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Assessment of the Cost and Environmental Impact

of Residential Demand-side Management
George Tsagarakis, Student Member, IEEE, R. Camilla Thomson, Adam J. Collin, Member, IEEE, Gareth P.

Harrison, Senior Member, IEEE, Aristides E. Kiprakis, Senior Member, IEEE, Stephen McLaughlin, Fellow, IEEE

Abstract—A detailed study of the potential impact of low
voltage (LV) residential demand-side management (DSM) on the
cost and greenhouse gas (GHG) emissions is presented. The
proposed optimisation algorithm is used to shift non-critical
residential loads, with the wet load category used as a case
study, in order to minimise the total daily cost and emissions
due to generation. This study shows that it is possible to reshape
the total power demand and reduce the corresponding cost and
emissions to some extent. It is also shown that, when the baseload
generating mix is dominated by coal-fired generation, the daily
profiles of GHG emissions and cost conflict, such that further
optimisation of the cost leads to an increase in emissions.

Index Terms—Power system economics, energy management,
power demand, energy conversion, power generation.

I. INTRODUCTION

C
USTOMERS’ interest in the reduction of the cost of

their daily power demand has increased of late. This

cost describes not only the price of electricity, but also the

environmental cost, defined in this paper by the generation of

greenhouse gas emissions (GHG). One method of altering the

cost to the consumer is through load manipulation by means

of demand side management (DSM), which will impact on

multiple aspects of the supply of electrical energy.

Although there have been several studies on DSM strategies

and their impact on energy demand [1], they have focussed

on issues such as generation planning [2]–[4], or the effect on

the energy efficiency [5], [6], and there are comparatively few

studies directly connected to pricing and environmental factors

[7]–[9]. In the majority of existing DSM studies, the analysis

is performed at higher voltage levels, using mostly industrial

loads [10], with the loads treated as aggregate amounts of

energy, rather than as discrete appliances with operation cycles

[11]. However, the possibility of smart grid technologies

has increased interest of extending DSM to residential users

located within low voltage (LV) networks. As the approaches

applied for industrial DSM are not appropriate for the analysis

of LV networks, new methodologies must be developed and

implemented.
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At the LV level, the domestic energy demand depends on the

mixture of the individual electrical appliances, the behaviour

of the residential users and environmental aspects, such as

external temperature. It is the combination of these factors

which results in the stochastic nature of LV power demand

and requires more detailed simulation techniques than those

typically applied at the higher voltage levels. This generally

requires consideration of the specific loads available for DSM,

as load management must not impact on users’ quality of

life. The available loads, termed as ‘non-critical’, may be

rescheduled without affecting the users. This is demonstrated

in several studies that focus on specific load categories, such

as electric vehicles (EV) and heat pumps, and examine how

their manipulation could reduce the cost or the GHG emissions

[12], [13]. However, the analysis methods for EVs and heat

pumps assume that these devices allow for the interruption

of their operation. This is not the case for the majority of

existing domestic appliances and these techniques are not

directly transferable; for example, load categories such as wet

loads, operate in predefined, continuous cycles which have a

distinctive start and finish time.

In this paper, an approach for the implementation of DSM

on LV residential loads is presented, which includes considera-

tion of device operation cycles. This employs a multi-objective

optimisation algorithm which achieves the least economic and

environmental cost of the required daily energy of a group

of LV customers, and has been formulated to control the

weighting of the two drivers, with the minimum effort and

impact on customers’ lifestyle and comfort. In this analysis,

the effort is defined as the percentage of the load that is

required to be managed [14] and comfort is expressed as the

accumulated delay time of loads both for each household and

the total group. The selection of these quantifiable indices

allows for a clear picture of the effect of the approach.

As the concept of acceptable time delay will vary between

different users, a penalty factor is included within the optimisa-

tion formulation to account for a user-defined allowable delay

time of load operation. It is assumed that this functionality,

along with the ability for the user to be able to define a

priority list of DSM appliances on a centrally controlled smart

meter (SM), exists within the smart home framework. The

centralised system, represented by the optimisation routine

in this paper, would then decide which appliance(s) to delay

from the total group based on the combined user priority list.

The number of deferred loads per household is controlled

to ensure that the burden of energy management is equally

distributed among participating customers. Prioritisation of the
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loads prevents the algorithm from delaying the operation of

a second load in a household unless all the other customers

already have a postponed load cycle in the same day. This

also bypasses the need for the user to actively participate in

dynamic pricing response schemes, e.g. [15]–[17], and the

possibility of rebound effects when the load is reconnected.

To demonstrate the functionality of the developed optimi-

sation routine, the UK residential load sector is analysed for

four specific periods: winter 2008/2009, summer 2009, winter

2012/2013 and summer 2012. These have been selected to

investigate the effect of the sudden change in the price of coal

relative to gas during 2011 (possibly attributable to the US

shale gas revolution) on the price and GHG emissions profiles

of UK electricity and, thus, the result of DSM actions; high-

lighting the sensitivity of these profiles to international energy

markets. Summer and winter periods are both considered to

observe differences between minimum and maximum demand

conditions.

The paper is structured as follows: in Section II an overview

of the problem formulation is presented; Section III describes

the proposed methodology and the properties of the optimi-

sation algorithm; in Section IV, the case study is described

and the results of the application of the methodology are

presented and discussed; a sensitivity analysis on the penalty

factor parameter is used to highlight impact on optimisation

results in Section V; conclusions and suggestions for further

work are given in Section VI.

II. PROBLEM FORMULATION

The load management techniques in LV networks vary

according to the different load categories and the level of their

impact on people’s lives. LV residential load appliances can

be divided into two categories according to their necessity:

critical and non-critical loads, which should be user specified.

Although the use of critical loads cannot be modified without

changing the behaviour of household occupants, non-critical

loads can be deferred or shifted as part of load management

schemes. An example of a non-critical load category is wet

loads, including: dishwashers, washing machines, tumble dry-

ers and washer-dryers. The operation of these loads can be

postponed to another time of day, if needed, without noticeable

obstruction to the users.

However, these loads operate with preset cycles, suggesting

that the application of DSM in LV networks must facilitate

loads that use cycles of certain duration and power levels,

instead of theoretical bulk parts of daily energy ,to allow

for a more realistic study. In this paper, a multi-objective

optimisation routine is applied to schedule the use of user-

defined non-critical loads in order to obtain lowest combined

cost of both economic and environmental factors. This impact

has to be made explicit, as the reduction in cost and GHG

emissions are included in the main selling points of DSM

towards customers. The problem can be stated as follows:

Given a number of downstream loads with a user specified

priority list and associated time delay penalty factor, calculate

the optimum use of demand manageable resources in order to

obtain the lowest combined cost of price and environmental

impact of the aggregate demand for given price and emissions

profiles.

III. METHODOLOGY

The proposed methodology consists of a multi-objective

optimisation algorithm for shifting the load during the day.

The objectives of the study are to simultaneously minimise the

total daily cost of the power demand to the end-user and the

GHG emissions that derive from supplying the power demand.

In order to achieve these targets, the electricity price and GHG

emissions profiles are combined in the optimisation algorithm

and used as the drivers of the DSM actions on wet loads. A

significant output is the estimation of the minimum number of

shifted loads that are required for the best result.

A. Optimisation problem definition

The objective functions of the proposed algorithm can be

described mathematically by (1), (2) and (3).

min

t∑

i=1

ccomb = min

t∑

i=1

(x · cwi + y · emwi) · pen (1)

min(td) (2)

min(nswl) (3)

where ccomb is the combined cost and is calculated by cwi

and emwi which are the weighted values of the price and

GHG emissions respectively. The weighting factors x and y

are used to set the ratio of participation of the two criteria

in the calculation of the main driver. t defines the 1440 time

steps (24 hours at 1min resolution) and pen is the penalty

factor used to reduce the delay time td. nswl is the number of

shifted cycles.

The profiles of price and GHG emissions are weighted as

defined by the general equation in (4).

f =
(h · P )−min(h · P )

max(h · P )−min(h · P )
(4)

where f represents cw and emw and h can be replaced by c

and em, the price in £/MWh, the GHG emissions in tonnes

of CO2 eq./MWh respectively. P describes the active power

demand in MWh.

The constraints are defined in (5) - (9). The proposed load

management includes only load shifting and, thus, the daily

energy consumption should remain the same before (Eold) and

after (Enew) the manipulation (5), while (6) maintains the

operating cycle integrity of individual loads. Reduced peak

demand of the new aggregate load curve is enforced by (7),

and (8) avoids the possibility of concentrating all the shifted

load within a short period of time. The final limitation is that

the load cycle should not be reconnected during the two peak

demand time periods (9).

Enew = Eold (5)
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tendnew
− tstartnew

= tendold
− tstartold (6)

Pmaxnew
< Pmaxold

(7)

Pmaxnew
− Pminnew

< Pmaxold
− Pminold

(8)

cycwl 6∈ [Tpeak] (9)

where Eold,new are the daily energy consumption before and

after DSM actions, tstartold,new
and tendold,new

are the appli-

ance cycle start and stop times before and after DSM actions,

Pmaxold,new
and Pminold,ned

are the peak and minimum values

of the aggregate active power profile before and after DSM

actions, cycwl is the time period of the shifted wet load cycle

and Tpeak include the periods of peak demand.

B. Optimisation algorithm

The price and emissions profiles are very important in the

load shifting process as they define the disconnection tdisc
and reconnection trec time step. Their direct correlation, even

after the conversion of the GHG emissions profile into an

equivalent cost, is not possible because of different scales.

In order to be able to control the level of effect of each driver,

both profiles are multiplied with the total power demand and

then normalised. The resulting profile is the combined cost

ccomb, as described by (1).

A heuristic and stochastic approach has been chosen. The

tdisc is set by the time of day when the maximum ccomb

occurs and the available load cycles at this time are selected for

shifting. The number of available load cycles is obtained from

a collated priority list, representing the DSM resource of entire

modelled population. The collated priority list is accessed

sequentially, beginning with highest ranked loads, ensuring

that participation is distributed between all households. If no

shiftable load is present during the time of maximum ccomb,

the nearest operation cycle is selected and used to define the

tdisc.

The time step of load reconnection trec is selected to achieve

the targets above without violating the constraints. To fulfill

this, the inverse of the ccomb is used to calculate the discrete

cumulative probability, and then the predefined penalty factor

is applied in order to minimise the total delay time. The trec
is selected stochastically based on this probability. This results

in the shifted loads being distributed more uniformly across

the periods considered as appropriate for reconnection, thus

avoiding the creation of a new peak.

IV. CASE STUDY

The methodology is applied to the UK residential load

sector in order to demonstrate the functionality of the optimi-

sation routine. For this study, 10,000 households (20 groups of

500 households, typical of highly urban networks in the UK)

were used to provide a good level of aggregation and allow

for marginal changes to be credible. Four specific periods,

Winter (December to February) 2008/2009, Summer (June

to August) 2009, Winter 2012/2013 and Summer 2012, for

reasons previously discussed, and five different combinations

of weighting factors (x and y in (1)) are considered to study

the sensitivity of the aggregate power demand to the economic

TABLE I
TEST CASE DEFINITION: OPTIMISATION DRIVERS

Test Financial criterion Environmental criterion
case contribution - x contribution - y

Case 1 1 0
Case 2 0.75 0.25
Case 3 0.50 0.50
Case 4 0.25 0.75
Case 5 0 1
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Fig. 1. Assumed penalty factor time delay values.

and environmental drivers. These are selected arbitrarily to

demonstrate the range of possible results when either finan-

cial or environmental considerations are prioritised, or some

combination of these drivers is chosen, with the weighting

factors for each case shown in Table I.

All scenarios use the wet load category as the demand-

manageable portion. Wet loads are responsible for a large per-

centage of the total daily power consumption (approximately

15%) of the annual UK residential demand [18] and exhibit

pronounced seasonal variations, with daily demand around

9% higher in the winter period. Therefore, the management

of such loads will potentially have an impact on the total

power demand, its cost to customers and the total daily GHG

emissions. This load category has to be managed differently

from the loads that have often been used in similar studies on

optimisation of load demand, because their operation cycles

should not be interrupted. In this analysis, the user-defined

priority list of shiftable loads is randomly allocated amongst

wet loads. This approximation is justified as the priority list

will be user input.

The optimisation time constraints are also consistent for

all presented analyses. Peak time (9) is defined in this paper

as the morning peak between 08:00 - 10:00 and the evening

peak, during 18:00 - 22:00, based on the typical UK residential

load curve. Three different scenarios of penalty factor value,

which sets the allowable maximum time delay of a given load,

are analysed in this paper. Three values of maximum delay

time are assumed: 6hrs, 12hrs and 24hrs, as shown in Fig. 1,

although any arbitrary value can be selected. In the analysis

presented in this section, only Scenario B is considered. The

impact of different penalty factors on the optimisation output

is discussed in detail in Section V.
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Fig. 2. Load model development work flow [19].
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Fig. 3. Power demand of wet loads and the total household demand.

A. UK residential load

The calculation of active power demand before and after

the load shifting requires the development of detailed power

demand profiles of individual households to identify the use

of ‘non-critical’ loads. In this paper, a previously developed

combined Markov chain Monte Carlo model is implemented

to generate the UK residential demand profiles [19]. The load

modelling approach is presented in Fig. 2 and is summarised

into three stages: user activity modelling; conversion of user

activities to electrical appliance use; aggregation of the elec-

trical appliances to build household power demand profiles

and load models. Other load models are compatible with the

presented optimisation methodology but they must be able to

generate individual appliances profiles for a given number of

households, e.g. [20].

The individual demand profiles have been selected to repre-

sent typical UK households based on the overall demographic

characteristics of the UK population for the analysed periods

[19]. Weekdays have been selected as they have the most

frequent use of wet loads [21]. The contribution of the wet

load category to the aggregate power demand of the selected

group is illustrated in Fig. 3. It can be seen that the two

daily peaks of the power demand of the wet load category

coincide approximately with the two daily peaks of the total

household demand during winter and are close to the peaks

during summer. This verifies that managing this load should

help to reduce the overall power demand peaks.

B. Generation price and GHG emissions

1) Generation price: Although the cost of electricity to the

end-user consists of a lot of factors, it is mostly derived from

the cost of generation. For the purposes of this paper, the

average electricity price is used. These values are derived from

market information published online by the balancing mech-

anism reporting agent [22]. This depends on the contribution

of all types of generation plants and remains constant due to

long term contracts. In the UK, the electricity price is largely

set by the power plants that work with fossil fuels, such as

oil and coal, because of their high marginal cost. Any load

shifting of this magnitude will create changes to the generation

of these plants as they respond faster to the demand changes.

Therefore, the average values of price can be used instead of

the marginal values.

In Fig. 4a, it can be seen that the profiles vary significantly

between the seasons and across the years. Winter profiles are

identified by a high peak early in the evening which is lower

in magnitude for 2012/2013 due to the drop in worldwide

coal prices, linked to the increase in fracking for shale gas

in the USA [23], [24]. The summer price profile of 2012 has

a similar trend to the summer of 2009, but the magnitude is

closer to those of winters. The general trend is summarised

as follows: the price of electricity increases during morning

load pick up and continues until around midday when it will

start to reduce, with significant early evening peaks observed

in the presented winter periods. In all analysed periods, the

electricity is cheaper during the night highlighting the need to

decongest the daytime load.

2) GHG emissions: The GHG emissions curves are the

short-term marginal emissions derived from operational and

market data for generation plants on the British grid [22].

Marginal data is required for this analysis because the shift

in non-critical loads will not affect the operation of baseload

plants, but only those operating on the margin, which tend to

have higher GHG emissions intensities. These curves represent

the average marginal emissions factor for the given time of

day across every day in the dataset for the considered period.

Corresponding curves of average emissions factor were also

calculated from the total emissions and output, which were

used to estimate the total GHG emissions before DSM was

applied. The calculation method is based on [25] and it is

described in detail in [26].

It can be seen in Fig. 4b that during both the summer

of 2012 and the winter of 2012-2013 the GHG emissions

fluctuated significantly, but with a trend of being higher at

times of low demand. This is likely to be due to high-emission

coal-fired plants providing both baseload and marginal genera-

tion at these times, while lower-emission gas-fired generation

provides a greater proportion of marginal generation during

times of high demand, providing a greater proportion of the

marginal generating mix when coal-fired plant are already

at full output. This relationship is mostly determined by the

relative prices of coal and gas, with coal-fired plant taking on

a higher proportion of the baseload when coal is cheaper than

gas. In contrast, it can be seen that during the summer of 2009

the trend of the GHG emissions was the inverse to that of 2012,
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Fig. 4. Daily profiles of price (a) and GHG emissions (b) per MWh [22], [26]
for the selected periods and the typical winter (W) and summer (S) profiles.

being higher at times of high demand, suggesting that gas-

fired plant was taking on a higher proportion of the baseload

generation, and that coal was more expensive. This was before

the drop in coal prices that has been reported since 2011.

3) Combined: Fig. 5 depicts the normalised combined cost

of the price of electricity and the equivalent cost of the GHG

emissions for each case according to (1) and (4). In the

majority of periods the price and GHG emissions profiles

conflict, such that they combine to produce a relatively flat

combined cost curve when price and emissions have the same

weighting (case 3), although the high peak in price in winter

evenings makes the price profile appear to dominate. In the

summer of 2009 the GHG emissions and price profiles did

not conflict, instead combining to create a clear curve.

C. Results and discussion: Cost

The results of cost optimisation for all time periods and

cases for the penalty factor B are presented in Fig. 6 to 9.

The curves of total daily cost of demand preserve the trend

of reducing the price, even when it is not used as a guide in

the optimisation algorithm. The characteristics of each year or

period generate some very interesting results; for example, it is

visible that the total daily cost of demand has decreased 20%

between winter 2008/2009 and 2012/2013 while it increased

18% between the summers of 2009 and 2012.

(a) Winter 2008/2009

(b) Summer 2009

(c) Summer 2012

(d) Winter 2012/2013

Fig. 5. Normalised combined cost profile for each case calculated using (1)
through (4) for the selected periods.
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(a) Total cost due to price

(b) Total GHG emissions

Fig. 6. Total price and GHG emissions during winter 2008/2009 after DSM
implementation.

(a) Total cost due to price

(b) Total GHG emissions

Fig. 7. Total price and GHG emissions during summer 2009 after DSM
implementation.

This can be explained by the change in generation mixture

between these two years (Fig. 4a). However, while the cost due

to price is following the total daily cost of demand, the GHG

emissions seem to reduce in volume after the introduction

(a) Total cost due to price

(b) Total GHG emissions

Fig. 8. Total price and GHG emissions during winter 2012/2013 after DSM
implementation.

(a) Total cost due to price

(b) Total GHG emissions

Fig. 9. Total price and GHG emissions during summer 2012 after DSM
implementation.

of fracking both in winter and summer by 17% and 20%

accordingly.

The results, summarised in Table II, also indicate that DSM

actions can have an impact on the cost due to price, with
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the maximum savings varying between 0.58% and 3.75%

depending on the season and price profile. The results also

demonstrate similar trends for each season (Figs. 6, 7, 8 and

9): in the winter there is a rapid decrease in total daily cost of

demand as the number of shifted cycles is increased to 3500,

beyond which it is either stabilised or decreases with a slower

rate; in summer the minimum combined cost is achieved at

the maximum number of shifted cycles - this is because the

power demand for electric heating and lighting is higher during

winter at reconnection time of the shifted loads, allowing for

more shifted cycles during summer.

Regarding the GHG emissions, different effects of the DSM

actions are observed for each of the four selected periods of

time. Table III shows the maximum GHG emissions savings

as a proportion of the emissions before any DSM actions (the

latter calculated from the average emissions factors), and it can

be seen that these are modest for all periods except summer

2009. When a large number of cycles are shifted, it was also

found that this could result in an increase in GHG emissions of

up 1.5%. Furthermore, it is observed that there are differences

between the same seasons of different years: in the winter

of 2008/2009, the emissions were found to increase at low

numbers of shifted cycles in cases 1 to 3, while they are

more constant in cases 4 and 5, where there is a weighting

in favour of the GHG emissions profile over the price profile.

Then, after approximately 4500 cycles, the emissions reduce

to the minimum values. In contrast, in the summer of that

year, the daily GHG emissions profile was very different, and

allowed for a much greater reduction by taking advantage of

all possible shifted cycles. In Fig. 7b, it can be seen that case

3 seems to provide the maximum emissions reductions.

This result can be explained by Fig. 5b and the fact that,

when both drivers are equally weighted in the combined cost,

they create a distinctive curve in favour of shifting loads to

the night time. As for the winter of 2012/2013 and summer

2012, it is interesting that the GHG emissions actually increase

as more cycles are shifted, due to the increased marginal

emissions at times of low demand as a result of cheaper coal.

For these years, the cases where the combined cost is based

on the GHG emissions profiles are the only ones that provide

some reduction in the emissions, but only for a limited number

of shifted cycles.

An important finding of this study is that it is difficult to

quantify the savings in GHG emissions and cost that can be

expected by the implementation of DSM, and that these are

highly dependent on the changing generation mix. Before the

US shale gas revolution, there were greater potential savings

due to DSM actions on wet loads; however, the increase in

shale gas production affected fuel prices and the generation

mix (and corresponding GHG profiles) in the UK, indicating

the global nature of the problem. As a result, after 2011, it can

be seen that the extensive use of DSM results in an increase

in GHG emissions, while the cost, to some extent, retains the

pre-fracking savings.

D. Results and discussion: Power demand

The effect of the reformed power curve of the wet load

category on the aggregate power curve for winter 2012-2013

TABLE II
PERCENTAGE SAVINGS AMONG PERIODS AND TEST CASES

Period
Test Total daily cost Total cost Total GHG
Case of demand savings emissions savings

W08/09

Case 1 1.63 2.13 <0.01
Case 2 1.56 2.10 <0.01
Case 3 1.44 1.86 0.08
Case 4 1.29 1.46 0.18
Case 5 1.11 1.08 0.23

S09

Case 1 2.70 3.75 1.49
Case 2 2.91 3.57 1.76
Case 3 2.89 3.58 1.65
Case 4 2.43 2.87 1.82
Case 5 2.19 2.42 1.96

W12/13

Case 1 0.85 1.65 <0.01
Case 2 0.83 1.55 <0.01
Case 3 0.72 1.20 <0.01
Case 4 0.53 0.72 <0.01
Case 5 0.44 0.58 0.07

S12

Case 1 1.65 2.79 <0.01
Case 2 1.54 2.57 0.02
Case 3 1.30 2.09 0.04
Case 4 0.99 1.43 0.04
Case 5 0.78 1.02 0.07
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Fig. 10. Active power demand of total residential demand before and after
load shifting for minimum daily cost.

is illustrated in Fig. 10. The power during the peak hours

has reduced around 11.9% in the evening and 22.7% in the

morning which will help to alleviate stress in the electrical

network, and the duration of the morning peak has also been

reduced. The power demand during the night time has in-

creased significantly by 16.7 to 23.5%, depending on the case

and time. The power demand decreases or remains constant

during midday for case 1 and increases by up to 12.4% for

cases 3 and 5, showing the influence of the weighting between

the financial and environmental criteria. The ratio of max to

min load, defined in constraint (8), reduces from 2.54 for

the base case to 1.79, 1.97 and 2.10 for Case 1, 3, and 5,

respectively, clearly indicating a reduced variation in the power

demand profile.
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V. STUDY ON PENALTY FACTOR

In this section, further investigation on the impact of the

penalty factor, which represents a user-defined maximum time

delay limit, is presented. The same base case study is used data

but now a comparison is drawn between the total cost savings

and delay times obtained using the two extreme cases of the

penalty factor, denoted A and C (c.f. Fig. 1), and the average

penalty factor B. Penalty factor A places a more stringent

constraint on the optimisation process, while penalty factor C

will allow load reconnection to be deferred for up to 24hrs.

The results presented in Table III illustrate that the more

stringent constraint will return the lowest cost saving, although

it should be noted that a saving is still achieved. This can

be explained by the fact that, for this case study, the DSM

load portion (i.e. wet load category) is used consistently

throughout the day; therefore, short term load shifting will

only allow reconnection to periods with, possibly, equally as

high combined cost. Accordingly, not all load may be shifted.

All three figures show a large amount of households that have

either not used their wet appliance(s) or not participated in

the DSM implementation, i.e. the sum of summation of the

histogram is less than the total number of available DSM

resource within the modelled population.

As expected, the distribution of delay times becomes more

uniform as the penalty factor constraint is relaxed. This is

clearly visible in Fig. 11, which presents the cumulative delay

time experienced per individual household. As the values are

the total delay time per household, the total delay time can

be greater than the penalty factor specified for each individual

load. However, the majority of households experience a total

delay time less than individual load penalty factor; demon-

strating the correct implementation of the reconnection process

described in Section III-B.
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Fig. 11. Impact of penalty factor on the distribution of individual household
cumulative delay time.

TABLE III
INFLUENCE OF PENALTY FACTOR ON TOTAL COST SAVINGS

Period
Test Penalty factor scenario
Case A B C

W’08/09

Case 1 1.39 1.63 1.18
Case 2 1.38 1.56 1.17
Case 3 1.32 1.44 1.12
Case 4 1.24 1.29 1.05
Case 5 0.17 1.11 0.14

S’09

Case 1 1.82 2.70 1.55
Case 2 1.89 2.91 1.61
Case 3 1.91 2.89 1.62
Case 4 1.82 2.43 1.55
Case 5 1.77 2.19 1.50

W’12/13

Case 1 0.68 0.85 0.58
Case 2 0.66 0.83 0.56
Case 3 0.65 0.72 0.60
Case 4 0.57 0.53 0.48
Case 5 0.42 0.44 0.36

S’12

Case 1 1.07 1.65 0.91
Case 2 1.01 1.54 0.86
Case 3 0.95 1.30 0.81
Case 4 0.86 0.99 0.73
Case 5 0.78 0.78 0.66

TABLE IV
IMPACT OF PENALTY FACTOR ON TOTAL DELAY TIME

Period
Test Penalty factor scenario
Case A C

W08/09

Case 1 -46.5% 90.8%
Case 2 -47.0% 94.3%
Case 3 -45.7% 93.8%
Case 4 -45.8% 89.8%
Case 5 -41.3% 88.6%

S09

Case 1 -43.4% 90.7%
Case 2 -43.8% 87.2%
Case 3 -42.8% 86.4%
Case 4 -40.3% 88.0%
Case 5 -38.0% 93.1%

W12/13

Case 1 -42.0% 91.7%
Case 2 -41.0% 92.2%
Case 3 -41.6% 87.1%
Case 4 -40.2% 84.4%
Case 5 -39.8% 81.0%

S12

Case 1 -43.3% 94.0%
Case 2 -40.0% 90.0%
Case 3 -38.2% 90.8%
Case 4 -33.7% 92.6%
Case 5 -37.9% 91.3%

The total delay time is summarised in Table IV, displaying

the difference in total delay time of the aggregate population

for different penalty factor values. The total delay time experi-

enced by the aggregate group almost doubles for penalty factor

scenario C; but a consistent reduction of between 30 - 50% is

observed for the more stringent penalty factor scenario A.

VI. CONCLUSION

This paper has shown that management of LV loads can

allow for significant reductions in cost but is only effective in

reducing GHG emissions when coal is supplying the marginal

generation during the day. The study has combined daily

profiles of the average values of electricity price and marginal

GHG emissions with detailed models of LV residential loads,

through a multi-objective optimisation algorithm, including

customers’ comfort among the priorities. The results show
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that the financial factor has a greater impact in shaping

the combined total cost, suggesting that it is more difficult

to achieve GHG emissions savings than cost reductions by

shifting residential load. This may explain the current situation

of generation, where price is the main objective and GHG

emissions reductions are difficult. Also, the change in the

profiles and the generation mixture after the fall in coal prices

in 2011, had a substantial impact on the potential savings in

cost and GHG emissions. The resulting contradictive profiles

caused an increase in GHG emissions after an extensive

application of the DSM actions. This highlights the necessity

of using detailed power demand profiles and the difficulty of

forecasting the total impact of DSM actions without consid-

ering up-to-date cost and emissions profiles.

The presented methodology can be applied on contiguous

days’ demand profiles for forecasting and DSM planning

studies. The constrained reconnection periods, taken as peak

demand periods in this study, can be set to any arbitrary

time and can be coordinated with, for example, scheduled

short-term maintenance tasks. The calculated magnitude of

potential reductions suggests that DSM actions on non-critical

loads applied at both the LV level and at a larger scale can

lead to reductions in price and GHG emissions comparable

to those achieved by distributed generation (DG). This will

become more important if EVs become prevalent, as they

will present a considerable demand increase. Although the

presented methodology has been demonstrated on the wet load

category, it is more generally applicable and can be used to

coordinate the operation of any loads that operate in fixed

cycles, including first generation commercial EVs which do

not currently have the functionality to adjust their charging

current as assumed by several works in this area.
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