuration of group 
means, and sample size. A total of 32 400 discriminant analyses were conducted, based 

on data from simulated populations with appropriate underlying statistical distributions. 

Results from the simulations suggest that minimum sample sizes must exceed multi- 

variate dimensionality by at least a factor of three to achieve reasonable levels of stability 
in discriminant function loadings. However, the requisite sample size would vary with 
respect to each of the design factors and, especially, with the overall amount of system 

variation. 

A review of 60 published studies and 142 individual analyses indicated that sample 

sizes in ecological studies often have met that requirement. However, individual group 

sample sizes frequently were very unequal, and checks of assumptions usually were not 
reported. We recommend that ecologists obtain group sample sizes that are at least three 

times as large as the number of variables measured. 

Key words: canonical variates; classification; discriminant function analysis; sample size; stability 

in discriminant function loadings. 

INTRODUCTION 

Discriminant analysis is applicable to a wide range 

of ecological problems in which multiple measure- 

ments are made on samples of observations possessing 

an identifiable group structure. For example, an eco- 

logical application of discriminant analysis would fo- 

cus on the structure of plant or animal communities 

indexed by geographically distinct habitats. Replicated 

samples in each habitat would consist of the abun- 

dances of species, and the objective would be to high- 

light differences in community structure (e.g., Mat- 

thews 1979, Tonn and Magnuson 1982, Culver and 

Beattie 1983). Conversely, discriminant analysis also 

could be used to highlight habitat differences separating 

different animal species. In this application replicated 

samples corresponding to each species would consist 

of multiple habitat measurements, and the objective 

would be to highlight differences in habitat use (e.g., 

Titus and Mosher 198 1, Thompson and Gates 1982, 

' Manuscript received 17 February 1987; revised 17 Sep- 
tember 1987; accepted 4 November 1987. 

2 Present address: Office of Migratory Bird Management, 
United States Fish and Wildlife Service, 18th and C St. NW, 
Washington, D.C. 20240 USA. 

I Present address: Patuxent Wildlife Research Center, United 
States Fish and Wildlife Service, Laurel, Maryland 20708 
USA. 

Munro and Rounds 1985, Seagle 1985). The basic sta- 

tistical features necessary for discriminant analysis are 

illustrated by these examples: that samples are sepa- 

rable into distinct groups, and each sample consists of 

the measurement of several attributes. Williams (1983) 

characterized a number of ecological applications of 

discriminant analysis in terms of their grouping indices 

and multivariate attributes. 

Discrimination methods include both classification 

("predictive discriminant analysis") and separatory 

approaches ("descriptive discriminant analysis") 

(Geisser 1977), with the linear combinations of de- 

scriptive discrimination known as linear discriminant 

functions or, more formally, canonical variates. Though 

predictive and separatory discrimination methods dif- 

fer theoretically and operationally, they are nonetheless 

closely related (Williams 1982, 1983). Under assump- 

tions described below, both approaches yield mathe- 

matically equivalent classification procedures (Kshir- 

sager and Arseven 1975, Williams 1982). 

Most ecological studies have used a descriptive ap- 

proach (see, however, Rice et al. 1983 and Verner et 

al. 1986 for applications of predictive methods). The 

structure of the canonical variates is often of primary 

concern to ecologists. A stepwise procedure frequently 

is used to select variables that are useful in separating 

groups, and then canonical transformations of these 
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variables are determined. The canonical transforms are 

interpreted through the signs and magnitudes of the 

associated canonical coefficients (Green 1971, 1979, 
Campbell and Atchley 1981, Williams 1981, 1983) and 
by means of their correlations with the original vari- 

ables (e.g., Anderson and Shugart 1974, Reinert 1984a, 
b). The observations usually are plotted on the corre- 

sponding canonical axes, and the resulting display is 

analyzed for structure (Tatsuoka 1970, Green 1979, 
Campbell and Atchley 1981). 

In practical applications the canonical coefficients 

must be estimated from available data, the amount of 
which may be "small" relative to multivariate dimen- 

sionality. Thus the canonical variates are characterized 

by substantial, although largely unstudied, variability 
(Neff and Marcus 1980). Few investigations have ad- 

dressed directly the effects of sampling variability. In 

a Monte Carlo study, Carnes and Slade (1982) assessed 

the effect of group sample sizes on the group positions 
in canonical space. Sample sizes were found to influ- 

ence the relative positions of groups in canonical space, 
but statistical variability of the canonical variates 

themselves was not examined. Morrison (1984) sub- 

sampled a set of data collected as part of a field study 
to examine the influence of sample sizes on discrimi- 

nant functions. However, his approach did not lend 
itself readily to any generalizations about stability in 

ecological applications. Other sample size problems in 

the interpretation of discriminant analysis have been 

highlighted by Van Horne and Ford (1982) and Titus 
et al. (1984). Though the assessment of stability has 
been identified as an important problem (Harner and 

Whitmore 1977, Neff and Marcus 1980), we were un- 

able to find any studies that specifically addressed the 

problem of sampling variability in canonical variates 

analysis. 

In this article we present the results of a simulation 

study of these issues. Our objectives were to identify 
sources of variability in canonical variates and to de- 

termine minimum sample sizes necessary to insure ad- 

equate estimation of them. In the sections below we 

outline the mathematics of canonical variates analysis 
and discuss its application in the ecological literature. 
We then describe the simulation procedure used to 

assess stability of the canonical variates and provide a 

description of results from the simulations. Finally, we 
offer some guidelines for determining adequate sample 
sizes. 

CANONICAL VARIATES ANALYSIS 

Data for a canonical variates analysis consist of sam- 

ples of observations from two or more groups. Each 

observation consists of a vector x of measurements, 
and each has associated with it a grouping index that 

identifies its group membership. We assume here that 

within-group distributions of the measurement vectors 

are specified by group means pi, i = 1, ..., g and 

common dispersion A, where I is nondegenerate. Ca- 

nonical variates analysis is essentially a linear trans- 

formation of these multidimensional data, consisting 

of a set of canonical variates that are chosen to exhibit 

optimal separation of groups, as described in the Ap- 

pendix. They are obtained from the solution of 

[A - XA]u = 0, (1) 

with 

A = - p) (p- p) 

and u scaled so that 

u'2u= 1. (2) 

For simplicity it is assumed that the means pi are lin- 

early independent. Then A has rank k = min[p, g - 1], 

and k canonical varieties are defined. They are ex- 

pressed by the equation 

z = Ux, 

where each row of u is a transpose solution of Eq. 1. 

The k-dimension vector z, which has mean 'q = up, 

and identity dispersion (Williams 1982), is the canon- 

ical transform. 

Three properties of the canonical variates are key in 

applications to ecology. First, on condition that within- 

group distributions are multivariate normal and with- 

in-group dispersions are equal, the canonical variates 

maintain posterior probabilities (Kshirsager and Ar- 

seven 1975, Williams 1982). Therefore relative dis- 

tances among group means are maintained with the 

canonical variates, and the statistical attributes rele- 

vant to both optimal classification and separation of 

groups are carried over into canonical space. This is 

an important result for ecologists, because ecological 

interpretations are almost always based on patterns 

that are recognizable in canonical space. 

Second, in almost all applications the number of 

groups g is substantially smaller than the number of 

measurement variables p. In this case the number of 

canonical variates is one less than the number of groups, 

so that the canonical variates provide a significant re- 

duction of dimensionality. In addition, one or a few 

of the variates often are sufficient to exhibit group sep- 

aration, so that dimensionality can be reduced yet fur- 

ther. The feature of dimension reduction is an impor- 

tant characteristic of canonical variates analysis, since 

it allows ecologists to fruitfully interpret patterns in 

canonical space. 

Third, the canonical variates are "scale-invariant." 

Thus, if measurement x, is standardized by xl/ao, the 

relationship between coefficients for standardized and 

unstandardized data is simply 

U i* = a-Uij, 

where ui is the canonical coefficient for unsealedd) vari- 

able x, in the /th canonical variate. This property is 

useful for interpreting the canonical variates in eco- 

logical applications, because ecological data frequently 
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are scaled by standard deviations prior to a discrimi- 

nant analysis (e.g., Busdosh et al. 1982). 

In most practical problems the key parameters A and 

I in Eq. 1 are unknown. The usual practice is to use 

sample proportions and within-group sample means 

and dispersions to estimate A and I by 

and A 
i 

= q(A4 
- 

A)(A, 
- Y)', (3) 

E= Ej~j~j- 4,&)(x,, -, it)'/(N - g), (4) 

where 

N =ln, 

,= n/N, 

and 
An 

= x,,/n, 
A 2; qiAi 

Substitution of A and z in Eq. 1 yields the standard 

computing procedures for discriminant analysis (Seal 

1964, Jennrich 1977, Williams 1983). The resulting 

canonical variates are therefore random, inheriting dis- 

tributions from the sample on which they are based. 

Though some work has been done on the distribution 

of principal components, left largely unanswered are 

questions concerning the statistical properties of sam- 

ple-based canonical coefficients. In particular, the im- 

portant question of small sample behaviors has not 

been adequately examined. 

LITERATURE REVIEW 

We conducted a literature search for discriminant 

analysis in eight journals (American Journal of Botany, 

A uk, Copeia, Ecology, Journal of Ecology, Journal of 
Mammalogy, Journal of Wildlife Management, Oikos). 

The American Journal of Botany was searched for the 

years 1978-1983, Oikos was searched for 1980-1985, 

and the other six journals were searched for 1980- 

1984. Articles from other sources were included as they 

were encountered during the review. We believe this 

search provided a representative overview of discrim- 

inant anlaysis in ecological studies. 

We reviewed a total of 60 papers and summarized 

142 discriminant analyses. For each discriminant anal- 

ysis we recorded the number of variables, total sample 

size, number of groups, ratio of total sample size to 

the number of variables, and whether classification re- 

sults were given. These attributes could not be deter- 

mined for all 142 analyses. 

For 126 analyses, sample sizes varied from 18 to 

>3000, with a median of 104.5. Seventy-four of 142 

analyses were conducted with two or three groups 

(mode = 2, maximum = 32 groups). The mean number 

of variables at the beginning of the discriminant anal- 

yses was 17.8 (SD = 17.1, n = 140), although it was 

not always clear how many variables might have been 

aggregated or eliminated prior to analysis. Seventy of 

140 analyses used between 8 and 20 variables. 

The ratio of the total sample size to the number of 

variables varied from 0.78:1 (Tonn and Magnuson 

1982) to more than 50:1 (Rakocinski 1980, Ryan et 

al. 1984, Munro and Rounds 1985, Niemi 1985). The 

median ratio was 7.9: 1. Seventeen of the 125 analyses 

had ratios less than 3:1 while 54 of these analyses had 

sample sizes > 10 times the number of variables. 

At least some aspect of classification was mentioned 

in 95 of 142 analyses. Studies such as Baltz and Moyle 

(1981), Gilmore and Gates (1985), Peterson and Gau- 

thier (1985), and Troy (1985) mentioned the use of the 

BMDP jackknife classification procedure (Dixon 1983), 

which is useful for small sample sizes. The classifica- 

tion of independent data sets was reported by Holbrook 

1982, Conners 1983, Howard and Larson 1985, and 

Parren and Capen 1985. 

Stepwise procedures were utilized in 63 of 105 anal- 

yses (e.g., Thompson and Gates 1982, Squibb and Hunt 

1983), and in 42 they were not used (e.g., Gotfryd and 

Hansell 1985). For 37 analyses we were unable to de- 

termine whether stepwise or direct discriminant anal- 

yses were conducted. 

METHODS 

Since our literature review revealed the need to ad- 

dress issues concerning sample sizes, parameter effects, 

and stability of the canonical variates, we conducted a 

simulation study of these issues. The simulation con- 

sisted of the replicated generation of groups of multi- 

variate observations, followed by the determination of 

sample-based canonical variates. The resulting output 

was examined for bias and stability in both the ca- 

nonical variate coefficient and the corresponding cor- 

rect classification rates. The overall procedure con- 

sisted of three main parts. 

Parameterization. - First, the means, dispersions, and 

sample sizes were input for each group. Group-specific 

means 

Ai = [Ail ... ' iJ 

consisted of p distinct parameters, and within-group 

dispersions were assumed to be of the form 

I = (1 - p)oI + pall', (5) 

where 1' = [1 ... 1]. The inclusion of both variance 

and correlation parameters allowed for the investiga- 

tion of dispersion structure in both the variance and 

covariance terms. Sample sizes n, also were specified, 

to enable us to examine the statistical effects of sample 

size, dispersion, system dimensionality, and configu- 

ration of means. 

Data generation. -Second, n, samples of multivari- 

ate observations were obtained for group i. Observa- 

tions were based on computer-generated random sam- 

ples from a standard normal distribution, with 

subsequent adjustment by the transformation 

y = ''2X + Ui. 

This transformation produced samples from a multi- 

variate normal distribution with mean pi and disper- 
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TABLE 1. Canonical coefficients corresponding to four dispersion structures and three group means. Dispersion structures 
are specified by parameters for variance (0,2) and correlation (p). Group means are given by SI = {ul, 2U2, 3U3E, S2 = 42u, 

4U2, 6U3 ? and S3 = 1uI 4U2, 9U3 Coefficients are given for three levels of system dimension (p). 

(J2 = 1 (J2 =2 (3 02 = 

S. SI S3 S. S2 S3 SI S2 S3 

P 10 -0.101 -0.101 -0.05 -0.071 -0.071 -0.032 -0.187 -0.187 -0.149 
-0.404 -0.404 -0.25 -0.286 -0.286 -0.175 -0.640 -0.640 -0.459 

0.909 -0.909 -0.97 0.643 0.643 0.684 1.238 1.238 1.306 
0 0 0 0 0 0 -0.05 -0.05 -0.09 

0 0 0 0 0 0 -0.05 -0.05 -0.09 

p 20 -0.101 -0.101 -0.05 -0.071 -0.071 -0.032 -0.166 -0.166 -0.109 
-0.404 -0.404 -0.25 -0.286 -0.286 -0.175 -0.607 -0.607 -0.407 

0.909 -0.909 -0.97 0.643 0.643 0.684 1.26 1.26 1.336 
0 0 0 0 0 0 -0.027 -0.027 -0.045 

0 0 0 0 0 0 -0.027 -0.027 -0.045 

p 30 -0.101 -0.101 -0.05 -0.071 -0.071 -0.032 -0.159 -0.159 -0.094 
-0.404 -0.404 -0.25 -0.286 -0.286 -0.175 -0.596 -0.596 -0.389 

0.909 -0.909 -0.97 0.643 0.643 0.684 1.269 1.269 1.347 
0 0 0 0 0 0 -0.019 -0.019 -0.031 

0 0 0 0 0 0 -0.019 -0.019 -0.031 

sion I (Graybill 1976), which subsequently were used 

to estimate parameters in Eqs. 3 and 4, for use in Eq. 1. 

Analysis. -Third, the sample data were analyzed by 

means discriminant analysis program BMDP7M (Dix- 

on 1983). This process of analyzing randomly gener- 

ated samples was repeated 100 times for each param- 

eterization and sample size specification. Preliminary 

runs indicated that 100 replications of the procedure 

were sufficient for precise specification of statistical 

properties, in that additional replications beyond 100 

affected neither means nor variances to a recognizable 

degree. 

A factorial structure was used for the simulations, 

involving multivariate dimensionality, dispersion 

structure, configuration of means, and sample size as 

design factors. Three groups were assumed throughout, 

and multivariate dimensions were varied over the range 

of 10, 20, and 30 variates. Based on field sampling 

procedures reported in the biology literature, a range 

of system dimensionality with the largest dimension 

three times that of the smallest was expected to express 

any statistical effects of dimensionality. 

Three configurations of group means were used, the 

first group having means along three of the multivariate 

axes: S. = 4u, 2u1, 3u3 }, where u, is a unit vector along 

the ith axis. Thus the means in S, were chosen to in- 

crease in length arithmetically along the first three axes. 

A second configuration simply doubled the separation 

of group means along these axes while retaining the 

same geometric configuration: S2 = 42u, 4u2, 6u3V. A 

third configuration increased the degree of asymmetry 

among means by squaring the lead coefficients in S.: 

S3 = u, 41u, 9u,1. 

The effect of these configurations on variation in the 

discriminant loadings was not completely predictable. 

For a given dispersion structure, increasing the sepa- 

ration among means for a given geometric configura- 

tion was expected generally to decrease variation in the 

loadings. An increase in asymmetry in the locations of 

means, for a given amount of separation, also was ex- 

pected to decrease variation. However, the precise de- 

gree and pattern of these changes could not be antic- 

ipated. 

The effect of dispersion was analyzed by varying both 

the variance and covariance terms. In each simulation 

all variances were identical, with values of either 1 or 

2. Covariances also were all identical, with a value of 

o or 0.5. Wilks' generalized variance (Wilks 1962) for 

patterned matrices of the form of Eq. 5 is given by 

det(l) = [(1 - p)o2]"--'[l + (p - 1)p]of2 (6) 

(Graybill 1969), with a local maximum at p = 0. Thus 

the generalized variance decreases with positive co- 

variance, indicating a decrease in overall system vari- 

ability and suggesting an increase in the stability of the 

discriminant loadings. 

Finally, group sample sizes were varied from 10 to 

90 observations per group, with sample sizes identical 

among groups for each simulation. The ratio of sample 

size to multivariate dimensionality therefore was var- 
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TABLE 1. Continued. 

2p 0.5 

2 2 

Si S2 S3 

-0.144 -0.144 -0.078 
-0.363 -0.363 -0.255 

0.719 0.719 0.760 
-0.025 -0.025 -0.043 

-0.025 -0.025 -0.043 

-0.095 -0.095 -0.061 
-0.349 -0.349 -0.232 

0.729 0.729 0.773 
-0.014 -0.014 -0.024 

-0.014 -0.014 -0.024 

-0.091 -0.091 -0.053 
-0.343 -0.343 -0.223 

0.733 0.733 0.778 
-0.01 -0.01 -0.017 

-0.01 -0.01 -0.017 

ied from about 1:1 (10 observations per group and 

system dimension of size 30) to 27:1 (90 observations 

per group and system dimension of size 10). 

One hundred discriminant analyses were conducted 

for each combination of dimensionality, dispersion, 

sample size, and configuration of group means. Thus 

3 x 3 x 4 x 9 x 100 = 32400 analyses were con- 

ducted, involving - 1500 h of computer time on a 

Callan STATCAT supermicrocomputer. 

RESULTS 

Since the number of groups was limited to three, 

only two discriminant functions were identified in each 

simulation. Table 1 summarizes the canonical coeffi- 

cients corresponding to each combination of parame- 

ters. Differences in canonical coefficients are seen to 

be associated with both structure of I as well as the 

dispersion among group means. However, these factors 

affect the coefficients in opposite directions. As argued 

in the Appendix, low levels of stochastic variation gen- 

erally correspond to large values in -' and, through 

Eqs. A. 1 and A.2, to large values for the canonical 

coefficients. But reduced amounts of stochastic varia- 

tion can be produced either by small variances or by 

large amounts of multicolinearity among individual 

variables. In Table 1, for example, larger values for the 

canonical coefficients correspond to a2 = 1 than to a2 = 

2, and larger coefficients also occur when p 7- 0. Larger 

values for the canonical coefficients also occur when 

there is greater variation in distances between means. 

It is argued in the Appendix that asymmetric patterns 

in these distances correspond both to increased dom- 

inance of the lead canonical variate and to increases 

in the magnitudes of their coefficients. It is also shown 

that the canonical variates are invariant to simple scale 

changes. Thus, for example, A and 2A correspond to 

the same canonical variates. This is seen in Table 1, 

wherein the structure for means for group S2 is simply 

a resealing of those in group Si. 
If one considers the objectives of discriminant anal- 

ysis and the scalings involved, these patterns have an 

intuitive appeal. The canonical variates are optimally 

chosen to represent differences among groups, relative 

to within-group variation. Their ability to do this should 

increase as dispersion among group means increases 

and as the amount of stochastic variation decreases. 

That is, the canonical variates should have greater dis- 

criminating power for groups that are "far apart" rel- 

ative to the underlying stochastic variation. In general, 

this discriminating power corresponds to the magni- 

tude of the coefficients, which increases with separation 

among groups and decreases with stochastic variation. 

The patterns of variation in the canonical coefficients 

that arose from the simulations are characterized in 

Figs. 1-4, which display means and standard devia- 

tions of the dominant coefficient of the lead canonical 

variate. Means and standard deviations are based on 

100 simulations, with sample sizes for each simulation 

ranging from 10 samples per group to 90 samples per 

group. Note that the means and standard deviations 

corresponding to dimension 30 and sample size 10 are 

not shown in the figures. In this case I is singular, and 

the computing procedures could not produce the cor- 

responding estimates. 

Effect of sample size 

The effect of the sample size can be seen by com- 

parison of the plots for a given configuration of means, 

dispersion structure, and system dimension. As shown 

in each of the figures, the effect of sample size is fairly 

uniform across the other factors in the study. For each 

configuration of group means and each dispersion pat- 

tern the estimates of the dominant canonical coefficient 

are quite unstable for small sample sizes. However, 

variation in the estimates decreases rapidly with in- 

creases of sample size. The point beyond which gains 

in precision become marginal is specific to dispersion 

structure and dimensionality, but not to the configu- 

ration of means. 

Multivariate dimensionality 

The effect of dimensionality on coefficient stability 

is indicated by comparison of plots within each part 

of the figures. As expected, increases in dimensionality 

have a destabilizing effect on the coefficient estimates. 

Thus the standard deviations for coefficient estimates 

with dimension 30 are generally higher than for di- 
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FIG. 1. Means and standard deviations for the lead ca- 
nonical coefficient of the dominant canonical variate, for dis- 

persion with I2 = 1 and p = 0. Part a: set S1 of group means. 
Part b: set S2 of group means. Part c: set S3 of group means. 
Simulation results are shown for multivariate dimensions of 
10, 20. and 30, for nine sample sizes. 

mension 20, and variation for dimension 20 is greater 

than for dimension 10. This pattern holds for all dis- 

persions and all configurations of means. 

The effect is most clearly seen for small sample sizes, 

where, for example, with 10 samples per group there 

are large differences in variation for dimension 10 and 

20. As sample sizes become large relative to dimen- 

sionality, however, coefficient variation becomes in- 

distinguishable among the three dimensionalities. 

Configuration of group means 

The effect of geometric configuration of means on 

coefficient stability can be seen by comparison of parts 

a-c in each of these figures. Though the general pattern 

of response to changes in sample sizes is little affected 

by configuration, there are differences in stability for a 

given sample size. Configuration S, engenders the larg- 

est variation in estimates, whereas configuration S3 

corresponds to the least variation. However, the dif- 

ferences in variability are relatively minor, and suggest 

that neither absolute distance among group means nor 

the geometric relationship are significant determinants 

of coefficient stability. 

Effect of dispersion structure 

Comparison among the four figures indicates that 

variation in coefficients is highest for a2 = 1, p = 0.5, 
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FIG. 2. Means and standard deviations for the lead ca- 
nonical coefficient of the dominant canonical variate, for dis- 
persion with a2 = 2 and p = 0. Parts a-c and display of 
simulation results as in Fig. 1. 
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FIG. 3. Means and standard deviations for the lead ca- 

nonical coefficient of the dominant canonical variate, for dis- 

persion with o2 = 1 and p = 0.5. Parts a-c and display of 

simulation results as in Fig. 1. 

lowest for o2 = 2, p = 0, and midrange for the other 

two cases. From Eq. 6 coefficient variation thus is larg- 

est when the generalized variance is smallest, and con- 

versely, variation in the coefficients is smallest when 

the generalized variance is largest. This result is coun- 

terintuitive. We had anticipated that increases in coef- 

ficient variation would reflect increases in the stochas- 

tic variation of the system. Instead, stochastic variation 

influenced both the magnitude and the stability in the 

coefficients. This resulted in an association between 

means and variances, with high system variability cor- 

responding to small coefficients and also to reduced 

levels of variation in them. Thus the coefficient of vari- 

ation for any given configuration, dimension, and sam- 

ple size was effectively constant for all four dispersion 

structures. On reflection this constancy makes sense. 

Since the canonical coefficients inherit their variation 

from sample-based estimates z and A in Eqs. 3 and 4, 

one would expect that increasing variation in the sam- 

ple, and hence in z and A, would result in increasing 

variation in the coefficient. However, the coefficients 

are also scaled by A, as shown in Eq. 2. Since large 

variation results on average in large values of A, the 

effect of this scaling is to reduce the magnitude of the 

coefficients, and concomitantly, to reduce the amount 

of variation in them. 

A further examination of patterns in the variability 
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FIG. 4. Means and standard deviations for the lead ca- 
nonical coefficient of the dominant canonical variate, for dis- 
persion with U2 = 2 and a2p = 0.5. Parts a-c and display of 
simulation results as in Fig. 1. 
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of the canonical coefficients was conducted with anal- 

ysis of variance (ANOVA). We analyzed the standard 

deviations of the canonical coefficients with an AN- 

OVA model that included factors for the levels of co- 

variance, variance, system dimension, configuration of 

group means, and the number of samples per group. 

As expected, main effects for all design factors and most 

of the two-way interactions were highly significant (P < 

.01). Two-way interactions that were not significant 

included interactions between group configuration and 

either dispersion structure or system dimension. With 

the exception of certain three-way interactions, most 

of the remaining interactions among design factors were 

not significant. The only three-way interactions of sig- 

nificance were between dispersion, system dimension, 

and sample size. These results thus confirm the im- 

portance of each of the design factors in influencing 

the statistical properties of the canonical variates. They 

also suggest that group configurations, and to a lesser 

extent the dispersion structure, influence stability of 

the discriminant functions more or less uniformly across 

the levels of the other factors. This can be seen by the 

overall similarities in pattern displayed in each of Figs. 

1-4. 

Again, these results concern patterns of variation 

only for the lead coefficient of the dominant canonical 

variate. However, the scaling of coefficients shown in 

Eq. 2 results in sampling correlations among the coef- 

ficients, resulting in similar patterns of variation for 

each of them. 

DISCUSSION 

The simulation yielded a number of unanticipated 

results. We had expected the configuration of means 

to have considerable effect on the stability of estimates 

of the canonical coefficients. Lachenbruch (1968) found 

that error rates, and hence required group sample sizes, 

decreased with increased distance among means. How- 

ever, our simulation results indicated that, at least 

within the range of values characterized by groups S1, 

S2, and S3, mean configuration is only of marginal 

importance. We had also expected that the effect of 

dimensionality would be greater than was found. 

Though the effect of dimensionality was quite dramatic 

for small sample sizes, this effect was quickly damped 

as sample sizes increased. Finally, we had expected that 

increases in system variability, either through increases 

in sample variances or decreases in covariances, would 

result in less stable estimates of the canonical coeffi- 

cients. Instead, the simulations indicated that increases 

in sample dispersion lead to decreases in variation of 

the coefficients. This decrease in variation correspond- 

ed to a reduction in magnitudes of the canonical coef- 

ficients for increasing sample dispersion. 

The substantial variation corresponding to low sam- 

ple sizes is quickly reduced as sample sizes increase. 

Furthermore, the point at which substantial reductions 

in variance cease to occur appears to be roughly a 

constant multiple of the system dimensionality. For 

example, in Fig. 2a reductions in variance occur for 

dimension 10, for sample sizes of 10 per group or less. 

For dimension 20, variance reductions occur up to 

sample sizes between 20 and 30 per group. For di- 

mension 30 the corresponding point appears to be - 30 

samples per group. With some variation the relation- 

ship holds for each configuration of means and each 

dispersion structure. Since the simulations all involved 

three groups, these results correspond to sample sizes 

roughly three times as large as indicated. This suggests 

the following sampling rule: 

For discriminant analysis of ecological systems 

with homogeneous dispersions, choose the total 

number of samples per group to be at least 

three times the number of variables to be measured. 

Two points should be made about this rule. First, it 

imposes demands on ecologists that may be difficult 

to meet in some field studies. Indeed, some applica- 

tions have used sample sizes that were actually less 

than the system dimensionality. Our simulation results 

appear quite unambiguous about the inferences from 

such applications. They suggest that unless the statis- 

tical structure of the ecological system is very simple, 

sampling variability is likely to be so large that no 

confidence can be placed in the structure of the ca- 

nonical variates. Similar reliability problems with small 

samples sizes were found by Rencher and Larson (1980) 

in a Monte Carlo study of stepwise procedures. There 

are of course many ecological situations in which the 

number of samples that can be obtained is limited by 

such factors as budgets, availability of personnel, sam- 

ple availability, or other exigencies. Under such con- 

ditions a possible approach for assessing reliability 

would be to use quasireplication procedures such as 

bootstrap orjackknife sampling (Efron 1982, Efron and 

Gong 1983, Lanyon 1987). In any case some form of 

reliability testing is advisable (e.g., Frank et al. 1965, 

Stauffer et al. 1985). Failure to assess reliability casts 

serious doubt on both the analysis and interpretation 

of data in the study. 

The second point to note is that the rule, though 

conservative by ecological standards, is nonetheless an 

improvement over conventional thinking about sam- 

ple size requirements. Within the community of prac- 

tioners of discriminate analysis it is generally believed 

(though poorly documented) that one needs at least 

five times as many samples as the system dimen- 

sionality. This is presumed to follow from the large 

number of parameters that must be effectively esti- 

mated in multivariate systems. Such a rule may indeed 

be appropriate for systems with completely general co- 

variance structures. However, for systems with pat- 

terned covariance structures not dissimilar from those 

used here, our simulations suggest that fewer samples 

may suffice in some cases. It remains for ecologists to 
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recognize, document, and take advantage of them in 

their sampling plans. 

Finally, we suggest that researchers perform some 

tests on the covariances to better understand their data. 

This includes tests for homoscedasticity, following the 

rationale of Pimentel (1979:177), and tests for multi- 

variate skewness and kurtosis (Mardia 1974). The re- 

sults displayed above and the rule that is presented are 

contingent on appropriate assumptions about the na- 

ture of dispersions. The effect on the structure and 

performance of canonical variates if these assumptions 

are violated to any substantial degree cannot be pre- 

dicted from the results of our study. 
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APPENDIX 

In this Appendix we explore the effects of stochastic dis- 
persion and variation among group means on the canonical 
coefficients. The canonical variates are derived from group 
means and common dispersion, by transformation of data to 
eliminate covariances and standardize variances to unity. This 
is followed by projection of transformed means onto unit- 
length vectors a that are oriented to maximize the mean squared 
projection length 

v jqJv, - v)'a12 

Hudlet and Johnson 1977), where q, is the prior probability 
associated with group i, v, = and v = qv + .. . + qg. 

This procedure is equivalent to determination of unit-length 
eigenvectors a of 

(A. 1) 

with the canonical variates given by 

z = a'z, ''2x (A.2) 

(Williams 1982). 
From A. 1 and A.2 the effect of a scalar change in stochastic 

dispersion can be determined directly, by replacing I by k1. 
The effect on the eigenstructure of A. 1 is simply to scale the 
eigenvalues of A. 1 by I/k, while maintaining the directional 
cosines of eigenvectors a. From A.2 the resulting canonical 
variate is 

z* =a'(kl)-''x 

= 1 /Vk(a ' E-''x) 
= l/Vkz, 

demonstrating that an increase in overall dispersion results 
in proportional decreases in the magnitudes of the canonical 
coefficients. 

The effect of increasing multicolinearity is not as straight- 
forward, because an increase in multicolinearity results in 

disproportionate changes in coefficient magnitudes. In this 
case direction cosines as well as magnitudes are subject to 
alteration. However, multicolinearity corresponds in general 
to a reduced level of stochastic variation and thus to smaller 
values of det(l). This results in overall (albeit disproportion- 

ate) increases in coefficient magnitudes, through the influence 
of I-', in A.2. 

To see the effect of variation in group means, it is helpful 
to use a simple factorization 

A = [Vq(g - g)--- Vqg(Ag - i)] (A.3) 

of 

A = Yiqi(p. - )(- _H)'. 

That A.3 is a factorization of A follows immediately from 

A/'A/"= 1J[Vqi(si - .)][Vqj(Aj - A) 

= iq,(Zis- i)(Zis-A 
= A. 

From A.3 the constant scaling of group means (i.e., replace- 
ment of l, by kg,) can be seen simply to scale A'" by k, thereby 
scaling the eigenvalues of A. 1 by k -2 while maintaining the 

direction cosines of a. Since the canonical variate in A.2 is 
influenced by A only through these direction cosines, the effect 

is to leave its coefficients unchanged. 
On the other hand, nonconstant scaling of group means can 

result in complicated changes in the canonical coefficients. 
Some general patterns can be deduced, however, by refor- 

mulating the optimization criterion Eq. 1 to include scaling 

parameters. The criterion can be expressed as 

Jla; k) = iqiY s'2[ki~u - A(k)'a]2, (A.4) 

where k' = [k, .. . kJ and is(k)' = Y1qik1pu. This is a direct 

This content downloaded from 128.173.125.76 on Thu, 13 Mar 2014 09:09:18 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


August 1988 DISCRIMINANT FUNCTION SAMPLING STABILITY 1285 

extension of Eq. 1 to allow for replacement of A, by kM,. The 
canonical variates corresponding to a vector k are given by 

max f(a; k) 
a 

subject to 

a'a= 1. 

The values of k producing extremes in this maximization are 
given by 

max[maxf(a; k)] 
k a 

and 

min[max f(a; k)] 
k a 

subject to 

a'a 1 
1k= 1, 

where the constraint 1 'k = 1 reflects the fact that the canonical 
variates are invariant to a constant resealing of group means. 

It is tedious but straightforward to show that for equal prior 

probabilities the least-squares criterion is minimum when k 

is chosen such that the scaled group means are approximately 

equidistant from each other in canonical space. It is maximum 
when k is chosen so that equal numbers of group means are 

"clumped" at two distinct points in canonical space. In gen- 

eral, the latter condition leads to a dominance of the lead 

canonical variate and to substantial variability among its coef- 

ficients, whereas the former condition generally corresponds 

to equitability among eigenvalues and to smaller, less variable 
canonical coefficients. 
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