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ABSTRACT

Daily precipitation extremes are crucial in the hydrological design of major water control structures

and are expected to show a changing tendency over time due to climate change. The magnitude and

frequency of extreme precipitation can be assessed by studying the upper tail behavior of probability

distributions of daily precipitation. Depending on the tail behavior, the distributions can be classified

into two categories: heavy-tailed and light-tailed distributions. Heavier tails indicate more frequent

occurrences of extreme precipitation events. In this paper, we have analyzed the temporal change in

the tail behavior of daily precipitation over India from pre- to post-1970 time periods as per the global

climatic shift. A modified Probability Ratio Mean Square Error norm is used to identify the best-fit

distribution to the tails of daily precipitation among four theoretical distributions (e.g., Pareto-type II,

Lognormal, Weibull, and Gamma distributions). The results indicate that the Lognormal distribution,

which is a heavy-tailed distribution, fits the tails of daily precipitation for the majority of the grids. It is

inferred from the study that there is an increase in the heaviness of tails of daily precipitation data

over India from pre- to post-1970 time periods.

Key words | daily precipitation extremes, global climatic shift, heavy-tailed distribution, light-tailed

distribution

HIGHLIGHTS

• This paper attempts to assess the changes in the tail behavior of daily precipitation over India

due to climatic shift in the 1970s.

• Maps show best-suited probability distributions for pre-/post-1970s and highlight the changes.

• Results highlight the use of heavy-tailed probability distributions for analyzing the extreme

precipitation.

• A significant increase in heaviness of tails is noticed from pre- to post-1970 time periods.
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INTRODUCTION

Among many of the well-known consequences of climate

change, the intensification of hydrological variables such

as precipitation and temperature is significant. Climate

change leads to an increase in the intensity and frequency

of rainfall events globally and locally (Groisman et al.

; Jacob & Hagemann ; Giorgi et al. ). The

Intergovernmental Panel on Climate Change (IPCC) has

put serious efforts into summarizing the impacts of extreme

precipitation on floods in the Special Report on Extremes
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(SREX) (IPCC ). This shows the grave concern of the

hydro-meteorologists worldwide about the hydro-climatic

extremes and their consequences for mankind. The reliable

estimation of daily extreme precipitation events is of utmost

importance to ensure the structural safety of infrastructure

projects and prevent loss of human life (Koutsoyiannis

). These rare, abnormal, and catastrophic events usually

lie in the tail part of the probability distribution of daily pre-

cipitation data. The tail is defined as the upper part of the

complementary cumulative distribution function beyond a

particular threshold (e.g., Klüppelberg ). The convention-

al distribution fitting methods are unable to fit the tail of daily

precipitation data adequately, which results in the exemption

of extreme precipitation events (termed as improbable events

or outliers), thereby underestimating their probability of

occurrence (Koutsoyiannis a, b; Li et al. ; Papa-

lexiou et al. ; Chen & Brissette ; Beskow et al. ;

Papalexiou & Koutsoyiannis ; De Michele & Avanzi

; Mlyński et al. ). As per the classical extreme value

theory, the block maxima (BM) extracted from a time-

series resemble one of the three limiting distributions,

namely, (i) Gumbel distribution (i.e., Extreme Value Type I

distribution); (ii) Fréchet distribution (i.e., Extreme Value

Type II distribution); and (iii) reversed Weibull (i.e., Extreme

Value Type III distribution) (Fisher & Tippett ; Gnedenko

; Jenkinson ; Coles ; Langousis et al. ). In the

case of annual maximum daily precipitation (i.e., BM per

year), Gumbel and Fréchet distributions were found to be

appropriate to model the behavior of extremes as both pos-

sess unbounded upper tail behavior (Koutsoyiannis a;

Papalexiou & Koutsoyiannis ; De Michele ). Gener-

ally, the reversed Weibull distribution is not considered for

analyzing annual maximum daily precipitation as the distri-

bution is bounded on the upper tail (Kotz & Nadarajah

; Papalexiou & Koutsoyiannis ; Chavan & Srinivas

). The inferences from the BM approach are dependent

on the selection of block size (i.e., either annual or seasonal

maxima, etc.). The selection of the annual maxima (AM)

from daily precipitation records at a location may distort

the tail behavior of their probability distribution as it might

miss a few of the largest daily precipitation events from a par-

ticular year. As the BM approach discards a large portion of

information from available data, the estimated distribution

parameter exhibits significant variability and becomes

sensitive to outliers (Coles et al. ; Koutsoyiannis b;

Deidda ; Langousis et al. ). Another way of modeling

extreme precipitation is based on the peak-over-threshold

(POT) approach. In the POT approach, a sample is extracted

from daily precipitation series by selecting all observations

above an arbitrary threshold u (Chow ). As the threshold

increases, such samples tend to follow generalized Pareto dis-

tribution (GPD) (e.g., Balkema & de Haan ; Pickands

; Madsen et al. ). Many studies from the past revealed

that the findings based on the POT approach are generally

more efficient than the BM approach (Cunnane ;

Madsen et al. ; Caires ; Villarini et al. ; Moccia

et al. ). Despite its advantages, the use of POT is less

prevalent than BM due to (i) the presence of serial depen-

dence in identified peaks and (ii) ambiguity in the selection

of an optimum threshold for the identification of peaks

(e.g., Beguería ; Mailhot et al. ; Serinaldi & Kilsby

; Kiran & Srinivas ). To avoid the loss of information

about the extreme precipitation as in the case of the BM

approach and the selection of arbitrary threshold as in the

case of the POT approach, an annual exceedance series

(AES) is used for demarcating the tail of daily precipitation

data in this study. An AES approach has the advantage of

better representing the exact tail of the parent distribution

(e.g., Chow ; Ben-Zvi ; Gupta ; Papalexiou

et al. ). After finalizing the tail of daily precipitation

data, the distribution fitting can be accomplished using the

probability ratio mean square error (PRMSE) norm proposed

by Papalexiou et al. (). PRMSE norm-based tail-fitting of

the probability distributions yields unbiased estimates of par-

ameters of distributions and also compares the fits of various

probability distributions (e.g., Papalexiou et al. , ;

Moccia et al. ). In a recent study by Moccia et al. (),

the equivalence between PRMSE and a conventional fitting

method, i.e., Kolmogorov–Smirnov (KS) test, in identifying

the best-fitting distribution was verified, and the PRMSE

was found to have some additional benefits over the KS test.

Classification of probability distributions based on their

tail behavior

Various probability distributions can be classified based on

their tail behavior into two categories: heavy-tailed distri-

butions (e.g., Pareto, Lognormal, Weibull, Lévy, etc.) and
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light-tailed distributions (e.g., Gaussian, Exponential, etc.).

Heavy-tailed distributions are also referred to as ‘fat-tailed’,

‘thick-tailed,’ or ‘long-tailed’ in various literatures (El

Adlouni et al. ; Foss et al. ; Papalexiou et al. ).

They have upper tails decaying as a power law (i.e., tails

tend to approach zero more gently than an exponential

tail). A random variable X is said to have a heavy-tail when

its moment-generating function becomes infinite on R (the

set of real number) given in Equation (1) (e.g., Panorska

et al. ; Foss et al. ; Panahi ; Wang et al. ).

ð

R

e�λxF(x)dx ¼∞ for all λ> 0 (1)

Heavy-tailed distributions belong to a class of sub-

exponential distributions. The class of subexponential

distribution was initially introduced by Chistyakov (),

and for any distribution function F to be subexponential,

one of the following conditions must hold.

(a) lim
x!∞

�F
n�
(x)

�F(x)
¼ n for some (all)n � 2 (2)

(b) lim
x!∞

P(X1 þ . . .þXn> x)

P(max (X1, . . . ,Xn)> x)
¼ 1 for some (all)n� 2 (3)

where �F(x) denotes the exceedance probability;

�F
n�

¼ 1� Fn�(x) ¼ P(X1 þX2 þ . . . . . . : þXn > x) denotes

the tail of n-fold convolution of F (Embrechts & Goldie

; Embrechts et al. ; Goldie & klüppelberg ).

Definition (a) shows the absence of any exponential

moments, while condition (b) suggested by Teugel ()

indicates the presence of enormous values (i.e., rare

events) in the sample. Condition (b) is also known as the

principle of ‘a single big jump’ (Foss et al. ; Hill ).

Embrechts & Goldie () showed that the equivalence

of condition (a) and (b) power-law distributions like Lognor-

mal distribution and regularly varying distributions such as

Pareto-type II distribution are subsets of the subexponential

distributions (Feller ; Bingham et al. ; El Adlouni

et al. ; Foss et al. ; Voitalov et al. ). Several

attempts have been made to group tails of distributions

according to their limiting/asymptotic behavior (e.g.,

Goldie & Klüppelberg ; Ouarda et al. , etc.).

Werner & Upper () classified the distributions in five

nested classes from A to E such that A, B, C, D, E:

Class A (stable distributions; distributions with Pareto tails

having α< 1), B (Pareto-type tail), C (regularly varying distri-

butions), D (subexponential distributions), and the class E

(the broadest class includes distributions with infinite

exponential moments). El Adlouni et al. () combined

classifications mentioned above with five graphical criteria

for tail discrimination and arranged different distributions

from light- to heavy-tailed. Papalexiou et al. (, ) intui-

tively defined two broad classes of distributions based on the

asymptotic tail behavior as (a) subexponential class (heavy-

tailed class) and (b) the superexponential class (Nagaev &

Tsitsiashvili ) or hyperexponential class (Vela &

Rodríguez ) (light-tailed class). The practical implication

of a heavy-tailed distribution such as a Pareto or a lognormal

distribution is that the large values representing rare events

are much more likely to occur than that of a light-tailed dis-

tribution like Gaussian or Exponential distribution.

Several studies like that of Mielke () have shown that

heavy-tailed distributions like Kappa distribution might be

more suitable for modeling daily precipitation data. Panorska

et al. () verified that the daily extreme precipitation data

come from Pareto distribution rather than an exponential

distribution based on likelihood ratio tests for hypothesis

validation. They found that the tails of daily precipitation

closely resemble power law for most North American conti-

nent stations. Papalexiou et al. () used the daily rainfall

of 15,137 records and compared the performance of various

probability distributions such as Pareto-type II, Weibull, Log-

normal, and Gamma distributions in describing the upper

tails and ranked the suitability of the distributions as per

PRMSE norm. Overall findings from the study indicated that

the daily rainfall extremes are better described by heavy-

tailed distribution. Cavanaugh et al. () used the statistical

test of Kozubowski et al. () and the methodology of

Panorska et al. () to show that the probability distribution

of intense daily precipitation over 22,000 stations located glob-

ally exhibits heavy tails. The Pareto-type tail dominates over

65% of stations as compared with the exponential tail-type dis-

tributions. Nerantzaki & Papalexiou () developed a faster

algorithmic procedure for the mean excess function (MEF)-

based graphical method to discriminate between exponential

and subexponential tails for about 21,348 daily precipitation
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records all over the globe. They observed that nearly 75.8% of

records showed the dominance of heavy-tail distributions.

Graphical methods such as Log–log plots, MEF, Zipf plot,

and Hill tail estimator are also useful in assessing the tail be-

havior of distributions (Hill ; Embrechts et al. ;

Ghosh & Resnick ; Nieboer ; Cirillo ; Cooke

et al. ). Recently, Moccia et al. () showed that heavy-

tailed distributions provide a better fit than the light-tailed dis-

tributions for about 80% of stations in two Italian regions (i.e.,

Lazio and Sicily). They perform the analysis for the sample

selected through the AM and AES approaches.

Effect of global climatic shift on extreme precipitation

There have been several studies that analyzed the changes in

extreme rainfall over India at the national and regional scale

and have drawn different conclusions (Goswami et al. ;

Rajeevan et al. ; Dash et al. ; Ghosh et al. ;

Kulkarni et al. ; Mondal & Mujumdar ; Shastri

et al. ; Ghosh et al. ; Singh et al. ; Roxy et al.

; Bisht et al. a, b). The changes in extreme pre-

cipitation can be attributed to the abrupt global change of

the climatic system caused by a regime shift in the 1970s

in various climatic factors like the Arctic Oscillation (AO),

East Asian summer monsoon (EASM), East Asian winter

monsoon (EAWM), El Niño–Southern Oscillation

(ENSO), North Atlantic Oscillation (NAO), Aleutian low

(AL), Pacific decadal oscillation (PDO), Western Pacific

subtropical high (WPSH), and Indian summer monsoon

rainfall (ISMR) (Biondi et al. ; Chowdary et al. ;

Zhou et al. ; O’Kane et al. ; Chen et al. ;

Sahana et al. ; Hsu ; Zuo et al. ; Weisheimer

et al. ; Dai et al. ) or some local changes such as

urbanization. The climate regime shift has adversely

impacted the atmosphere, ecosystems, biological, and

many hydro-climatic variables, such as temperature, air

pressure, wind field, and rainfall, resulting in the frequent

occurrence of extremes like heat, drought, heavy rainfall,

and flood disasters (Graham ; Zhang et al. ; Wang

; Meehl et al. ; Jacques-coper & Garreaud ;

Huang et al. a, b). Many researchers have demon-

strated that the rainfall characteristics within and beyond

the monsoon period exhibit spatio-temporal changes due

to climate regime shifts globally and in India (Sabeerali

et al. ; Sahana et al. ). Ajayamohan & Suryachandra

() have also shown an increased extreme rainfall event

over central India after the 1976/1977 climate shift. Vittal

et al. () showed that rainfall extremes have changed in

India after 1975 and established that urbanization, in

terms of change in population density, is a possible cause

of change. They used a comprehensive POT approach with

95 and 99 percentile thresholds, including multiple extreme

events in a year. Dash & Maity () found that the precipi-

tation-based climate change indices exhibit increasing

trends over India with more spatial extent post-1975.

Recently, Sarkar & Maity () observed an increment of

35% in probable maximum precipitation over India in the

post-1970 (1971–2010) period when compared with the

pre-1970 (1901–1970) period due to climate shift.

Study goals

This study proposes to assess the temporal changes in the

daily extreme precipitation over India due to climatic shift

in the 1970s based on the change in the tail behavior of the

probability distributions of daily precipitation. We intend

to perform the assessment by considering four theoretical

distributions (e.g., Pareto-type II, Lognormal, Weibull, and

Gamma distributions), which belong to different classes of

distributions (i.e., subexponential or hyperexponential

classes) following Papalexiou et al. (). The primary

goals of this study are (a) to find the best-suited distribution

based on the PRMSE norm that can describe the extreme

daily precipitation in changing climate over India, (b) to

provide a categorical classification of grids into two

broad classes of distribution, i.e., subexponential class

and the hyperexponential–exponential class considering

the shift in the global climatic regime in the 1970s; (c) to

investigate spatial and temporal changes in the behavior

of tails of the probability distribution of daily precipitation

between the two time periods, namely pre-1970 (1901–

1970) and post-1970 (1971–2010). The assessment is per-

formed both at the grid and regional scale (i.e.,

Meteorological Subdivisions). The study would be useful

to the design engineers and hydro-meteorologists for

reliable planning and management of various major

water-energy infrastructures in India.
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DATA AND METHOD

Study area

India, the largest South Asian country with a wide variety of

climatic regions extending from low rainfall arid regions to

the heavy rainfall receiving regions, is our study area. The

climatic condition of the Indian mainland is influenced by

various geographical and relief features like the Himalayas

in the north, Thar Desert and Arabian Sea in the west, the

Bay of Bengal in the east, Western Ghats in the south-

west, and the Indian Ocean in the south. The study area

covers a widespread range of variations in the rainfall

extremes, which motivates us to examine spatial and tem-

poral behavior of daily extreme precipitation in terms of

magnitude and frequency of occurrence between the two

time periods corresponding to the shift in the global climate

regime in the 1970s, i.e., pre-1970 and post-1970. Further-

more, the temporal changes are investigated at a regional

scale in 34 out of 36 homogeneous Meteorological Subdivi-

sions (see Figure S1 in the Supplementary Material) in this

analysis (Guhathakurta & Rajeevan ).

Rainfall data

In this study, an extensive database of daily gridded precipi-

tation with a spatial resolution of 0.25� procured from

the India Meteorological Department (IMD) is considered.

The gridded rainfall data were prepared for 112 years

(1901–2013) by Pai et al. () using a varying network of

6,955 rain gauge stations. After performing a quality check,

4,789 grids each having a record length (N) of 110 years,

i.e., from 1901 to 2010, were selected for analysis. No missing

data were filled at any grids/stations. Records at each grid have

been split into two parts, i.e., pre-1970 (1901–1970) and post-

1970 (1971–2010), to capture the effect of the shift in the

global climate regime. Despite being an unequal division of

the data, the records at each grid for both pre- and post-1970

time periods have a sufficient number of non-zero daily pre-

cipitation values needed to estimate the tail behavior using

the threshold-based approach for fitting probability distri-

butions to daily precipitation data proposed by Papalexiou

et al. (). The data division fulfills the condition of the

availability of at least a 30-year record customary in the climate

community (Arguez & Vose ). Individual data length for

both the periods is sufficient to obtain a robust representation

of the spatial pattern of the tails of the probability distribution

of daily precipitation data over India.

Threshold-based approach for fitting probability

distributions

In this paper, we have adopted the threshold-based approach

(i.e., AES) for fitting probability distributions to the tail part

of the probability distribution of non-zero daily precipitation

data proposed by Papalexiou et al. (). Since the investi-

gation revolves around the tail behavior, it is essential first to

define the part of the probability distribution known as ‘tail’.

The demarcation of the tail of the empirical distribution for

daily precipitation data by optimally selecting the threshold

is a vital and crucial step in this approach. After demarcating

the tail of the empirical distribution, fitting a theoretical prob-

ability distribution function to the daily precipitation data in

the tail part can be accomplished by minimizing the difference

between empirical and theoretical distributions.

Defining tail of empirical distribution of daily

precipitation

The upper or ‘right’ part of the empirical probability distri-

bution function for non-zero rainfall is referred as the

‘tail’. The choice of a threshold needed for defining a tail

is recognized as a difficult and open problem of debate to

date. Hence, to avoid a priori selection of the threshold,

we defined samples using the AES method in the present

study. We choose a value xL as a threshold such that the

number of extreme precipitation events above it equals the

number of years of record N (Cunnane ; Ben-Zvi

). N largest daily values of the record are preferred

over each year’s maximum value as the latter results in the

distorted tail (Papalexiou & Koutsoyiannis ; Papalexiou

et al. ).

The total number of non-zero daily precipitation values

at a station can be computed using n ¼ (1� p0)ndN, where

nd ¼ 365.25 is the average number of days in a year, and

p0 represents the probability of dry day. The empirical prob-

ability of exceedance �FN(xi) is defined according to the
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Weibull plotting position formula (Weibull ; Makkonen

) at each station having N-year record, and n number of

non-zero precipitation values is defined as follows:

�FN(xi) ¼ 1�
r(xi)

nþ 1
(4)

where r(xi) is the rank of the precipitation equal to xi in the

ordered sample as x(1) � . . . : � x(n) of the non-zero values.

Thus, the empirical tail is defined by the N largest non-zero

precipitation values of �FN(xi) with n�N þ 1 � i � n.

Note that the threshold value for precipitation is given as

xL ¼ x(n�Nþ1).

Theoretical distributions considered in this study

Four simple, popular, and frequently used theoretical distri-

butions such as Weibull (W), Lognormal (LN), Pareto-type II

(PII), and the Gamma (G) distributions are considered in

this study following Papalexiou et al. () and Papalexiou

et al. (). Details on these four distributions are provided

in Table S1 in the Supplementary Material. Distributions

selected have two parameters: one is scale parameter (β> 0)

and the other is shape parameter (α> 0). The decision on

the heaviness of tails of daily precipitation data is based on fit-

ting four probability distributions to the precipitation data in

the tail part of the empirical distribution. The distributions

can be divided into subexponential and exponential–hyperex-

ponential classes based on the estimates of the shape

parameter, α. The former group comprises Pareto-type II distri-

bution, Lognormal distribution, and Weibull distribution with

α< 1, whereas the latter group includes Gamma distribution

and Weibull distribution with α> 1.

Procedure to fit probability distributions

The theoretical distributions are fitted to the precipitation

records in the tail part of the empirical distribution by mini-

mizing a PRMSE norm (which is an objective function) as

given in Equation (5) (Papalexiou et al. ).

PRMSE ¼
1

N

X

n

i¼n�Nþ1

F(x(i))

FN(x(i))
� 1

 !2

(5)

The PRMSE norm is a function of the parameters β and α

of the theoretical distributions. The norm is selected because

(i) it is unbiased and suitable for subexponential distributions,

(ii) it is easy to use and allows direct comparison of different

distribution tails, and (iii) it gives equal weightage to each

point in the tail, which contributes to the sum as relative

errors between theoretical and empirical values (Papalexiou

et al. , ). In this study, the approach proposed by

Papalexiou et al. () is slightly modified by using a genetic

algorithm (GA) (Goldberg ; Michalewicz et al. ) for

parameter estimation of the distributions. A GA is a heuristic,

stochastic, combinatorial, optimization technique based on the

biological process of natural evolution (reproduction, cross-

over, and mutation). The heuristic is applied probabilistically

to the discrete decision variables coded into binary strings.

GA has been utilized effectively to minimize the PRMSE

given in Equation (5) in two ways: (i) by fitting theoretical dis-

tribution to the entire precipitation data observed at a grid and

(ii) by fitting theoretical distribution to N largest values of pre-

cipitation at a grid. Figure 1 depicts the approach to fit

different probability distributions, namely Lognormal, Pareto-

type II, Weibull, and Gamma distributions to the precipitation

events in the tail part for both pre- and post-1970 periods (i.e.,

1901–1970 and 1971–2010). Grids for which the parameters

change but the distribution remains unchanged are shown in

Figure 1. It can be inferred from the figures that the first

approach where distribution is fitted to entire non-zero precipi-

tation data does not adequately describe the tail (refer to the

black dashed line). On the other hand, the solid red line repre-

senting fitting of the distributions only to the events in the tail

part appears to describe the tail adequately.

RESULTS

This paper investigates the temporal and spatial changes in

the behavior of daily extreme precipitation over India in

terms of its frequency of occurrence due to the shift in the

global climatic regime in the 1970s. The temporal changes

are assessed between the two time periods, pre-1970 and

post-1970, both at grid scale and regional scale. Further, a

categorical classification of grids based on the change in

average rainfall above threshold (increase or decrease in

magnitude) and the change in the nature of the tails (i.e.,
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from light to heavy or heavy to light) over the two time

periods is also presented in this study.

Assessment of spatial and temporal changes in tail

behavior of probability distribution of daily precipitation

at the grid scale

In this section, the spatial and temporal changes in the behav-

ior of tails of probability distributions of daily precipitation

over India were analyzed for pre- and post-1970 periods. Fol-

lowing the procedure described earlier, Lognormal, Pareto-

type II, Weibull, and Gamma distributions were considered

to fit the non-zero daily precipitation data at 4,789 grids

over India from 1901 to 1970 and 1971 to 2010, respectively.

The distributions were fitted either by considering entire pre-

cipitation data at a grid or considering either 70 or 40 largest

precipitation data values depicting the tail part of the distri-

bution for the time periods of 1901–1970 and 1971–2010.

Visual investigation of the fits at all 4,789 grids indicated

that the fit based on the largest values in the precipitation

data adequately described the tail part of the empirical distri-

bution. This shows the advantage of the threshold-based

approach proposed by Papalexiou et al. () for fitting

probability distributions to daily precipitation data, especially

while analyzing the daily extreme precipitation events.

To find the best-fitted distribution of the four fitted

distributions at each grid, the PRMSE norm was considered

in this study. In the case of each grid, the distribution

function yielding the least estimate for the PRMSE

norm was declared to be the best-suited distribution for

that grid. Figure 2 shows the geographical or spatial

variation of best-suited distribution over India for both

pre- and post-1970 periods. For the pre-1970 period, out of

4,789 grids over India, Lognormal distribution was found

to be better suited for nearly 41.87% grids, followed by

Pareto (32.43%), Weibull (18.56%), and Gamma (7.14%)

distributions. For the post-1970s, the sequence remains the

same with Lognormal as the best-fitted distribution for

most grids over India. It has been observed that 45.86%

of grids exhibit lognormal distribution as best-suited

distribution, followed by Pareto for 32.20%, Weibull for

17.06%, and Gamma for 4.88% grids. Given these overall

percentages, one may conclude that the Lognormal and

Pareto-type II distributions (both heavy-tailed distributions)

are the most suitable distributions for modeling the tails of

probability distributions of daily precipitation data. Overall,

it can be seen that there is a 4% increment and a 2.26%

Figure 1 | PRMSE norm-based fitting approach applied to four tails, namely Lognormal, Pareto II, Weibull, and Gamma for two different periods: (a) pre-1970 (1901–1970) and (b) post-1970

(1971–2010).
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decrement in the number of grids following Lognormal dis-

tribution and Gamma distribution, respectively. The Weibull

distribution with a shape parameter less than 1 (which is a

heavy-tailed distribution) was found to be suitable for

96.40 and 98.53% of the grids, which showed Weibull as

the best-suited distribution for pre-and post-1970 periods,

respectively. It can be concluded from the results that

there exists a dominance of heavy-tailed distributions over

light-tailed Gamma and Weibull distributions along with

the increase in the tail heaviness of precipitation data over

India due to climatic shifts. This indicates that extreme pre-

cipitation events in India have become more frequent.

Details on the shape (α) and scale (β) parameters of the

best-suited distributions are provided in Table 1(a) and 1(b)

for both pre- and post-1970 periods, respectively. The shape

parameter is a scalar measure of tail behavior, and its histo-

gram constructed based on estimates at all grids can be

helpful in providing essential information about the tail hea-

viness. Figure 3(a) and 3(b) shows the empirical histograms

of the shape parameters of four distributions considered in

this study for pre- and post-1970 periods. Modal values of

the histograms represent the most probable values of the

shape parameters for each of the distributions. For Pareto-

type II distribution, the modes were observed as 0.19 and

0.176 for the pre- and post-1970 periods. Low modal

values for Pareto distribution imply the nonexistence of stat-

istical moments for higher orders, i.e., greater than 5.26 and

5.88 (Papalexiou et al. ). The mode value of the shape

parameter for Lognormal distribution was about 1.1 for

both pre- and post-1970 periods. In the case of Weibull dis-

tribution, the modes of the histograms were observed to be

around 0.84 for pre-1970 and 0.82 for post-1970, both imply-

ing the presence of heavier tails of the distribution as the

shape parameter is less than 1. Histograms for the shape par-

ameter of Gamma distribution show low modal values of

0.67, 0.73 for pre- and post-1970s, respectively, which indi-

cate the presence of hyperexponential tails representing a

lesser frequency of occurrence for extreme precipitation

events. Histograms of shape parameters did reveal a lot

about the basic nature of the tail of four distributions but

to further investigate the tail relevances in describing daily

precipitation, the average ranking was also considered. All

four distributions were ranked in the ascending order of

the PRMSE norm, i.e., the distribution yielding the least

PRMSE was declared as Rank 1 distribution, while the dis-

tribution with the highest PRMSE was ranked as

4. Figure 4 illustrates the average rank of the four probability

distributions for pre- and post-1970 periods. A lower average

rank of a probability distribution indicates better suitability

of the distribution in describing the tails of precipitation

data as compared with those with higher ranks. Lognormal

distribution was the best-fitted distribution with an average

rank of 1.9 and 1.7 for both pre-1970 and post-1970 periods.

The best-fitted distributions were ordered as Lognormal,

Figure 2 | Geographical locations of best-fitted distribution tail over India for two time periods: (a) pre-1970 (1907–1970) and (b) post-1970 (1971–2010). Different color coding has been

used for different tail types. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/wcc.2021.008.
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Pareto-type II, Weibull, and Gamma based on their ranks for

both pre- and post-1970 periods. Conventionally, Gamma dis-

tribution is the most commonly used probability distribution

for representing daily precipitation. However, results from

this study inferred that the Gamma distribution was the

worst performer for both periods. It can be noted from Figure 4

Table 1 | Statistical summary based on fitting of the four distributions to the tails of precipitation data for (a) pre-1970 and (b) post-1970 time periods

(a) Pre-1970 time period

Pareto Lognormal

MSE β α MSE β α

Minimum 0.0025 0.8866 0.0000 0.0026 1.5062 0.1878

Mean 0.1014 8.1352 0.2513 0.0581 10.2748 1.2208

Maximum 0.6572 25.6076 0.6910 0.8410 24.5317 2.1150

Median 0.0438 7.6815 0.2340 0.0335 10.0345 1.1873

SD 0.1224 4.2759 0.1206 0.0718 4.7997 0.2572

Skew 1.8099 0.5574 0.4701 3.4391 0.2278 0.4291

Weibull Gamma

MSE β α MSE β α

Minimum 0.0041 0.3476 0.3087 0.0037 3.4304 0.0379

Mean 0.1108 12.2075 0.9143 0.1339 17.3272 1.0737

Maximum 0.9855 31.5581 17.7532 0.4853 30.1988 7.0028

Median 0.0737 12.4927 0.8501 0.1199 17.6201 0.9060

SD 0.1221 5.0817 0.7085 0.0826 4.2256 0.7182

Skew 3.4180 �0.1809 14.4425 0.8034 �0.2213 1.9645

(b) Post-1970 time periods

Pareto Lognormal

MSE β α MSE β α

Minimum 0.0033 0.7920 0.0033 0.0040 1.9162 0.6009

Mean 0.0892 8.1501 0.2842 0.0551 9.6792 1.3141

Maximum 0.5203 31.8910 0.7445 0.4819 24.0319 2.2519

Median 0.0487 7.5730 0.2660 0.0377 9.1881 1.2814

SD 0.0967 4.2906 0.1314 0.0535 4.6877 0.2856

Skew 1.8672 0.6598 0.4807 2.6614 0.3851 0.4276

Weibull Gamma

MSE β α MSE β α

Minimum 0.0030 0.3850 0.3066 0.0040 5.1253 0.1139

Mean 0.1173 12.2138 0.8655 0.1788 18.1197 1.1743

Maximum 0.9744 30.8359 19.2964 0.6899 32.7686 10.6443

Median 0.0862 12.6215 0.8158 0.1684 18.3819 0.9731

SD 0.1111 5.1673 0.6941 0.1021 4.3883 0.8208

Skew 3.3131 �0.1866 16.2781 0.6251 �0.1592 2.6873
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Figure 3 | Histograms of the shape parameters of four distributions fitted to all 4789 records over two time periods: (a) pre-1970 (1901–1970) and (b) post-1970 (1971–2010).
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that the average ranking of Lognormal and Pareto-type II dis-

tributions is decreased from 1.9 to 1.78 and 2.31 to 2.2 over the

pre- and post-1970 periods, respectively. This shows that the

gridded daily precipitation for the post-1970 period over

India exhibits heavier tails than the pre-1970 period. Addition-

ally, an increase in the tail heaviness of the distributions in the

post-1970 period was also evident from the increase in the

average rank of Gamma distribution.

Another method adopted for assessing the temporal

change in the tails of probability distributions during the

pre- and post-1970 periods is achieved by comparing the

tails of the distributions in couples or pairs. Various pairs

of distributions considered in this study are ‘Lognormal vs.

Pareto’, ‘Pareto vs. Weibull’, ‘Pareto vs. Gamma’, ‘Lognor-

mal vs. Weibull’, ‘Lognormal vs. Gamma’, and ‘Weibull vs.

Gamma’. The best-fitted distribution among the pair (any

two distributions) was selected based on the PRMSE norm

for each grid. The distribution with a lesser PRMSE value

was considered as the best fit. Figure 5 illustrates the com-

parison between two probability distributions in pairs

for pre- and post-1970 periods. The figure presents the

percentage of grids found suitable for each probability

distribution compared in pairs. It can be deduced from the

figure that Lognormal distribution (which is a heavy-tailed

distribution) fits the extreme daily precipitation data for

58.66 and 60.51% grids in the pre- and post-1970 periods

when compared with Pareto-type II distribution. Further,

the Lognormal distribution was found to be better suited

than Weibull and Gamma distributions for both periods. It

can be noted that the percentage of grids where daily

precipitation is well represented by the Lognormal distri-

bution against the Weibull and Gamma distributions has

increased from 70.49 to 74.23% and 81.23 to 87.7%, respect-

ively, over the pre- and post-1970 periods. This indicates that

the probability distributions of daily precipitation in the

post-1970 period exhibit heavier tails than the pre-1970

Figure 4 | Mean ranks of four distribution tails for different time periods: (a) pre-1970 (1901–1970) and (b) post-1970 (1971–2010).
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period. We have also compared Pareto-type II distribution

with Lognormal, Gamma, and Weibull distributions, and it

emerged as the second best-fitted distribution after Lognor-

mal distribution. Similar to Lognormal distribution, Pareto-

type II distribution was inferred as a better fitting distri-

bution against Gamma and Weibull distributions for both

pre- and post-1970 periods. The analysis revealed that the

percentage of grids where the tails of probability distri-

butions of daily precipitation are better fitted by the

Pareto-type II distribution against the Weibull and Gamma

distributions has increased from 58.17 to 62.98% and

69.05 to 77.34% over the periods. Among the Weibull and

Gamma distributions, the Weibull distribution was better

suited for describing the tails of daily precipitation data

over India in both pre- and post-1970 periods. Interestingly,

a heavier tailed distribution was better fitted in each case

during both periods. These findings highlight that the

heavier tailed distributions should be preferred over their

counterparts while representing the tails of daily precipi-

tation data over India.

We have also investigated the existence of any geo-

graphical/spatial pattern of best-suited distributions over

India. The maps shown in Figure 2 illustrate the spatial dis-

tribution of best-fitted distributions for pre- and post-1970

periods. These maps do not unveil any regular patterns;

instead, they seem to follow a random spatial variation.

Hence, to reveal some meaningful conclusions, we categor-

ized the best-suited distributions into either subexponential

or exponential–hyperexponential classes based on the esti-

mates of the shape parameter (α), following El Adlouni

et al. () and Papalexiou et al. (). The subexponential

class includes Pareto-type II distribution, Lognormal

distribution, and Weibull distribution with shape parameter

<1, while the exponential–hyperexponential class com-

prises the Gamma distribution and Weibull distribution

with shape parameter >1. Figure 6 represents maps showing

the spatial distribution of subexponential and exponential–

hyperexponential distributions over India for pre- and

post-1970 periods. For the pre-1970 period, subexponential

distributions were better suited for 4,415 out of 4,789 grids

Figure 5 | PRMSE norm-based comparison of the fitted tails in couples for two time periods: (a) pre-1970 (1901–1970) and (b) post-1970 (1971–2010).
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(i.e., about 92.19%) over India. In comparison, the

latter class was found to be applicable for merely 374 grids

(i.e., only 7.81% of all the grids). Similarly, for the post-

1970 period, subexponential distributions were found to

be adequate to model daily precipitation data at

4,543 grids (i.e., 94.86% of all the grids while exponential–

hyperexponential tails were found to be appropriate for

the remaining 246 grids) (i.e., 5.14% of the grids). It can

be observed from maps that the heaviness in the tails of

probability distributions of daily precipitation over India

has increased post-1970s climatic shift. With the dominance

of heavy tails all over India, few pockets comprising lighter

tails were observed in the northeast region and along the

western coastal plain of the Indian Peninsula for both

periods. It can be seen very well from the maps that the sub-

exponential tails are much more dominant in the Indian

region than the exponential–hyperexponential tails.

Overall, the comparison is made in terms of the differ-

ence in the percentage of the number of grids belonging to

one category and the values of shape parameter (α). The

maps showing the distribution and the two broad classes

of tail behavior (i.e., subexponential and exponential–hyper-

exponential) are compared for both pre- and post-1970

periods to examine the impact of the global shift in climate

regime in the 1970s on extreme precipitation. The presence

of heavy tails in the daily precipitation data points to the fact

that the extreme precipitation events over India are no

longer rare.

Assessment of temporal changes in tail behavior of

probability distribution of daily precipitation at the

regional scale

Analysis at the grid scale revealed some essential inferences

about the tail behavior of daily precipitation over India.

However, to make the analysis more interpretable and

usable at the regional scale, the temporal changes in tail be-

havior of the probability distribution of daily precipitation

were assessed considering 34 Meteorological Subdivisions

over India. Table 2 provides details about the percentage

of grids having heavy or subexponential tails in each subdi-

vision, considering the pre-1970 and post-1970 periods.

Figure 7 shows the percentage of subexponential tails in

each Meteorological Subdivision over India for both periods

using color codes. In the case of the pre-1970 period, Saur-

ashtra Kutch & Diu (subdivision 22) showed a complete

dominance of heavy tails, followed by Gujarat (subdivision

21), Gangetic West Bengal (subdivision 6), and Orissa (subdi-

vision 7). Nearly 22 subdivisions had more than 90% of grids

showing heavy-tailed behavior. For the post-1970 period, Sub

Him West Bengal and Sikkim (subdivision 5), Coastal

Andhra Pradesh (subdivision 28), and Gangetic West

Bengal (subdivision 6) have 100% heavy tails. In the

post-1970s, 30 subdivisions were found to have more than

90% of grids showing heavy-tail behavior.

The maps showing the percentage of heavy tails in

each subdivision for pre- and post-1970s were compared

Figure 6 | Geographical variation of subexponential and exponential–hyperexponential tails over India for different periods: (a) pre-1970 (1901–1970) and (b) post-1970 (1970–2010).
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to find the change in the number of grids comprising

heavy tails. The changes in the percentage of heavy tails

over time for each subdivision are presented in Figure 7(c).

In nearly 23 out of 34 subdivisions, the percentage of grids

with heavy tails is observed to be increased over time. Out

of those 23, nine subdivisions, namely Arunachal Pradesh,

Assam and Meghalaya, Himachal Pradesh, Konkan and

Goa, Telangana, Tamil Nadu, and Pondicherry, Rayala-

seema, Coastal Karnataka, and Kerala, showed an

increase of about 5% or above. The substantially higher

percentage of grids exhibiting heavy tails post-1970 com-

pared with that of pre-1970 might be a possible

consequence of climate change and global climatic shift

in the 1970s.

Assessment of temporal changes in magnitude and

frequency of extreme precipitation over India

The classification of grids exhibiting the severity in terms of

increase in the magnitude and frequency of extreme precipi-

tation events due to the climatic shift is achieved by

considering the combined effect of change in average pre-

cipitation above threshold and change in the tail behavior.

The rainfall values above the threshold are the ones that

belong to the tail. We considered the average of these

values at each grid, which served as an indicator of the mag-

nitude of the extreme precipitation. The average rainfall

values above the threshold vary from a minimum value of

25.19–287.51 mm for the pre-1970 period. On the other

hand, average rainfall values above the threshold range

from 39.65 to 646.71 mm. Eight categories of severity were

proposed by considering an increase or decrease of average

rainfall above threshold and change in the nature of tail over

the period from pre-1970 to post-1970. Table 3 describes the

categories along with the number and percentage of grids

falling in them. The categories are ranked from 1 to 8,

with 1 being the most severe case and 8 being the least

severe case. Figure 8 shows the spatial pattern of grids

belonging to each category. Figure 8 and Table 3 show

that nearly 64.5% of grids belong to Category 1, representing

the most severe case. Category 2 comprises 5.42% grids

where an increase in the magnitude of extreme precipitation

and transition in the tail behavior from light to heavy were

Table 2 | Summary of the percentage of the grids having heavy tails within each

Meteorological Subdivision for the pre- and post-1970 records

ID Metrological region

Percentage of grids having heavy

tails

Pre-1970 (1901–

1970)

Post-1970 (1971–

2010)

2 Arunachal Pradesh 68.54 95.51

3 Assam and Meghalaya 77.71 90.36

4 Naga Mani Mizo and

Tripura

88.89 90.00

5 Sub Him W Bengal

Sikkim

96.67 100.00

6 Gangetic West Bengal 98.92 100.00

7 Orissa 98.15 99.07

8 Jharkhand 93.86 97.37

9 Bihar 94.90 96.82

10 East Uttar Pradesh 95.48 99.10

11 West Uttar Pradesh 98.05 94.81

12 Uttaranchal 97.59 93.98

13 Haryana Chandigarh and

Delhi

93.20 94.20

14 Punjab 96.67 97.78

15 Himachal Pradesh 87.64 93.18

16 Jammu and Kashmir 93.83 93.09

17 West Rajasthan 93.18 92.80

18 East Rajasthan 97.09 98.06

19 West Madhya Pradesh 95.95 98.38

20 East Madhya Pradesh 97.45 97.45

21 Gujarat 99.19 97.58

22 Saurashtra Kutch and Diu 100.00 99.36

23 Konkan and Goa 71.43 90.00

24 Madhya Maharastra 87.50 88.82

25 Marathwada 93.26 92.13

26 Vidarbha 94.89 97.08

27 Chhatisgarh 95.00 97.78

28 Coastal Andhra Pradesh 96.80 100.00

29 Telangana 92.67 98.00

30 Rayalaseema 84.44 95.56

31 Tamil Nadu and

Pondicherry

88.57 93.71

32 Coastal Karnataka 58.97 74.36

33 North Interior Karnataka 82.69 81.73

34 South Interior Karnataka 78.05 78.05

35 Kerala 86.15 95.38
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observed. Category 3 includes nearly 23.34% grids where

the magnitude of extreme precipitation has decreased with

heavy-tailed behavior during pre- and post-1970. Overall,

most of the grids in India show a tendency of transition

towards heavier tails along with an increase in the magni-

tude of extreme precipitation.

SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the temporal and spatial

changes in the tail behavior of daily precipitation over

India from pre- to post-1970 time periods as per the global

climatic shift. The tail behavior of precipitation data is

Figure 7 | Geographical variation of the percentage of subexponential tails in each Meteorological Subdivision over India for different periods: (a) pre-1970 (1901–1970) and (b) post-1970

(1970–2010). Further, changes in the percentage of grids showing heavy tails due to climate shift in the 1970s are presented in subfigure (c).
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assessed by identifying the best-fitted distribution out of four

theoretical distributions to the sample obtained by the AES

approach (e.g., Pareto-type II, Lognormal, Weibull, and

Gamma distributions) based on the PRMSE norm. The

approach is found to be easy to use and effective in diagnos-

ing the tail behavior of daily precipitation data. Maps

showing the geographical variation in the percentage of

best-fitted subexponential tails over 34 Meteorological Sub-

divisions in India are given in this study. Also, the

categorical classification of grids in terms of severity by con-

sidering the combined effect of an increase or decrease in

average rainfall above threshold and change in the nature

of tail over the period from pre-1970 to post-1970. Results

from this study emphasize the importance of heavy-tailed

distributions for reliable estimation of the frequency of

extreme precipitation events in India. Important highlights

from this study are as follows.

(i) Lognormal and Pareto-type II distributions (both

heavy-tailed distributions) are found to be better

suited for daily precipitation over India for both pre-

and post-1970 periods. It can be concluded from the

results that there exists a dominance of heavy-tailed dis-

tributions over light-tailed Gamma and Weibull

distributions along with the increase in the tail heavi-

ness of precipitation data over India due to climatic

shifts. This directs us to the fact that the extreme pre-

cipitation events in India have become more frequent

during both the pre- and post-1970 periods.

(ii) Gamma distribution, in general, underestimates the fre-

quency and magnitude of extreme events. Hence, the

distribution should not be considered for modeling

the extreme precipitation events over India.

(iii) Histograms of shape parameters of the four probability

distributions revealed that the tails of daily precipi-

tation data have become heavier from pre- to post-

1970 periods.

(iv) Heavy-tailed distributions can describe the observed

precipitation extremes more effectively than light-

tailed distributions. About 92.19% of the records in

the pre-1970s and 94.86% in the post-1970s are better

characterized by subexponential tails. Exponential–

hyperexponential tails are found to be better suited

for only 7.81 and 5.14% of records for the pre- and

post-1970 periods. It can be seen that increasing

trends of heavy tails persist in the later period, indicat-

ing a rising trend of more frequent and ‘severe events’ of

precipitation.

(v) Twenty-three Meteorological Subdivisions in India

show an increase in the percentage of heavy tails in

the post-1970s compared with the pre-1970s. Further,

nine subdivisions out of those 23, namely Arunachal

Pradesh, Assam and Meghalaya, Himachal Pradesh,

Konkan and Goa, Telangana, Tamil Nadu, and Pondi-

cherry, Rayalaseema, Coastal Karnataka, and Kerala,

showed a substantial increase in the percentage of

grids exhibiting heavy tails.

(vi) Eight categories of severity are proposed by consider-

ing an increase or decrease in average rainfall above

threshold and change in the nature of tail over the

period from pre-1970 to post-1970. Nearly 70% of

grids in India belong to Category 1 and Category 2

Table 3 | Eight categories of severity proposed by considering an increase or decrease of average rainfall above the threshold and change in the nature of tail over the period from pre-1970

to post-1970

Category (severity decreases

top to bottom)

Change in average rainfall above the

threshold from pre-1970 to post-1970

Change in tail type from

pre-1970 to post-1970

Number of grids

(out of 4789)

Percentage

of grids (%)

Category 1 Increases Heavy to heavy 3093 64.58

Category 2 Increases Light to heavy 260 5.42

Category 3 Decreases Heavy to heavy 1118 23.34

Category 4 Decreases Light to heavy 72 1.50

Category 5 Increases Heavy to light 98 2.04

Category 6 Decreases Heavy to light 106 2.21

Category 7 Increases Light to light 28 0.58

Category 8 Decreases Light to light 14 0.29
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which are deemed to indicate severe/critical categories

in terms of increase in the magnitude of extreme pre-

cipitation and the presence of heavier tails over pre-

to post-1970 periods.

An important inference from this analysis is that the fre-

quency and the magnitude of extreme precipitation events

have generally been undervalued in the past. The use of

light-tailed distributions for modeling daily precipitation

can lead to a serious underestimation of the frequency and

the magnitude of design extreme precipitation, which is

highly undesirable for the design of water control structures.

It can be noted that the results obtained from the present

study are dependent on the length of precipitation records

(e.g., Arguez & Vose ; Cavanaugh et al. ) available

at each grid and the presence of serial dependence among

Figure 8 | Spatial pattern of grids belonging to eight categories describing severity in terms of change in increase or decrease of average extreme rainfall above threshold and change in

the nature of tail over the period from pre-1970 to post-1970.
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the peaks/extreme precipitation events selected using the

AES approach (e.g., Koutsoyiannis ). Extended research

is underway to alleviate the limitation of serial dependence

among the selected extreme precipitation events in the AES

by exploring the strategies that can form a sample with inde-

pendent events (e.g., Adams et al. ).
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