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ABSTRACT

Motivation: In the process of developing risk prediction models,

various steps of model building and model selection are involved.

If this process is not adequately controlled, overfitting may result in

serious overoptimism leading to potentially erroneous conclusions.

Methods: For right censored time-to-event data, we estimate

the prediction error for assessing the performance of a risk

prediction model (Gerds and Schumacher, 2006; Graf et al., 1999).

Furthermore, resampling methods are used to detect overfitting

and resulting overoptimism and to adjust the estimates of prediction

error (Gerds and Schumacher, 2007).

Results: We show how and to what extent the methodology can

be used in situations characterized by a large number of potential

predictor variables where overfitting may be expected to be

overwhelming. This is illustrated by estimating the prediction error

of some recently proposed techniques for fitting a multivariate Cox

regression model applied to the data of a prognostic study in

patients with diffuse large-B-cell lymphoma (DLBCL).

Availability: Resampling-based estimation of prediction error curves

is implemented in an R package called pec available from the

authors.

Contact: sec@imbi.uni-freiburg.de

1 INTRODUCTION

In cancer and other chronic diseases, mostly only moderate

predictive accuracy can be achieved with clinical data or single

biochemical or molecular markers (Schumacher et al., 2006).

A risk prediction model in survival analysis assigns survival

probabilities to every new patient based on the information that

is available at the time origin, e.g. just before start of therapy.

It is hoped that high-dimensional genomic and proteomic

information, for example obtained via gene expression mea-

surement or protein mass spectrometry, could considerably

improve the predictive ability of such models. The principle for

developing such models with a sample cohort is to classify the

patients such that the variability of the response is small within

classes and high between classes. However, censoring disables

application of standard discrimination methods and due to the

high dimensionality also standard survival methods, for

example multivariate Cox regression, cannot be directly

applied. Currently used statistical strategies are either ad hoc

such as gene signatures based on univariate Cox regression

analyses, or not yet fully developed. We consider here principle

components partial Cox regression (Li and Gui, 2004) and

a Cox path algorithm which combines shrinkage and variable

selection (Park and Hastie, 2006). It has to be anticipated that

in situations where the number of explanatory variables exceeds

by far the number of patients in the sample cohort, the

overfitting of naively applied statistical strategies and resulting

overoptimism of the prediction error may be overwhelming.

The standard practice is to use only part of the data of

a study as a training set for the development of the risk

prediction model. The complementary data is then used

for estimating the prediction error (Molinaro et al., 2005;

Segal, 2006) . We show via resampling that this data splitting

approach leads to estimates of the prediction error that are

characterized by high finite sample variation. Furthermore, the

approach is generally inefficient as it is wasting useful and

highly valuable information. Studies in this field are usually

rather small with respect to the number of patients or

individuals (a few hundred) but large in the number of

potential predictors (some thousand). Data splitting would

further reduce the size of the already small training set that is

used for the development of the risk prediction model thus

increasing problems of instability and overfitting. However,

there are alternatives available. The bootstrap cross-validation

and the 0.632þ estimator are based on resampling (Efron, 1983;

Efron and Tibshirani, 1997) and designed to improve on

k-fold cross-validation.
There is, however, only limited experience so far whether

the bootstrap resampling approach will also work in high-

dimensional settings. Molinaro et al. (2005) and Braga-Neto

and Dougherty (2004) report on problems in situations with

very small sample sizes (n ¼ 40), but restrict their investigation

to the classification problem. In this article, we use modifica-

tions of the bootstrap resampling approach for censored

time-to-event response variable data (Gerds and Schumacher,

2006, 2007; Graf et al., 1999) and explore the practical

performance in the data of the study by Rosenwald et al.,*To whom correspondence should be addressed.
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(2002), i.e. in a situation which is characterized by a large
number of predictor variables (d ¼ 7399) and a moderate

sample size (n¼ 240). The aim is to improve the accuracy of

prognosis of patients with diffuse large-B-cell lymphoma
(DLBCL). The response in the retrospective sample cohort is

either the time from chemotherapy to death of the patient

or the patient is alive at the end of the individual follow-up
period (right censored).

2 METHODS

2.1 Developing risk prediction models

Suppose given is a sample cohort of size n where for each patient

observed is the survival status Yi(t) between the time origin and an

individual right censoring time Ci, and a d-dimensional vector of

covariates Zi which is measured at baseline (t¼ 0). If the patient is alive

at time t then Yi(t) ¼ 1 and Yi(t) ¼ 0 otherwise. At baseline, the aim is

to predict future survival status for all patients in the population.

The predictions are quantified in terms of survival probabilities.

Predicted survival probabilities are interpreted by the patient (Kattan,

2002) and can be derived from a hazard regression model, e.g. by the

product limit method (Andersen et al., 1993).

Classical survival techniques are based on maximization of the

multivariate partial likelihood (Cox, 1972). They suffer from the

limitation that for obvious reasons the dimension of the covariate

vector Zi,d, must be smaller than the number of individuals, n. In the

high-dimensional setting d is usually much larger than n, thus

prohibiting direct maximization of the multivariate partial likelihood.

To overcome these difficulties, several techniques have been proposed;

we consider three of them in the sequel.

The first approach is an ad hoc approach based on univariate

Cox regression analyses considering one feature (i.e. the expression level

of a gene) at a time. The features corresponding to the twenty smallest

P-values so obtained are considered a gene signature. In a second step,

a multivariate Cox regression model is fitted with all features in the gene

signature; this leads to individual prognoses as described in Section 2.2.

The second approach is a generalization of the partial least squares

method (e.g. Garthwaite, 1994; Wold, 1966) for time-to-event data

proposed by Li and Gui (2004) as partial Cox regression analysis.

In order to further reduce the dimension, the authors combined that

approach with prior principal component analysis on the matrix of

covariate vectors, leading to a principal components partial Cox

regression (PC-PCR) method. So the principal components (instead of

the original covariates) are used to derive partial components. For each

of the latter a Wald test P-value is calculated from univariate Cox

models. The first k components with P-value smaller than a cutoff are

included in a multivariate Cox analysis. We use a cutoff of 0.05 which

results in 4 components for the full data and 4–5 components for most

of the bootstrap samples used. From a final fit, one may recover

estimated regression coefficients for all the d initial covariates by

reversing the transformations.

The third approach, CoxPath, is based on penalized maximization

of a multivariate partial likelihood. In classical linear regression with

L2 norm penalty this method is known as ‘ridge regression’ (Hoerl and

Kennard, 1970). However, we think that penalties based on the L1 norm

are advantageous for the high-dimensional setting, because they

result in sparser fits; this requires special estimation techniques

(Tibshirani, 1996). Often the aim is to compute whole coefficient

paths, corresponding to a range of different values for the penalty

parameter. For example, this facilitates choice of the penalty parameter.

Path algorithms (Efron et al., 2004; Park and Hastie, 2006) provide

these paths in a computationally efficient way. Although this method

needs quite some computer power, it is feasible in the high-dimensional

setting. At a given value for the penalty parameter the result is similar

to that of a multivariate Cox regression analysis, however with

shrinked regression coefficients. We found that there are problems

with automated choosing of the penalty parameter, since standard

selection criteria based on degrees of freedom, such as AIC or BIC,

fail spectacularly in our example. Therefore, we use 5-fold cross-

validation on the full data to select the model complexity. On the full

data this resulted in a model with only 37 out of 7399 features. In the

bootstrap samples, we use the same model complexity, resulting in

a similar number of features. We are aware that ideally cross-

validation should be performed in every bootstrap sample. But, due

to the considerable additional computational burden we leave this step

out of the present evaluation of the CoxPath procedure. Furthermore,

the properties of model complexity selection in high-dimensional

bootstrap samples are still unclear.

2.2 Measures of prediction error

A prediction rule r is a statistical method or strategy that uses the

information of training data X ¼ {Xi : i 2 T} to develop a risk

prediction model r(X). Here Xi represents the information on survival

and covariates which is available for patient i, see Section 2.1, and

T refers to a subset of the sample cohort, i.e. T � f1; . . . ; ng. All three

approaches introduced in the previous section provide a multivariate

Cox regression-like result for the conditional hazard function based

on X:

�ðt j ZiÞ ¼ b�0ðtÞ expðb�TZiÞ: ð1Þ

Here, b� is a d-dimensional vector of estimated (shrinked) regression

coefficients and b�0 an estimate of the baseline hazard function. From

the fitted model there are several ways to construct a risk prediction

model. A popular approach first builds classes, e.g. based on quantiles

of the linear predictors b�TZi, and then predicts survival probabilities

based on stratified Kaplan–Meier analyses. A patient of the population

is first classified according to her or his value for the linear predictor

and then assigned the respective survival probabilities of this class,

which are her or his predictions. However, the transformation from

individual values for the linear predictor to a finite often small number

of classes can produce substantial bias (Gerds and Schumacher, 2001).

Therefore, we consider the values of (1) as a continuous classifier and

derive survival probabilities directly via the usual product limit method.

The predicted survival probability for patient i when obtained with

the risk prediction model r(X) is denoted rX(t | Zi) in the following.

So, e.g. if r is a simple Cox model, then rX(t | Zi) is obtained by

estimating the regression coefficients and the baseline hazard and

deriving from that the predicted survival probability.

The prediction error is defined via Brier’s score (Brier, 1950) as a

function of time as follows. If the patient is alive at time t the predicted

survival probability should be close to 1, and otherwise close to 0;

in summary, the following expression should be minimized:

errðt; rXÞ ¼
X
i

fYiðtÞ � rXðt j ZiÞg
2Wðt; bG;XiÞ ð2Þ

where summation is over a validation set and will be standardized.

The weights remove a large sample censoring bias and are given by

Wðt; bG;XiÞ ¼
1fTi � t;Ti � CigbGðTi�Þ

þ
1fTi > tgbGðtÞ

where, Ti is the time of death for the uncensored patients

in the validation set and bGðtÞ denotes an estimate of the

conditional probability of being uncensored at time t given the

history (Gerds and Schumacher, 2006; Van der Laan and Robins,

2003). In the high-dimensional setting considered here the history

includes the genomic information. Thus, to achieve feasibility of the
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inverse of probability of censoring weighted estimate we tentatively

assume that the censoring mechanisms is independent of the survival

and the history. Then the Kaplan–Meier estimate of the censoring

survival function substituted for bG makes (2) consistent for the

prediction error (Gerds and Schumacher, 2006; Graf et al., 1999).

The prediction error as we use it is a special case of a more general loss

function approach (Korn and Simon, 1991). In the special case of a

classification problem with predicted class labels instead of predicted

class probabilities, it reduces to the well-known misclassification rate.

2.3 Bootstrap cross-validation and the 0.632þ estimator

Estimation of prediction error is generally difficult because there

usually is no data available for this task. The usual way is to take some

data away from the modeling process, yielding the split-sample estimate

of the prediction error. Some problems with this approach have been

discussed in Section 1; they will be explored in Section 3.

The idea of the 0.632þ estimator is to (linearly) combine the apparent

error that underestimates the prediction error with a bootstrap cross-

validation estimate that overestimates the prediction error. The apparent

error is obtained when the summation in (2) is over the training set X.

Overoptimism refers to the potential negative bias which occurs when a

risk prediction model is validated with the same data in which it was

developed. For example, in the context of the Cox path algorithm,

if the penalty is chosen such that the number of covariates in the

model exceeds the number of patients, then the overfitting can be so

overwhelming that the apparent error equals zero at all times. To obtain

the bootstrap cross-validation estimate, we first draw with replacement

B bootstrap samples X*
b each of size n from the full sample population

{Xi: i 2 1,. . .,n}. Then the risk prediction model r*b developed on X*
b is

validated in the set of all individuals not included in the b-th bootstrap

sample, i.e. in X0
b ¼ fXi=2X

*
bg: The bootstrap cross-validation estimate

of the prediction error at time t is the average:

dErrB0ðt; rÞ ¼ 1

B

XB
b¼1

1

b0

X
i2X0

b

�
YiðtÞ � r�bðtjZiÞ

�2

Wðt; bG;XiÞ

where b0 is the cardinality of X0
b: The estimate dErrB0ð Þ tends to a

positive bias for the true prediction error of r because the bootstrap

samples contain not the full information of the sample cohort which

would ideally be used for developing the rule. Efron and Tibshirani

(1997) propose a linear combination of the form

dErr!ðt; rÞ ¼ f1� !ðtÞgerrðt; rÞ þ !ðtÞdErrB0ðt; rÞ
where the special choice !(t) ¼ 0.632 gives the famous 0.632 estimator

(Efron, 1983) and where the time dependent extension is proposed in

Gerds and Schumacher (2007). Now, our setting is characterized by a

potentially over-determined system of covariates and patients. The idea

is to let !(t) reflect the amount of overfitting of a given prediction rule.

Therefore, consider as a worst case scenario the situation that event

status and covariates are independent. The so-called no-information

error (Efron and Tibshirani, 1997) assesses the performance of the

prediction rule in this scenario:

NoInfðt; rÞ ¼
1

n2

Xn
j¼1

Xn
i¼1

fYiðtÞ � rðtjZjÞg
2Wðt; bG;XiÞ:

Based on this quantity define the relative overfit as

bRðtÞ ¼ dErrB0ðt; rÞ � errðt; rÞ

NoInfðt; rÞ � errðt; rÞ
:

This yields the time-dependent version of the 0.632þ estimator with

weights b!ðtÞ ¼ 0:632=ð1� 0:368bRðtÞÞ (Gerds and Schumacher, 2007).

If bRðtÞ � 0, then dErr0:632þ � dErr0:632, and if bRðtÞ is close to 1, thendErr0:632þ is close to dErrB0.

2.4 Benchmark values

Various benchmark values are available for the prediction error at time

t of a risk prediction model. For example, the values 0.25 and 0.33

correspond to constant predicted survival probability of 50% and to

a random number between 0 and 100%, respectively. For judging the

prediction error curves, we will however rely on the benchmark

prediction error which is obtained with the overall Kaplan–Meier

estimator for the survival function. This simple ‘risk prediction model’

corresponds to a classifier which assigns the same class to all patients

in the population. It ignores the available covariate information

completely and thus provides a suitable benchmark value similar as is

obtained with the null model in linear regression.

3 APPLICATION TO DLBCL STUDY

The DLBCL study is a prognostic study (Rosenwald et al.,

2002) with retrospective collection of tumor-biopsy specimens

and clinical data for 240 patients with untreated DLBCL.

After a median follow-up period of 2.8 years, 138 deaths have

been observed; the 5-year overall survival rate is estimated

as 48%. Lymphochip cDNA microarray technology with

P ¼ 7399 genes was applied; a detailed description can be

found in the original publication (Rosenwald et al., 2002).

For development of a survival prediction model, the data set

was split into training set (n ¼ 160) and test set (n ¼ 80) by these

authors. Up to now, various attempts to create predictive

models of survival (from time of chemotherapy) in DLBCL

patients developed in these data have been published;

a comprehensive review is provided by Segal (Segal, 2006).
To impute missing gene expression levels, we basically follow

Li and Gui (2004) who prepared the same data. In particular,

we impute for each missing feature value the mean expression

level of the nearest eight features, based on Euclidian distance,

observed for this patient. In the rare cases where all these eight

values are missing, we impute the mean of the block consisting

of the nearest features over all patients.

For calculating the prediction error curves of the three

methods, PC-PCR, CoxPath and ad hoc Cox, in each of

B ¼ 100 bootstrap samples the whole process of developing the

risk prediction models is carried out separately. Throughout,

the inverse of probability of censoring weighted scheme

Wðt; bG;XiÞ is estimated by the Kaplan–Meier estimate of the

censoring survival function in the whole data set.
Figures 2–4 show the prediction error curves for those

methods. for each method, the apparent error (broken lines) is

contrasted with the bootstrap cross-validation estimator

(dotted lines) and the 0.632þ estimator (solid, black lines)

of the prediction error curve. The prediction error curves

obtained in the bootstrap samples (B ¼ 100) are shown as

shadow plots. The bootstrap cross-validation estimate is the

mean of these curves.
We first look at the apparent error (broken lines). Compared

to the Kaplan–Meier benchmark value (gray, solid lines), there

seems to be a substantial reduction of prediction error by all

three methods. PC-PCR seems to perform best with an

estimated prediction error close to zero; when CoxPath is

evaluated at the step chosen by 5-fold cross-validation the

apparent error is slightly below the one obtained for the ad hoc

method which considers the best 20 features of univariate
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analyses in a multivariate Cox model. However, if we evaluate

the model at step 1088 which is suggested by the partial

likelihood version of AIC (see Fig. 1), then the resulting model

includes 205 features and the corresponding apparent error

(data not shown) is similar to the one of PC-PCR.
For all three methods, the high variability of the individual

bootstrap prediction error curves is clearly visible as shown by

the width of the shadow plots. As similar variability is observed

for the steps of 2-fold cross-validation, showing high finite

sample variance of the simple data splitting approach.
The 0.632þ estimates of the true prediction error indicate

that, with the exception of CoxPath, the developed prediction

models are no better than those based on the Kaplan–Meier

prediction ignoring all available covariate information. The

results of CoxPath are promising in that the 0.632þ estimate is

at least smaller than the Kaplan–Meier benchmark value.

However, recall that the choice of the penalty parameter is

crucial and that we have used a workaround. As an alternative

to using cross-validation in every bootstrap sample, a

consequent step towards automated penalty parameter selec-

tion would be to use bootstrap cross-validation and a criterion

that is based on a summary of the prediction error curves.

However, the current implementation of CoxPath is still very

computer intensive and a feasible solution is part of our

future research.
The relative overfit (defined at the end of Section 2.3) of the

three methods is displayed in Figure 5 with values between 60

and 80% throughout the follow-up period of about 10 years.

This indicates that the 0.632þ estimator is close to the

bootstrap cross-validation estimator for all methods.

However, it can also be seen that the latter is somewhat too

pessimistic.

Figure 6 summarizes the results for the three methods in

terms of prediction error curves obtained by the 0.632þ

estimator (Fig. 6) and obtained by splitting the data set into

Fig. 1. Rosenwald DLBCL study—results of CoxPath in full data.

Each gray line represents the shrinked regression coefficient of one

feature.
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fixed training set (n ¼ 160) and test set (n ¼ 80) (Fig. 7), as it

has been done in earlier publications (Rosenwald et al., 2002;

Segal, 2006). It can be seen that the resulting prediction error

curves are in nice agreement, however, they are associated with

much larger variability.

4 DISCUSSION AND CONCLUSION

Recent years have seen a rapid increase in availability of high-

dimensional genomic information in biomedical research that

could potentially be used for risk prediction, diagnosis,

prognosis and targeted therapeutic interventions (Simon,

2005). The situation is almost always characterized by a

relatively small number of individuals and a large number of

potential predictors, thus prohibiting the direct use of classical

approaches of statistical modeling and data analysis. A variety

of proposals have been made to overcome the problem intrinsic

to such a high-dimensional setting, most of them are focused

on classification problems. Some suggestions have been made

with regard to time-to-event data in order to also cover the

prognostic and risk prediction situation where time and

potential censoring has to be taken into account. Most of

these suggestions can be regarded as extensions of the well-

known Cox proportional hazards regression model (Cox, 1972)

or, better, as techniques for fitting a Cox regression model to

high-dimensional data. We used two of these proposals (Li and

Gui, 2004; Park and Hastie, 2006) in an exemplary manner and

contrasted them with an ad hoc approach; other proposals are

available but are beyond the scope of this article.
The high-dimensional setting can be seen as a unique

opportunity to create better risk prediction and prognostic

models compared to those that are already available and are

solely based on clinical data and/or single markers, but

considerable overfitting has to be anticipated. In order to

come to a valid assessment of predictive accuracy, data splitting

is usually employed. We argue that especially in a high-

dimensional setting model building should be based on all

available data and not be restricted to a smaller subset. More

efficient than simple data splitting are resampling methods, in

which the process of model building on the full data is imitated.

Especially, we advocate the use of the 0.632þ estimator of

prediction error (Efron and Tibshirani, 1997) that we have

adapted for application to time-to-event data (Gerds and

Schumacher, 2007). The resulting prediction error curves show

the relative merits of a risk prediction model over time when

compared to the Kaplan–Meier benchmark value that ignores

all (high-dimensional) covariate information (Gerds and

Schumacher, 2006).

We also investigated the usefulness of the 0.632þ estimator

and other resampling plans for assessing and comparing

predictive power of various modeling approaches with varying

degree of flexibility using the data of the GBSG-2 study,

a clinical trial in breast cancer patients, that has already been

used by ourselves and other authors beforehand (Schumacher

et al., 2006). An important conclusion from this empirical

investigation (Gerds and Schumacher, 2007) is that in a

standard regression setting (e.g. a pre-specified Cox model

with a limited number of covariates but moderate number of

events) the apparent error is almost identical to the prediction

error obtained with bootstrap-based approaches, indicating
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that the former tracks the true prediction error quite well. This
is in agreement with the large sample results of Gerds and
Schumacher, (2006). For the two flexible modeling strategies

studied (regression trees and artificial neural networks) it was
shown that the apparent error rates are seriously biased, but
this was markedly reduced when penalty terms or restrictions

were used. Thus, we got similar experiences as we obtained in
the high-dimensional setting investigated in this article.
In the application to the RosenwaldDLBCL data (Rosenwald

et al., 2002) we were able to show that the 0.632þ estimator

also ’works’ in a high-dimensional setting, i.e. it enables to track
the true prediction error without splitting the data into training
and test set, even for a model where the apparent error is close to

zero. Our findings can be summarized as follows: all prediction
models developed show prognostic potential in terms of
apparent error; PC-PCR (Li and Gui, 2004) seems to be best

with a prediction error curve close to the zero line. However,
overfitting turned out to be substantial, leading to far too
optimistic values of prediction error. The 0.632þ estimates of

prediction error indicate that, with the exception of CoxPath
(Park and Hastie, 2006), the developed prediction models are no
better than the Kaplan–Meier benchmark value ignoring all

covariate information. It is worth noting that the 0.632þ
estimates are in nice agreement to those obtained with usual
data splitting, a procedure that was also employed by Segal

(Segal, 2006) in his investigation on the various published risk
prediction models that have been created with the Rosenwald
DLBCL data. Although he used a different measure to assess

their predictive performance, namely time-dependent ROC
curves (Heagerty and Zheng, 2005; Heagerty et al., 2000),
he came to the very similar conclusion that there is only little

if any prognostic information in the prediction models
developed in these high-dimensional genomic data so far.
Although our investigation was not focused on a thorough

investigation or on an improvement of existing proposals for
the analysis of survival data with high-dimensional covariates,
we found that the Cox path algorithm involving L1 regulariza-

tion appeared to have the most potential. This should be
further evaluated and compared with other recent proposals
especially based on different methods for regularization

(Gui and Li, 2005; Van Houwelingen et al., 2006).
There have been a few investigations on prediction error

estimation in a high-dimensional setting. Within a classification

framework, Molinaro et al. (2005) compared by simulation
various approaches, including the 0.632þ and leave-one-out
cross-validation estimates. They found large variability of the

latter, especially when flexible prediction models were used.
This is a known drawback of leave-one-out cross-validation
(Wehberg and Schumacher, 2004) that originally has lead Efron

and Tibshirani to propose improvements on cross-validation
(Efron, 1983; Efron and Tibshirani, 1997). On the other hand,
(Molinaro et al., 2005) report on problems with the 0.632þ

estimate, especially in very small samples, (n ¼ 40) which might
be attributed to difficulties with ‘ties’, i.e. individuals that are
included more than once in a bootstrap sample. These

difficulties diminished with increasing sample sizes (n ¼ 80
and n ¼ 120). Although we were not confronted with that
problem in a serious way when using the 0.632þ estimate of

prediction error in the Rosenwald DLBCL data, this issue

deserves further attention. Recently, a proposal of combining

bootstrap resampling and leave-one-out cross-validation has

been published (Fu et al., 2005), but has not been investigated

in a high-dimensional setting yet. Finally, we would like to

emphasize that the 0.632þ estimate will only ‘work’, i.e. will

track the true prediction error, if all steps of model building

are repeatedly performed within each bootstrap sample. This

implies, e.g. that preliminary selection of genes may not be

ignored. The consequences of doing so have already been

impressively demonstrated (Simon et al., 2003).
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