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Abstract

In this work, we study the performance of some local projection-based solvers in the
Large Eddy Simulation (LES) of laminar and turbulent flows governed by the
incompressible Navier–Stokes Equations (NSE). On one side, we focus on a high-order
term-by-term stabilization Finite Element (FE) method that has one level, in the sense
that it is defined on a single mesh, and in which the projection-stabilized structure of
standard Local Projection Stabilization (LPS) methods is replaced by an
interpolation-stabilized structure. The interest of LPS methods is that they ensure a
self-adapting high accuracy in laminar regions of turbulent flows, which turns to be of
overall optimal high accuracy if the flow is fully laminar. On the other side, we
propose a new Reduced Basis (RB) Variational Multi-Scale (VMS)-Smargorinsky
turbulence model, based upon an empirical interpolation of the sub-grid eddy
viscosity term. This method yields dramatical improvements of the computing time
for benchmark flows. An overview about known results from the numerical analysis of
the proposed methods is given, by highlighting the used mathematical tools. In the
numerical study, we have considered two well known problems with applications in
industry: the (3D) turbulent flow in a channel and the (2D/3D) recirculating flow in a
lid-driven cavity.

Keywords: Large eddy simulation; Local projection simulation; Navier–Stokes
equations; Reduced basis method

1 Introduction

In this paper, we consider two different FE approximations of the NSE arising from local

projection-basedmethods for the LES of laminar and turbulent incompressible flows. The

interest of the presented projection-basedmethods is that they allow an important reduc-

tion on the computational time requirementswith respect to classicalmethodologies, pro-

viding at the same timehigh-order accuracywith reduced computational complexity. First,

we introduce a full ordermodel, which is a variant of standard LPS schemes, for the evolu-

tion NSE. The most relevant feature from the practical point of view is that the proposed

full order approach looks simple overall, yet it manages to solve complex high Reynolds

numbers flows on relatively coarse grids. Then, to further reduce computational complex-

ity, we also consider a reduced ordermodel, which consists of a RBVMS-Smagorinsky tur-

bulencemodel, for the steadyNSE (its extension to evolutionNSE through its combination
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with a proper orthogonal decomposition strategy is today in progress). The most relevant

feature from the practical point of view is that the proposed reduced order approach yields

a dramatic speed-up of the computing timewith respect to the corresponding high fidelity

model, while maintaining a similar accuracy up to moderate Reynolds numbers.

On the one hand, we focus on the high-order term-by-term stabilization method in-

troduced in (cf. [1]) for the Oseen equations. This method is developed by a purely nu-

merical approach that does not require any ad-hoc eddy viscosity. It is a particular type

of LPS scheme, which constitutes a low-cost, accurate solver for incompressible flows,

despite being only weakly consistent since it does not involve the full residual. It differs

from the standard LPS methods (cf. [2, 3]) because it uses continuous buffer functions,

it does not need enriched FE spaces, it does not need element-wise projections satisfy-

ing suitable orthogonality properties, and it does not need multiple meshes. Commonly

to standard LPS methods, the stabilization terms only act on the small scales of the flow,

thus ensuring a higher accuracy with respect to more classical stabilization procedures,

such as penalty-stabilized methods (cf. [4]). This method has been recently supported by

a thorough numerical analysis (existence and uniqueness, stability, convergence, error es-

timates, asymptotic energy balance) for the nonlinear problem related to the evolution

NSE (cf. [5, 6]), using a semi-implicit Euler scheme for the monolithic discretization in

time. Themain results from the numerical analysis of the proposed LPSmethodwill be re-

called here.Wewill also focus on an efficient time discretization of thismethod via a stable

velocity-pressure segregation, using semi-implicit Backward Differentiation Formulas up

to the second order (BDF2), with a special emphasis on its numerical solution in a parallel

setting (cf. [7]). We show some relevant 3D numerical tests, to assess the performance of

the proposed LPS method as an efficient and accurate solver for the simulation of laminar

and turbulent incompressible complex flows that could arise in industrial applications.

On the other hand, we present a promising RB VMS-Smagorinsky turbulence model,

based upon the approximation of the sub-grid eddy viscosity term by means of the em-

pirical interpolation method, and on the approximation of velocity-pressure by a Greedy

algorithm built with a specific error estimator. The numerical analysis for the steady NSE

is performed. Also, we present some numerical results for the benchmark 2D lid-driven

cavity flow problem that show a dramatic speed-up of the computing time. The adapta-

tion of this solver to complex flows, now in progress, is of primary interest for analysis and

optimal design in fluid mechanics industrial applications.

The paper is organized as follows. In Sect. 2, we describe the proposed LPS approxima-

tion of the incompressible evolutionNSE, commonly referred as high-order term-by-term

stabilization, and we state its main properties. After recalling the main results from the

numerical analysis of the proposed LPSmethod, we present an efficient and accurate time

discretization of this model by means of an incremental pressure-correction algorithm

with semi-implicit BDF2, and describe the parallel solver developed for the fully discrete

problem. In Sect. 3, we show numerical studies to assess the performance of the proposed

LPS strategy. In Sect. 4, the proposed RB VMS-Smagorinsky model for the steady NSE

is introduced and theoretically analyzed. Numerical studies for this model are carried

out in Sect. 5. In particular, the high computational efficiency of the proposed RB VMS-

Smagorinsky model is showcased. Finally, Sect. 6 states the main conclusions of the paper.
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2 A high-order LPS discretization of evolution NSE

We introduce a numerical approximation for an Initial-Boundary Value Problem (IBVP)

describing the incompressible evolution NSE. For the sake of simplicity, we just impose

homogeneous Dirichlet boundary condition on the whole boundary. More general inflow

boundary conditions may be taken into account by standard lifting techniques for NSE.

Also, the treatment of general non-linear wall law boundary conditions may be found

in [8].

Let [0,T] be the time interval, and � a bounded polyhedral domain in R
d , d = 2 or 3,

with a Lipschitz-continuous boundaryŴ = ∂�. Let {Th}h>0 be a family of affine-equivalent,

conforming (i.e., without hanging nodes) and regular triangulations of �, formed by tri-

angles (d = 2) or tetrahedra (d = 3).

Given an integer l ≥ 2 and a mesh cell K ∈ Th, denote by Pl(K) the space of polynomials

of degree ≤ l, defined on K . We consider the following FE spaces for the velocity:

⎧
⎪⎪⎨
⎪⎪⎩

Y l
h = V l

h(�) = {vh ∈ C0(�) : vh|K ∈ Pl(K),∀K ∈ Th},

Yl
h = [Y l

h]
d = {vh ∈ [C0(�)]d : vh|K ∈ [Pl(K)]d,∀K ∈ Th},

Xh = Yl
h ∩H1

0(�).

(1)

We approximate the weak formulation of the unsteady NSE by a high-order term-by-term

stabilization procedure in space (cf. [1]). For simplicity of the analysis, we initially consider

a semi-implicit Euler scheme for themonolithic discretization in time. To state it, consider

a positive integer number N and define �t = T/N , tn = n�t, n = 0, 1, . . . ,N . We compute

the approximations un
h , p

n
h to un = u(·, tn) and pn = p(·, tn) by:

• Initialization. Set: u0
h = u0h.

• Iteration. For n = 0, 1, . . . ,N – 1: Given un
h ∈Xh, find (un+1

h ,pn+1h ) ∈Xh ×Mh such that:

⎧
⎪⎪⎨
⎪⎪⎩

(
un+1
h

–un
h

�t
,vh)� + b(un

h,u
n+1
h ,vh) + a(un+1

h ,vh)

– (pn+1h ,∇ · vh)� + sconv(u
n
h,u

n+1
h ,vh) + sdiv(u

n+1
h ,vh) = 〈fn+1,vh〉,

(∇ · un+1
h ,qh)� + spres(p

n+1
h ,qh) = 0,

(2)

for any (vh,qh) ∈Xh ×Mh, whereMh = Y l
h ∩ L20(�), f

n+1
is the average value of f in

[tn, tn+1], and u0h is some stable approximation to u0 belonging to Xh, e.g., its discrete

Stokes projection.

The forms a and b in (2) are given by:

b
(
un
h,u

n+1
h ,vh

)
=
1

2

[(
un
h · ∇un+1

h ,vh
)
�
–

(
un
h · ∇vh,u

n+1
h

)
�

]
, (3)

a
(
un+1
h ,vh

)
= 2ν

(
D

(
un+1
h

)
,D(vh)

)
�
, (4)

where D(u) is the symmetric deformation tensor.

The forms sconv , sdiv and spres in (2) correspond to a high-order term-by-term stabilized

method (cf. [1]), and are given by:

sconv
(
un
h,u

n+1
h ,vh

)
=

∑

K∈Th

τν,K

(
σ ∗
h

(
un
h · ∇un+1

h

)
,σ ∗

h

(
un
h · ∇vh

))
K
, (5)
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sdiv
(
un+1
h ,vh

)
=

∑

K∈Th

τd,K
(
σ ∗
h

(
∇ · un+1

h

)
,σ ∗

h (∇ · vh)
)
K
, (6)

spres
(
pn+1h ,qh

)
=

∑

K∈Th

τp,K
(
σ ∗
h

(
∇pn+1h

)
,σ ∗

h (∇qh)
)
K
. (7)

Here, τν,K , τd,K and τp,K are stabilization coefficients for convection, divergence and pres-

sure gradient, respectively, and σ ∗
h = Id – σh, where σh is some locally stable projection

or interpolation operator from L2(�) on the foreground vector-valued space Yl–1
h (also

called “buffer space” in this context), satisfying optimal error estimates. In practical im-

plementations, the stabilization coefficients are given by the Codina’s form [9], designed

by asymptotic scaling arguments applied in the framework of stabilized methods aimed at

taking into account the local balance between convection and diffusion. Also, we choose

σh as a Scott–Zhang-like [10] linear interpolation operator in the spaceY
l–1
h (see [1], Sect. 4

for its construction), implemented in the software FreeFem++ [11]. This is an interpolator

that just uses nodal values, and so is simpler to work out and more computationally effi-

cient than variants requiring for instance integration on mesh elements (see, e.g., [12]). In

formula (6), σh denotes an operator between the scalar spaces L2 and Y l–1
h , but we use the

same notation for the sake of simplicity. Actually, if needed, specific stabilizations for con-

vection, divergence and pressure gradient may be used, through different approximation

operators.

2.1 Numerical analysis

The discrete method (2) has been recently supported by a thorough numerical analy-

sis (stability, convergence, error estimates, asymptotic energy balance) for the nonlinear

problem related to the evolution NSE (cf. [5, 6]), which is to our knowledge unavailable for

most turbulence models in the current literature (cf. [13]).

Here, we recall themain results obtained from the numerical analysis. First, we need the

following technical hypothesis on the stabilization coefficients:

Hypothesis 2.1 The stabilization coefficients τp,K , τd,K and τν,K satisfy the following con-

ditions:

α1h
2
K ≤ τp,K ≤ α2h

2
K , 0 < τd,K ≤ β , 0 < τν,K ≤ γh2K , (8)

for all K ∈ Th, and some positive constants α1, α2, β , γ independent of h.

We next state a specific discrete inf-sup condition for the stabilized approximation that

is essential for the stability of method (2).

Lemma 2.1 Assume that Hypothesis 2.1 holds. Then, for a uniformly regular family of

triangulations, we have the following inf-sup condition:

∀qh ∈Mh, ‖qh‖L2 ≤ C

(
sup
vh∈Xh

(∇ · vh,qh)�
‖D(vh)‖L2

+
∥∥σ ∗

h (∇qh)
∥∥

τp

)
, (9)

for some positive constant C independent of h, where τp denotes here the weighted L2-norm

with stabilization coefficient τp,K .
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The proof of this lemma can be derived from [1], where it is also shown that the discrete

inf-sup condition (9) can be extended to a more complex condition that holds for a simply

regular family of triangulations.

Let us now show results on existence, uniqueness of a solution and the stability of

method (2). To state them, we shall consider the following discrete functions:

• uh is the piecewise linear in time function with values on Xh such that uh(tn) = un
h ,

• p̃h is the piecewise constant in time function that takes the value pn+1h on (tn, tn+1),

• Ph(t) =
∫ t

0
p̃h(s)ds.

For simplicity of notation, we do notmake explicit the dependence of these functions upon

�t.

Theorem 2.1 Assume that Hypothesis 2.1 holds, and let f ∈ L2(H–1), u0 ∈ L2. Then, prob-

lem (2) admits a unique solution that satisfies the estimate:

‖uh‖L∞(L2) +
√

ν
∥∥D(uh)

∥∥
L2(L2)

+ ‖Ph‖L∞(L2) ≤ C

(
‖u0‖L2 +

1
√

ν
‖f‖L2(H–1)

)
, (10)

where C > 0 is a constant independent of h and �t.

The convergence of method (2) is now stated as follows:

Theorem 2.2 Assume that Hypothesis 2.1 holds, and let f ∈ L2(H–1), u0 ∈ L2. Then, the

sequence {(uh,Ph)}h>0 contains a sub-squence {(uh′ ,Ph′ )}h′>0 that is weakly convergent in

L2(H1) × L2(L2) to a weak solution (u,P) of the unsteady NSE, being P the time primitive

of the physical pressure.Moreover, {uh′}h′>0 is weakly-
∗ convergent in L∞(L2) to u, strongly

in L2(Hs) for 0 ≤ s < 1, and {Ph′}h′>0 is weakly-∗ converegent in L∞(L2) to P. If the weak

solution of the unsteady NSE is unique, then the whole sequence converges to it.

The proofs of these theorems can be directly derived by the ones performed in [14].

We now state the following error estimate result:

Theorem 2.3 Assume that Hypothesis 2.1 holds, the data verify f ∈ C0(H–1), ∂tf ∈
L2(H–1), u0 ∈ Hs+1, and that the solution (u,p) of the unsteady NSE has augmented regu-

larity, i.e., (u,p) ∈ C0(Hs+1)×C0(Hs), 2 ≤ s≤ l, such that ∂ttu ∈ L2(L2). Then, the following

error estimate for a solution {uh,ph} of the fully discrete model (2) holds:

‖u – uh‖ℓ∞(L2) +
√

ν
∥∥D(u – uh)

∥∥
ℓ2(L2)

+ ‖̃P – Ph‖ℓ∞(L2) ≤ C
(
hs +�t

)
, (11)

where C > 0 is a constant independent of h and�t, and we are using the following notation:

‖u – uh‖ℓ∞(L2) = max
n=1,...,N

∥∥un – un
h

∥∥
L2
,

∥∥D(u – uh)
∥∥

ℓ2(L2)
=

[
N∑

n=1

�t
∥∥D

(
un – un

h

)∥∥2

L2

]1/2

,

‖̃P – Ph‖ℓ∞(L2) = max
n=1,...,N

∥∥P̃n – Pn
h

∥∥
L2
,

being P̃ =
∫ t

0
p̃(·, s)ds, with p̃ the piecewise constant in time function that takes the value

pn+1 on (tn, tn+1), and P̃n = P̃(·, tn), Pn
h = Ph(tn).
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A detailed proof of this theorem can be found in [5]. Taking s = l, if the flow is regular

enough, we obtain convergence of optimal order, and the order decreases with the regu-

larity.

Remark 2.1 The proof of Theorem 2.3, that implies more concretely a strong conver-

gence result for solutionswith slightly increased regularity (it is sufficient (u,p) ∈ C0(H2)×
C0(H1), even if the convergence order in space is limited to one, due to the pressure sta-

bilizing term), contains as a sub-product the asymptotic energy balance of the approxi-

mation (2): the total energy balance is asymptotically maintained in such a way that the

sub-grid energy due to stabilizing terms asymptotically vanish (see [15], Sect. 3.4). This

is not the case if we consider the natural minimal regularity of the continuous solution:

indeed, due to the low regularity of the weak solution, we can just prove an energy in-

equality, due to the dissipative nature of the approximation (2), by using that the sub-grid

stabilizing energy terms are positive (cf. [14]).

Remark 2.2 The presented analysis for the proposed high-order term-by-term stabiliza-

tion procedure has been extended to geophysical flows governed by the primitive equa-

tions of the ocean [16] and buoyant flows governed by the Boussinesq equations [17]. Also,

it has been combined with a Variational Multi-Scale (VMS)-Smagorinsky term and wall

laws for the accurate simulation of turbulent boundary layers in [14, 15, 18].

2.2 An efficient time discretization of the NSE with LPS modeling in a HPC

framework

In this section, we propose to compute the approximations un
h and pnh by using an incre-

mental pressure-correction scheme based on semi-implicit BDF, for which the nonlin-

ear terms are extrapolated by means of Newton–Gregory backward polynomials. Let us

denote by ũn
h an intermediate approximate velocity at time tn. In order to abbreviate its

discrete time derivative, we define the operator Dt by:

Dr
t ũ

n
h :=

αrũ
n+1
h – ũn

h,r

�t
, (12)

where for BDF schemes of orders r = 1, 2 we have:

ũn
h,r =

⎧
⎨
⎩
ũn
h if n ≥ 0, for r = 1 (BDF1),

2̃un
h –

1
2
ũn–1
h if n ≥ 1, for r = 2 (BDF2)

(13)

and

αr =

⎧
⎨
⎩
1, for r = 1 (BDF1),

3
2
, for r = 2 (BDF2).

(14)

We consider the following extrapolations of order r = 1, 2 for the intermediate convection

velocity:

ũn,∗
h,r =

⎧
⎨
⎩
ũn
h if n≥ 0, for r = 1 (BDF1),

2̃un
h – ũn–1

h if n≥ 1, for r = 2 (BDF2)
(15)
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and the pressure:

pn,∗h,r =

⎧
⎨
⎩
pnh if n≥ 0, for r = 1 (BDF1),

1
3
(7pnh – 5pn–1h + pn–2h ) if n≥ 1, for r = 2 (BDF2)

(16)

using in the last case the convention pn–1h = pn–2h for n = 1. In this way, after applying a stan-

dard incremental pressure-correction approach (cf. [19] for derivation), the fully discrete

semi-implicit formulation consists in solving, for n = 0, . . . ,N – 1, the two-step algorithm:

find ũn+1
h ∈Xh such that:

⎧
⎨
⎩
(Dr

t ũ
n
h,vh)� + b(̃un,∗

h,r , ũ
n+1
h ,vh) + a(̃un+1

h ,vh) + sconv (̃u
n,∗
h,r , ũ

n+1
h ,vh)

+ sdiv (̃u
n+1
h ,vh) = 〈fn+1,vh〉 + (pn,∗h,r ,∇ · vh)�,

(17)

for any vh ∈Xh, where f
n+1

is the average value of f in [tn, tn+1], and:

find pn+1h ∈Mh such that:

⎧
⎨
⎩
(∇(pn+1h – pnh),∇qh)� + spres(p

n+1
h ,qh) = – αr

�t
(∇ · ũn+1

h ,qh)�,

(n · ∇(pn+1h – pnh))|Ŵ = 0,
(18)

for any qh ∈Mh, where n is the outer normal to Ŵ.

The final velocity can then be recovered according to:

un+1
h = ũn+1

h –
�t

αr

∇
(
pn+1h – pnh

)
. (19)

In practical implementations, for the first time step (n = 0) we use a BDF1 scheme (r = 1)

to initialize the algorithm with ũ0
h = u0

h and p0h some stable approximations to u0 and p0,

respectively. Note that this scheme coincides with the semi-implicit Euler method (2).

Then, a BDF2 scheme (r = 2) is applied for n≥ 1.

The semi-implicit discretization in time segregating velocity and pressure through a

standard incremental time-splitting helps to construct an efficient linear solver to theNSE

system for the LES of laminar and turbulent incompressible flows. In the first step (17),

a convection-dominated convection–diffusion–reaction subproblem for the intermediate

velocitymust be solved. The second step (18) consists of a stabilized pressure-Poisson sub-

problem. Solving the associated large linear systems could become extremely expensive

from the computational point of view, that is why we adopt in the numerical implemen-

tation a highly parallel strategy based on Domain Decomposition Methods (DDM). Both

steps are solved by using a DDM preconditioner with the GMRES iterative method ap-

plied to the associated system in the parallel framework described in [7], and a convincing

strong scaling analysis of the used algorithm is showcased in this framework. In particular,

we have interfaced the proposed fully discrete scheme (17)–(18) with HPDDM [20, 21], a

high performance unified framework for DDM, and used a parallel iterative linear solver

based on an optimized Schwarz DDM as preconditioner [20, 22]. In this manner, we ob-

tain an efficient, i.e., robust and fast, solver for the High Performance Computing (HPC)

of laminar and turbulent incompressible flows in the open-source FE software FreeFem++

interfaced with the library HPDDM. The proposed parallel strategy is tested for the recir-

culating flow in a 3D lid-driven cavity in the next section.
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3 Numerical experiments with LPS by interpolationmethod

In this section, we discuss some numerical results to analyze the numerical performances

of the proposed LPS model applied to the computation of laminar and turbulent complex

flows that could arise in industrial applications, also on massive parallel settings.

3.1 Turbulent channel flow (3D)

Wepresent results of a fully developed turbulent flow in a 3D channel at moderate friction

Reynolds number Reτ = 180. The 3D channel flow is one of the most popular test prob-

lems for the investigation of wall bounded turbulent flows, whereas turbulent boundary

layers are of high practical relevance in aerodynamics industries. The proposed test con-

sists of a fluid that flows between two parallel walls driven by an imposed pressure gradient

source term which is defined by the friction Reynolds number Reτ . For the setup of our

numerical simulations, we chose to follow the guidelines given by Gravemeier in [23]. As

a benchmark, we will use the fine Direct Numerical Simulation (DNS) of Moser, Kim and

Mansour [24].

The boundary conditions are periodic in both the stream-wise and span-wise directions

(homogeneous directions).We perform a comparison between the application of the loga-

rithmic wall-law of Prandtl and VonKármán and no-slip boundary conditions at the walls.

We aim to obtain a good accuracy with a relatively coarse spatial resolution. The com-

putational grid consists of a 16×32×16 partition of the channel, uniform in the homoge-

neous directions. The distribution of nodes in the wall-normal direction is non-uniform,

and obeys the cosine function of Gauss–Lobatto. We use 3D P2 FE for velocity and pres-

sure.

We consider for this test a semi-implicit Crank–Nicolson scheme for the monolithic

temporal discretization. This provides a good compromise between accuracy and com-

putational complexity, while keeping the numerical diffusion levels below the sub-grid

terms (cf. [25]). Indeed, on the one side, it produces less numerical diffusion with respect

to a simple semi-implicit Euler scheme, and thus it does not tend to artificially increment

the turbulent diffusion. On the other side, despite being a first-order method, it already

provides accurate results at the consideredmoderate friction Reynolds number Reτ , being

less expensive in terms of storage requirements with respect to the two-step BDF2 scheme

described in Sect. 2.2, which instead allows to achieve a second-order accuracy in time.

In Fig. 1 (left), we show the mean stream-wise velocity profiles, normalized by the com-

puted wall shear velocity, in wall coordinates. The results show an acceptable agreement

with the fine DNS, even with the very coarse basic discretization at hand (almost 4 times

coarser than the DNS one).

Figure 1 Example 3.1. Normalized mean stream-wise velocity profiles (left) and r.m.s. velocity fluctuations
(right) in wall coordinates
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Figure 2 Example 3.1. Snapshot of stream-wise velocity contours at t = 5 (top) and t = 10 (bottom)

Figure 1 (right) displays the normalized r.m.s. values of the stream-wise velocity fluctu-

ations. If we compare with DNS data the LPS method by interpolation tested with no-slip

boundary conditions, we observe a noticeable over-prediction, which seems to be cor-

rected by the use of wall laws in the so-called inertial layer, starting from the first interior

node.

Figure 2 shows the stream-wise velocity contours at different instants in time, computed

by the LPS method employing wall-law boundary conditions. Note the presence of turbu-

lent structures (velocity fluctuations) on the wall-normal boundary inside the boundary

layer (top surfaces), and as the flow becomesmore homogenous as time increases, as phys-

ically expected.

Remark 3.1 Note that the present numerical study differs from the one performed in [14,

15, 18], where the combination with a VMS-Smagorinsky turbulencemodel has been con-

sidered on a computational grid that consists of a 163 partition of the channel. The pre-

sented results show that taking into account just a purely LPS method (no ad-hoc eddy

viscosity of Smagorinsky-type is introduced) provides almost the same high-order accu-

racy of themore complexVMS-LPSmethod in [14, 15, 18], wheneverwe consider a proper

refinement just on the wall-normal direction, giving results very close to the fine DNS.

3.2 Lid-driven cavity flow (3D)

In this section, the 3D lid-driven cavity test is performed to investigate the numerical per-

formances of the proposed solver at laminar, transient, and turbulent regimes, also on

massive parallel settings. The lid-driven cavity flow is one of the most studied problem in

Computational Fluid Dynamics (CFD), that exhibits one direction of inhomogeneity. This

problem is characterized by a fluid flow in a cubic domain driven by a tangential unitary

velocity along one of the six boundary surfaces. Homogeneous Dirichlet conditions are

adopted on all the other boundaries.
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The recirculating flow in a 3D lid-driven cavity presents the occurrence of some consid-

erable 3D features, even at relatively low Reynolds numbers. One of the most remark-

able is the formation of Taylor–Görtler-like (TGL) vortices at the corners of the bot-

tom of the cavity. Small counter-rotating vortices are formed as a result of the curva-

ture of the streamlines due to the main vortex in the middle of the cavity. Following

the work of Gravemeier et al. [26], we simulate the 3D cavity flow at Reynolds numbers

Re = 3200, 7500, 10,000, to cover respectively the laminar, transient and turbulent regimes.

Also for this test, we first aim to obtain a good accuracy with a relatively coarse spatial

resolution. The computational grid consists of a 323 partition of the unit cube, uniform in

the y-direction, and refined towards the walls in both x- and z-directions using the hyper-

bolic tangent function, in order to handle large velocity gradients. Again, we use 3D P2 FE

for velocity and pressure. For this test, we apply the efficient time discretization described

in Sect. 2.2 in a parallel setting. Indeed, since we arrive to high Reynolds numbers, then

the use of (at least) second-order accurate discretization in time has been found to be es-

sential in order to achieve a reasonable accuracy. The results are graphically compared to

the experimental data of Prasad and Koseff [27], and numerical results of Gravemeier et

al. [26], obtained by a three-level VMS-Smagorinsky method (VMS-3L).

Figure 3 shows the mean velocities 〈u1〉 (left) and 〈u3〉 (right) respectively on the cen-

terline z = 0.5 and x = 0.5 of the longitudinal mid-plane y = 0.5, for the various Reynolds

numbers under consideration (top to bottom). The proposedmethod shows a good agree-

ment with the experimental data of Prasad and Koseff [27], even with the coarse basic

discretization at hand, and performs similarly (or even better) than the more complex

VMS-3L method [26].

Figure 3 Example 3.2. Mean velocities profiles on the centerlines of the mid-plane y = 0.5 for
Re = 3200, 7500, 10,000 (top to bottom)
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Figure 4 Example 3.2. R.m.s. velocity fluctuations (top) and Reynolds stress tensor (bottom) profiles on the
centerlines of the mid-plane y = 0.5 for Re = 10,000

Figure 5 Example 3.2. Flow streamlines (colored by the velocity magnitude) at Re = 3200 (left) and Re = 7500
(right) for the proposed LPS method at final simulation time

Figure 4 displays the r.m.s. velocity fluctuations for the first and third component of the

velocity (top), and the off-diagonal component of the Reynolds stress tensor (bottom), on

the centerlines of the mid-plane y = 0.5 for Re = 10,000. As in Prasad and Koseff [27], the

r.m.s. values and the off-diagonal Reynolds stress component are multiplied by the ampli-

fication factors 10 and 500, respectively, in order to ensure a reasonable visual impression

of these values within the respective graphs. Also in predicting these sensitive measures,

the proposedmethod shows a rather good agreementwith the experimental data of Prasad

and Koseff [27], and performs better than the VMS-3L method [26].

Qualitatively, we have observed that the flow exhibits effectively the formation of three-

dimensional TGL corner vortices at the cavity end walls, that interact with the primary

circulation vortex, thus influencing the distribution ofmomentumwithin the entire cavity,

see Fig. 5. In the case Re = 3200, in accordance to Prasad and Koseff [27], it is possible to

discern these vortices as organized structures, while for higher Re, increasing turbulent

effects cause the breakdown of these organized structures. This suggests that the high-

frequency turbulent fluctuations become dominant, and partially destroy the integrity (or

coherence) of the TGL vortices.

Finally, to assess the parallel efficiency of the proposed method, we considered a very

fine mesh using 100 grid points in each direction (24 million velocity unknowns and 8
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Figure 6 Example 3.2. Strong scaling analysis of the solver for Re = 10,000

Table 1 Example 3.2. Number of GMRES iterations of the solver for Re = 10,000

# of subdomains # of velocity iterations # of pressure iterations

1024 18 17
2048 19 12
4096 21 14
8192 24 15

16,384 23 13

millions pressure unknowns), and used from 1024 up to 16,384 MPI processes with a sin-

gle OpenMP thread per process (flat MPI parallelism). Preconditioners are thus defined

with as many subdomains as the number of MPI processes. We used the test case in the

turbulent regime (Re = 10,000). In particular, we are interested in the strong scalability

performances of the described algorithm. Results were obtained on Curie, a system com-

posed of 5040 nodes with two eight-core Intel Sandy Bridge clocked at 2.7 GHz. Figure 6

represents the total average time to complete a time step. Clearly, the implementation

scales very well, at least up to 4096 processes, where we start to notice a slight deterio-

ration of the performance. Anyway, as displayed in Table 1, the preconditioners are both

numerically extremely stable, with numbers of iterations remaining in the same low range.

The GMRES method is stopped when the relative preconditioner residual is lower than

10–8 for the velocity unknows and 10–6 for the pressure unknows

Remark 3.2 Note that this numerical study differs from the one performed in [7], where

just mixed inf-sup stable FE of Taylor–Hood type (P2/P1) have been considered for the

pair velocity/pressure in numerical experiments, for which the pressure stabilized term

(7) is neglected. The presented results with equal-order P2/P2 FE considering pressure

stabilization are almost comparable with the ones of [7], thus being in good agreement

with experimental data. However, the use of mixed FE leads to cheaper (amortized setup)

Poisson solves for the pressure equation (18) in the HPC framework considered. This is

reflected in Fig. 6, wherewe start to observe from4096 processes that using equal-order FE

leads to a slight deterioration in the scalability of the total average time to complete a time

step, which is not the casewhen consideringmixed FE in [7]. This follows from the fact that

using equal-order FE requires the assembly of an additional term for pressure stabilization

and, as consequence, this results in an increased computational cost with respect tomixed
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formulations. Nevertheless, the number of GMRES iterations remains stable, and in the

same low range as in Ref. [7] (see Table 1). To sum up, also the parallel performances in

the case of equal-order FE are rather satisfactory, and seem to be in accordance with the

current state-of-the-art, e.g., [28].

4 RB VMS-Smagorinskymodel

In this section, we present a RBVMS-Smagorinsky turbulencemodel. This differs from the

reduced order model considered in [29, 30], which is just based on the simpler Smagorin-

sky turbulence model. In particular, an interpolation operator has been introduced, in

order to restrict the influence of the eddy viscosity just to the small resolved scales. This

allows to avoid the over-diffusion phenomenon of the standard Smagorinskymodel, where

the effect of the un-resolved scales is typically taken into account equally for all resolved

flow scales, and as a consequence, the large scales are usually over-damped, yielding re-

sults with lower accuracy, un-useful for most flows of practical interest in industry.

The idea supporting theRBmethod is to build a reduced basis formedby a fewnumber of

solutions from the original problem for some values of the parameter, in the offline phase.

Then, the problem is solved by a Galerkin projection onto the space XN × MN spanned

by the RB, in the online phase.

Let us introduce the space

X̃h = Yl–1
h ∩H1

0(�), (20)

and consider a uniformly stable (in H1 – norm) interpolation operator 
h on X̃h. This

interpolation operator 
h must satisfy optimal error estimates (cf. [31]), and preserve the

boundary conditions when restricted to Xh. Thus, we define

X′
h = (Id –
h)Xh, (21)

identifying X̃h = 
hXh as the large velocity scales space, and X′
h the sub-filter scales ve-

locities space. Space X′
h does not need to be explicitly constructed, only the operator 
h

is needed.

In our case, the parameter that we consider is the Reynolds numberμ, assumed to range

in a compact interval D ⊂R. The finite element VMS-Smagorinsky model is given by:

⎧
⎪⎪⎨
⎪⎪⎩

Given μ ∈D, find (uh(μ),ph(μ)) ∈ Xh ×Mh such that:

1
μ
(∇uh,∇vh)� – (ph,∇ · vh)� + (∇ · uh,qh)�

+ (uh · ∇uh,vh)� + (νT (u
′
h)∇u′

h,∇v′
h)� = 〈f ,vh〉,

(22)

for any (vh,qh) ∈Xh ×Mh. Here we are denoting

u′
h = (Id –
h)uh, v′

h = (Id –
h)vh.

The eddy viscosity in the VMS-Smagorinsky model is defined as νT (u
′
h) = (CShK )

2 ×
|∇u′

h|K
|, where | · | denotes the Frobenius norm and CS is the Smagorinsky constant. To

linearise this non-linear term, we use the Empirical Interpolation Method (cf. [32]). This

allows a large speed-up in the solution of the RB problem.
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Remark 4.1 Problem (22) is supposed to have homogeneous Dirichlet boundary condi-

tions. In the case of considering non-homogeneous Dirichlet boundary conditions, prob-

lem (22) is transformed to an equivalent one with homogeneous boundary conditions by

considering a lift function. For more details, see e.g. [30, 33].

The idea to solve the VMS-Smagorinsky model by the RB method is the same to solve

it by the FE method. We solve the VMS-Smagorinsky model by a Galerkin projection,

but the main difference between FE and RB methods falls on the dimension of the spaces

where we do the Galerkin projection. The RB space is low-dimensional, while the FE one

is usually a high-dimensional space. We consider the RB VMS-Smagorinsky problem as

⎧
⎨
⎩
Given μ ∈D, find UN (μ) = (uN (μ),pN (μ)) ∈XN =XN ×MN such that:

A(UN (μ),VN ;μ) = F(VN ;μ) ∀VN ∈XN ,
(23)

where we are denoting

A
(
UN (μ),VN ;μ

)
=

1

μ
A1(UN ,VN ) +A2(UN ,VN )

+A3(UN ,UN ,VN ) +A4(UN ;UN ,VN ), (24)

with

A1(UN ,VN ) = (∇uN ,∇vN )�,

A2(UN ,VN ) = –(pN ,∇ · vN )� + (∇ · uN ,qN )�,

A3(UN ,UN ,VN ) = (uN · ∇uN ,vN )�,

A4(UN ;UN ,VN ) =
(
νT

(
u′
N

)
∇u′

N ,∇v′
N

)
�
,

(25)

and u′
N = (Id – 
h)uN . In the offline phase, to construct the reduced spaces we use the

greedy algorithm. For the startup of the greedy algorithm we choose an arbitrary parame-

ter value μ1 ∈D, and compute (uh(μ
1),ph(μ

1)). The greedy algorithm recursively chooses

the following snapshot for the reduced space as the value of the parameter that yields the

maximum error between the high fidelity FE solution and the RB solution. As the com-

putation of the exact error is quite expensive, we have built an a posteriori error bound

estimator �N (μ), i.e., it selects the (N + 1)th parameter value satisfying

μN+1 = arg max
μ∈D

�N (μ), 1 ≤ N ≤ Nmax. (26)

In this way, the reduced spaces for velocity and pressure are defined as

MN = span
{
ξ
p
k := ph

(
μk

)
,k = 1, . . . ,N

}
, (27)

XN = span
{
ζ v
2k–1 := uh

(
μk

)
, ζ v

2k := Tμ
p ξ

p
k ,k = 1, . . . ,N

}
; (28)

Here, T
μ
p is the so-called inner pressure supremizer operator T

μ
p : Mh → Xh, defined as

(T
μ
p ph,vh) = –(ph,∇ · vh)�, ∀vh ∈ Xh, where (·, ·) is a scalar product in the velocity space

H1
0(�). Adding the supremizers of the pressures to the reduced velocity space XN ensures

the stability of the discretization of the pressure in problem (23).
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4.1 A posteriori error bound estimator

In this section, we present the tools for the construction of the a posteriori error bound

estimator. For this purpose, we use the Brezzi-Rapaz-Raviart (BRR) theory (cf. [34]). Let

us denote the directional derivative, atU ∈Xh =Xh ×Mh, in the direction Z = (z,pz) ∈Xh,

as ∂1A(U , ·;μ)(Z). If we derive each operator term in (24), we obtain

∂1A1(U ,V )(Z) = A0(Z,V ),

∂1A2(U ,V )(Z) = A1(Z,V ),

∂1A3(U ;V )(Z) = (u · ∇z,v)� + (z · ∇u,v)�,

∂1A4(U ;V )(Z) =
(
νT

(
u′)∇z′,∇v′)

�
+

∑

K∈Th

∫

K

(CShK )
2 ∇u′ :∇z′

|∇u′|
(
∇u′ :∇v′)d�.

For the well posedness of the problem, we have to guarantee the uniform coerciveness

and the boundedness of ∂1A in the sense that for any solution Uh(μ) of (22), there exist

β0 > 0 and γ0 ∈R such that ∀μ ∈D,

0 < β0 < βh(μ) ≡ inf
Zh∈Xh

sup
Vh∈Xh

∂1A(Uh(μ),Vh;μ)(Zh)

‖Zh‖Xh
‖Vh‖Xh

,

∞ > γ0 > γh(μ) ≡ sup
Zh∈Xh

sup
Vh∈Xh

∂1A(Uh(μ),Vh;μ)(Zh)

‖Zh‖Xh
‖Vh‖Xh

.

(29)

Then, according to the BRR theory (cf. [34, 35]), it will follow that in a neighbourhood of

Uh(μ) the solution of (22) is unique and bounded in ‖·‖Xh
in terms of the data. The proof

of the existence of βh(μ) can be derived from Proposition 4.2 of [30], thanks to the fact

that the interpolation operator 
h satisfies optimal error estimates (cf. [31]).

For the development of the a posteriori error bound, we start by proving that the direc-

tional derivative of the operator A(·, ·;μ) is globally lipschitz. The proof of the following
Lemma can be derived from Lemma 5.1 in [30].

Lemma 4.1 There exists a positive constant ρT such that, ∀U1
h ,U

2
h ,Zh,Vh ∈Xh,

|∂1A
(
U1

h ,Vh;μ
)
(Zh) – ∂1A

(
U2

h ,Vh;μ
)
(Zh)| ≤ ρT

∥∥U1
h –U2

h

∥∥
Xh

‖Zh‖Xh
‖Vh‖Xh

. (30)

The following continuity and inf-sup conditions hold:

∞ > γN (μ) ≡ sup
Zh∈Xh

sup
Vh∈Xh

∂1A(UN (μ),Vh;μ)(Vh)

‖Zh‖Xh
‖Vh‖Xh

, (31)

0 < βN (μ) ≡ inf
Zh∈Xh

sup
Vh∈Xh

∂1A(UN (μ),Vh;μ)(Zh)

‖Zh‖Xh
‖Vh‖Xh

. (32)

The suitability of the a posteriori error bound estimator is stated by the following results.

Their proofs can be derived from [30], taking into account that the interpolation operator


h is uniformly stable in H1-norm.
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Theorem 4.1 Let μ ∈ D, and assume that βN (μ) > 0. If problem (22) admits a solution

Uh(μ) such that

∥∥Uh(μ) –UN (μ)
∥∥
Xh

≤
βN (μ)

ρT

,

then this solution is unique in the ball BXh
(UN (μ),

βN (μ)
ρT

).

Let us define the a posteriori error bound estimator by

�N (μ) =
βN (μ)

2ρT

[
1 –

√
1 – τN (μ)

]
, (33)

where τN (μ) is given by

τN (μ) =
4ǫN (μ)ρT

β2
N (μ)

, (34)

with ǫN (μ) the dual norm of the residual

ǫN (μ) =
∥∥R

(
UN (μ);μ

)∥∥
X

′
h
. (35)

Theorem 4.2 Assume that βN (μ) > 0 and τN (μ) ≤ 1 for all μ ∈ D. Then there exists a

unique solution Uh(μ) of (22) such that the error with respect UN (μ), solution of (23), is

bounded by the a posteriori error bound estimator, i.e.,

∥∥Uh(μ) –UN (μ)
∥∥
Xh

≤ �N (μ), (36)

with effectivity

�N (μ)≤
[
2γN (μ)

βN (μ)
+ τN (μ)

]∥∥Uh(μ) –UN (μ)
∥∥
Xh
. (37)

5 Numerical experiments with RB VMS-Smagorinskymethod

In this section we present numerical results for the RBVMS-Smagorinskymodel.We con-

sider the 2D lid-driven cavity problem, with Reynolds number ranging inμ ∈ [1000, 5100].

In the offline phase, we compute the FE approximation with Taylor–Hood FE pairs. We

consider a regular mesh with 5000 triangles and 2601 nodes. The FE steady state solution

is computed through a semi-implicit evolution approach (the semi-implicit Euler method

is used for simplicity), and we conclude that the steady solution is reached when the rela-

tive error between two iterators is below εFE = 10–10. The numerical scheme to solve the

full order VMS-Smagorinsky model in each time step reads

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find (un+1
h (μ),pn+1h (μ)) ∈Xh ×Mh such that ∀vh ∈Xh,∀qh ∈Mh:

(
un+1
h

–un
h

�t
)� + 1

μ
(∇un+1

h ,∇vh)� – (pn+1h ,∇ · vh)�
+ (∇ · un+1

h ,qh)� + (un
h · ∇un+1

h ,vh)�

+ (νT (u
′n
h )∇u′n+1

h ,∇v′
h)� = 〈f ,vh〉.

(38)
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In order to implement the VMS-Smagorinsky eddy diffusion, we consider a standard

nodal Lagrange interpolation operator for its simplicity and efficiency with respect to

other choices. First, to start the Greedy algorithm, we set up the Empirical Interpolation

Method in order to approximate the eddy viscosity term.We need 34 basis functions until

reaching the tolerance for the error in the Empirical Interpolation Method, see [30] for

more details.

We start the Greedy algorithm for μ = 1000, and we need N = 9 basis functions until

reaching the Greedy tolerance of 10–5 for the a posteriori error bound estimator. Since

the VMS-Smagorinsky model is less diffusive than the classical Smagorinsky model, the

number of basis functions needed for the RB model is lower. In [30] where a classical

Smagorinsky model is considered, for the same numerical test, the Greedy algorithm se-

lects 12 basis functions instead of 9 basis functions.

In Fig. 7, we can observe the evolution of the a posteriori error bound within the Greedy

algorithm. Due to Theorem 4.2, �N (μ) exists when τN (μ) ≤ 1. While τN (μ) > 1, we use as

a posteriori error bound estimator the proper τN (μ). We stop the Greedy algorithm when

we reach a tolerance of εRB = 10–5.

In Fig. 8, we show the value of the a posteriori error bound estimator and the relative

error for allμ ∈D, atN =Nmax.We observe that it is indeed a good error estimator, with an

efficiency factor lower of 10 for all μ ∈D. This efficiency is improved from the lid-driven

cavity test presented in [30].

In Fig. 9, we show a comparison between the FE velocity solution (left) and the RB veloc-

ity solution (right) for a chosen parameter value μ = 2142. We observe that primary and

secondary vortices are well-resolved in both cases. Note that both images are practically

equal, as the error between both solutions is of order 10–6.

In Table 2, we show the results obtained for several values of μ in D. The FE problem

has 23,003 degrees of freedom, while the RB problem has 27 degrees of freedom, plus 34

degrees of freedom for the Empirical Interpolation Method. We observe a dramatic re-

duction of the computational time, of several thousands, with errors below the Greedy

tolerance. The speed-up obtained in this test is greater than in the lid-driven cavity test

presented in [30] for the classical Smagorinsky model, since the computational time for a

FE VMS-Smagorinsky solution is greater than the computational time for a FE Smagorin-

Figure 7 Convergence of the Greedy algorithm
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Figure 8 Value of �Nmax (μ) and the error between the FE solution and the RB solution

Figure 9 FE solution (left) and RB solution (right) for μ = 2142

Table 2 Computational time for FE solution and RB online phase, with the speed-up and the relative
error

Data μ = 1620 μ = 2142 μ = 3693 μ = 4745

TFE 1486.4 s 1972.1 s 3089.3 s 3777.51 s
Tonline 0.51 s 0.52 s 0.52 s 0.52 s

speed-up 2869 3773 5935 7264

‖uh – uN‖Xh 1.9 · 10–6 1.58 · 10–6 2.62 · 10–6 4.99 · 10–6
‖ph – pN‖Mh

2.94 · 10–7 1.79 · 10–7 1.11 · 10–7 1.25 · 10–7

sky solution, and the online phase computational time of the RB model in both cases are

similar.

6 Conclusions

The numerical studies performed in the present paper indicate that the considered LPS

method is able to reproduce first and second-order statistics up to a turbulent regime for

relatively coarse meshes, with a similar (or even higher) accuracy than a more complex

VMS-LES method [26]. We studied the parallel performances of the proposed solver im-

plemented in a HPC framework, showing rather good scalability results up to thousands
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of cores. This promotes the present method as a suitable and useful tool in the challenging

simulation of turbulent flows, since providing reliable numerical results with a compara-

tively small computational complexity, which is an extremely important feature in the con-

text of realistic industrial applications in CFD.We also presented a RB VMS-Smagorinsky

model, for which we developed an a posteriori error bound estimator, and we presented

a numerical test in which we showed a speed-up of several thousands in the computation

of the numerical solution of the VMS-Smagorinsky model. We thus enhanced the results

presented in [30], considering a more accurate high-order method, with higher speed-up

in the computation of the RB solution in the online phase.
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