

C. Singer, R. Buck, R. Pitz-Paal, H. Müller-Steinhagen Energy Sustainability 2009 / July 19 - 23, 2009, San Francisco, CA

Overview

- → Motivation and Objective
- → State of the Art
- Numerical Model
- **7** Results
- **7** Conclusions
- **7** Future Work
- **→** Time Schedule

Source: Sandia National Laboratories (modified)

Motivation and Objective

- ▼ USC parameters around 350bar and 720°C is the next development step.
- → A 55% thermal efficiency is within the potential of USC steam cycles.
- CSP has the potential to clean and sustainable energy supply
 - relatively conventional technology
 - ease of scale-up
- Assessment of potential for solar tower driven USC cycles (50-1000MW_{el})
- → Solar system options:
 - tube receiver
 - Beam-Down
 - Direct Absorption
 - Multi Tower Solar Arrays
 - and combinations

State of the Art

- **→** 360° cylindrical receiver, Solar Salt (290°C-565°C)
- → Solar Tres (Basis for the assessment)
 - → 17MW_{el} / 15h storage capacity / Fuentes de Andalucia (Sevilla, Spain)
- → Solar 50 (Reference of the economical assessment)
 - ▼ 50MW_{el} / 8h storage capacity / Fuentes de Andalucia (Sevilla, Spain)
 - ▼ steam power cycle (44% thermal efficiency)

Innovations

- → Solar USC
 - ▼ supercritical power cycle (350bar / 720°C / 53% thermal efficiency)
- → HTM
 - ▼ tin, sodium, bismuth-lead or. bismuth-tin and LiCI-KCI eutectic

Assessment Workflow

Numerical Model - number of <u>serial</u> panels

Results - performance due to number of serial panels

Without HTM pumping parasitic losses

With HTM pumping parasitic losses

→ Na

→ Bi-Pb

→ Sn

→ LiCl-KCl

→ NaNO3-KNO3

Note: The number of serially flow-through panels has a significant influence on the plant performance

Results - performance due to number of serial panels

- Sn, 2 serial panels, epl
- -- Sn, 12 serial panels, epl
- NaNO3-KNO3, 2 serial panels, epl
- -- NaNO3-KNO3, 12 serial panels, epl
- Sn, 2 serial panels, ipl
- ●● Sn, 12 serial panels, ipl
- → NaNO3-KNO3, 2 serial panels, ipl
- ◆◆ NaNO3-KNO3, 12 serial panels, ipl

Results - LEC due to number of serial panels

Note: The number of serially flow-through panels has a significant influence on the plant performance, even more if the cooling takes place with liquid heavy metal

Results - annual performance and LEC sensibility

opt. storage capacity [h] / opt.number of panels [-]

■ storage capacity [h] / opt.number of panels [-]

Conclusions

- → significant LEC reduction potential of
 - about 15%, if USC, liquid metal, optimum storage size is assumed
 - → about 10% if equal storage sizes are compared
- → HTM with higher thermal conductivity leads to lower LEC
 - due to the reduction of radiation loss at the central receiver,
 - if the storage cost is independent of the used HTM costs.
- ▼ The assessed liquid metals provide a significantly better receiver performance
 - however, these HTM are too expensive for the usage as storage medium
- → No salt mixture or liquid metal is available in the cost range of solar salt without decomposition in the required temperatures range for USC
- → High temperature receiver loop with a separate storage material tends to be more cost effective for future solar applications

