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Abstract. The historical simulations of sea ice during 1979

to 2005 by the Coupled Model Intercomparison Project

Phase 5 (CMIP5) are compared with satellite observa-

tions, Global Ice-Ocean Modeling and Assimilation Sys-

tem (GIOMAS) output data and Pan-Arctic Ice Ocean Mod-

eling and Assimilation System (PIOMAS) output data in

this study. Forty-nine models, almost all of the CMIP5

climate models and earth system models with histori-

cal simulation, are used. For the Antarctic, multi-model

ensemble mean (MME) results can give good climatol-

ogy of sea ice extent (SIE), but the linear trend is in-

correct. The linear trend of satellite-observed Antarctic

SIE is 1.29 (±0.57) × 105 km2 decade−1; only about 1/7

CMIP5 models show increasing trends, and the linear trend

of CMIP5 MME is negative with the value of −3.36

(±0.15) × 105 km2 decade−1. For the Arctic, both climatol-

ogy and linear trend are better reproduced. Sea ice volume

(SIV) is also evaluated in this study, and this is a first at-

tempt to evaluate the SIV in all CMIP5 models. Compared

with the GIOMAS and PIOMAS data, the SIV values in

both the Antarctic and the Arctic are too small, especially

for the Antarctic in spring and winter. The GIOMAS Antarc-

tic SIV in September is 19.1 × 103 km3, while the corre-

sponding Antarctic SIV of CMIP5 MME is 13.0 × 103 km3

(almost 32 % less). The Arctic SIV of CMIP5 in April is

27.1 × 103 km3, which is also less than that from PIOMAS

SIV (29.5 × 103 km3). This means that the sea ice thickness

simulated in CMIP5 is too thin, although the SIE is fairly

well simulated.

1 Introduction

The Coupled Model Intercomparison Project Phase 5

(CMIP5) provides a very useful platform for studying cli-

mate change. Simulations and projections by more than

60 state-of-the-art climate models and earth system mod-

els are archived under CMIP5. Assessment of the perfor-

mance of CMIP5 outputs is necessary for scientists to decide

which model outputs to use in their research and for model-

developers to improve their models. Here, we focus on the

assessment of sea ice simulations under the CMIP5 histori-

cal experiment. The CMIP5 data portal contains sea ice out-

puts from 49 coupled models. Many of these CMIP5 sea ice

simulations have been evaluated and several valuable studies

have been published.

For the Antarctic, the main problem of the CMIP5 models

is their inability to reproduce the observed slight increase of

sea ice extent (SIE). Turner et al. (2013) first assessed CMIP5

Antarctic SIE simulations using 18 models, and summarized

that the majority of these models have too little SIE at the

minimum sea ice period of February, and the mean of these

18 models’ SIE shows a decreasing trend over 1979–2005,

opposite to the satellite observation that exhibits a slight in-

creasing trend. Polvani et al. (2013) used four CMIP5 mod-

els to study the cause of observed Antarctic SIE increasing

trend under the conditions of increasing greenhouse gases

and stratospheric ozone depletion. They concluded that it

is difficult to attribute the observed trend in total Antarctic

sea ice to anthropogenic forcing. Zunz et al. (2013) sug-

gested that the model Antarctic sea ice internal variability

is an important metric to evaluate the observed positive SIE

trend. Using simulations from 25 CMIP5 models, Mahlstein

et al. (2013) pointed out that internal sea ice variability is

large in the Antarctic region and that both the observed and
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simulated trends may represent natural variation along with

external forcing.

For the Arctic, CMIP5 models offer much better simu-

lations. Stroeve et al. (2012) evaluated CMIP5 Arctic SIE

trends using 20 CMIP5 models. They found that the seasonal

cycle of SIE was well represented, and that the simulated

SIE decreasing trend was more consistent with the observa-

tions over the satellite era than that of CMIP3 models but

still smaller than the observed trend. They also noted that

the spread in projected SIE through the 21st century from

CMIP5 models is similar to that from CMIP3 models. Mas-

sonnet et al. (2012) examined 29 CMIP5 models and pro-

vided several important metrics to constrain the projections

of summer Arctic sea ice projection. Liu et al. (2013) also

pointed out that CMIP5 projections have large inter-model

spread, but they also found that they could reproduce consis-

tent Arctic ice-free time by reducing the large spread using

two different approaches with 30 CMIP5 models.

Most evaluations of CMIP5 sea ice simulation in these

studies are based only on some of CMIP5 models’ outputs

with some metrics, because other CMIP5 model outputs were

not yet submitted. By now, all the CMIP5 participants have

finished their model runs and submitted their model outputs.

So, here we will evaluate all CMIP5 sea ice simulations with

more metrics in both the Antarctic and the Arctic in an at-

tempt to provide the community a useful reference. Gener-

ally speaking, our study shows the following: that the per-

formance of Arctic sea ice simulation is better than that of

Antarctic sea ice simulation, that sea ice extent simulation

is better than sea ice volume simulation, and that mean state

simulation is better than long-term trend simulation. If we

want to get a similar result with all CMIP5 sea ice simula-

tions, the number of models during analysis should be more

than 22.

The rest of the paper is structured as follows. Section 2

presents sea ice data and analysis methodology used in this

study. Model assessment is given in Sect. 3. Conclusions and

discussion are provided in Sect. 4.

2 Data and methodology

Sea ice simulations of CMIP5 historical runs from 49 CMIP5

coupled models are now available. Monthly sea ice con-

centration (SIC) and sea ice thickness from these mod-

els are used in this study. These outputs are published by

the Earth System Grid Federation (ESGF) (http://pcmdi9.

llnl.gov/esgf-web-fe/) by each institute that is responsible

for its model. Although there are several ensemble real-

izations of each CMIP5 model, the standard deviation be-

tween different ensemble realizations of each model is small

(Turner et al., 2013; Table 1). We also plot the spatial pat-

terns of SIC in February (Fig. S1 in the Supplement) and

September (Fig. S2) from different ensemble realizations

from GISS-E2-R which has 15 ensemble realizations and

more ensemble realizations than most CMIP5 models. We

can see that the standard deviation between different en-

semble realizations from the same model is comparable. So,

here we only choose the first realization of each model for

the analysis. CMIP5 historical runs cover the period from

1850 to 2005, but the continuous sea ice satellite record

only started in 1979; so the period of 1979–2005 is cho-

sen for the following analysis. Monthly satellite-observed

SIC is used in this study, which is based on the National

Aeronautics and Space Administration (NASA) team al-

gorithm (Cavalieri et al., 1996) provided by the National

Snow and Ice Data Centre (NSIDC) (http://nsidc.org/data/

seaice/). Satellite-observed sea ice extent used here is also

from NSIDC (ftp://sidads.colorado.edu/DATASETS/NOAA/

G02135/). Sea ice volume (SIV) is an important index for

assessment of sea ice simulation, although direct observa-

tions of SIV are very limited. SIV in the Antarctic used here

is from the Global Ice-Ocean Modeling and Assimilation

System (GIOMAS) (http://psc.apl.washington.edu/zhang/

Global_seaice/index.html). SIV in the Arctic is from Pan-

Arctic Ice Ocean Modeling and Assimilation System (PI-

OMAS) (http://psc.apl.washington.edu/wordpress/research/

projects/arctic-sea-ice-volume-anomaly/). Note that SIV

data from GIOMAS and PIOMAS are not observations

but model simulations with data assimilation. Stroeve et

al. (2014) compared observed sea ice thickness data in the

Arctic with that of PIOMAS, and concluded that PIOMAS

provides useful estimates of Arctic sea ice thickness and SIV,

and that it can be used to assess the CMIP5 models’ perfor-

mances. But there are not enough observations to validate

GIOMAS sea ice thickness in the Antarctic. The climatology

and linear trends of CMIP5-simulated SIE, SIC and SIV are

compared with satellite observations and GIOMAS and PI-

OMAS data. CMIP5 simulated SIE is computed as the to-

tal area of all grid cells where SIC exceeds 15 %. SIV is

computed as the sum of the product of SIC, the area of grid

cell and sea ice thickness of each grid cell. All gridded SIC

and sea ice thickness are re-gridded onto 1.0◦ longitude by

1.0◦ latitude grids before the analysis is performed. In this

study, spring is from March to May for the Arctic, and from

September to November for the Antarctic. Summer, autumn

and winter are defined accordingly.

3 Results

We select several metrics to assess the sea ice simulations in

CMIP5 models. Mean state, seasonal cycle, the model inter-

nal variability, linear trends and simulation errors are used.

For the Arctic sea ice, model mean state and seasonal cycle

are important to Arctic sea ice projection (Massonnet et al.,

2012). For the Antarctic sea ice, the model internal variabil-

ity is an important metric to evaluate the observed positive

SIE trend (Zunz et al., 2013). Annual mean SIE, SIE am-

plitude, standard deviation of detrended SIE anomaly (SIE
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Table 1. Antarctic sea ice metrics in CMIP5 models, satellite observations and GIOMAS data set. Column (a) is mean annual SIE in

million km2. Column (b) is monthly SIE amplitude in million km2. Column (c) is standard deviation of detrended monthly SIE anomaly

in million km2. Column (d) is linear trend in monthly SIE in 105 km2 decade−1, and the value in parentheses is 95 % confidence level.

Column (e) is monthly SIE root mean square error in million km2. Column (f) is mean annual SIV in 103 km3. Column (g) is monthly

SIV amplitude in 103 km3. Column (h) is standard deviation of detrended monthly SIV anomaly in 103 km3. Column (i) is linear trend in

monthly SIV in 103 km3 decade−1, and the value in parentheses is 95 % confidence level. Column (j) is monthly SIV root mean square error

in 103 km3. The models with bold metric number have special performances, and details can be found in the text.

Data sources or CMIP5 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

models

Observations or GIOMAS 11.94 15.70 0.40 1.29 (0.57) – 11.02 17.17 0.63 0.45 (0.09) –

Multi-model ensemble mean (MME) 11.50 15.46 0.11 −3.36 (0.15) 0.71 7.73 10.31 0.10 −0.36 (0.01) 4.20

ACCESS1.0 12.10 19.12 0.59 −1.72 (0.83) 1.57 6.30 11.35 0.43 −0.15 (0.06) 5.20

ACCESS1.3 14.24 15.77 0.54 −0.97 (0.77) 2.31 10.71 9.78 0.67 −0.03 (0.09) 2.75

BCC-CSM1.1 13.42 19.32 1.27 2.71 (1.78) 2.11 7.13 11.51 0.92 0.09 (0.13) 4.41

BCC-CSM1-1-M 12.26 18.86 1.06 −20.03 (1.49) 1.52 5.65 9.98 0.71 −1.20 (0.10) 5.92

BNU-ESM 20.60 23.46 0.82 −9.60 (1.15) 9.19 18.49 22.48 0.87 −2.03 (0.12) 7.89

CanCM4 14.65 20.58 0.74 −2.79 (1.03) 3.40 3.09 4.81 0.28 −0.06 (0.04) 9.21

CanESM2 14.69 20.64 0.96 −7.74 (1.35) 3.42 3.09 4.82 0.40 −0.15 (0.06) 9.22

CCSM4 18.37 13.70 0.58 −7.34 (0.82) 6.64 19.34 18.63 1.12 −1.56 (0.16) 8.34

CESM1-BGC 17.67 14.05 0.49 −6.68 (0.69) 5.93 18.28 18.31 0.91 −1.19 (0.13) 7.28

CESM1-CAM5 14.06 14.78 0.47 −5.52 (0.66) 2.58 11.22 16.05 0.58 −0.97 (0.08) 1.13

CESM1-CAM5-1-FV2 13.01 14.11 0.58 −3.16 (0.82) 1.77 9.96 14.12 0.74 −0.22 (0.10) 1.89

CESM1-FASTCHEM 17.86 13.42 0.60 −8.78 (0.84) 6.14 18.41 18.15 1.18 −1.70 (0.17) 7.42

CESM1-WACCM 14.33 12.57 0.39 −6.45 (0.54) 2.95 11.55 13.15 0.66 −0.91 (0.09) 1.80

CMCC-CESM 11.84 19.43 0.99 2.91 (1.39) 2.01 6.70 11.18 0.71 0.26 (0.10) 4.91

CMCC-CM 11.81 16.84 0.67 −2.49 (0.94) 0.90 6.82 10.14 0.48 −0.05 (0.07) 4.97

CMCC-CMS 11.74 19.33 0.87 −1.52 (1.23) 1.83 6.31 10.70 0.59 −0.12 (0.08) 5.34

CNRM-CM5 7.78 16.98 0.77 −2.59 (1.09) 4.53 3.01 7.81 0.42 −0.10 (0.06) 8.79

CNRM-CM5-2 9.28 14.08 1.08 4.29 (1.51) 3.16 4.93 9.78 1.02 0.38 (0.14) 6.77

CSIRO-Mk3.6 15.92 12.11 0.67 −1.64(0.95) 4.89 12.13 13.28 0.65 −0.29(0.09) 2.62

EC-EARTH 10.66 17.18 0.66 −7.94 (0.92) 1.72 6.09 9.44 0.58 −0.66 (0.08) 5.75

FGOALS-g2 17.10 17.29 0.48 −1.47 (0.67) 5.28 15.65 13.89 0.74 −0.14 (0.10) 4.88

FIO-ESM 17.19 12.21 0.49 −8.53 (0.68) 5.61 21.23 13.98 1.16 −1.57 (0.16) 10.31

GFDL-CM2p1 8.00 15.38 0.81 −6.33 (1.14) 4.01 2.45 5.55 0.30 −0.19 (0.04) 9.57

GFDL-CM3 6.25 12.06 0.73 −6.82 (1.02) 5.82 1.92 4.16 0.37 −0.30 (0.05) 10.29

GFDL-ESM2G 8.11 14.34 0.63 −4.45 (0.88) 3.90 2.71 5.81 0.41 −0.24 (0.06) 9.31

GFDL-ESM2M 6.39 12.23 0.41 −1.61 (0.58) 5.65 1.81 4.20 0.16 −0.09 (0.02) 10.36

GISS-E2-H 6.21 10.62 0.38 −1.89 (0.53) 6.03 3.24 7.19 0.27 −0.24 (0.04) 8.65

GISS-E2-H-CC 12.18 19.07 0.75 −5.75 (1.05) 1.52 6.70 14.16 0.51 −0.54 (0.07) 4.57

GISS-E2-R 7.74 14.31 1.01 −3.39 (1.42) 4.31 3.06 6.17 0.47 −0.16 (0.07) 8.92

GISS-E2-R-CC 8.12 14.55 0.66 0.82 (0.92) 3.93 3.12 6.24 0.35 0.00 (0.05) 8.86

HadCM3 14.26 19.95 0.78 −2.74 (1.10) 3.28 14.70 21.87 0.83 −0.49 (0.12) 4.13

HadGEM2-AO 9.11 14.29 0.59 −5.31 (0.83) 3.20 5.58 9.70 0.49 −0.42 (0.07) 6.26

HadGEM2-CC 9.12 14.29 0.72 −0.85 (1.02) 3.25 5.50 9.68 0.61 −0.05 (0.09) 6.34

HadGEM2-ES 9.82 15.02 0.70 −3.25 (0.98) 2.60 6.16 10.33 0.61 −0.41 (0.09) 5.66

INMCM4 6.25 10.91 0.48 −4.00 (0.68) 6.04 2.81 6.12 0.38 −0.28 (0.05) 9.21

IPSL-CM5A-LR 9.66 19.06 0.84 −5.03 (1.17) 3.43 4.13 8.66 0.53 −0.26 (0.07) 7.70

IPSL-CM5A-MR 8.08 17.30 0.74 1.69 (1.04) 4.56 2.80 6.50 0.35 0.01 (0.05) 9.21

IPSL-CM5B-LR 3.34 8.09 0.42 0.59 (0.59) 9.09 1.22 3.32 0.20 0.04 (0.03) 11.10

MIROC4h 10.90 17.53 0.61 −7.96 (0.86) 1.33 5.35 9.74 0.41 −0.51 (0.06) 6.28

MIROC5 3.23 6.62 0.29 −1.03 (0.41) 9.29 1.40 3.15 0.16 −0.07 (0.02) 10.93

MIROC-ESM 12.65 19.12 0.64 −5.83 (0.91) 1.47 7.23 10.72 0.47 −0.48 (0.07) 4.46

MIROC-ESM-CHEM 13.38 19.80 0.53 −2.15 (0.74) 2.07 8.08 11.59 0.49 −0.21 (0.07) 3.61

MPI-ESM-LR 7.70 15.08 0.73 −2.95 (1.03) 4.50 3.41 6.35 0.38 −0.19 (0.05) 8.64

MPI-ESM-MR 7.90 15.62 0.84 4.41 (1.17) 4.28 3.54 7.06 0.48 0.24 (0.07) 8.39

MPI-ESM-P 7.91 15.69 0.75 −0.25 (1.06) 4.34 3.48 6.48 0.45 0.05 (0.06) 8.56

MRI-CGCM3 13.43 15.99 0.66 1.52 (0.93) 1.67 10.72 13.05 0.63 0.22 (0.09) 2.04

MRI-ESM1 13.24 16.32 0.75 −0.62 (1.05) 1.53 10.14 13.00 0.58 −0.03 (0.08) 2.25

NorESM1-M 13.08 14.19 0.57 −0.71 (0.80) 1.24 13.88 12.41 1.17 −0.07 (0.16) 3.66

NorESM1-ME 16.98 14.19 0.60 −3.77 (0.84) 5.24 17.57 16.82 1.40 −0.74 (0.20) 6.59
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Figure 1. Climatology (a), anomaly and linear trend (b) of satellite-observed and CMIP5-simulated Antarctic sea ice extent during 1979–

2005. Two annual cycles are plotted in (a). The error bar is the range of 1 standard deviation.

variability), SIE linear trend and CMIP5-simulated SIE root

mean square (RMS) error are shown in Tables 1 and 2. The

same metrics for SIV are also shown in Tables 1 and 2. Each

CMIP5 model-simulated SIC and sea ice thickness are given

in the Supplement. Detailed analyses for Antarctic and Arc-

tic are as follows.

3.1 Assessment of Antarctic sea ice simulations

CMIP5 multi-model ensemble mean (MME) Antarctic cli-

matological SIE compares well with the satellite-observed

SIE, but the inter-model spread is large (Fig. 1a and Table 1).

Satellite observations show that the Antarctic SIE has the

minimum value of 3.0 million km2 in February and the max-

imum value of 18.7 million km2 in September; the annual

mean SIE is 11.94 million km2. CMIP5 MME SIE has the

minimum and maximum values of 3.3 and 18.7 million km2,

and annual mean SIE of 11.50 million km2, respectively.

The seasonal cycle of observed SIE is well represented by

the MME SIE of the 49 CMIP5 coupled models. Satellite-

observed monthly SIE amplitude is 15.70 million km2, and

CMIP5 MME value is 15.46 million km2. The simulated SIE

errors are very small for each month. The simulated SIE er-

rors are smaller than 15 % of the observations, except for

March and April SIE values, which are a little less than

85 % of the observations. One standard deviation of CMIP5

simulations, which is greater than 15 % of the observations

(Fig. 1a), shows that CMIP5 coupled models have a large

spread each month in terms of Antarctic SIE. Table 1 also

shows that CMIP5 models have a large spread. BNU-ESM

has the largest annual mean and amplitude of SIE with the

values of 20.60 and 23.46 million km2, and MIROC5 has

the smallest annual mean and amplitude of SIE with the

values of 3.23 and 6.62 million km2 (highlighted in Table 1

with bold font), respectively. BNU-ESM-simulated February

SIE is even larger than MIROC5-simulated September SIE.

Large SIE spread and small MME SIE errors indicate that

we should use as many models as we can when using CMIP5

outputs.

Figure 2. Monthly (a) and seasonal (b) linear trends of satellite-

observed and CMIP5-simulated Antarctic sea ice extent during

1979–2005.

CMIP5 model-simulated and satellite-observed SICs in

February and September during 1979–2005 are shown

in Figs. S3 and S4. In February most models have an

overly small SIC compared with satellite observations, es-

pecially in the Bellingshausen Sea and the Amundsen Sea.

More than half of CMIP5 models have no sea ice in

the Bellingshausen Sea or in the Amundsen Sea. CNRM-

CM5, GFDL-CM2p1, GFDL-CM3, GFDL-ESM2G, GFDL-

ESM2M, IPSL-CM5B-LR and MIROC5 almost have no

sea ice in February in the Antarctic. But ACCESS1.3,

BNU-ESM, CCSM4, CESM1-BGC, CESM1-FASTCHEM,

CSIRO-Mk3.6, FGOALS-g2, FIO-ESM and NorESM1-ME

have more sea ice than satellite observations. Although

CMIP5 simulated MME SIE fits the observations well, the

MME spatial pattern of SIC does not fit the observations

so well. MME SICs in the Weddell Sea, the Bellingshausen

Sea and the Amundsen Sea are smaller than the observations.

In September, most CMIP5 models have better performance

than that in February, and MME SIC also has a better spatial

pattern.

Figures 1b and 2 show that linear trends of CMIP5

MME Antarctic SIE do not agree with the satellite ob-

servations. Many studies showed that Antarctic SIE has

an increasing trend since the end of 1970s (Cavalieri et

The Cryosphere, 9, 399–409, 2015 www.the-cryosphere.net/9/399/2015/
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Table 2. Arctic sea ice metrics in CMIP5 models, satellite observations and PIOMAS data set. Column (a) is mean annual SIE in million km2.

Column (b) is monthly SIE amplitude in million km2. Column (c) is standard deviation of detrended monthly SIE anomaly in million km2.

Column (d) is linear trend in monthly SIE in 105 km2 decade−1, and the value in parentheses is 95 % confidence level. Column (e) is

monthly SIE root mean square error in million km2. Column (f) is mean annual SIV in 103 km3. Column (g) is monthly SIV amplitude in

103 km3. Column (h) is standard deviation of detrended monthly SIV anomaly in 103 km3. Column (i) is linear trend in monthly SIV in

103 km3 decade−1, and the value in parentheses is 95 % confidence level. Column (j) is monthly SIV root mean square error in 103 km3. The

models with bold metric number have special performances, and details can be found in the text.

Data sources or CMIP5 (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

models

Observations or PIOMAS 12.02 8.80 0.29 −4.35 (0.41) – 21.85 16.17 1.02 −2.14 (0.14) –

Multi-model ensemble mean (MME) 12.81 10.40 0.13 −3.71 (0.19) 1.07 18.45 17.50 0.35 −1.45 (0.05) 3.57

ACCESS1.0 12.13 10.33 0.41 −5.51 (0.57) 0.94 15.41 18.74 1.05 −1.58 (0.15) 6.60

ACCESS1.3 11.79 9.47 0.43 −0.78 (0.60) 0.73 18.81 17.02 1.02 −1.05 (0.14) 3.23

BCC-CSM1.1 14.86 15.39 0.69 −8.79 (0.97) 3.70 14.29 22.70 1.00 −2.01 (0.14) 8.02

BCC-CSM1-1-M 13.19 15.96 0.65 −5.19 (0.92) 2.87 11.04 20.69 0.87 −0.74 (0.12) 11.02

BNU-ESM 14.72 12.61 0.50 −4.41 (0.70) 3.19 23.03 19.79 1.23 −4.37 (0.17) 1.83

CanCM4 12.79 14.77 0.52 −4.97 (0.73) 2.49 11.41 15.35 0.97 −0.38 (0.14) 10.47

CanESM2 12.01 13.76 0.49 −6.80 (0.69) 1.91 9.97 14.21 0.63 −1.18 (0.09) 11.92

CCSM4 12.33 8.56 0.44 −1.34 (0.62) 0.42 20.27 16.16 1.51 −1.54 (0.21) 1.82

CESM1-BGC 12.10 7.96 0.41 −2.85 (0.58) 0.35 20.30 15.52 1.51 −2.63 (0.21) 1.86

CESM1-CAM5 12.33 8.35 0.38 −1.87 (0.53) 0.52 22.73 16.01 1.96 −1.22 (0.28) 1.35

CESM1-CAM5-1-FV2 12.52 8.68 0.42 −5.07 (0.59) 0.64 23.17 16.01 1.87 −3.63 (0.26) 1.49

CESM1-FASTCHEM 12.02 8.86 0.39 −3.70 (0.55) 0.25 18.27 15.86 1.37 −1.98 (0.19) 3.69

CESM1-WACCM 13.44 8.10 0.36 −2.88 (0.51) 1.51 27.32 9.47 2.07 0.09 (0.29) 6.27

CMCC-CESM 13.97 9.33 0.36 −2.63 (0.51) 2.12 28.75 11.93 1.38 −1.44 (0.19) 7.11

CMCC-CM 13.99 7.35 0.30 −5.09 (0.43) 2.06 33.01 9.87 1.73 −2.40 (0.24) 11.52

CMCC-CMS 12.64 7.92 0.34 −2.87 (0.48) 0.82 28.29 9.73 1.29 −1.18 (0.18) 6.89

CNRM-CM5 12.41 11.41 0.46 −7.58 (0.65) 1.11 14.44 20.22 0.99 −1.76 (0.14) 7.60

CNRM-CM5-2 14.20 10.65 0.45 −2.32 (0.63) 2.40 20.11 21.83 1.29 −0.96 (0.18) 2.76

CSIRO-Mk3.6 16.13 7.57 0.30 −5.33 (0.42) 4.20 25.94 12.16 0.81 −2.32 (0.11) 4.30

EC-EARTH 12.45 8.04 0.35 −3.84 (0.49) 0.57 24.01 12.44 1.90 −0.59 (0.27) 2.86

FGOALS-g2 11.68 3.35 0.13 −1.44 (0.18) 1.86 – – – – –

FIO-ESM 12.46 10.27 0.40 −2.23 (0.57) 1.00 18.94 18.96 1.86 −1.69 (0.26) 3.15

GFDL-CM2p1 12.58 12.85 0.54 −3.76 (0.75) 1.68 11.11 18.13 0.87 −1.01 (0.12) 10.80

GFDL-CM3 12.22 8.71 0.33 −2.89 (0.46) 0.41 15.25 15.47 1.31 −1.18 (0.18) 6.61

GFDL-ESM2G 15.72 13.72 0.48 −7.05 (0.68) 4.24 16.91 19.33 1.24 −1.77 (0.17) 5.17

GFDL-ESM2M 12.46 11.06 0.53 −0.31 (0.74) 0.98 12.13 16.11 1.02 −0.56 (0.14) 9.75

GISS-E2-H 12.96 14.87 0.54 −5.07 (0.75) 2.47 13.61 25.67 0.76 −0.91 (0.11) 9.10

GISS-E2-H-CC 13.94 14.24 0.60 −5.91 (0.84) 2.80 14.94 27.49 0.80 −1.29 (0.11) 8.23

GISS-E2-R 13.65 15.17 0.49 −6.31 (0.69) 2.89 15.50 29.32 0.75 −1.28 (0.11) 8.17

GISS-E2-R-CC 15.13 16.73 0.48 −5.65 (0.67) 4.28 17.16 31.86 0.76 −1.08 (0.11) 7.64

HadCM3 13.94 13.59 0.56 −4.74 (0.78) 2.78 21.07 26.96 0.87 −2.25 (0.12) 4.46

HadGEM2-AO 11.38 10.75 0.40 −3.81 (0.56) 1.15 16.58 20.16 0.84 −0.98 (0.12) 5.53

HadGEM2-CC 13.20 10.68 0.45 −3.10 (0.63) 1.45 21.56 21.55 0.96 −2.47 (0.13) 2.22

HadGEM2-ES 12.34 11.21 0.43 −6.03 (0.60) 1.14 18.85 21.13 1.00 −1.69 (0.14) 3.64

INMCM4 12.92 12.02 0.42 −0.21 (0.59) 1.61 15.20 22.08 0.96 −0.21 (0.13) 7.07

IPSL-CM5A-LR 12.72 10.07 0.44 −3.03 (0.62) 1.14 21.87 16.41 1.48 −0.96 (0.21) 1.66

IPSL-CM5A-MR 11.06 9.55 0.35 −2.85 (0.49) 1.25 14.83 16.32 0.92 −1.69 (0.13) 7.17

IPSL-CM5B-LR 14.06 8.28 0.40 −0.77 (0.56) 2.08 27.28 13.11 2.91 −1.37 (0.41) 6.25

MIROC4h 10.66 9.65 0.40 −3.11 (0.56) 1.47 10.86 16.48 0.82 −1.00 (0.12) 11.02

MIROC5 12.12 6.63 0.29 −6.78 (0.40) 0.65 25.31 14.88 1.09 −3.68 (0.15) 3.81

MIROC-ESM 10.40 8.05 0.34 −1.91 (0.47) 1.69 11.09 14.36 0.62 −1.04 (0.09) 10.79

MIROC-ESM-CHEM 10.83 7.89 0.46 −4.24 (0.65) 1.30 12.59 14.73 1.39 −1.69 (0.20) 9.29

MPI-ESM-LR 11.10 7.95 0.40 −2.48 (0.56) 1.01 15.07 16.87 0.85 −1.23 (0.12) 6.85

MPI-ESM-MR 11.07 8.00 0.40 −4.94 (0.56) 1.02 15.20 17.30 0.90 −1.75 (0.13) 6.74

MPI-ESM-P 10.94 8.27 0.34 −1.83 (0.48) 1.13 13.45 17.05 1.13 −0.80 (0.16) 8.46

MRI-CGCM3 15.01 15.27 0.47 −1.44 (0.66) 3.97 15.70 19.40 1.48 −0.55 (0.21) 6.33

MRI-ESM1 14.65 14.67 0.61 −4.07 (0.86) 3.52 15.21 18.89 1.74 −1.56 (0.24) 6.76

NorESM1-M 12.01 5.96 0.25 −1.98 (0.36) 0.90 23.77 11.23 1.57 −0.68 (0.22) 3.11

NorESM1-ME 12.47 5.99 0.31 −0.21 (0.43) 0.97 23.97 9.71 2.14 −0.46 (0.30) 3.69
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Figure 3. Linear trends (unit: % per decade) of satellite-observed

Antarctic sea ice concentration during 1979 to 2005. (a) Spring,

(b) summer, (c) autumn, and (d) winter.

al., 1997, 2003; Zwally et al., 2002; Turner et al., 2009).

Satellite-observed Antarctic SIE has a small increasing lin-

ear trend with the rate of 1.29 (±0.57) × 105 km2 decade−1

during 1979–2005, while CMIP5-simulated linear trend is

−3.36 (±0.15) × 105 km2 decade−1 (Fig. 1b). Only 8 out of

49 CMIP5 models have increasing linear trends as the ob-

servations (highlighted in Table 1 with bold font). They are

BCC-CSM1.1, CMCC-CESM, CNRM-CM5-2, GISS-E2-R-

CC, IPSL-CM5A-MR, IPSL-CM5B-LR, MPI-ESM-MR and

MRI-CGCM3. This supports the conclusion by Polvani et

al. (2013) that it is difficult to attribute the observed Antarc-

tic SIE trends to anthropogenic forcing. From Table 1 we

can see that several models (highlighted in Table 1 with bold

font) such as BCC-CSM1.1, BCC-CSM1-1-M, CanESM2,

CMCC-CESM, CNRM-CM5-2 and GISS-E2-R have large

internal variabilities, and these models always have large

linear trends. This mean that the satellite-observed positive

SIE trend may represent natural variation along with exter-

nal forcing (Mahlstein et al., 2013). Figure 2 shows that the

monthly and seasonal trends of CMIP5-simulated Antarc-

tic SIE also do not agree with the observations. Observed

Antarctic SIE shows increasing trends in each month and

each season, and the largest trend is in March and the autumn

season. CMIP5 MME SIE, however, has decreasing trends

in each month and each season, and the largest trend is in

February and the summer season.

The trends of observed Antarctic SIC have large spatial

differences (Fig. 3), but the simulated Antarctic SIC trends

are almost decreasing everywhere (Fig. 4). Figure 3 shows

that decreasing SIC is mainly in the Antarctic Peninsula,

which is one of the three high-latitude areas showing rapid

regional warming over the last 50 years (Vaughan et al.,

2003). SIC also decreases in the Bellingshausen Sea and the

Amundsen Sea in summer and autumn. The increasing SIC

Figure 4. Linear trends (units: % per decade) of CMIP5-simulated

Antarctic sea ice concentration during 1979–2005. (a) Spring,

(b) summer, (c) autumn, and (d) winter.

is mainly in the Ross Sea all year round and in the Wed-

dell Sea in summer and autumn. Figure 4 clearly shows that

CMIP5 MME SIC has decreasing trend everywhere except

in the coast of the Amundsen Sea and in part of the Ross Sea

in spring and winter.

SIV depends on both sea ice coverage and sea ice thick-

ness. SIV is more directly tied to climate forcing than SIE.

So, SIV is an important climate indicator in climate study.

The observed sea ice thickness records are mainly from

submarine, aircraft and satellite. But the observations are

not continuous spatially or temporally over a long period

(Stroeve et al., 2014). For the Antarctic, the observed sea ice

thickness data are quite limited. A climatological 2.5◦
× 5.0◦

gridded Antarctic sea ice thickness map was provided until

2008 (Worby et al., 2008). Recently, there have been sev-

eral studies using satellite observations of sea ice thickness

(Kurtz and Markus, 2012; Xie et al., 2013). These observa-

tions provide modelers with useful validation of their models.

However, these data are not easily used to long-term simula-

tion validations by now, because they are not long enough.

Here, we use GIOMAS data, which are from a global ice-

ocean model (Zhang and Rothrock, 2003) with data as-

similation capability. What we should keep in mind is that

GIOMAS sea ice thickness is not from observations and may

also have large degrees of uncertainty. CMIP5-simulated and

GIOMAS Antarctic sea ice thicknesses during 1979–2005

are shown in Fig. S5. GIOMAS outputs show that thick sea

ice is mainly in the coasts of the Weddell Sea, the Belling-

shausen Sea and the Amundsen Sea. CMIP5 MME sea ice

thickness can reproduce similar spatial patterns, but most of

CMIP5 MME sea ice thickness is thinner than GIOMAS sea

ice thickness. The spatial pattern for each CMIP5 model has

a large difference. BCC-CSM1.1, CESM1-CAM5-1-FV2,

The Cryosphere, 9, 399–409, 2015 www.the-cryosphere.net/9/399/2015/



Q. Shu et al.: Assessment of sea ice simulations in the CMIP5 models 405

Figure 5. Climatology (a), anomaly and linear trend (b) of GIOMAS and CMIP5-simulated Antarctic sea ice volume during 1979–2005.

Two annual cycles are plotted in (a). The error bar is the range of 1 standard deviation.

CMCC-CM, and CMCC-CMS fit GIOMAS sea ice thick-

ness well. Several CMIP5 models such as CCSM4, CESM1-

BGC, CESM1-FASTCHEM, FGOALS-g2 and FIO-ESM

have overly thick sea ice near the coasts of Antarctica.

CMIP5 SIV simulations have more problems than the

SIE simulations. The main problems of CMIP5 Antarctic

SIV simulations include overly big SIV in summer, overly

small SIV in winter, overly large model spread, and an incor-

rect linear trend compared with the GIOMAS data (Fig. 5).

The annual mean SIV from GIOMAS is 11.02 × 103 km3,

but CMIP5 MME SIV is only 7.73 × 103 km3 (Table 1). In

February, Antarctic SIV from GIOMAS is 1.9 × 103 km3,

while the CMIP5 MME is 2.7 × 103 km3. In September,

GIOMAS SIV is 19.1 × 103 km3, while CMIP5 MME is only

13.0 × 103 km3, almost 32 % less than the GIOMAS. We can

also see from Figure 5a that the model spread of Antarctic

SIV in CMIP5 is very large. One standard deviation is greater

than 15 % of the GIOMAS data in every month. We checked

the correlation between SIE RMS error and SIV RMS error,

and we can find that the models with small SIE RMS er-

rors always have small SIV RMS errors (Table 1). It means

that for the Antarctic models with a more realistic SIE mean

state may result in a convergence of estimates of SIV. Figure

5b shows that GIOMAS SIV has an increasing trend of 0.45

(±0.09) × 103 km3 decade−1, while CMIP5 MME SIV has

a decreasing trend of −0.36 (±0.01) × 103 km3 decade−1.

If we check each CMIP5 model separately, we will also

find that only 8 out of the 49 CMIP5 models have increas-

ing SIV trend that is consistent with the GIOMAS. They

are BCC-CSM1.1, CMCC-CESM, CNRM-CM5-2, IPSL-

CM5A-MR, IPSL-CM5B-LR, MPI-ESM-MR, MPI-ESM-P

and MRI-CGCM3 (highlighted in Table 1 with bold font).

3.2 Assessment of Arctic sea ice simulations

CMIP5 shows a quite good annual cycle of Arctic SIE, but

the model error in winter is larger than that in summer and

model spread is large (Fig. 6a). Arctic SIE reaches the max-

imum value of 15.7 million km2 in March, and it reaches the

minimum value of 6.9 million km2 in September; the annual

mean value is 12.02 million km2. The MME climatological

SIE compares well with the satellite-observed SIE. CMIP5

MME SIE reaches the maximum value of 17.2 million km2,

and reaches the minimum value of 6.8 million km2, and the

annual mean value is 12.81 million km2. The modeled er-

ror is less than 15 % of the observations in every month.

CMIP5 MME SIE is bigger than the satellite observation in

spring, and the modeled error is quite small at other times.

The model spread is large, with 1 standard deviation greater

than 15 % of the observed SIE in every month (Fig. 6a).

CSIRO-MK3.6, GFDL-ESM2G, GISS-E2-R-CC and MRI-

CGCM3 have large annual mean SIE with the values larger

than 15 million km2 (highlighted in Table 2 with bold font).

CSIRO-MK3.6 has more sea ice in the Barents Sea in sum-

mer (Fig. S6). GFDL-ESM2G, GISS-E2-R-CC and MRI-

CGCM3 have more sea ice in winter (Fig. S7). MIROC4h,

MIROC-ESM, MIROC-ESM-CHEM and MPI-ESM-P have

small annual mean SIE with the values less than 11 million

square kilometers (highlighted in Table 1 with bold font).

Arctic SIE amplitudes from CMIP5 models also have a large

spread. GISS-E2-R-CC has the largest amplitude with the

value of 16.73 million km2, and FGOAL-g2 has the small-

est amplitude with the value of only 3.35 million km2 (high-

lighted in Table 2 with bold font). Compared with the Antarc-

tic variability, CMIP5-simulated Arctic SIE variability has a

small spread (column c in Table 2).

CMIP5 MME SIE shows a decreasing trend that is con-

sistent with the satellite observation, though the decreasing

rate is a little smaller than that of the observation (Figs. 6b

and 7). The satellite-observed SIE linear trend over the pe-

riod of 1979–2005 is −4.35 (±0.41) × 105 km2 decade−1,

while CMIP5 MME SIE linear trend is only −3.71

(±0.19) × 105 km2 decade−1. BCC-CSM1.1 has the largest

trend of −8.79 (±0.97) × 105 km2 decade−1. A total of 31

out of the 49 CMIP5 models have smaller decreasing rate

than the observation, and NorESM1-ME has the smallest

trend of −0.21 (±0.43) × 105 km2 decade−1. Both observed
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Figure 6. Climatology (a), anomaly and linear trend (b) of satellite-observed and CMIP5-simulated Arctic sea ice extent during 1979–2005.

Two annual cycles are plotted in (a). The error bar is the range of 1 standard deviation.

Figure 7. Monthly (a) and seasonal (b) linear trends of satellite-

observed and CMIP5-simulated Arctic sea ice extent during 1979–

2005.

Figure 8. Linear trends (units: % per decade) of satellite-observed

Arctic sea ice concentration during 1979–2005. (a) Spring, (b) sum-

mer, (c) autumn, and (d) winter.

and CMIP5-simulated SIE in autumn have the largest de-

creasing trend. The CMIP5-simulated difference between the

summer and autumn SIE-decreasing trend is, however, larger

than that of the observations. The main reason is that CMIP5-

Figure 9. Linear trends (units: % per decade) of CMIP5-simulated

Arctic sea ice concentration during 1979–2005. (a) Spring, (b) sum-

mer, (c) autumn, and (d) winter.

simulated SIE has a small reduction in summer, especially

in July (Fig. 7). The satellite-observed SIE decreasing rate

is 5.22 % per decade in July, while the CMIP5-simulated

decreasing rate is 3.54 % per decade. The largest decreas-

ing rate is in September; the observed trend is −8.61 % per

decade, and the simulated trend is −8.46 % per decade.

Figures 8 and 9 show that the spatial patterns of CMIP5-

simulated SIC reduction rate are consistent with the observa-

tions from 1979 to 2005, but the decreasing rates are smaller

than the observations. In spring and winter, the observed

decreasing SIC is mainly in the Okhotsk Sea, Baffin Bay,

Greenland Sea and Barents Sea; CMIP5-simulated decreas-

ing SIC is also in these regions. In summer and autumn, the

main decreasing SIC is in the Chukchi Sea, the Barents Sea,

and the Kara Sea (Figs. 8 and 9), and CMIP5 MME SIC has

similar characteristics. However, CMIP5 simulations have

larger trends in the central Arctic Ocean.
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Figure 10. Climatology (a), anomaly and linear trend (b) of PIOMAS and CMIP5-simulated Arctic sea ice volume during 1979–2005. Two

annual cycles are plotted in (a). The error bar is the range of 1 standard deviation.

Compared with PIOMAS sea ice thickness, the main

problems of CMIP5 simulations are smaller Arctic SIV all

year round and an overly large model spread (Fig. 10). In

spring, the Arctic has the largest SIV. Long-term mean PI-

OMAS SIV is at its maximum in April at 29.5 × 103 km3,

and the corresponding CMIP5 MME is 27.1 × 103 km3.

Long-term mean PIOMAS SIV reaches its minimum in

September at 13.3 × 103 km3, and the corresponding CMIP5

MME is 9.6 × 103 km3. Amplitude of SIV from PIOMAS

is 16.17 × 103 km3, and CMIP5 MME can give good am-

plitude of SIV with 17.50 × 103 km3. CMIP5 SIV model

spread is also very large: 1 standard deviation for each

month is greater than 15 % of GIOMAS SIV. CanESM2

has the smallest SIV of 9.97 × 103 km3, and CMCC-

CM has the largest SIV of 33.01 × 103 km3. Figure S8

shows that sea ice thickness in BCC-CSM1-1-M, CanCM4,

CanESM2, GFDL-CM2p1, GISS-E2-H, GISS-E2-H-CC,

GISS-E2-R, GISS-E2-R-CC, MIROC4h, MIROC-ESM, and

MIROC-ESM-CHEM is significantly undervalued. Sea ice

thickness in CESM1-WACCM, CMCC-CESM, CMCC-CM,

FGOALS-g2, IPSL-CM5B-LR, NorESM1-M, NorESM1-

ME is significantly overvalued. Based on PIOMAS,

the linear trend of Arctic SIV during 1979–2005 is

−2.14 (±0.14) × 103 km3 decade−1. CMIP5 MME trend

has the same sign but with smaller value, at −1.45

(±0.05) × 103 km3 decade−1. Unlike most of CMIP5 mod-

els, CESM1-WACCM SIV has a slight positive trend during

1979–2005. The reason may be CESM1-WACCM SIV has

large variability (2.07 × 103 km3), and its internal variability

is not in phase with the natural observed variability.

4 Conclusions and discussion

The first ensemble realizations of the 49 CMIP5 historical

simulations are evaluated in terms of the performance of sea

ice. Our results show that the Arctic sea ice simulations are

better than the Antarctic sea ice simulations, and SIE sim-

ulations are better than SIV simulations. CMIP5 MME SIV

is too little in winter and spring, because the sea ice thick-

ness in CMIP5 models is too thin in winter and spring com-

pared with the GIOMAS and PIOMAS data. In the Antarctic,

MME can reproduce good mean state and monthly ampli-

tude for SIE, but for SIV MME mean state and amplitude are

smaller. In the Arctic, MME can reproduce good mean state

and monthly amplitude for both SIE and SIV. CMIP5 simu-

lations have very different variability (indicated by standard

deviation of detrended monthly SIE and SIV) for different

models. From Tables 1 and 2 we can conclude that the per-

formance of each model is different. For the Antarctic, AC-

CESS1.0, BCC-CSM1.1, CESM1-CAM5-1-FV2, CMCC-

CM, EC-EARTH, GISS-E2-H-CC, MIROC-ESM, MIROC-

ESM-CHEM, MRI-CGCM3, MRI-ESM1 and NorESM1-

M can give better SIE and SIV mean state. For the Arc-

tic, ACCESS1.3, CCSM4, CESM1-BGC, CESM1-CAM5,

CESM1-CAM5-1-FV2, CESM1-FASTCHEM, EC-EARTH,

MIROC5, NorESM1-M and NorESM1-ME can give better

mean state of SIE and SIV. The Arctic SIE linear trends of

BNU-ESM, CanCM4, CESM1-FASTCHEM, EC-EARTH,

GFDL-CM2p1, HadCM3, HadGEM2-AO, MIROC-ESM-

CHEM, MPI-ESM-MR and MRI-ESM1 are closed to the ob-

servations.

Both satellite-observed Antarctic SIE and GIOMAS

Antarctic SIV show increasing trends over the period of

1979–2005, but CMIP5 MME Antarctic SIE and SIV have

decreasing trends. Only eight models’ SIE and eight models’

SIV show increasing trends. Can these few CMIP5 models

reproduce the correct Antarctic sea ice trend? If we use these

eight CMIP5 models to plot Antarctic SIC trends (not shown)

as in Fig. 4, we will find that these eight CMIP5 model mean

SIC trends have different spatial patterns with the observa-

tions (Fig. 3), although their model mean SIE and SIV have

increasing trends. Satellite-observed Antarctic SIE has in-

creased trends, but when we use the satellite-observed sea

ice record, we should also keep in mind that it may also have

a large degree of uncertainty. Eisenman et al. (2014) point
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Figure 11. The ratio of SIE and SIV RMS errors between the errors

calculated using different number of CMIP5 models and the error

calculated using all 49 CMIP5 models.

out that sensor transition may cause a substantial change in

the long-term trend.

We can see that the CMIP5 MME does a good job in terms

of climatological mean, but their inter-model spread is large.

The number of models used in published studies is usually

less than the total CMIP5 models. How many models can

give as similarly good simulations as all the available CMIP5

models do? We first choose the CMIP5 models randomly.

The model number changes from 1 to 49. We then calculate

the SIE and SIV RMS errors between MME and observations

or GIOMAS and PIOMAS data sets. For each fixed model

number, we choose these models randomly at many different

times, and then calculate the mean of the RMS errors. Fig-

ure 11 shows the ratio of SIE and SIV RMS errors between

the errors calculated using different number of CMIP5 mod-

els and the errors calculated using all 49 CMIP5 models. We

can see that the model errors decrease quickly as the model

number increases; and the more models we use, the smaller

error we have. For a fixed model number, the ratios of SIE

are larger than the ratios of SIV, and Antarctic SIE has the

largest ratio. When the model number is greater than 30, the

model errors do not change much anymore. If we choose a

criterion of RMS error larger than 15 % of all the model RMS

error, the model number of 22 is the critical number for Arc-

tic SIE. It means that more than 22 CMIP5 models should

give similar MME as all 49 CMIP5 models.

In this study, satellite observations, PIOMAS and

GIOMAS data during the period of 1979–2005 are used to

assess the sea ice simulations from CMIP5 models. We al-

ways expect the models can capture the observed trends dur-

ing this period. But we should note that simulations with-

out data assimilation are always out of phase with the nat-

ural variability seen in the observations. So the differences

between simulations and observations can either be due to

model biases or natural climate variability (Stroeve et al.,

2014).

The Supplement related to this article is available online

at doi:10.5194/tc-9-399-2015-supplement.
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