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Abstract

Background: The correct identification of differentially abundant microbial taxa

between experimental conditions is a methodological and computational challenge.

Recent work has produced methods to deal with the high sparsity and

compositionality characteristic of microbiome data, but independent benchmarks

comparing these to alternatives developed for RNA-seq data analysis are lacking.

Results: We compare methods developed for single-cell and bulk RNA-seq, and

specifically for microbiome data, in terms of suitability of distributional assumptions,

ability to control false discoveries, concordance, power, and correct identification of

differentially abundant genera. We benchmark these methods using 100 manually

curated datasets from 16S and whole metagenome shotgun sequencing.

Conclusions: The multivariate and compositional methods developed specifically for

microbiome analysis did not outperform univariate methods developed for

differential expression analysis of RNA-seq data. We recommend a careful exploratory

data analysis prior to application of any inferential model and we present a

framework to help scientists make an informed choice of analysis methods in a

dataset-specific manner.

Keywords: Microbiome, Benchmark, Single-cell, Metagenomics, Differential

abundance

Background

Study of the microbiome, the uncultured collection of microbes present in most envi-

ronments, is a novel application of high-throughput sequencing that shares certain

similarities but important differences from other applications of DNA and RNA se-

quencing. Common approaches for microbiome studies are based on deep sequencing

of amplicons of universal marker-genes, such as the 16S rRNA gene, or on whole

metagenome shotgun sequencing (WMS). Community taxonomic composition can be

estimated from microbiome data by assigning each read to the most plausible micro-

bial lineage using a reference annotated database, with a higher taxonomic resolution

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Calgaro et al. Genome Biology          (2020) 21:191 

https://doi.org/10.1186/s13059-020-02104-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-02104-1&domain=pdf
http://orcid.org/0000-0001-8508-5012
mailto:davide.risso@unipd.it
mailto:davide.risso@unipd.it
mailto:nicola.vitulo@univr.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


in WMS than in 16S [1, 2]. The final output of such analyses usually consists of a large,

highly sparse taxa per sample count table.

Differential abundance (DA) analysis is one of the primary approaches to identify dif-

ferences in the microbial community composition between samples and to understand

the structures of microbial communities and the associations between microbial com-

positions and the environment. DA analysis has commonly been performed using

methods adapted from RNA sequencing (RNA-seq) analysis; however, characteris-

tics specific to microbiome data make differential abundance analysis challenging.

Compared to other high-throughput sequencing techniques such as RNA-seq, metage-

nomic data are sparse, i.e., the taxa count matrix contains many zeros. This sparsity

can be explained by both biological and technical reasons: some taxa are very rare and

present only in a few samples, while others are very lowly represented and cannot be

detected because of an insufficient sequencing depth or other technical reasons.

In recent years, single-cell RNA-seq (scRNA-seq) has revolutionized the field of tran-

scriptomics, providing new insight on the transcriptional program of individual cells,

casting light on complex, heterogeneous tissues, and revealing rare cell populations

with distinct gene expression profiles [3–6]. However, due to the relatively inefficient

mRNA capture rate, scRNA-seq data are characterized by dropout events, which leads

to an excess of zero read counts compared to bulk RNA-seq data [7, 8]. Thus, with the

advent of this technology, new statistical models accounting for dropout events have

been proposed. The similarities with respect to sparsity observed in both scRNA-seq

and metagenomics data led us to pose the question of whether statistical methods de-

veloped for the differential expression of scRNA-seq data perform well on metage-

nomic DA analysis.

Some benchmarking efforts have compared the performance of methods [9–12] both

adapted from bulk RNA-seq and developed for microbiome DA [13, 14]. While some

tools exist to guide researchers [15], a general consensus on the best approach is still

missing, especially regarding the methods’ capability of controlling false discoveries. In

this study, we benchmark several statistical models and methods developed for metage-

nomics [13, 14, 16–18], bulk RNA-seq [19–21], and, for the first time, single-cell RNA-

seq [7, 8, 22–24] on a collection of manually curated 16S and WMS [25, 26] real data

as well as on a comprehensive set of simulations. We include in the comparison several

tools that take into account the compositional nature of the data: they achieve this

through the use of the Dirichlet-Multinomial Distribution (e.g., ALDEx2), Multinomial

Distribution with reference frames (Songbird), or the Centered Log Ratio (CLR) trans-

formation (e.g., ALDEx2, mixMC). The novelty of our benchmarking efforts is twofold.

First, we include in the comparison novel methods recently developed in the scRNA-

seq and metagenomics literatures; second, unlike previous efforts, our conclusions are

based on several performance metrics on real data that range from type I error control

and goodness of fit to replicability across datasets, concordance among methods, and

enrichment for expected DA microbial taxa.

Results

We benchmarked a total of 18 approaches (Additional file 1: Supplementary Table 2)

on 100 real datasets (Additional file 1: Supplementary Table 1), evaluating goodness of

fit, type I error control, concordance, and power through (i) reliability of DA results in
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real data based on enrichment analysis and (ii) specificity and sensitivity using 28,800

simulated datasets (Fig. 1; Additional file 2: Supplementary Table 4).

The benchmarked methods include both DA methods specifically proposed in the

metagenomics literature and methods proposed in the single-cell and bulk RNA-seq

fields. The manually curated real datasets span a variety of body sites and characteris-

tics (e.g., sequencing depth, alpha and beta diversity). The diversity of the data allowed

us to test each method on a variety of circumstances, ranging from very sparse, very di-

verse datasets, to less sparse, less diverse ones.

We first analyzed 18 16S, 82 WMS, and 28 scRNA-seq public datasets in order to as-

sess whether scRNA-seq and metagenomic data are comparable in terms of sparsity.

We observed overlap in the fractions of zero counts between the scRNA-seq, WMS,

and 16S, but with scRNA-seq datasets having a lower distribution of sparsities (ranging

from 12 to 75%) as compared to 16S (ranging from 55 to 83%) and WMS datasets

Fig. 1 Starting from 41 Projects collected in 2 manually curated data repositories (HMP16SData and

curatedMetagenomicData Bioconductor packages), 18 16S and 82 WMS datasets were downloaded.

Biological samples belonged to several body sites (e.g., oral cavity), body subsites (e.g., tongue dorsum), and

conditions (e.g., healthy vs. disease). Feature per sample count tables were used in order to evaluate several

objectives: goodness of fit (GOF) for 5 parametric distributions, type I error control, concordance, and power

for 18 differential abundance detection methods. Methods developed for metagenomics, bulk-RNAseq, or

sc-RNAseq were ranked using empirical evaluations of the above-cited objectives

Calgaro et al. Genome Biology          (2020) 21:191 Page 3 of 31



(ranging from 35 to 89%) whose distributions of zero frequencies were not significantly

different from each other (Wilcoxon test, W = 734, p = 0.377, Additional File 1: Supple-

mentary Fig. S1a-b). To establish whether the difference between scRNA-seq and meta-

genomic data was due to the different number of features and samples, which are

intrinsically related to sparsity, we explored the role of library size and experimental

protocol (Additional File 1: Supplementary Fig. S1c). scRNA-seq datasets showed a

marked difference in terms of the number of features and sparsity, as they are derived

from different experimental protocols. Full-length data (e.g., Smart-seq) are on average

sparser than droplet-based data (e.g., Drop-seq) but both are less sparse than 16S and

WMS.

These results indicate that metagenomic data are even more sparse than scRNA-seq,

and thus that zero-inflated models designed for scRNA-seq could at least in principle

have good performance in a metagenomic context.

Goodness of fit

As different methods rely on different statistical distributions to perform DA analysis,

we started our benchmark by assessing the goodness of fit (GOF) of the statistical

models underlying each method on the full set of 16S and WMS data. For each model,

we evaluated its ability to correctly estimate the mean counts and the probability of ob-

serving a zero (Fig. 2). We evaluated five distributions: (1) the negative binomial (NB)

used in edgeR [19] and DeSeq2 [20], (2) the zero-inflated negative binomial (ZINB)

used in ZINB-WaVE [23], (3) the truncated Gaussian Hurdle model of MAST [7], (4)

the zero-inflated Gaussian (ZIG) mixture model of metagenomeSeq [13], and (5) the

Dirichlet-Multinomial (DM) distribution underlying ALDEx2 [14]. The truncated

Gaussian Hurdle model was evaluated following two data transformations, the default

logarithm of the counts per million (logCPM) and the logarithm of the counts rescaled

by the median library size (see the “Methods” section). Similarly, the ZIG distribution

was evaluated considering the scaling factors rescaled by either one thousand (as imple-

mented in the metagenomeSeq Bioconductor package) and by the median scaling factor

(as suggested in the original paper). We assessed the goodness of fit for each of these

models using the stool samples from the Human Microbiome Project (HMP) as a rep-

resentative dataset (Fig. 2a–d); all other datasets gave similar results (Additional file 1:

Supplementary Fig. S2). A useful feature of this dataset is that a subset of samples was

processed both with 16S and WMS and hence can be used to compare the distribu-

tional differences of the two data types. Furthermore, this dataset includes only healthy

subjects in a narrow age range, providing a good testing ground for covariate-free

models.

The NB distribution showed the lowest root mean square error (RMSE, see the

“Methods” section) for the mean count estimation, followed by the ZINB distribution

(Fig. 2a, b). This was true for both 16S and WMS data, in most of the considered data-

sets (Additional file 1: Supplementary Fig. S2). Moreover, for both distributions, the dif-

ference between the estimated and observed means was symmetrically distributed

around zero, indicating that the models did not systematically under- or overestimate

the mean abundances (Fig. 2a, b; Additional file 1: Supplementary Fig. S2). Conversely,

the ZIG distribution consistently underestimated the observed means, both for 16S and
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WMS and independently on the scaling factors (Fig. 2a, b). The Hurdle model was sen-

sitive to the choice of the transformation: rescaling by the median library size rather

than by one million reduced the RMSE in both 16S and WMS data (Fig. 2a, b). This

was particularly evident in 16S data (Fig. 2a), in which the default logCPM values re-

sulted in a substantial overestimation of the mean count, while the median library size

scaling led to underestimation. Given the clear problems with logCPM, we only used

the median library size for MAST and the median scaling factor for metagenomeSeq in

all subsequent analyses. The DM distribution overestimated observed means for low-

mean count features and underestimated observed values for high-mean count features.

This overestimation effect was more evident in WMS than in 16S.

Fig. 2 a Mean-difference (MD) plot and root mean squared errors (RMSE) for HMP 16S Stool samples. b MD

plot and RMSE for HMP WMS Stool samples. c Average rank heatmap for MD performances in HMP 16S

datasets, HMP WMS datasets and all other WMS datasets. The value inside each tile refers to the average

RMSE value on which ranks are computed. d Zero probability difference (ZPD; see the “Methods” section)

plot and RMSE for HMP 16S Stool samples. e ZPD plot and RMSE for HMP WMS Stool samples. f Average

rank heatmap for ZPD performances in HMP 16S datasets, HMP WMS datasets, and all other WMS datasets.

The value inside each tile refers to the average RMSE value on which ranks are computed
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Concerning the ability of models to estimate the probability of observing a zero (re-

ferred to as zero probability difference, ZPD), we found that Hurdle models provided

good estimates of the observed zero proportion for 16S (Fig. 2c) and WMS datasets

(Fig. 2d). The NB and ZINB distributions, on the other hand, tended to overestimate

the zero probability for features with a low observed proportion of zero counts in 16S

(Fig. 2c). In WMS data, the ZINB distribution perfectly fitted the observed proportion

of zeros, while the NB and DM models tended to underestimate it (Fig. 2d). Finally, the

ZIG distribution always underestimated the observed proportion of zeros, especially for

highly sparse features (Fig. 2c, d).

In summary, across all datasets, the best fitting distributions were the NB and ZINB:

the NB distribution seemed to be particularly well-suited for 16S datasets, while the

ZINB distribution seemed to better fit WMS data (Fig. 2e). We hypothesize that this is

due to the different sequencing depths of the two platforms. In fact, while our 16S

datasets have an average of 4891 reads per sample, in WMS, the mean depth is 3.6 ×

108 (3 × 108 for HMP). To confirm this observation, we carried out a simulation experi-

ment by down-sampling reads from deep-sequenced WMS samples (rarefaction): while

the need for zero inflation seemed to diminish as we got closer to the number of reads

typical of the corresponding 16S experiments, the profile did not completely match be-

tween approaches (Additional file 1: Supplementary Fig. S4b). This suggests that, while

sequencing depth is an important contributing factor, it is not enough to completely

explain the distributional differences between the two platforms.

Type I error control

We next sought to evaluate type I error rate control of each method, i.e., the probability

of the statistical test to call a feature DA when it is not. To do so, we considered mock

comparisons between the same biological Stool HMP samples (using the same Random

Sample Identifier in both 16S and WMS), in which no true DA is present. Briefly, we

randomly assigned each sample to one of two experimental groups and performed DA

analysis between these groups, repeating the process 1000 times (see the “Methods”

section for additional details). In this setting, the p values of a perfect test should be

uniformly distributed between 0 and 1 (ref. [27]) and the false positive rate (FPR or ob-

served α), which is the observed proportion of significant tests, should match the nom-

inal value (e.g., α = 0.05).

To evaluate the impact of both the normalization step and the estimation and testing

step in bulk RNA-seq inspired methods, we included in the comparison both edgeR

with its default normalization (TMM), as well as with DESeq2 recommended

normalization (“poscounts,” i.e., the geometric mean of the positive counts) and vice

versa (Table S2). Similarly, because the zinbwave observational weights can be used to

apply several bulk RNA-seq methods to single-cell data [24], we have included in the

comparison edgeR, DESeq2, and limma-voom with zinbwave weights.

The qq-plots and Kolmogorov-Smirnov (KS) statistics in Fig. 3 show that most

methods achieved a p value distribution reasonably close to the expected uniform. Not-

able exceptions in the 16S experiment were edgeR with TMM normalization and ro-

bust dispersion estimation (edgeR_TMM_robustDisp), metagenomeSeq, and ALDEx2

(Fig. 3a, b). While the former two appeared to employ liberal tests, the latter was
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conservative in the range of p values that are typically of interest (0–0.1). In the WMS

data, departure from uniformity was observed for metagenomeSeq and edgeR_TMM_

robustDisp, and limma_voom_TMM_zinbwave, which employed liberal tests, as well as

corncob_LRT, ALDEx2, and scde, which were conservative in the range of interest

(Fig. 3c, d). We note that in the context of DA, liberal tests will lead to many false dis-

coveries, while conservative tests will control the type I error at a cost of reduced

power, potentially hindering true discoveries.

We next recorded the FPR by each method (by definition all discoveries are false

positives in this experiment) and compared it to its expected nominal value. This

analysis confirmed the tendencies observed in Fig. 3a, b and c, d. In particular,

edgeR_TMM_robustDisp and metagenomeSeq were very liberal in both 16S (Fig. 3e)

and WMS data (Fig. 3f); in the case of metagenomeSeq, as much as 30% of the

features were deemed DA in the 16S datasets when claiming a nominal FPR of 5%

(Fig. 3e). ALDEx2, scde, and MAST, albeit conservative, were able to control type I

error. In between these two extremes, edgeR, DESeq2, and limma showed an ob-

served FPR slightly higher than its nominal value. In particular, DESeq2-based

methods, limma-voom, and MAST were very close to the nominal FPR for 16S

Fig. 3 a Quantile-quantile plot from 0 to 1 and 0 to 0.1 zoom for DA methods in 41 16S HMP stool

samples. Average curves for mock comparisons are reported. b Kolmogorov-Smirnov statistic boxplots for

DA methods in 41 16S HMP stool samples. c Quantile-quantile plot from 0 to 1 and 0 to 0.1 zoom for DA

methods in 41 WMS HMP stool samples. Average curves for mock comparisons are reported. d

Kolmogorov-Smirnov statistic boxplots for DA methods in 41 WMS HMP stool samples. e Boxplots of the

proportion of raw p values lower than the commonly used thresholds for the nominal α (0.01, 0.05, and

0.1) for 41 16S stool samples. f Boxplots of the proportion of raw p values lower than the commonly used

thresholds for the nominal α (0.01, 0.05, and 0.1) for 41 WMS stool samples
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(Fig. 3e), while limma-voom, MAST, and corncob (with Wald test) were the closest

in WMS data (Fig. 3f). Of note, corncob seemed slightly conservative in WMS data

and slightly liberal in 16S data, with LRT being closer than Wald to the nominal

value in 16S (Fig. 3e) and vice versa in WMS data (Fig. 3f). The zinbwave weights

showed mixed results: DESeq2 with zinbwave weights was better than the un-

weighted versions in WMS, while the weights did not help edgeR and limma in

controlling the type I error rate. Taken together, these results suggest that the ma-

jority of the methods do not control the type I error rate, both in 16S and WMS

data, confirming previous findings [10, 12]. However, for most approaches, the ob-

served FPR is only slightly higher than its nominal value, making the practical im-

pact of this result unclear.

Between-method concordance

We measured the ability of each method to produce replicable results in independent

data in six datasets [25, 26, 28–30] (Additional file 1: Supplementary Table S3) that

showed different alpha and beta diversity, as well as different amounts of DA between

two experimental conditions (Additional file 1: Supplementary Fig. S5). Each dataset

was randomly split in two equally sized subsets and each method was separately applied

to each subset. The process was repeated 100 times (see the “Methods” section for de-

tails). To assess the ability of methods to return concordant results from independent

samples, we employed the Concordance At the Top [31](CAT) measure to assess

between-method concordance (BMC) by comparing the list of DA features across

methods in the subset (ranked by p value when available or by importance in the case

of the songbird and mixMC; see Methods). We used BMC to (i) group methods based

on their degree of agreement and (ii) identify those methods sharing the largest amount

of discoveries with the majority of the other methods. Although concordance is not a

guarantee of validity, it is a requirement of validity, so methods sharing the largest

amount of discoveries with the majority of other methods may be more likely to also

be producing valid results.

Concordance analysis performed on 16S Tongue Dorsum vs. Stool dataset (Fig. 4a)

showed that the methods clustered within two distinct groups: the first comprising all

methods that include a TMM normalization step, songbird, and scde, the second con-

taining all the other approaches (Fig. 4a). Even within the second group, methods seg-

regated by normalization, as can be seen by the tight clustering of all the methods that

include a poscount normalization step (Fig. 4a). This indicates that, in 16S data, the

choice of the normalization has a pronounced effect on inferential results, even more

so than the choice of the statistical test. A similar result was previously observed in

bulk RNA-seq data [32]. The use of observational weights to account for zero inflation

did not seem to matter in these data, and in general, scRNA-seq methods did not agree

with each other (Fig. 4a). Similarly, the clustering did not separate compositional and

non-compositional methods (Fig. 4a). We noted that metagenomeSeq was not concord-

ant with any other method and that the two corncob approaches formed a tight group,

confirming that modeling strategies have more impact than the choice of the test statis-

tics in these data.
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A different picture emerged from the analysis of the WMS data (Fig. 4b). Here,

methods are clustered by the testing approach. The bottom cluster comprised the bulk

RNA-seq methods with the inclusion of the Wilcoxon nonparametric approach, meta-

genomeSeq, and mixMC. The middle cluster consisted of the zinbwave methods and

ALDEx2. The top cluster comprised MAST, corncob, scde, and songbird. Overall,

mixMC and the methods based on NB generalized linear models showed the highest

BMC values. When observational weights were added to those models, the BMC de-

creased, but still a good level of concordance was observed with their respective un-

weighted version.

We noted that the BMC is highly dataset-specific and depends on the amount of DA

between the compared groups. Indeed, BMC decreased with decreased beta diversity of

the dataset, and the role of normalization became less clear (Additional file 1: Supple-

mentary Fig. S6).

Within-method concordance

The CAT metric was used again for assessing the within-method concordance (WMC),

i.e., the amount of concordance of the results of each method on the two random

subsets.

WMC was clearly dataset-dependent, showing high levels of concordance in datasets

with a high differential signal (e.g., tongue vs. stool, Fig. 5a) and low concordance in

datasets with a low differential signal (e.g., supragingival vs. subgingival, Fig. 5e). Over-

all, the replicability of results in WMS studies was slightly higher than that of 16S

datasets.

In terms of method comparison, corncob showed high levels of concordance in

WMS datasets but lower concordance in all 16S datasets (Fig. 5). Similarly, songbird

showed the highest concordance in mid (Fig. 5d) and low (Fig. 5f) diversity WMS data-

sets but did not perform well in 16S (especially for the highly diverse TongueDorsum

vs. Stool comparison; Fig. 5a).

The addition of zinbwave weights to edgeR, DESeq2, and limma-voom did not always

help: it was sometimes detrimental, e.g., for edgeR in the schizophrenia dataset (Fig. 5d)

Fig. 4 a Between-method concordance (BMC) and within-method concordance (WMC) (main diagonal)

averaged values from rank 1 to 100 for DA methods evaluated in replicated 16S Tongue Dorsum vs. Stool

comparisons. b BMC and WMC (main diagonal) averaged values from rank 1 to 100 for DA methods

evaluated in replicated WMS Tongue Dorsum vs. Stool comparisons
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and sometimes led to an improvement in replicability, e.g., for limma-voom in the

Tongue Dorsum vs. Stool dataset (Fig. 5a). The schizophrenia dataset had the lowest

sample size among all the datasets evaluated, suggesting that sample size may play an

important role in estimating zinbwave weights.

While this analysis confirmed the unsatisfactory performance of metagenomeSeq

(Fig. 5a, b, and f), ALDEx2, which was very conservative in terms of type I error control

(Fig. 3), showed overall good performance, with the notable exception of the high-

diversity WMS dataset (Fig. 5b), for which it was the worst performing method. To

sum up, the highest concordance was measured, in all WMS datasets, by the corncob-

based and songbird methods, while RNA-seq methods performed better in 16S data-

sets, confirming that the two platforms yield substantially different data. mixMC was

Fig. 5 a. Boxplot of WMC on high diversity 16S datasets: Tongue Dorsum vs. Stool. Due to the high sparsity

and low sample size of the dataset, the Concordance At the Top (CAT) at rank 100 was not computable for

corncob methods: it was possible to estimate the model only for a few features. b Boxplot of WMC on high

diversity WMS datasets: Tongue Dorsum vs. Stool. c Boxplot of WMC on mid diversity 16S datasets: Buccal

Mucosa vs. Attached Keratinized Gingiva. d Boxplot of WMC on mid diversity WMS datasets: Schizophrenic

vs. Healthy Control saliva samples. e Boxplot of WMC on low diversity 16S datasets: Supragingival vs.

Subgingival plaque. f Boxplot of WMC on low diversity WMS datasets: Colon Rectal Cancer patient vs.

Healthy Control stool samples
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the only method that never showed poor concordance regardless of the technology or

of the diversity of the compared groups.

Taken together, these analyses suggest that both BMC and WMC are highly

dependent on the amount of DA observed in the dataset: higher DA leads to a higher

concordance. Moreover, WMC was similar among the compared methods, indicating

that the replicability of the DA results depends more on the strength of DA than on

the choice of the method (Fig. 5).

Enrichment analysis

While mock comparisons and random splits allowed us to evaluate model fit and con-

cordance, these analyses do not assess the correctness of the discoveries. Even the

method with the highest WMC could nonetheless consistently identify false positive

DA taxa.

While the lack of ground truth makes it challenging to assess the validity of DA re-

sults in real data, enrichment analysis [33] can provide an alternative solution to rank

methods in terms of their ability to identify as significant taxa that are known to be dif-

ferentially abundant between two groups.

Here, we leveraged the peculiar environment of the gingival site: the supragingival

biofilm is directly exposed to the open atmosphere of the oral cavity, favoring the

growth of aerobic species. In the subgingival biofilm, however, the atmospheric condi-

tions gradually become strict anaerobic, favoring the growth of anaerobic species [34].

From the comparison of the two sites, we thus expected to find an abundance of aer-

obic microbes in the supragingival plaque and of anaerobic bacteria in the subgingival

plaque. DA analysis should reflect this difference by finding an enrichment of aerobic

(anaerobic) bacteria among the DA taxa with a positive (negative) log-fold-change.

We tested this hypothesis by comparing 38 16S supragingival and subgingival sam-

ples (for a total of 76 samples) from the HMP (see the “Methods” section for details).

The DA methods showed a wide range of power, identifying 2 (ALDEx2) through 305

(metagenomeSeq) significantly DA taxa (Fig. 6a). However, almost all methods cor-

rectly found an enrichment of anaerobic microbes among the taxa under-abundant in

supragingival and an enrichment of aerobic microbes among the over-abundant ones

(Fig. 6a; Additional file 1: Supplementary Fig. S7). Furthermore, as expected, no enrich-

ment was found for facultative anaerobic microbes, which are able to switch between

aerobic and anaerobic respiration (Fig. 6a).

Although most methods performed well, scde, ALDEx2, and MAST had too low

power to detect any enrichment (at 0.05 significance level), as their number of identi-

fied DA taxa was very low (Fig. 6a). This analysis confirmed the conservative behavior

of these methods in 16S data (Fig. 3e). Finally, metagenomeSeq and edgeR with robust

dispersion estimation found the correct enrichments, but they also identified many an-

aerobic taxa with a positive log-fold-change (Fig. 6a), confirming their liberal tendencies

(Fig. 3e). Overall, these results were confirmed by the same comparison in WMS data

(Additional file 1: Supplementary Fig. S8), but the reduced sample size of our WMS

dataset resulted in a reduced power to detect DA for all methods (see the “Methods”

section).
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To explore the ability of each method to correctly rank the DA taxa independently of

its power, we tested whether over-abundant aerobic taxa and under-abundant anaer-

obic taxa were more likely to be ranked at the top when ranking taxa by each method’s

test statistics. To do so, we considered the top K taxa (with K from 1 to 20%; see the

“Methods” section) and computed the difference between putative true positives (TP;

over-abundant aerobic taxa and under-abundant anaerobic taxa) and putative false pos-

itives (FP; under-abundant aerobic taxa and over-abundant anaerobic taxa; Fig. 6b). Re-

assuringly, increasing the threshold resulted in a larger difference between TP and FP

Fig. 6 38vs38 Supragingival vs. Subgingival Plaque 16S samples a Barplot of the enrichment tests

performed on the DA taxa found by each method using an adjusted p value of 0.1 as threshold for

significance (top 10% ranked taxa for songbird). Each bar represents the number of findings, UP in

Supragingival or DOWN in Supragingival Plaque compared to Subgingival Plaque, regarding aerobic,

anaerobic, and facultative anaerobic taxa metabolism. A Fisher exact test was performed to establish the

enrichment significance represented with signif. codes. b Difference between putative true positives (TP)

and putative false positives (FP) (y-axis) for several significance thresholds (x-axis). Each threshold represents

the top percent ranked taxa, using the ordered raw p value lists as reference (loading values for mixMC and

differentials for songbird). c Aerobic metabolism taxa mutually found by 3 or more methods from the

subset of the representative methods. d Anaerobic metabolism taxa mutually found by 8 or more methods

from the subset of the representative methods
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for most methods (Fig. 6b), indicating that independently of their power,

most methods are able to highly rank true positive taxa. This becomes particularly

important for the methods with a low power, suggesting that in these cases a more

liberal p value threshold may be applied. However, metagenomeSeq’s performance

deteriorates after the 10% threshold, suggesting that this method starts to identify

more false positives (Fig. 6b): this is particularly problematic since its adjusted p

value threshold identifies 34% of DA taxa. Among the other methods, MAST and

ALDEx2 showed a consistently lower performance, while limma-voom was the best

performer at permissive thresholds, and songbird was the best performer at strict

thresholds (Fig. 6b).

The majority of aerobic taxa were found DA by just a handful of methods, with only

15 out of 75 unique aerobic taxa identified as DA by 3 or more representative methods

(see Methods; Fig. 6c). All of them belonged to the genera Cardiobacterium, Neisseria,

Lautropia, Corynebacterium, found to be among the most prevalent genera in supragin-

gival plaques in an independent study [35]. On the other hand, 57 out of 161 unique

anaerobic taxa were found DA by 5 or more representative methods (see Methods;

Fig. 6d; Additional file 1: Supplementary Fig. S9). Among these, Fusobacterium, Prevo-

tella, Porphyromonas, Treponema are known to be abundant in the subgingival plaque

[36, 37]. Despite the small sample size for WMS data (n = 10), enrichment and DA ana-

lysis were largely consistent, including several strains of Neisseria and several species of

Treponema found to be DA (Additional file 1: Supplementary Fig. S8c,d). Overall, simi-

lar methods tended to identify a higher number of mutual taxa, confirming our previ-

ous findings in the concordance analysis (Additional file 1: Supplementary Fig. S6) and

highlighting how different statistical test and normalization approaches have a big im-

pact on the identified DA.

Parametric simulations

Given the results of our GOF analysis (Fig. 2), we only used the NB and ZINB distribu-

tions to simulate 7200 and 19,200 scenarios, respectively, mimicking both 16S and

WMS data. The simulated data differed in sample size, proportion of DA features, ef-

fect size, proportion of zeros, and whether there was an interaction between the

amount of zeros and DA (sparsity effect, see the “Methods” section for details).

In general, we found that the results confirmed our expectations that methods per-

form well on simulated data that conforms to the assumptions of the method (Add-

itional file 2: Supplementary Fig. S11). The parametric distribution that generated the

data had a great influence on the method performances and the methods that rely on

NB and ZINB generally performed better compared to the other methods. As an ex-

ample, MAST, which showed overall good results in real data, did not behave in simu-

lations, partly because of the misspecified model with respect to the data generating

distribution.

As expected, all methods’ performances increased as the sample size and/or the effect

size increased. Confirming our real data results, we finally observed that metagenome-

Seq, scde, and edgeR-robust performed poorly. Details on the simulated data analysis

can be found in Additional file 2.
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Discussion

We investigated different theoretical and practical issues related to the analysis of meta-

genomic data. The main objective of the study was to compare several DA detection

methods adapted from bulk RNA-seq, single-cell RNA-seq, or specifically developed for

metagenomics. Unsurprisingly, there is no single method that outperforms all others in

all the tested scenarios. As is often the case in high-throughput biology, the results are

data-dependent and careful data exploration is needed to make an informed decision

on which workflow to apply to a specific dataset. We recommend applying our explora-

tory analysis framework to gain useful insights about the assumptions of each method

and their suitability given the data at hand. To this end, we provide all the R scripts to

easily reproduce the analyses of this paper on any given dataset (see the "Availability of

data and materials" section).

Our GOF analysis highlighted the advantages of using count models for the analysis

of metagenomics data. The goodness of fit of zero-inflated models seemed dependent

on whether the data come from 16S or WMS experiments. The difference between

these two approaches translates to different count data structures: while for WMS

many features are characterized by a clearly visible bimodal distribution (with a point

mass at zero and another mass, quite far from zero, at the second positive mode), 16S

data are as sparse as or even more sparse than WMS data, presenting for many features

a less clearly bimodal distribution (Additional file 1: Supplementary Fig. S4a). This dif-

ference is probably due to a mix of factors: primarily sequencing depth, but also differ-

ent taxonomic classification between technologies (entire metagenomic sequences

versus clusters of similar amplicon sequences), bioinformatics methods for data prepro-

cessing, etc. However, comparing the distribution of several genera on the same sam-

ples assayed with 16S and WMS, we observed that many of the zero counts were

consistent across platforms and very different read depths, suggesting that many ob-

served zeros are biological and not technical in nature (Additional file 1: Supplementary

Fig. S4a). Further analyses are needed to inspect this unsolved issue and related efforts

are ongoing in the single-cell RNA-seq literature, where similar differences are ob-

served between protocols with and without unique molecular identifiers [38, 39].

Metagenomic data are inherently compositional, but whether incorporating composi-

tionality into the statistical model provides benefits greater than the tradeoffs they may

introduce is a debated topic in the literature [9, 13, 40–42]. While other data resulting

from sequencing are also compositional, some in the microbiome data analysis commu-

nity believe that compositionality has greater relevance in metagenomics due to the po-

tential presence of dominant microbes. Here, we found that compositional methods did

not outperform non-compositional methods designed for count data, indicating that

their benefits did not outweigh the drawbacks they may introduce. This can be ex-

plained by two considerations. First, some compositional methods assume that the data

arise from a multinomial distribution, with n trials (reads) and a vector p indicating the

probability of the reads to be mapped to each taxon. In metagenomic studies, we have

a large n (number of sequenced reads) and small p (since there are many taxa, the

probability of each read to map to any given taxon is small). In this setting, the Poisson

distribution is a good approximation of the multinomial. Similarly, the negative bino-

mial is a good approximation of the Dirichlet-Multinomial [31]. Secondly, some nor-

malizations, such as the geometric mean method implemented in DESeq2 or the
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trimmed mean of M-values of edgeR, have size factors mathematically equivalent or

very similar to the centered log-ratio proposed by Aitchison [40, 43]. This has been

shown to reduce the impact of compositionality on DA results [44]. We did not test

the ANCOM package [45] because it was too slow for assessment. However, we in-

cluded three recent analysis methods that address compositionality, namely, ALDEx2,

songbird, and mixMC. This allowed us to perform an adequate assessment of compos-

itional vs. non-compositional approaches. Similarly, multivariate methods, such as

songbird and mixMC, did not outperform methods based on univariate tests, suggest-

ing that these simpler approaches are often sufficient to detect the most relevant bio-

logical signals.

Fig. 7 Overall method ranking based on 5 evaluation criteria. Average normalized ranks range from 0 to 1,

lower values correspond to better performances. The type I error columns are based on the analysis of the

1000 mock comparisons from HMP 16S and WMS Stool datasets; the concordance analysis column is based

on the average WMC values across the 100 random subset comparisons for each of the 6 datasets used.

The power enrichment analysis and computational time columns are based on the Supragingival vs.

Subgingival Plaque 16S dataset evaluations. Each method’s ordering is computed using the first 4 columns.

Since the type I error analysis was not available for songbird and mixMC, these methods were not included

in the final ranking
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The lack of ground truth makes the assessment of DA correctness very challen-

ging. However, we can rely on mock datasets, within-method concordance, and en-

richment analysis to obtain a principled ranking of method performances (Fig. 7).

Although each analysis by itself does not imply correctness, taken together these

assessments are a good proxy to evaluate methods performances in terms of their

ability to limit the amount of false discoveries, give replicable results in datasets

contrasting the same groups, and identify as significant the taxa that are expected

to be DA.

The parametric simulation framework is useful to inspect how individual characteris-

tics of the data-generating distribution impact the sensitivity and specificity of the

methods. As the entire analysis was supported by real data, we decided to focus only

on a very simple but easily reproducible implementation of the NB and ZINB distribu-

tions for the simulations. The choice was justified by our GOF analysis on real datasets.

Unsurprisingly, the sample size and the effect size were the characteristics that had the

most impact on method performances. This translates into an evident suggestion for

experimental design: large sample sizes are needed to detect low effect sizes. Our simu-

lation framework can in principle be used for power calculations in the context of DA

analysis.

In the 16S dataset used for the enrichment analysis, with a total of 76 samples and al-

most 900 unique taxa, the most time-consuming methods were scde and songbird with

more than 5min needed to identify DA taxa. ALDEx2 and corncob-based methods

took about 40 s, zinbwave-weighted methods took approximately 20 s while mixMC,

MAST and seurat_wilcoxon around 10 s. DESeq2 and edgeR were under the 10 s with

limma-voom which was the fastest method taking less than a second (Fig. 7). A consist-

ent ranking was found in simulated datasets with interesting changes determined by

different sample-sizes (Additional file 2: Supplementary Table S5 and Supplementary

Fig. S10).

Conclusions

As already noted in recent publications [10–12], the perfect method does not exist.

However, taken together, our analyses suggested that limma-voom, corncob, and

DESeq2 showed the most consistent performance across all datasets, metagenomeSeq

had the worst performance, and scde and ALDEx2 suffered from low power (Fig. 7).

Among compositional data analysis methods, songbird showed a greater ability to iden-

tify the correct taxa in the enrichment analysis, while mixMC had a better within-

method concordance.

In general, we recommend a careful exploratory data analysis and we present a

framework that can help scientists make an informed choice in a dataset-specific man-

ner. We did not find evidence that bespoke differential abundance methods outperform

methods developed for the differential expression analysis of RNA-seq data. However,

our analyses also suggested that further research is required to overcome the limita-

tions of currently available methods: in this respect, new directions in DA method de-

velopment, e.g., leveraging the phylogenetic tree [46, 47], log-contrast models [48], or

compositional balances [49] are promising, but efforts to make these methods scalable

are needed.

Calgaro et al. Genome Biology          (2020) 21:191 Page 16 of 31



Methods

Datasets

The HMP16Sdata [25] (v1.2.0) and curatedMetagnomicData [26] (v1.12.3) Bioconduc-

tor packages were used to download high-quality, uniformly processed, and manually

annotated human microbiome profiles for thousands of people, using 16S and Whole

Metagenome shotgun sequencing technologies, respectively. HMP16SData comprises

the collection of 16S data from the Human Microbiome Project (HMP), while curated-

MetagnomicData contains data from several projects. Gene-level counts for a collection

of public scRNA-seq datasets were downloaded from the scRNAseq (v1.99.8) Biocon-

ductor package.

While the latter datasets are used only for a comparison between technologies, the

former are widely used for all the analyses. A complete index with dataset usage is re-

ported in Additional file 1: Supplementary Table S1.

Phyloseq objects were obtained from the HMP16SData and curatedMetagenomicData

packages using the function as_phyloseq() and setting the bugs.as.phyloseq = TRUE

argument, respectively. The otu_table and sample_data slots of the phyloseq ob-

jects that contain, respectively, the taxa count table and the metadata associated to

each sample were used for all downstream analyses. For the WMS datasets, abso-

lute raw count data were estimated from the metaPhlAn2-produced relative count

data by multiplying the columns of the ExpressionSet data by the number of reads

for each sample, as found in the pData column “number_reads” (counts = TRUE

argument).

HMP16SData was split by body subsite in order to obtain 18 separated datasets. Stool

and Tongue Dorsum datasets were selected for example purposes thanks to their high

sample size. The same was done on curatedMetagenomicData HMP dataset, obtaining

9 datasets. Moreover, for the evaluation of type I error control, 41 stool samples with

equal RSID, in both 16S and WMS, were used to compare DA methods. For each re-

search project, curatedMetagenomicData was split by body site and treatment or dis-

ease condition, in order to create homogeneous sample datasets. A total of 82 WMS

datasets were created.

A total of 100 datasets were evaluated; however, for the CAT analysis, datasets not

split by condition or body subsite were evaluated (e.g., Tongue Dorsum vs. Stool in

HMP, 2012 for both 16S and WMS).

To consider the complexity and the variety of several experimental scenarios,

an attempt to select a wide variety of datasets for the analysis was done. The

datasets were chosen based on several criteria: sample size, homogeneity of the

samples, or availability of the same subjects (identified by RSID) assayed by both

technologies.

Statistical models

The following distributions were fitted to each dataset, either by directly modeling the

read counts or by first applying a logarithmic transformation:

� Negative binomial (NB) model, as implemented in the edgeR (v3.24.3)

Bioconductor package (on read counts);
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� Zero-inflated negative binomial (ZINB), as implemented in the zinbwave (v1.4.2)

Bioconductor package (on read counts);

� Truncated Gaussian hurdle model, as implemented in the MAST (v1.8.2)

Bioconductor package (on log count);

� Zero-inflated Gaussian (ZIG), as implemented in the metagenomeSeq (v1.24.1)

Bioconductor package (on log count).

� Dirichlet-multinomial (DM), as implemented in the MGLM (v0.2.0) CRAN R

package.

Negative binomial (NB)

The edgeR Bioconductor package was used to implement the NB model. In particular,

normalization factors were calculated with the Trimmed Mean of M-values (TMM)

normalization [50] using the calcNormFactors function; common, trended, and tagwise

dispersions were estimated by estimateDisp, and a negative binomial generalized log-

linear model was fit to the read counts of each feature, using the glmFit function.

Zero-inflated negative binomial (ZINB)

The zinbwave Bioconductor package was used to implement the ZINB model. We

fitted a ZINB distribution using the zinbFit function. As explained in the original

paper, the method can account for various known and unknown technical and bio-

logical effects [23]. However, to avoid giving unfair advantages to this method, we

did not include any latent factor in the model (K = 0). We estimated a common

dispersion for all features (common_dispersion = TRUE) and we set the likelihood

penalization parameter epsilon to 1e10 (within the recommended set of values

[24]).

Truncated Gaussian Hurdle model

We used the implementation of the MAST Bioconductor package. After a log2 trans-

formation of the reascaled counts with a pseudocount of 1, a zero-truncated Gaussian

distribution was modeled through generalized regression on positive counts, while a lo-

gistic regression modeled feature expression/abundance rate. As suggested in the

MAST paper [7], cell detection rate (CDR) which is computed as the proportion of

positive count features for each sample, was added as a covariate in the discrete and

continuous model matrices as a normalization factor.

Zero-inflated Gaussian

The metagenomeSeq Bioconductor package was used to implement a ZIG model for

log2 transformed counts with a pseudocount of 1, rescaled by the median of all

normalization factors or by 1e03 which gives the interpretation of “count per thousand”

to the offsets. The CumNormStat and CumNorm functions were used to perform Cu-

mulative Sum Scaling (CSS) normalization, which accounts for specific data character-

istics. Normalization factors were included in the regression through the fitZig

function.

Note that both MAST and metagenomeSeq were applied to the normalized,

log-transformed data. We evaluated both models, using their default scale factor
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log2ð
counts�106

libSize
þ 1Þ for MAST and log2ð

normFacts
1000

þ 1Þ for metagenomeSeq, as well as

by rescaling the data to the median library size [13], log2ð
counts�medianðlibSizeÞ

libSize
þ 1Þ

and log2ð
normFacts

medianðnormFactsÞÞ, respectively.

Dirichlet-Multinomial

The MGLM package was used to fit a Dirichlet-Multinomial regression model for

counts. The MGLMreg function with dist = “DM” allowed the implementation of the

above model and the estimation of the parameter values.

Goodness of fit (GOF)

To evaluate the goodness of fit of the models, we computed the mean differences be-

tween the estimated and observed values for several datasets.

For each model, we evaluated two distinct aspects: its ability to correctly estimate the

mean counts (plotted in logarithmic scale with a pseudo-count of 1) and its ability to

correctly estimate the probability of observing a zero, computed as the difference be-

tween the probability of observing a zero count according to the model and the ob-

served zero frequencies (zero probability difference, ZPD). We summarized the results

by computing the root mean squared error (RMSE) of the two estimators. The lower

the RMSE, the better the fit of the model.

This analysis was repeated for 100 datasets available in HMP16SData and curatedMe-

tagenomicData (Table S1 and Additional file 1: Supplementary Fig. S2).

Assuming homogeneity between samples inside the same body subsite or study con-

dition, we specified a model consisting of only an intercept or including a

normalization covariate.

Differential abundance detection methods

DESeq2

The DESeq2 (v1.22.2) Bioconductor package fits a negative binomial model for count

data. DESeq2 default data normalization is the so-called Relative Log Expression (RLE)

based on scaling each sample by the median ratio of the sample counts over the geo-

metric mean counts across samples. As 16S and WMS data sparsity may lead to a geo-

metric mean of zero, it is replaced by nth root of the product of the non-zero counts

(which is the geometric mean of the positive count values) as proposed in the phyloseq

package [51] and implemented in the DESeq2 estimateSizeFactors function with option

type = “poscounts”. We also tested DESeq2 with TMM normalization (see below). As

proposed in [24], observational weights were supplied in the weights slot of the DESeq-

DataSet class object to account for zero inflation. Observational weights were com-

puted by the computeObservationalWeights function of the zinbwave package. To test

for DA, we used a likelihood-ratio test (LRT) to compare the reduced model (intercept

only) to the full model with intercept and group variable. The p values were adjusted

for multiple testing via the Benjamini-Hochberg (BH) procedure. Some p values were

set to NA via the cooksCutoff argument that prevents rare or outlier features from being

tested.
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edgeR

The edgeR Bioconductor package fits a negative binomial distribution, similarly to

DESeq2. The two approaches differ mainly in the normalization, dispersion parameter

estimation, and default statistical test. We examined different procedures by varying

the normalization and the dispersion parameter estimation: edgeR_TMM_standard in-

volves TMM normalization and tagwise dispersion estimation through the calcNorm-

Factors and estimateDisp functions, respectively (with default values). Analogously to

DESeq2, “poscounts” normalization was used in addition to TMM in edgeR_poscounts_

standard to investigate the normalization impact. We also evaluated the impact of

employing a robust dispersion estimation, accompanied with a quasi-likelihood F test

through the estimateGLMRobustDisp and glmQLFit functions respectively (edgeR_

TMM_robustDisp). As with DESeq2, zinbwave observational weights were included in

the weights slot of the DGEList object in edgeR_TMM_zinbwave to account for zero in-

flation, through a weighted F test. Benjamini-Hochberg correction was used to adjust p

values for multiple testing.

Limma-voom

The limma Bioconductor package (v3.38.3) includes a voom function that (i) transforms

previously normalized counts to logCPM, (ii) estimates a mean-variance relationship,

and (iii) uses this to compute appropriate observational-level weights [21]. To adapt the

limma-voom framework to zero-inflation, zinbwave weights have been multiplied by

voom weights as done previously [24]. The residual degrees of freedom of the linear

model were adjusted before the empirical Bayes variance shrinkage and were propa-

gated to the moderated statistical tests. Benjamini-Hochberg correction method was

used to correct p values.

ALDEx2

ALDEx2 is a Bioconductor package (v1.14.1) that uses a Dirichlet-multinomial model

to infer abundance from counts [14]. The aldex method infers biological and sampling

variation to calculate the expected false discovery rate, given the variation, based on

several tests. Technical variation within each sample is estimated using Monte-Carlo

draws from the Dirichlet distribution. This distribution maintains the proportional na-

ture of the data while scale-invariance and sub-compositionally coherence of data is en-

sured by centered log-ratio (CLR). This removes the need for a between-sample

normalization step. In order to obtain symmetric CLRs, the iqlr argument is applied,

which takes, as the denominator of the log-ratio, the geometric mean of those features

with variance calculated from the CLR between the first and the third quantile. Statis-

tical testing is done through Wilcoxon rank sum test, even if Welch’s t, Kruskal-Wallis,

generalized linear models, and correlation tests were available. Benjamini-Hochberg

correction method was used to correct the p values for multiple testing.

metagenomeSeq

metagenomeSeq is a Bioconductor package designed to address the effects of both

normalization and under-sampling of microbial communities on disease association de-

tection and testing feature correlations. The underlying statistical distribution for
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log2(count + 1) is assumed to be a zero-inflated Gaussian mixture model. The mixture

parameter is modeled through a logistic regression depending on library sizes, while

the Gaussian part of the model is a generalized linear model with a sample-specific

intercept which represent the sample baseline, a sample-specific offset computed by

Cumulative Sum Scaling (CSS) normalization and another parameter which represents

the experimental group of the sample. We opted for the implementation suggested in

the original publication [13], where CSS scaling factors are divided by the median of all

the scaling factors instead of dividing them by 1000 (as done in the Bioconductor pack-

age). An EM algorithm is performed by the fitZig function to estimate all the parame-

ters. An empirical Bayes approach is used for variance estimation and a moderated t

test is performed to identify differentially abundant features between conditions.

Benjamini-Hochberg correction method was used to account for multiple testing.

Corncob

corncob is an R package (v0.1.0 [52]) for the differential abundance and differential

variability analysis of microbiome data [17]. Specifically, corncob is designed to account

for the challenges of modeling sequencing data from microbial abundance studies. It is

based on a hierarchical model in which the latent relative abundance of each taxon is

modeled as a beta distribution, and the observed absolute presence of a taxon is mod-

eled as a binomial process with the previously specified beta as the probability of suc-

cess. This hierarchical structure gives flexibility to the method, which can account for

changes in the average count values as well as their dispersion. A generalized linear

model framework, with a logit link function, is used to allow the study of covariates in

the feature count distributions. The model fit is performed by maximum likelihood

using the trust region optimization algorithm [17]. Likelihood-ratio or Wald tests can

be used to test the null hypothesis of no DA.

Songbird

songbird is a python package [53] that ranks microbes that are changing the most rela-

tive to each other [16]. The method is based on a compositional approach in which the

underlying count distribution is assumed to be multinomial. The coefficients from

multinomial regression can be ranked to determine which taxa are changing the most

between samples. The compositionality is addressed using the differential abundance of

each taxon as reference to each other when they are ranked numerically. Since songbird

has been developed as an extension tool for Qiime2, we converted all our data tables to

the .biom format to serve as input for this method. The authors’ suggested analysis

pipeline requires several manual adjustments to the tuning parameters on the basis of

the comparison of the results after several runs, making it difficult to implement this

method within a benchmarking framework. For this reason, we used the default values

for all the tuning parameters.

mixMC

mixMC is a multivariate framework implemented in mixOmics, a Bioconductor pack-

age (v6.6.1), for omic data analysis [18]. It handles compositional and sparse data,

repeated-measures experiments, and multiclass problems. After the addition of a
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pseudo-count value of 1, the TSS normalization is applied to the count table and the

CLR transformation is performed to account for compositionality. The method is based

on a Partial Least Squares (PLS) Discriminant Analysis (DA), a multivariate regression

model which maximizes the covariance between linear combinations of the feature

counts and the outcome (in our case, a dummy variable indicating the body site/group

of each sample). Covariance maximization is achieved in a sequential manner via the

use of latent component scores [18]. Each component is a linear combination of the

feature counts and characterizes a source of covariation between the feature and the

groups. The sparse version of PLS-DA, sPLS-DA uses Lasso penalizations to select the

most discriminative features in the PLS-DA model. The penalization is applied

component-wise and the resulting selected features reflect the particular source of co-

variance in the data highlighted by each PLS component. We specified the number of

features to select per component at 100 or more, and we optimized it using leave-one-

out cross-validation. Since we always compared two groups in this manuscript, only the

first component is necessary for the analysis. The multivariate regression coefficients,

one for each feature, were ranked in order to obtain the most discriminant features for

the first component.

MAST

MAST is a Bioconductor package for managing and analyzing qPCR and sequencing-

based single-cell gene expression data, as well as data from other types of single-cell

assays. The package also provides functionality for significance testing of differential ex-

pression using a Hurdle model. Zero rate represents the discrete part, modeled as a

binomial distribution while log2ð
countsi; j�medianðlibSizeÞ

libSize j
þ 1Þ where i and j represent the ith

feature and the jth sample, respectively, is used for the continuous part, modeled as a

Gaussian distribution. The kind of data considered, different from scRNA-seq, does not

allow the usage of the adaptive thresholding procedure suggested in the original publi-

cation [7]. Indeed, because of the amount of feature loss, if adaptive thresholding is ap-

plied, the comparison of MAST with other methods would be unfair. However, a

normalization variable is included in the model. This variable captures information

about each feature sparsity related to all the others; hence, it helps to yield more inter-

pretable results and decreases background correlation between features. The function

zlm fits the Hurdle model for each feature: the regression coefficients of the discrete

component are regularized using a Bayesian approach as implemented in the bayesglm

function; regularization of the continuous model variance parameter helps to increase

the robustness of feature-level differential expression analysis when a feature is only

present in a few samples. Because the discrete and continuous parts are defined condi-

tionally independent for each feature, tests with asymptotic χ
2 null distributions, such

as the likelihood-ratio or Wald tests, can be summed and remain asymptotically χ
2,

with the degrees of freedom of the component tests added. Benjamini-Hochberg cor-

rection method was used to correct p values.

Seurat with Wilcoxon rank sum test

Seurat (v2.3.4) R package is a data analysis toolkit for the analysis of single-cell RNA-

seq [22]. Briefly, counts were scaled, centered, and LogNormalized. Wilcoxon rank sum
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test for detecting differentially abundant features was performed via the FindMarkers

function. Rare features, which are present in a fraction lower than 0.1 of all samples,

and weak signal features, which have a log fold change between conditions lower than

0.25, are not tested. Benjamini-Hochberg correction method was used to correct p

values.

SCDE—single-cell differential expression

The scde Bioconductor package (v1.99.1) with flexmix package (v2.3-13) implements a

Bayesian model for scRNA-seq data [8]. Read counts observed for each gene are mod-

eled using a mixture of a negative binomial (NB) distribution (for the amplified/de-

tected transcripts) and low-level Poisson distribution (for the unobserved or

background-level signal of genes that failed to amplify or were not detected for other

reasons). The scde.error.models function was used to fit the error models on which all

subsequent calculations rely. The fitting process is based on a subset of robust genes

detected in multiple cross-cell comparisons. Error models for each group of cells were

fitted independently (using two different sets of “robust” genes). Translating in a meta-

genomic context, cells correspond to samples and genes to taxa or amplicon sequence

variants. Some adjustments were needed to calibrate some function default values such

as the minimum number of features to use when determining the expected abundance

magnitude during model fitting. This option, defined by the min.size.entries argument,

set by default at 2000, was too big for many 16S or WMS experiment scenarios: as

we usually observe around 1000 total features per dataset (after filtering out rare

ones), we decided to replace 2000 with the 20% of the total number of features,

obtaining a dataset-specific value. Particularly, poor samples may result in abnor-

mal fits and were removed as suggested in the scde manual. To test for differential

expression between the two groups of samples a Bayesian approach was used: in-

corporating evidence provided by the measurements of individual samples, the pos-

terior probability of a feature being present at any given average level in each

subpopulation was estimated. To moderate the impact of high-magnitude outlier

events, bootstrap resampling was used and posterior probability of abundance fold-

change between groups was computed.

Type I error control

For this analysis, we used the collection of HMP Stool samples in HMP16SData

and curatedMetagenomicData. The multidimensional scaling (MDS) plot of the beta di-

versity did not show patterns associated with known variables (Additional file 1: Sup-

plementary Fig. S3); hence, we assumed no differential abundance. All samples with the

same Random Subject Identifier (RSID) in 16S and WMS were selected in order to eas-

ily compare the two technologies. Forty-one biological samples were included.

Starting from the 41 samples, we randomly split the samples into two groups: 21

assigned to group 1 and 20 to group 2. We repeated the procedure 1000 times. We ap-

plied the DA methods to each randomly split dataset. Every method returned a p value

for each feature. DESeq2, seurat_wilcoxon, and corncob methods returned some NA p

values. This is due to feature exclusion criteria, based on distributional assumptions,

performed by these methods (see above), or convergence issues.
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We compared the distribution of the observed p values to the theoretical uniform

distribution, as no truly DA features are present. This was summarized in the qq-plot

where the bisector represents a perfect correspondence between observed and theoret-

ical quantiles of p values. For each theoretical quantile, the corresponding observed

quantile was obtained averaging the observed p values’ quantiles from all 1000 datasets.

Departure from uniformity was evaluated with a Kolmogorov-Smirnov statistic. p

values were also used to compare the number of false discoveries with 3 common

thresholds: 0.01, 0.05, and 0.1.

Concordance

We used the Concordance At the Top (CAT) to evaluate concordance for each differ-

ential abundance method. Starting from two lists of ranked features (by p values, fold-

changes, or other measures), the CAT statistic was computed in the following way. For

a given integer i, concordance is defined as the cardinality of the intersection of the top

i elements of each list, divided by i, i.e., #fL1:i∩M1:ig
i

, where L and M represent the two

lists. This concordance was computed for values of i from 1 to R.

Depending on the study, only a minority of features may be expected to be dif-

ferentially abundant between two experimental conditions. Hence, the expected

number of differentially abundant features is a good choice as the maximum rank

R. In fact, CAT displays high variability for low ranks as few features are involved,

while concordance tends to 1 as R approaches the total number of features, be-

coming uninformative. We set R = 100, considering this number biologically rele-

vant and high enough to permit an accurate concordance evaluation. In our

filtered data, the total number of features was close to 1000, and 100 corresponds

to 10% of total taxa.

We used CAT for two different analyses:

� Between-method concordance (BMC), in which a method was compared to other

methods in the same dataset;

� Within-method concordance (WMC), in which a method is compared to itself in

random splits of the datasets.

To summarize this information for all pairwise method comparisons, we computed

the area under the curve, hence giving a better score to two methods that are consist-

ently concordant for all values of i from 1 to 100.

We selected several datasets, with different alpha and beta diversity, for our concord-

ance analysis. Additional file 1: Table S3 describes the six datasets used. For each data-

set, the same sample selection step, described next, was used.

The concordance evaluation algorithm can be easily summarized by the following

steps:

1. Each dataset was randomly divided in half to obtain two subsets (Subset1 and

Subset2) with two balanced groups;

2. DA analysis between the groups was performed with all evaluated methods

independently on each subset;
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3. For each method, the list of features ordered by p values (or differentials, or

loadings) obtained from Subset1 was compared to the analogous list obtained from

Subset2 and used to evaluate WMC;

4. For each method, the list of features ordered by p values (or differentials, or

loadings) obtained from Subset1 was compared to the analogous list obtained from

Subset1 by all the other methods and used to evaluate BMC for Subset1. The same

was done in Subset2;

5. Steps 1–4 were repeated 100 times; and

6. WMC and BMC were averaged across the 100 values (and between Subset1 and

Subset2 for BMC) to obtain the final values.

Sample selection step

For each dataset, a subset was chosen in order to have a balanced number of samples

for each condition. In lower diversity studies (e.g., Subgingival vs. Supragingival Plaque)

different biological samples from the same subject may be strongly correlated. Hence,

we selected only one sample per individual, no matter the condition. To further in-

crease the homogeneity of the datasets, we selected only samples from the same se-

quencing center.

Enrichment analysis

The same low-diversity dataset used in the concordance analysis (i.e., 16S Subgingival

vs. Supragingival Plaque) was used for the enrichment analysis. The dataset is balanced

as it is composed of 38 samples for each body subsite, for a total of 76 samples. DA

analysis was performed using Subgingival Plaque as the reference level. Taxa with an

adjusted p value less than 0.1 were chosen as DA, for all the methods except songbird

and mixMC that return a list of differentials and loadings, respectively. For songbird, a

threshold corresponding to the 10% of the total number of taxa was chosen to select

the most associated taxa for the considered comparison. mixMC implements a variable

selection procedure that automatically selects the most discriminant taxa. We anno-

tated each taxon with the information on genus-level metabolism (available at https://

github.com/waldronlab/nychanesmicrobiome), classifying each taxon in aerobic, anaer-

obic, facultative anaerobic, or unassigned.

Enrichment analysis was performed via a Fisher exact test, using the function fisher.t-

est (table, alternative = “greater”) where table is a contingency table. Six contingency ta-

bles were built for each method to inspect enrichment of the following:

� Over-abundant (UP) aerobic taxa in Supragingival Plaque;

� Under-abundant (DOWN) aerobic taxa in Subgingival Plaque;

� Over-abundant (UP) anaerobic taxa in Supragingival Plaque;

� Under-abundant (DOWN) anaerobic taxa in Subgingival Plaque;

� Over-abundant (UP) facultative anaerobic taxa in Supragingival Plaque; and

� Under-abundant (DOWN) facultative anaerobic taxa in Subgingival Plaque.

All the information retrieved from the enrichment analysis was summarized in a bar

plot, where for each method, the number of differentially abundant taxa together with
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their direction were represented as a positive (negative) bar for over- (under-) abundant

taxa in Supragingival Plaque samples, colored by genus level metabolism.

To calculate log odds-ratio for each contingency table, the Haldane-Anscombe cor-

rection is applied since it allows the odds-ratio calculation in presence of zero cells.

Briefly, it consists in adding a pseudo-count value of 0.5 to each cell of the contingency

table to calculate the odds-ratio and a pseudo-count value of 1 to calculate the

variance.

To compare all the evaluated methods without considering their power, the follow-

ings steps were followed:

1. Raw p values, songbird’s differentials, and mixMC’s loadings were properly

ordered;

2. Several thresholds from 1 to 20% of the top ranked taxa in the previously ordered

lists were used to select the DA taxa for each method;

3. Putative true positives (TP) were calculated as the sum of aerobic taxa over-

abundant in Supragingival Plaque and anaerobic taxa under-abundant in Supragin-

gival Plaque;

4. Putative false positives (FP) were calculated as the sum of aerobic taxa under-

abundant in Supragingival Plaque and anaerobic taxa over-abundant in Supragingi-

val Plaque; and

5. The differences between Putative TP and Putative FP were plotted.

To rank all the methods, the same difference was computed, this time using the list

of DA taxa based on the adjusted p values less than 0.1 and the 10% threshold for

songbird.

To inspect the concordance of DA taxa between methods, mutual findings were col-

lected and added between the methods. As similar methods tend to identify the same

taxa, only one method for each normalization or weighting procedure was considered

as representative. This subset contains edgeR with TMM normalization, DESeq2 with

poscounts normalization, limma-voom with TMM normalization, MAST, scde, seurat-

wilcoxon, corncob (Wald test), mgsZig, ALDEx2, mixMC, and songbird. The taxa

found by most methods in this subset were extracted, but for the graphical representa-

tion, all methods were reintroduced.

The same analysis was performed in the WMS dataset. However, the sample size was

limited to only 5 for the subgingival body subsite, while 88 (with unique RSID) for the

supragingival site. For this reason, a 5 vs. 5 sample analysis was performed, randomly

selecting five samples from the supragingival dataset. Songbird was not included in the

analysis because of an error during the parameter estimation that we were not able to

solve. Given the low sample-size, corncob methods with bootstrap were added to the

analysis.

Parametric simulations

Several real datasets were used as templates for the simulations:

� 41 Stool samples available for both 16S and WMS from HMP.
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� 208 16S samples and 90 WMS samples of Tongue Dorsum body subsite from

HMP.

� 67 Stool and 56 Oral cavity WMS data of Fijian adult women from BritoIl_2016.

Each dataset was filtered to obtain only a sample per individual. 16S and WMS sam-

ples were pruned to keep sequencing runs with library sizes of more than 103 and 106,

respectively. Moreover, only features present in more than 1 sample with more than 10

reads were kept. After the data filtering step, the simulation framework was established,

by specifying the parametric distribution and other data characteristics, described in

Additional file 2: Supplementary Table S4.

For each combination of parameters, we simulated 50 datasets, yielding a total of 28,

800 simulations. Variables to be included in the simulation framework were chosen

based on the role they may play in the analysis of a real experiment.

NB and ZINB are simple parametric distributions, easy to fit on real data through a

reliable Bioconductor package, and above all, seemed to fit 16S and WMS data better

than other statistical models (see Fig. 2). The zinbSim function from the zinbwave Bio-

conductor package easily allows the user to generate both NB and ZINB counts after

the zinbFit function estimates model parameters from real data. The user can set sev-

eral options in zinbFit, we used epsilon = 1e14, common_dispersion = TRUE, and K = 0.

Generating two experimental groups requires the specification of enough samples for

each condition and a more or less substantial biological difference between them.

Sample size is a crucial parameter: many pilot studies start with 10 or even fewer

samples per condition, while clinical trials and case-control studies may need more

samples in order to achieve the needed power. We included 10, 20, and 40 samples per

condition in our simulation framework.

We considered two different scenarios for the number of features simulated as

DA: 10%, representing a case where the majority of the features are not DA, a

common assumption made by analysis methods; and 50%, a more extreme com-

parison. Similarly, we simulated a fold change difference for the DA features of 2

or 5. This is obviously a simplification, since in reality, a continuum gradient of

fold effects is present. Nevertheless, it allowed us to characterize the role of the ef-

fect size in the performance of the methods. For the DA features, the fold change

between conditions was applied to the mean parameter of the ZINB or NB distri-

butions, with or without “compensation” as introduced by [10]. Without compensa-

tion, the absolute abundance of a small group of features responds to a

physiological change. This simple procedure modifies the mean relative abundances

of all features, a microbiologist would only want to detect the small group that ini-

tially reacted to the physiological change. For this reason, significant results for

other features will be considered as false discoveries. Compensation prevents the

changes in DA features to influence the other, non-DA, features. The procedure

comprises the following steps:

1. The relative mean for each feature is computed using estimated mean parameter of

NB.

2. 10 or 50% of features are randomly sampled.
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3. If there is no compensation, half of their relative means are multiplied by foldEffect

while the remainings are divided by foldEffect generating up- and downregulated

features, respectively. If there is compensation, 1/(1 + foldEffect) of the selected

feature relative means are multiplied by foldEffect while the remaining ones are

multiplied by (a/b)*(1-foldEffect) + 1, where a is the sum of the relative means of

the features that will be upregulated while b is the sum of the features that will be

downregulated.

4. The resulting relative means are normalized to sum to 1.

Sparsity is a key characteristic of metagenomic data. The case in which a bacterial

species presence rate varies between conditions was emulated in the simulation frame-

work via the so called sparsityEffect variable. Acting on the mixture parameter of the

ZINB model it is possible to exacerbate downregulation and upregulation of a feature,

adding zeros for the former and reducing zeroes for the latter. This scenario provided

by 0 (no sparsity change at all), 0.05 and 0.15 of sparsity change should help methods

to identify more differentially abundant features. As the mixing parameter can only take

values between 0 and 1, when the additive sparsity effect yielded a value outside this

range, it was forced to the closer limit.

The previously described DA methods were tested in each of the simulated datasets

(50 for each set of simulation framework parameters) and the adjusted p values were

used to compute the false positive rate (FPR = 1 – Specificity) and the true positive sate

(TPR = Sensitivity). Partial areas under the receiver operating characteristic (pAUROC)

curve with an FPR from 0 to 0.1 values were computed and then averaged in order to

obtain a single value for each set of variables.

Computational complexity

To measure the computational times for all the 18 methods, we used the Subgingival

vs. Supragingival Plaque HMP 16S dataset where a total of 76 samples and approxi-

mately 900 taxa were available. The evaluation was performed on a laptop computer

with O.S. Windows 10 64bit, Intel® i7-8th Gen CPU with 16GB of RAM. Moreover, the

Stool 16S and WMS parametric simulation datasets (9200 total datasets) were used in

order to measure each method’s computational complexity (except for mixMC and

songbird). Time evaluation was performed on a single core for each dataset where all

methods are tested sequentially and then properly averaged with the values of all the

simulations. The methods’ performance evaluations in power analysis on the 28,800

total parametric simulations were performed in the same way, equally dividing the sim-

ulated datasets across 30 cores. The working machine was a Linux x86_64 architecture

server with 2 Intel® Xeon® Gold 6140 CPU with 2.30 GHz for a total of 72 CPUs and

128 GB of RAM.
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