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ABSTRACT

Atmospheric retrieval of exoplanets from spectroscopic observations requires an extensive

exploration of a highly degenerate and high-dimensional parameter space to accurately

constrain atmospheric parameters. Retrieval methods commonly conduct Bayesian parameter

estimation and statistical inference using sampling algorithms such as Markov chain Monte

Carlo or Nested Sampling. Recently several attempts have been made to use machine learning

algorithms either to complement or to replace fully Bayesian methods. While much progress

has been made, these approaches are still at times unable to accurately reproduce results

from contemporary Bayesian retrievals. The goal of this work is to investigate the efficacy

of machine learning for atmospheric retrieval. As a case study, we use the Random Forest

supervised machine learning algorithm which has been applied previously with some success

for atmospheric retrieval of the hot Jupiter WASP-12b using its near-infrared transmission

spectrum. We reproduce previous results using the same approach and the same semi-analytic

models, and subsequently extend this method to develop a new algorithm that results in

a closer match to a fully Bayesian retrieval. We combine this new method with a fully

numerical atmospheric model and demonstrate excellent agreement with a Bayesian retrieval

of the transmission spectrum of another hot Jupiter, HD 209458b. Despite this success, and

achieving high computational efficiency, we still find that the machine learning approach is

computationally prohibitive for high-dimensional parameter spaces that are routinely explored

with Bayesian retrievals with modest computational resources. We discuss the trade-offs and

potential avenues for the future.

Key words: methods: data analysis – methods: statistical – planets and satellites: atmo-

spheres – techniques: spectroscopic.

1 IN T RO D U C T I O N

Machine learning and artificial intelligence are becoming increas-

ingly prevalent in many areas of astrophysics. Many popular

machine learning techniques have been applied to astrophysical

problems including galaxy classification (Banerji et al. 2010),

characterization of supernovae (Lochner et al. 2016), and exoplanet

detection (Shallue & Vanderburg 2018). Recently a number of

attempts have been made to use machine learning to retrieve

properties of exoplanet atmospheres from spectroscopic data.

Waldmann (2016) trained a Deep Belief Neural Network to make

qualitative predictions about which molecular and atomic opacity

sources to include in a traditional retrieval framework. Márquez-

Neila et al. (2018) employed a supervised learning algorithm

called Random Forest to retrieve atmospheric properties of the hot

⋆ E-mail: mnixon@ast.cam.ac.uk (MCN); nmadhu@ast.cam.ac.uk (NM)

giant planet WASP-12b. Zingales & Waldmann (2018) developed a

Generative Adversarial Network which uses unsupervised learning

to predict planetary parameters as well as atomic and molecular

abundances. Soboczenski et al. (2018) explored the use of Deep

Neural Networks to make inference from synthetic spectra of

terrestrial planets and incorporated Monte Carlo dropout in order

to approximate model uncertainty. This method was further de-

veloped in Cobb et al. (2019), who used an ensemble of Neural

Networks and incorporated domain-specific knowledge to improve

performance.

A limitation of applying machine learning for retrievals has been

the statistical interpretation of parameter predictions given the ob-

served data. Traditionally, atmospheric retrieval has used Bayesian

inference techniques to estimate the central values and uncertainties

of the model parameters that fit an observed spectrum (Mad-

husudhan 2018). Such techniques used for both transmission and

emission spectra include Markov chain Monte Carlo (MCMC) (e.g.

Madhusudhan & Seager 2010; Cubillos et al. 2013; Line et al. 2013)
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and Nested Sampling (e.g. Benneke & Seager 2013; Waldmann et al.

2015; Oreshenko et al. 2017; Gandhi & Madhusudhan 2018). When

applied to atmospheric spectra, retrievals have often highlighted

strong degeneracies between model parameters (e.g. Benneke &

Seager 2012; Griffith 2014; Line & Parmentier 2016; Welbanks

& Madhusudhan 2019). It is therefore important when carrying

out a retrieval to use a method that is able to find these model

degeneracies and accurately capture the inherent uncertainties in

the observed spectra. Previous studies employing machine learning

have produced either a set of predictions similar to running an

ensemble of optimal estimation procedures (Zingales & Waldmann

2018) or an approximation of the posterior distribution that is not

shown to match the result of a Bayesian inference procedure (Cobb

et al. 2019). In cases where attempts were made to compare a

machine learning retrieval with a Bayesian retrieval (Márquez-Neila

et al. 2018; Zingales & Waldmann 2018), the posterior distributions

between the retrievals reveal some discrepancies, as discussed later

in this work.

In this paper, we focus on supervised ensemble learning, similar

to that employed by Márquez-Neila et al. (2018), referred to as

MN18 hereafter. MN18 use the Random Forest algorithm, to train

multiple estimators (or trees) to predict parameter values that best

describe the transmission spectrum of WASP-12b. The distribution

of predictions made by the estimators is used to find the uncertainties

on the estimated parameter values. The results of their Random

Forest retrieval are compared to a Nested Sampling retrieval, and

whilst the two retrievals yield comparable parameter estimates, the

uncertainties are not consistent between the two methods. Our goal

in this study is to determine if it is possible to develop a more

statistically sound retrieval framework using the Random Forest

algorithm.

In Section 2, we first reproduce the retrieval results of MN18

(using both Nested Sampling and Random Forest), using the WASP-

12b transmission spectrum. To this end, we use the same semi-

analytic model used in MN18. We then modify and extend the

Random Forest method to perform a retrieval of the same spectrum

that produces results whose uncertainties are closer to those found

in a Nested Sampling retrieval (see Fig. 1). In Section 3, we combine

this extended Random Forest method with the fully numerical

forward model described in Pinhas et al. (2018). We validate our

algorithm using synthetic spectra before conducting a case study of

the Hubble Wide-Field Camera 3 (WFC3) transmission spectrum

of HD 209458b, once again comparing the results of Random

Forest and Nested Sampling retrievals. In Section 4, we discuss the

difficulties of applying these methods to more complex cases which

would require a larger parameter space to be explored than previous

machine learning retrievals. We also examine more generally the

possible benefits and drawbacks of incorporating machine learning,

particularly ensemble learning as explored in this paper, into the

retrieval process.

2 M E T H O D S

2.1 Reproduction of previous results

We begin by reproducing the results of MN18. We consider the

same observed data as that paper, namely the WFC3 transmission

spectrum of WASP-12b (Kreidberg et al. 2015). This spectrum

consists of 13 binned data points in the infrared, at wavelengths

ranging from 0.84 to 1.67 µm. In order to retrieve atmospheric

properties from the spectrum, two components are required: a for-

ward model to calculate a transmission spectrum from a given set of

Figure 1. Flowchart describing the extended Random Forest retrieval

framework. As indicated, the key differences between this and the MN18

method are the calculation of the posterior distribution using the predicted

parameter values and the iterative process of adding more trees until the

posterior converges.

parameters describing the atmospheric structure and composition,

and a parameter estimation algorithm that finds the values of the

model parameters that best fit the observed data. In this section,

we adopt the forward model of Heng & Kitzmann (2017) for

consistency with the previous study. This semi-analytic model is

used to produce a binned spectrum at the wavelengths of the WFC3

data given the values of five parameters: isotherm temperature Tiso,

the abundances of H2O, HCN and NH3, and a parameter to describe

cloud opacity, κ0. For the parameter estimation, we follow the two

approaches considered in MN18, first using the Nested Sampling

algorithm MULTINEST (Feroz, Hobson & Bridges 2009), specifically

its Python implementation PYMULTINEST (Buchner et al. 2014), and

then using the implementation of the Random Forest algorithm

(Breiman 2001) from SCIKIT-LEARN.

2.1.1 Nested Sampling

In a traditional retrieval, Bayesian inference is used to estimate the

values of model parameters given some observed data. Suppose

we want to find the probability distribution of a set of parameters,

denoted θ , given some observed data, d. We can express this using

Bayes’ theorem:

p(θ |d) =
p(d|θ )p(θ )

p(d)
. (1)

MNRAS 496, 269–281 (2020)
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Machine learning for atmospheric retrieval 271

Figure 2. Posterior distributions of Nested Sampling retrieval of the WFC3 transmission spectrum of WASP-12b following the methods of MN18. Inset:

retrieved parameter values and associated 1σ uncertainties.

Typically p(θ |d) is called the posterior, p(d|θ ) is called the likelihood

and is denoted L, p(θ ) is called the prior, and p(d) is called the

Bayesian evidence and is denoted Z . Since Z does not depend

on θ , it simply acts as a normalization factor and therefore is not

needed for parameter estimation, however it can be used to compare

different models.

Nested Sampling (Skilling 2004) is a Monte Carlo algorithm

designed to efficiently compute the Bayesian evidence of a model.

It is also highly effective at sampling complex multimodal posterior

distributions and is commonly used in many retrieval frameworks

(e.g. Benneke & Seager 2013; Gandhi & Madhusudhan 2018). The

algorithm initially selects a number of live points drawn from the

defined prior volume, and evaluates the likelihoods of these points.

Assuming Gaussian uncertainty on the measurements of the spectral

data points, the likelihood is defined as

L = L0 exp

(

−
χ2

2

)

, (2)

with

χ2 =
∑

i

(ŷi − ȳi)
2

σ 2
i

, (3)

where ȳi and σ i are the mean and standard deviation of the observed

data point i, and ŷi is the model prediction for data point i.

Having calculated L for each live point, the point with the

lowest likelihood is discarded and replaced by a new one with a

higher likelihood. This means that the volume contained within

the set of live points continually shrinks, with the minimum

likelihood bound by the volume progressively increasing. This

process continues and Z is calculated until converging to within

some pre-defined tolerance. Since the evidence calculation requires

a thorough sampling of the parameter space, the Nested Sampling

algorithm can therefore be used to estimate posterior distributions.

Using MULTINEST in conjunction with the forward model

described in Heng & Kitzmann (2017), we reproduce the results

from the Nested Sampling retrieval shown in MN18. The retrieved

values and posterior distributions from this retrieval are shown in

Fig. 2. We obtain some constraints on the H2O abundance while

the HCN and NH3 abundances remain unconstrained. The value of

κ0 is constrained to within 2 dex. The retrieved parameter values

and associated uncertainties are consistent with the MN18 Nested

Sampling retrieval (see table 1 of that paper).

2.1.2 Random Forest

Random Forest is a supervised machine learning algorithm. Super-

vised algorithms are trained on a data set that has been labelled in

some way, and then try to predict the labels of some new, unlabelled

data. The Random Forest method stems from the older decision tree

MNRAS 496, 269–281 (2020)
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algorithm (Breiman et al. 1984). Decision trees, and hence Random

Forest, can be used for either classification or regression tasks; here

we outline its application to a general regression problem, since this

is how the algorithm is applied to atmospheric retrieval.

We define the feature space X to be the vector space containing

all possible input samples (binned spectra). The dimension of X is

equal to the number of features in a sample, i.e. the number of data

points in a single spectrum x. Similarly, we can define the space of all

possible output labels y (free parameters in the forward model) asY .

In this context, the supervised machine learning problem becomes

equivalent to finding the best possible partition of X , where each

partition corresponds to a different set of parameter estimates. The

decision tree algorithm works by partitioning X into subspaces

and assigning different values from Y to each subspace. In order

to describe this further, we introduce some definitions from graph

theory:

(i) A graph is a collection of nodes and edges, where a node can

be connected to another node by an edge.

(ii) A graph can be either undirected, meaning that if there is an

edge from node a to node b then there is automatically an edge from

node b to node a, or directed if this is not the case.

(iii) If there is an edge from node a to node b but not from b to

a, then a is said to be the parent of b and b the child of a.

(iv) A tree is a graph in which there is exactly one path between

any two nodes.

(v) If there exists a node in a tree where all edges are directed

away from that node, then the node is called the root.

(vi) A node in a tree which has no child nodes is called a leaf.

A decision tree can be defined as a directed tree in which any

node n corresponds to some subspace Xn of the feature space, with

a root node that represents the entire space X . Each leaf in the tree

is assigned a value from the output space Y . The aim of the learning

process is therefore to determine the tree structure that best captures

the relationship between the spaces X and Y . We can quantify the

concept of how well the model captures the relationship by defining

the impurity In of a node n:

In =
1

Nn

∑

x∈Xn

| y(x) − ŷn(x)|2, (4)

where Nn is the number of samples in the training data set which

are found in the subspace Xn, y(x) is the true value of the label

corresponding to the sample x, and ŷn(x) is the value of the label

for x currently predicted by the model. The impurity is similar to the

χ2 metric of equation (3). The algorithm proceeds by considering

existing leaf nodes in the tree and splitting them into two or more

child nodes (thus further partitioning the data set) such that the

decrease in impurity from the parent node to the child nodes is

maximized. This continues until some pre-determined tolerance in

the impurity decrease is reached.

The Random Forest algorithm is an ensemble method which uses

a large set of decision trees. Ensemble methods aim to improve the

robustness of predictions by training multiple models that have been

randomly perturbed in some way. The ensemble prediction is then a

combination of the individual model predictions. Randomness can

be introduced in two ways: by training each tree on a random subset

of the full training data set, which is sampled with replacement,

and by limiting each tree to train using a random subset of features.

It can be shown that an ensemble of randomized decision trees

produces a more robust prediction than using a single tree (see for

example chapter 4 of Louppe 2014).

Table 1. Description of priors for retrievals of the transmission spectrum

of WASP-12b. The priors have the same form for all chemical abundances

Xi.

Parameter Lower bound Upper bound Prior

Tiso (K) 500 2900 Uniform

Xi 10−13 1 Log-uniform

κ0 (cm2 g−1) 10−13 102 Log-uniform

In order to reproduce the Random Forest results of MN18, we

use the forward model of Heng & Kitzmann (2017) to generate

a training set of 100 000 noisy synthetic WFC3 spectra in the

wavelength range 0.8–1.7 µm. For each spectrum, the value of each

free parameter is chosen at random from a uniform or log-uniform

distribution from within the prior ranges specified in MN18 (see

Table 1). The planetary and stellar radii are fixed at Rp = 1.79RJ and

R∗ = 1.577 R⊙. We produce the training set at a higher wavelength

resolution and larger wavelength range than the WFC3 spectrum,

opting for R = 2000 between 0.2 and 2.0 µm. This approach

allows us to use the same training data set for multiple observation

instances of the planet and would reduce the overall computation

time of our method if other spectra of the same planet were to be

analysed.

We train 1000 estimators on the training set with a minimum

impurity decrease tolerance of 0.01. To begin the training phase,

we bin each of the spectra in the training set to the resolution of

the WFC3 spectrum, and add random Gaussian noise with a mean

of 50 parts per million to each spectral data point. In order to

improve the robustness of the predictions, each estimator is shown

only 4 of the 13 spectral data points in each training sample. Fig. 3

shows the distributions of the estimators’ predicted parameter values

for the WASP-12b spectrum, displaying a close match to fig. 1

of MN18.

It is important to note that there are some discrepancies between

the distributions shown in Figs 2 and 3. Most notably, the posterior

distributions of H2O abundance and of κ0 have broad tails in the

Random Forest retrieval which are not found in the Nested Sampling

retrieval. These differences arise because the distributions shown in

Fig. 3 are not true posterior distributions in the Bayesian sense; they

are instead the relative densities of the predictions made by 1000

different estimators, some of which perform better than others by

design. This means that this method does not necessarily capture the

true shape of the posterior distributions and therefore cannot provide

a robust estimate of the uncertainties of the predicted parameter

values.

2.2 Extension of Random Forest method

The differences between the shapes of the posterior distributions

produced by the two different retrieval methods motivate the

development of a new method, still employing machine learning

in the form of the Random Forest algorithm, but yielding results

that capture the uncertainty in parameter estimates more accurately.

A diagram depicting this new approach is shown in Fig. 1. We begin

by producing a training data set in the same way as before, but we

do not add noise to the model spectra. Before the training phase, we

normalize the parameter values in the training data set so that they

all lie between 0 and 1. This ensures that the loss function does not

favour any one parameter over another.

Once the estimators have been trained on this noise-free data

set and used to predict parameter values, the likelihoods of those

MNRAS 496, 269–281 (2020)
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Machine learning for atmospheric retrieval 273

Figure 3. Results of Random Forest retrieval of the WFC3 transmission spectrum of WASP-12b following the methods of MN18. While the parameter

estimates are consistent within 1σ with those in Fig. 2, the posterior distributions have important differences in shape.

predictions are calculated by comparing the observed spectrum to

a forward model produced with the predicted parameter values

(see equation 2). This set of predictions and associated likelihoods

serves as the likelihood function for the retrieval, allowing the

marginalized posterior for each parameter and pair of parameters

to be computed. By calculating the likelihood of each prediction,

the algorithm should no longer produce long tails that are not

found in a Nested Sampling retrieval, since these predictions

will have lower likelihoods and will be penalized accordingly.

Since we impose a Gaussian likelihood, this method differs from

other machine learning-based approaches to retrievals, which are

typically likelihood-free.

The procedure initially trains a set of 1000 estimators to compute

an initial posterior estimate. However, in order to ensure that enough

estimators have been trained to sample the parameter space thor-

oughly, more estimators are added in batches of 1000 until the sym-

metric Kullback–Leibler divergence (�KL) between successive pos-

terior distributions falls below a certain tolerance. �KL is defined as

�KL =
∑

x

[

pi(θ = x|d) log

(

pi(θ = x|d)

pi+1(θ = x|d)

)

+ pi+1(θ = x|d) log

(

pi+1(θ = x|d)

pi(θ = x|d)

)]

, (5)

where pi(θ = x|d) is the posterior probability that θ = x given by a

forest of (1000 × i) trees. Fig. 1 shows a flowchart describing our

extended Random Forest retrieval method.

Fig. 4 shows the posterior distribution from a retrieval of the

same WASP-12b spectrum using the extended Random Forest

method as described above. The retrieved parameter values are

consistent within 1σ with those obtained in the previous two

retrievals. However, the main difference between the results of

this retrieval and those of the previous Random Forest retrieval

is that the shape of the posterior distribution matches the Nested

Sampling posterior more closely. The extended tails found in Fig. 3

are no longer present. This is reflected in the reported uncertainties

in the parameter estimates. Whereas the Random Forest retrieval

following the approach from MN18 gives lower bounds far below

those given by the Nested Sampling retrieval, the extended approach

gives error bounds that are in line with the Nested Sampling

result.

In order to obtain a good sampling of the parameter space for this

problem using the extended Random Forest approach, a much larger

number of estimators is required than the ensemble of 1000 used in

the method outlined in MN18. Convergence is reached after 17 000

estimators to produce the posterior distributions shown in Fig. 4,

with a mean tree depth of 39. A reasonable result can be produced

using a higher tolerance that converges after approximately 10 000

estimators have been generated. Simply increasing the number of

trees without the likelihood evaluation step is not sufficient to

MNRAS 496, 269–281 (2020)
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Figure 4. Results of extended Random Forest retrieval of the WFC3 transmission spectrum of WASP-12b, using the same forward model as in MN18. The

parameter estimates and posterior distributions provide a better match to the Nested Sampling retrieval shown in Fig. 2, compared to Fig. 3.

obtain a more accurate retrieval; this is discussed in more detail

in Section 3. While this increases the computational cost of the

approach somewhat, the longest step in the retrieval is still the

generation of the training data, since the forward model must be run

100 000 times to create the full training set.

We investigated the effect of lowering the amount of training data

to reduce computation time. This would reduce both the time taken

for the training set to be produced and the training time itself, since

the Random Forest algorithm trains more quickly on a smaller data

set. Decreasing the amount of training data from 100 000 spectra

to 50 000 yields resulting posterior distributions that are not well

sampled. We conclude that in this case a significant reduction in the

amount of data used to train the estimators is not feasible.

3 A P P LIC ATIONS

Having demonstrated that we can reproduce the results of MN18,

and having extended their method to produce a result closer to that

of a Nested Sampling retrieval, we now compare our new approach

to a current state-of-the-art retrieval framework that uses a fully

numerical forward model. We no longer use the forward model

from Heng & Kitzmann (2017), instead adopting the modelling

paradigm from AURA (Pinhas et al. 2018), a retrieval framework

that has been validated against synthetic spectra and used to retrieve

atmospheric properties, including H2O abundances, for a range of

planets (e.g. Pinhas et al. 2019; Welbanks et al. 2019).

3.1 Validation

We begin by demonstrating our algorithm’s ability to accurately

estimate parameter values from synthetic spectra. The AURA for-

ward model is used to generate synthetic spectra in the wavelength

range of WFC3 for training and testing our algorithm, assuming a

cloud-free atmosphere and an isothermal temperature profile. Since

WFC3 transmission spectra only provide nominal constraints on

the temperature structure of the atmosphere (Barstow et al. 2013),

assuming an isothermal temperature profile has little effect on

retrievals with present data and is sufficient for the purposes of this

study. Cloud properties are not considered since they are difficult to

constrain without including data from optical wavelengths.

The model atmosphere is divided into 100 pressure layers, which

are evenly log-spaced from 10−6 to 102 bar. The main opacity

sources in the model are H2O and collision-induced absorption

(CIA) due to H2–H2 and H2–He. The cross-sections for these opacity

sources are computed by Gandhi & Madhusudhan (2017) using line

lists from the HITEMP data base for H2O (Rothman et al. 2010)

and the HITRAN data base for CIA (Richard et al. 2012). We fix Rp

to 1.41RJ and leave the reference pressure Pref as a free parameter

to be retrieved. It was demonstrated by Welbanks & Madhusudhan

MNRAS 496, 269–281 (2020)
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Machine learning for atmospheric retrieval 275

Table 2. Description of priors for retrievals of the WFC3 transmission

spectrum of HD 209458b.

Parameter Lower bound Upper bound Prior

Tiso (K) 700 2810 Uniform

Pref (bar) 10−6 102 Log-uniform

XH2O 10−12 10−2 Log-uniform

(2019) that fixing one of the planetary radius and reference pressure

and retrieving the other does not affect the retrieved values of the

other parameters, and so we arbitrarily choose the retrieved radius

of HD 209458b from Case 3 of that paper. The model therefore

has three free parameters: Tiso, Pref, and the water abundance XH2O.

This choice of parametrization is appropriate for WFC3 spectra of

hot Jupiters, which to date have been found to be most sensitive to

planetary radius, temperature, and H2O abundance (Tsiaras et al.

2018; Welbanks & Madhusudhan 2019). The prior ranges for each

parameter are shown in Table 2.

We use this forward model to produce a training data set of 8000

model spectra and a validation data set of 2000 spectra. Each data

set has randomly generated parameters, and no spectra from the

validation set appear in the training set. The spectra are produced

at a high resolution (R = 1000) in the wavelength range of WFC3

(1.1–1.7 µm). Experimenting with larger and smaller training data

sets suggests that this is the minimum size for the algorithm to be

able to accurately learn the relationship between the input spectrum

and the output parameters. The Random Forest is set up in the

same manner as before, using the same hyperparameters to train

on normalized data. The trained Random Forest is then used to

predict the parameter values for the 2000 synthetic spectra in the

test set. As described in Section 2, we evaluate the likelihoods

of the predictions made by each tree and take the median of the

corresponding posterior distribution to be the predicted parameter

value.

Fig. 5 shows the outcome of our method when applied to these

2000 synthetic spectra. The R2 coefficient of determination is close

to unity for each parameter, suggesting that the retrieval is able to

recover the input parameters well. For models with log XH2O � −6

the correlation is much lower, this is to be expected since these cases

correspond to non-detections and is consistent with the findings of

MN18. For models with log XH2O � −6, the spread in the results is

caused by a degeneracy between Pref and XH2O, as shown in Fig. 6; it

is possible to fit the same spectrum by increasing Pref and decreasing

XH2O. This degeneracy has been found previously when analysing

Figure 6. Difference between true and predicted values of Pref and XH2O

for synthetic models with log XH2O ≥ −6. We find that predictions of Pref

that are above the true value correspond to predictions of XH2O below the

true value and vice versa.

WFC3 spectra (e.g. Pinhas et al. 2019; Welbanks & Madhusudhan

2019).

3.2 Retrieval of WFC3 transmission spectrum

Having validated our retrieval method using synthetic data, we now

apply the algorithm to a real data set for direct comparison against

an AURA retrieval. We consider the observed WFC3 transmission

spectrum of the hot Jupiter HD 209458b (Deming et al. 2013) as

reported in Sing et al. (2016), which consists of 29 data points in the

spectral range 1.1–1.7 µm. We use this planet as a representative

case to validate our method since it is one of the most well-

studied planets in the literature, with high quality spectral data

available. Additionally, the transmission spectrum of this planet

has recently been analysed in numerous retrieval studies (e.g.

Barstow et al. 2017; MacDonald & Madhusudhan 2017; Welbanks

& Madhusudhan 2019).

We first carry out a Nested Sampling retrieval using the same

parametrization as in Section 3.1. For this retrieval, the model is

initially evaluated at a higher resolution, covering 1000 wavelength

points from 1.1 to 1.7 µm. The model spectrum is subsequently

convolved with the WFC3 point spread function, integrated over

the instrument function and binned to the resolution of the observed

data. The binned spectrum is used to evaluate the likelihood function

Figure 5. True values versus Random Forest predictions for each parameter in the forward model, for a test set of 2000 synthetic models. The coefficient of

determination (R2) indicates the correlation between the true and predicted values, with R2 close to 1 implying a strong correlation.

MNRAS 496, 269–281 (2020)
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276 M. C. Nixon and N. Madhusudhan

Figure 7. Results of Nested Sampling retrieval of the WFC3 transmission

spectrum of HD 209458b.

for each model (see equation 2). Further detail on this retrieval

approach and validation using synthetic data can be found in

Pinhas et al. (2018). We find that a Nested Sampling retrieval set-

up using 1000 live points is sufficient to obtain robust parameter

estimates.

The retrieved posterior distributions, abundance estimates and

uncertainties are displayed in Fig. 7. These compare very closely

to the results from Case 3 of Welbanks & Madhusudhan (2019).

The only notable difference between the two retrievals is that our

results show smaller error bars for the estimated reference pressure

Pref. This can be attributed to fixing Rp rather than retrieving it. We

again find a degeneracy between Pref and XH2O, in agreement with

our findings from the model validation.

We attempt to reproduce the results of this Nested Sampling

retrieval using the extended Random Forest method as described

in Section 2.2. For this case study we use the same training set of

8000 spectra from Section 3.1. The Random Forest is set up in the

same manner as before, using the same hyperparameters to train

on normalized data. The likelihood function for each estimator

is evaluated every time 1000 more estimators have been trained,

and we find that the posterior distribution converges once 12 000

estimators have been produced. Marginalized posterior distributions

are then created from this likelihood function to obtain the results,

which are displayed in Fig. 8.

In this case, the extended Random Forest retrieval produces

extremely similar results to the Nested Sampling retrieval. The best-

fitting model spectra, along with 1σ and 2σ uncertainties, from the

two retrievals are shown in Fig. 9. The parameter estimates and

uncertainties are directly compared in Table 3; both the retrieved

median values and the 1σ uncertainties are almost identical. It

is also clear from the joint distributions shown in Fig. 8 that the

extended Random Forest retrieval has found the same degeneracies

between parameters as the Nested Sampling retrieval. This result

demonstrates for the first time that, for a given observation instance,

a machine learning-based approach to atmospheric retrieval can not

only obtain similar parameter estimates to a traditional retrieval, but

Figure 8. Results of extended Random Forest retrieval of the WFC3

transmission spectrum of HD 209458b. The results are in agreement with

the Nested Sampling retrieval in Fig. 7.

Table 3. Comparison of Nested Sampling (NS) and extended Random

Forest (RF+) retrieved parameter values from the WFC3 transmission

spectrum of HD 209458b.

Parameter NS value +1σ
−1σ RF+ value +1σ

−1σ

Tiso (K) 1017+102
−98 1009+99

−94

log Pref (bar) −4.45+0.39
−0.44 −4.48+0.37

−0.43

log XH2O −5.44 ± 0.20 −5.47 ± 0.20

that it can also deal with uncertainties and degeneracies in a robust

and accurate way.

3.3 Addition of unconstrained free parameter

The retrieval analysis of the WASP-12b transmission spectrum from

MN18 has also been reproduced in Cobb et al. (2019). In that paper

they find that in certain cases, the Random Forest retrieval can

sometimes return a narrow posterior for a free parameter that should

not be constrained; they demonstrate this by finding a synthetic

spectrum following the model from Heng & Kitzmann (2017) for

which the Random Forest confidently predicts H2O, HCN, and NH3

abundances that are not the true values used to generate the model.

In this paper, we investigate this issue further in order to determine

whether the MN18 Random Forest approach might incorrectly infer

certain parameter values in cases where a traditional retrieval would

(correctly) not be able to constrain that value. We also consider

whether a similar problem would occur if our extended Random

Forest method was used instead.

In order to highlight this issue, we carry out a second set of

retrievals of the WFC3 spectrum of HD 209458b, but this time

including CO abundance as a free parameter in the forward model,

with a log-uniform prior ranging from 10−12 to 10−2. We choose

to add CO since this molecule does not have strong features in the

spectral range of the data. Previous studies such as Welbanks &

MNRAS 496, 269–281 (2020)
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Machine learning for atmospheric retrieval 277

Figure 9. Top: Best-fitting model spectrum from the Nested Sampling retrieval of the HD 209458b WFC3 transmission spectrum. Bottom: Best-fitting model

spectrum from the extended Random Forest retrieval of the same spectrum. The shaded regions represent the 1σ and 2σ contours, produced by drawing 1000

spectra from the posterior distributions from each retrieval. The best-fitting spectra have been smoothed with a Gaussian filter for clarity.

Madhusudhan (2019) have therefore been unable to constrain the

CO abundance from this spectrum. We verify this by first carrying

out a Nested Sampling retrieval of the spectrum, whose results can

be seen in Fig. 10. As expected, the estimated values of Tiso, Pref,

and log XH2O remain very close to those from the retrieval that did

not include CO (see Fig. 7), but the CO abundance itself is not

unconstrained. This set-up should therefore provide a test of the

capabilities of both the MN18 and our Random Forest retrieval

methods to deal with an unconstrained free parameter in the model.

We begin the machine learning approach by generating a training

set consisting of 160 000 model spectra, which we use for both the

MN18 and for the extended Random Forest retrievals. We use the

same training set in both cases to ensure that the only difference

between the two retrievals is the implementation of the algorithm.

First we employ the methods of MN18 to perform the retrieval

using this data set. We add Gaussian noise to the training set and

train 1000 estimators on the noisy spectra. Histograms of the results

along with parameter estimates are shown in Fig. 11. The shapes of

the temperature and water abundance distributions differ somewhat

from the Nested Sampling posteriors, but what is most notable is

the apparent peak around −8.5 in log CO abundance that is not

present at all in the Nested Sampling case. As in Cobb et al. (2019),

the algorithm is overconfident in its prediction of a parameter value

which it should not be able to constrain (but cf. Fisher et al. 2020).

Next we take the same training set and apply our extended method

as described in Section 2.2. More estimators are required to reach

convergence in this case than when CO was not included; in this case

convergence is reached after 24 000 estimators had been trained. The

results from this analysis are shown in Fig. 12. The marginalized

posterior distributions of Tiso, Pref, and log XH2O are once again

very similar in shape to their Nested Sampling counterparts. The

extended Random Forest method produces a broad distribution,

MNRAS 496, 269–281 (2020)
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278 M. C. Nixon and N. Madhusudhan

Figure 10. Results of Nested Sampling retrieval of the WFC3 transmission

spectrum of HD 209458b, including CO abundance as a free parameter.

The non-detection of CO is consistent with expectation, given the weak CO

features in the spectral range of the data.

Figure 11. Results of Random Forest retrieval of the WFC3 transmission

spectrum of HD 209458b, including CO abundance as a free parameter,

following the methods of MN18. The peak in the CO posterior is unphysical

given that there is no strong CO feature in the spectral range of the data.

leaving the CO abundance unconstrained as in the Nested Sampling

case. Since the likelihood function for each estimator is evaluated

directly, this method is able to infer that the value of CO abundance

does not affect how well the model fits the data. This means that

our algorithm does not suffer from the flaws described in Cobb

et al. (2019) and is able to deal with unconstrained free parameters

Figure 12. Results of extended Random Forest retrieval of the WFC3

transmission spectrum of HD 209458b, including CO abundance as a free

parameter. The results are consistent with expectations and the Nested

Sampling retrieval shown in Fig. 10.

in such a way that a false constraint is avoided. Fig. 13 shows a

direct comparison of the marginal distributions for CO abundance

obtained in each of the retrieval studies. We also show the CO

posterior for a retrieval following the methods of MN18, but using

the same number of trees as in our extended method. The spurious

peak around −8.5 is still present, indicating that increasing the

number of trees alone is not enough to solve this problem.

4 D I S C U S S I O N A N D C O N C L U S I O N S

It has previously been suggested that using machine learning to

perform retrievals could significantly reduce computation time,

since a trained machine learning algorithm can make predictions

extremely rapidly. The Generative Adversarial Network presented

by Zingales & Waldmann (2018) can predict model parameters from

a spectrum in approximately 2 min, and Cobb et al. (2019) state that

their approach can provide predictions in 1.5 s. The prediction time

is not reported in MN18, but we find that 1000 estimators take a

few seconds to make predictions for each retrieval considered in

this study.

These numbers ostensibly suggest that machine learning re-

trievals are much faster than traditional methods, which can often

take up to several hours depending on the size of the parameter

space. However, these figures do not include the time taken to

produce a training data set, nor do they incorporate the time taken

to train the machine learning algorithm. According to Zingales &

Waldmann (2018) the training phase of their GAN using a forward

model with seven free parameters takes approximately 3 d per epoch

on 20 CPU cores or about 9 h per epoch on a GPU. The authors do

not report how many epochs of training were required to fully train

the network, nor do they say how long it took to generate the grid

of 107 models that were used for the training. Cobb et al. (2019)

do not produce a unique data set for their retrievals, but instead use

MNRAS 496, 269–281 (2020)
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Machine learning for atmospheric retrieval 279

Figure 13. Marginal posterior distributions for CO abundance retrieved from the transmission spectrum of HD 209458b using different methods: (a)(i) Random

Forest retrieval following the methods of MN18; (a)(ii) the same approach as (a)(i) but using 24 000 trees instead of 1000; (b) Nested Sampling retrieval; (c)

extended Random Forest retrieval. In order to aid comparison, the histograms have been scaled so that the bin with maximum probability in each plot has the

same height. Given the lack of strong CO features in the spectral range of the data, a detection of CO is unexpected. Therefore, the posterior in (a) is unphysical

while those in (b) and (c) match with expectation.

Figure 14. Comparison of the duration of Nested Sampling retrievals (τNS)

versus extended Random Forest retrievals (τRF) as a function of spectral

resolution R. Three-parameter Random Forest retrievals are faster than

their Nested Sampling counterparts, whereas four-parameter Random Forest

retrievals are only faster at low and high spectral resolutions, albeit only with

a factor of two. For higher dimensions, Nested Sampling retrievals tend to

be more efficient.

the same training set that was used in MN18. Each of their models

takes approximately 20 min to train.

For the present study, we compare the full retrieval duration

of Nested Sampling and extended Random Forest retrievals for

both the three- and four-parameter cases presented in Section 3.

We conduct retrievals on a synthetic data set binned to different

resolutions from R = 10 to 1000, using the same computational

resources for each (parallelization over four CPU cores). For the

Random Forest retrieval we include the time taken to produce the

training data set, the training itself and the prediction step, however

we note that in general only one training set would be needed to

retrieve multiple observation instances of the same target.

The results of this investigation are shown in Fig. 14, where we

show the relative speedup of the extended Random Forest retrieval

compared to the Nested Sampling retrieval. In the three parameter

case, the Random Forest retrieval always outperforms Nested

Sampling by a factor of ∼4–8. At the resolution of the HD 209458b

data used in Section 2.2, training time is approximately 4 s per

1000 estimators using the extended Random Forest approach. The

biggest improvement over Nested Sampling is found at the lowest

and highest wavelength resolutions, with a minimum at R ∼ 250.

While the duration of the Random Forest retrieval increases steadily

with wavelength, following an approximate power law τRF ∼ R0.4,

the duration of the Nested Sampling retrieval increases more slowly

with R up to R ∼ 250 at which point τNS increases rapidly.

In the four parameter case, similar patterns are found in both types

of retrieval, with both retrievals being slower overall. However, the

addition of another parameter increases τRF much more than τNS,

resulting in retrievals of comparable duration. Training a Random

Forest on high-dimensional data is much slower since a larger

training set is required; in this case it takes about 80s to train 1000

estimators on four CPU cores. This indicates that increasing the

number of free parameters and the size of the training set slows

down the training significantly.

The applicability of a retrieval algorithm to higher dimensional

parameter spaces is an important factor to consider when comparing

machine learning and traditional retrievals. As higher quality

observed data and new line lists (e.g. Tennyson & Yurchenko 2012)

become available it will be possible to search for an increasingly

large number of atomic and molecular species, which will expand

the number of possible free parameters in the forward model

considerably. Additionally, extra parameters must be included to

deal with other phenomena such as clouds (Wakeford & Sing

2015; Pinhas & Madhusudhan 2017) and stellar heterogeneity

(Pinhas et al. 2018). We consider the feasibility of using the

extended Random Forest method to perform a retrieval including

additional chemical species and cloud/haze properties, following

the prescription of MacDonald & Madhusudhan (2017). The model

in this case requires 10 free parameters, and so we produce a large

training data set consisting of >106 models. When a Random Forest

is trained using this data, it predicts very few points with high

likelihoods, suggesting that the parameter space is not sampled

finely enough in the training set. This approach already requires far

more model evaluations than a Nested Sampling retrieval using the

same model, which converges after approximately 500 000 model

evaluations. A Random Forest retrieval with n free parameters

appears to require �10n models for an adequate training set. Full

retrievals with optical and infrared data typically include up to ∼20

free parameters (e.g. MacDonald & Madhusudhan 2019; Welbanks

MNRAS 496, 269–281 (2020)
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& Madhusudhan 2019; Madhusudhan et al. 2020), so a sufficient

training set to carry out these retrievals using this method would

be prohibitively large. We therefore conclude that the Random

Forest approach struggles to deal with higher dimensional parameter

spaces efficiently. If a different algorithm can be used that performs

more efficiently in high-dimensional parameter spaces and while

still capturing uncertainties and degeneracies accurately, then it is

possible that a machine learning approach could eventually compare

to traditional methods for all cases, regardless of complexity.

At present, each planet being analysed requires its own training

data set for our extended Random Forest retrieval. An alternative

approach to address the large computation time required for Random

Forest retrievals in high-dimensional spaces might be to generate

a large training set with many free parameters (including bulk

parameters such as surface gravity) that would be applicable to

a range of planets. This training set could then be used to train

a model which could retrieve properties of spectra from different

planets. Each retrieval would therefore only require the prediction

step to be carried out after the training has been completed once. This

kind of method has been applied to retrievals using deep learning:

for example, Soboczenski et al. (2018) used a large training set

of 107 models of terrestrial planet spectra which could be applied

to numerous planets. Zingales & Waldmann (2018) took a similar

approach, using a training set of 107 hot Jupiter spectra. In the

next decade, with the advent of Ariel and the James Webb Space

Telescope, we expect the number of planets with high-quality spec-

tral data suitable for retrieval to increase significantly (Tinetti et al.

2018), so a machine learning approach that could apply to a range

of planets may prove to be the most efficient option for conducting

population studies of exoplanet atmospheres in the future.

Other than attempting to fully reproduce traditional retrievals,

there may be other scenarios in which a machine learning-based

approach could prove useful in this field: for example, a small

number of predictions may be able inform the priors or starting

points for a MCMC retrieval (e.g. Hayes et al. 2020), or could inform

which molecules should be included in the full retrieval process, as

discussed in Waldmann (2016). Additionally, while not explored in

this study, the Random Forest algorithm provides information about

the information content of each data point in the spectrum, and it

was mentioned in MN18 that this could be used to inform which

wavelengths are most useful for future observations. We believe that

combining machine learning algorithms with traditional methods

can provide additional insight even when they are unable to replace

existing methods entirely.

In this paper, we have investigated the viability of using machine

learning for atmospheric retrievals of exoplanets. We reproduced

both the Nested Sampling and Random Forest results of MN18

and we extended the methods from that paper so that the resulting

posterior distribution from the Random Forest retrieval more closely

matches that of the corresponding Nested Sampling retrieval. We

applied this extended approach to a different planetary spectrum

using a fully numerical forward model and found that once again

we could accurately match the Nested Sampling and Random Forest

retrievals. In addition, we found that our approach does not lead to

spurious detections of parameters in cases where the parameter

values should not be well-constrained, a problem found with the

previous method. We have therefore developed a machine learning

technique that can accurately and robustly reproduce the results

of Bayesian retrievals. We investigated the potential for using

this method to perform higher dimensional retrievals and found

that the algorithm requires a finely-sampled grid of training data

in order to work well, making it prohibitively expensive to use

this method in more complex cases. We conclude that while it is

certainly possible to use machine learning techniques to reproduce

traditional Bayesian retrieval results at least in low dimensions,

the increased computational cost suggests that this approach does

not yet provide a significant improvement on traditional methods.

Future improvements in machine learning methodologies, as well as

new strategies for applying these techniques to the present problem,

will be required to surmount this challenge.
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