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Abstract

IMPORTANCE Currently, there are no presymptomatic screeningmethods to identify individuals

infected with a respiratory virus to prevent disease spread and to predict their trajectory for resource

allocation.

OBJECTIVE To evaluate the feasibility of using noninvasive, wrist-worn wearable biometric

monitoring sensors to detect presymptomatic viral infection after exposure and predict infection

severity in patients exposed to H1N1 influenza or human rhinovirus.

DESIGN, SETTING, AND PARTICIPANTS The cohort H1N1 viral challenge study was conducted

during 2018; data were collected from September 11, 2017, to May 4, 2018. The cohort rhinovirus

challenge study was conducted during 2015; data were collected from September 14 to 21, 2015. A

total of 39 adult participants were recruited for the H1N1 challenge study, and 24 adult participants

were recruited for the rhinovirus challenge study. Exclusion criteria for both challenges included

chronic respiratory illness and high levels of serum antibodies. Participants in the H1N1 challenge

study were isolated in a clinic for a minimum of 8 days after inoculation. The rhinovirus challenge

took place on a college campus, and participants were not isolated.

EXPOSURES Participants in the H1N1 challenge studywere inoculated via intranasal drops of diluted

influenza A/California/03/09 (H1N1) virus with a mean count of 106 using themedian tissue culture

infectious dose (TCID50) assay. Participants in the rhinovirus challenge study were inoculated via

intranasal drops of diluted human rhinovirus strain type 16 with a count of 100 using the

TCID50 assay.

MAINOUTCOMESANDMEASURES The primary outcomemeasures included cross-validated

performance metrics of random forest models to screen for presymptomatic infection and predict

infection severity, including accuracy, precision, sensitivity, specificity, F1 score, and area under the

receiver operating characteristic curve (AUC).

RESULTS A total of 31 participants with H1N1 (24men [77.4%]; mean [SD] age, 34.7 [12.3] years) and

18 participants with rhinovirus (11 men [61.1%]; mean [SD] age, 21.7 [3.1] years) were included in the

analysis after data preprocessing. Separate H1N1 and rhinovirus detectionmodels, using only data on

wearble devices as input, were able to distinguish between infection and noninfection with

accuracies of up to 92% for H1N1 (90% precision, 90% sensitivity, 93% specificity, and 90% F1

score, 0.85 [95% CI, 0.70-1.00] AUC) and 88% for rhinovirus (100% precision, 78% sensitivity,

100% specificity, 88%F1 score, and 0.96 [95%CI, 0.85-1.00] AUC). The infection severity prediction

model was able to distinguish betweenmild andmoderate infection 24 hours prior to symptom

onset with an accuracy of 90% for H1N1 (88% precision, 88% sensitivity, 92% specificity, 88% F1
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Abstract (continued)

score, and 0.88 [95% CI, 0.72-1.00] AUC) and 89% for rhinovirus (100% precision, 75% sensitivity,

100% specificity, 86% F1 score, and 0.95 [95% CI, 0.79-1.00] AUC).

CONCLUSIONS ANDRELEVANCE This cohort study suggests that the use of a noninvasive, wrist-

worn wearable device to predict an individual’s response to viral exposure prior to symptoms is

feasible. Harnessing this technology would support early interventions to limit presymptomatic

spread of viral respiratory infections, which is timely in the era of COVID-19.

JAMA Network Open. 2021;4(9):e2128534. doi:10.1001/jamanetworkopen.2021.28534

Introduction

Approximately 9% of the world is infected with influenza annually, resulting in 3million to 5million

severe cases and 300000 to 500000 deaths per year.1 Adults are infected with approximately 4 to

6 common colds per year, and children are infected with approximately 6 to 8 common colds per

year, with more than half of infections caused by human rhinoviruses (RVs).2,3 Given the highly

infectious nature of respiratory viruses and their variable incubation periods, infections are often

transmitted unwittingly in a manner that results in community spread, especially as no

presymptomatic screeningmethods currently exist to identify respiratory viral diseases.4,5With the

increasing emergence of novel viruses, such as SARS-CoV-2,6 it is critical to quickly identify and

isolate contagious carriers of a virus, including presymptomatic and asymptomatic individuals, at the

population level to minimize viral spread and associated severe health outcomes.

Wearable biometric monitoring sensors (hereafter referred to aswearables) have been shown

to be useful in detecting infections before symptoms occur.7-9 Low-cost and accessible technologies

that record physiologic measurements can empower underserved groups with new digital

biomarkers.8,10-12Digital biomarkers are digitally collected data that are transformed into indicators

of health and disease.13,14 For example, resting heart rate, heart rate variability, accelerometry,

electrodermal skin activity, and skin temperature can indicate a person’s infection status8,9,15-27 or

predict if and when a person will become infected after exposure.7 Therefore, detecting abnormal

biosignals using wearables could be the first step in identifying infections before symptom onset.8

Here, we developed digital biomarker models for early detection of infection and severity

prediction after pathogen exposure but before symptoms develop (Figure 1). Our results highlight

the opportunity for the identification of early presymptomatic or asymptomatic infection that may

support individual treatment decisions and public health interventions to limit the spread of viral

infections.

Methods

Study Population

A total of 39 participants (12 women and 27men; aged 18-55 years; mean [SD] age, 36.2 [11.8] years;

2 [5.1%] Black, 6 [15.4%] Asian, 25 [64.1%] White, 2 [5.1%] �2 race categories [1 (2.6%) White and

Caribbean; 1 (2.6%) mixed/other category], and 4 [10.3%] did not fall into any of the ethnic groups

listed, so they identified as “all other ethnic groups”) were recruited for the H1N1 influenza challenge

study. Data were collected from September 11, 2017, to May 4, 2018. The influenza challenge study

was reviewed and approved by the institutional review board at Duke University and the London-

Fulham Research Ethics Committee. Written informed consent was obtained from all participants. A

total of 24 participants (8women and 16men; aged 20-34 years; mean [SD] age, 22 [3.1] years; and

1 [4.2%] Black, 6 [25.0%] Asian, and 15 [62.5%] White, including 3 [12.5%] Hispanic or Latinx, 1

[4.2%]White and Black mixed, and 1 [4.2%] unknown) were recruited for the RV challenge study.
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Data were collected from September 14 to 21, 2015. The RV challenge study was reviewed and

approved by the institutional review board at Duke University and the University of Virginia. Written

informed consent was obtained from all participants. This study followed the Strengthening the

Reporting of Observational Studies in Epidemiology (STROBE) and the Transparent Reporting of a

Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guidelines.

Exclusion Criteria

Exclusion criteria for the influenza challenge included current pregnancy, breastfeeding, or smoking;

history of chronic respiratory, allergy, or other significant illness; recent upper respiratory tract

infection; nose abnormalities; or immunocompromised status. Participants were screened for high

levels of serum antibodies against the challenge strain by hemagglutination inhibition assay (titers

>1:10 excluded).7 Exclusion criteria for the RV challenge included pregnancy; chronic respiratory

illness; high blood pressure; history of tobacco, drug, or alcohol use; and serum antibody titers more

than 1:4.

Study Protocol

Participants in the H1N1 challenge study wore the E4 wristband (Empatica Inc) 1 day before and 11

days after the inoculation on themorning of day 2, before clinical discharge. The E4wristband

measures heart rate, skin temperature, electrodermal activity, andmovement. Participants were

inoculated via intranasal drops of the diluted influenza A/California/03/09 (H1N1) virus with a mean

count of 106 using the median tissue culture infectious dose (TCID50) assay in 1-mL phosphate-

buffered saline and were isolated for at least 8 days after inoculation after negative results of a nasal

lavage polymerase chain reaction test.7We defined symptoms as either observable events (fever,

stuffy nose, runny nose, sneezing, coughing, shortness of breath, hoarseness, diarrhea, and wheezy

chest) or unobservable events (muscle soreness, fatigue, headache, ear pain, throat discomfort,

chest pain, chills, malaise, and itchy eyes).28 Viral shedding was quantified by nasal lavage

polymerase chain reaction eachmorning, and symptoms were self-reported twice daily.

Figure 1. FlowDiagram and Graphical Abstract of Study
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Participants in the RV challenge study wore the E4 wristband for 4 days before and 5 days after

inoculation, which occurred in the afternoon (1-5 PM) via intranasal drops of diluted human RV strain

type 16 with a count of 100 using the TCID50 assay in 1 mL of lactated Ringer solution. Participants

underwent daily nasal lavage, and the symptomswere reported as previously described. Participants

lived on a college campus and were not isolated.

Data Preparation and Preprocessing

We grouped individuals by infection similarity (Figure 2) using data-drivenmethods based on

infection severity (asymptomatic or noninfected [AON], mild, or moderate signs of infection) and

trajectory (early, middle, or late signs of infection). Multivariate functional clustering (bayesian

information criteria loss function) was done on 3 daily aggregate measurements: observable

symptoms, unobservable symptoms, and viral shedding.29,30 Clinical infection groups were

determined by previous definitions of symptomatic (modified Jackson symptom score >5 within first

5 days of inoculation) and viral shedders (>2 days of shedding).31-34 Participants who were positive

in one criterion but not the other were excluded from further analysis in the clinical groupings. For

both infection groupings, we defined symptom onset as the first day of a 2-day period in which the

symptom score was at least 2 points.32

Mean (SD) andmedian values of heart rate, skin temperature, and accelerometry were

calculated every minute from baseline to 60 hours after inoculation. If several preinoculation days

were present, then the baseline was defined as themean value of each wearable metric at the same

time of day. A total of 8 and 3 participants were removed from the H1N1 and RV analyses,

respectively, owing to lack of sufficient data caused by nonwear, miswear, or device errors, which

were detected following themethods of She et al.7

Resting heart rate and temperature were defined by a 5-minute median accelerometer cutoff

determined from the baseline day’s data.35 For each 12-hour interval, several interbeat interval

features were calculated using the 5-minute rolling mean with baseline subtraction: mean heart rate

variability, median heart rate variability, number of successive N-N intervals that differ bymore than

50 milliseconds, percentage of N-N intervals that differ by more than 50 milliseconds, SD of N-N

intervals, and root mean square of successive R-R interval differences (eTable 1 in the Supplement).35

To account for circadian effects, model features were calculated as the difference between

preinoculation and postinoculation summarymetrics occurring at the same 1-hour clock time of day

(eTable 1 and eFigure 1A in the Supplement).36

Models predicting infection further in time after inoculation included progressively more

features (9 features added for each 12-hour block; eFigure 1B in the Supplement). Performance

relative to symptom onset was calculated by differencing the time after inoculation from themedian

symptomonset of each viral challenge. The resulting feature set consisted of 40 features calculated

from 9 delta summary wearable metrics generated from five 12-hour intervals. Forward stepwise

selection simultaneously tunedmodels and performed feature selection to prevent overfitting.37

Machine LearningModels

Bootstrapped binary or multiclass random forest classifiers were built using Python Scikit-learn and

validated using leave-one-person-out cross-validation (trees = 1000).12,37,38 This procedure was

repeated for every 12-hour period feature set that was added to amodel (eFigure 1B in the

Supplement).

Statistical Analysis

Evaluationmetrics of themodels included accuracy, precision, sensitivity, specificity, F1 score, and

area under the receiver operating characteristic curve (AUC).39 The primary metric of model success

was accuracy. For multiclass models, the weightedmean value for each metric was recorded. For

binary models, receiver operating characteristic curves were derived from the predicted class

probabilities of an input sample, and the resulting AUC and 95% CI were reported.
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Figure 2. Infection Severity Categorization Based on Functional Clustering of Daily Symptoms and Shedding
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Results

Study Summary

The data were generated as part of 2 large challenge studies involving nasal lavage inoculation of

human volunteers with either influenza (H1N1) or human RV. For the influenza predictionmodels, 31

participants were included in the analysis after data preprocessing (7women and 24men; aged 18-55

years; mean [SD] age, 34.7 [12.3] years; and 5 [16.1%] Asian, 21 [67.7%]White, 1 [3.2%]mixed/other

category, and 4 [12.9%] did not fall into any of the ethnic groups listed, so they identified as “all other

ethnic groups”). For the RV predictionmodels, 18 participants were included in the analysis after

preprocessing (7 women and 11 men; aged 20-33 years; mean [SD] age, 21.7 [3.1] years; and 2 [11.1%]

Asian, 2 [11.1%] Black, and 14 [77.8%] White, including 3 [16.7%] Hispanic or Latinx). The primary

demographic difference between the 2 viral challenges was that the H1N1 group contained a wider

age range and a higher mean age of participants (eTable 2A and B in the Supplement).

Functional clustering indicated that there were 3 distinct classes of infection status that, on

visual inspection, roughly equated to (1) AON, (2) mild, and (3) moderate (Figure 2). Based on this

clustering, we defined the data-driven “infected” group as the combinedmild andmoderate classes

and the “noninfected” group as the AON class. All clinically driven labels of infected vs noninfected

were perfectly replicated by the data-driven groupings for the RV challenge but not for the H1N1

challenge.40

Prediction of Infection After Exposure UsingWearables

We developed 25 binary, random forest classificationmodels to predict infection vs noninfection

using features derived fromwearables. Eachmodel covered a different time period after inoculation

or used a different definition of infected vs noninfected. For infected participants in the H1N1

challenge, themedian symptom onset after inoculation was 48 hours (range, 9-96 hours). At 36

hours after inoculation, models predicting the data-driven groupings from the H1N1 challenge

reached an accuracy of 89% (87% precision, 100% sensitivity, 63% specificity, 93% F1 score, and

0.84 [95% CI, 0.60-1.00] AUC). Because 7 participants were either symptomatic nonshedders

(n = 6) or AON shedders (n = 1), the clinically driven H1N1 infection groupings had 7 fewer

observations than the data-driven groupings. Models predicting the clinically driven groupings for

H1N1 reached an accuracy of 79% (72%precision, 80% sensitivity, 79% specificity, 76%F1 score, and

0.68 [95% CI, 0.46-0.89] AUC) within 12 hours after inoculation and an accuracy of 92% (90%

precision, 90% sensitivity, 93% specificity, 90% F1 score, and 0.85 [95% CI, 0.70-1.00] AUC) within

24 hours after inoculation. Regardless of whether the data-driven or clinically driven grouping

method was used, we could assess whether or not a participant was infected with H1N1 between 24

and 36 hours before symptom onset (Figure 3A-C; Figure 4A; and eFigure 2 and eTable 3 in the

Supplement).

Themedian symptom onset for RV was 36 hours after inoculation (range, 24-36 hours). The

models predicting whether or not a participant was infected with RV achieved an early accuracy of

78% (78% precision, 78% sensitivity, 78% specificity, 78% F1 score, and 0.77 [95% CI, 0.54-0.99]

AUC) at 12 hours after inoculation. This time point corresponded to 24 hours prior to symptom onset.

Model performance peaked at the time of symptom onset, which was 36 hours after inoculation,

with an accuracy of 88%at the same time as symptomonset (100%precision, 78% sensitivity, 100%

specificity, 88% F1 score, and 0.96 [95% CI, 0.85-1.00] AUC) (Figure 3A-C; Figure 4B; and eFigure 2

and eTable 3 in the Supplement).

When both viral challenges were combined, models predicting the data-driven infection

groupings reached an early accuracy of 78% (81% precision, 83% sensitivity, 68% specificity, 82% F1

score, and 0.66 [95% CI, 0.50-0.82] AUC) at 12 hours after inoculation. Themodels predicting

clinically driven infection groupings reached an accuracy of 76% (76% precision, 68% sensitivity,

83% specificity, 72% F1 score, and 0.75 [95% CI, 0.60-0.90] AUC) at 24 hours after inoculation

(Figure 3A-C; Figure 4C; and eFigure 2 and eTable 3 in the Supplement).
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Prediction of Infection Severity Prior to SymptomOnset UsingWearables

Infection severity was defined as (1) AON, (2) mild, or (3) moderate based on the data-driven

functional clustering results (Figure 2). We developed 66 binary andmulticlass random forestmodels

to predict class membership using features derived from the wearables for different time periods

after inoculation. After automated feature selection, all 41 of the single viral challengemodels

included only 1 to 3 of the 9 to 45 possible features per model (eFigure 4A and B in the Supplement).

Interbeat interval featureswere retained in everymodel, and resting heart rate featureswere present

in almost half (47.4% [9 of 19]) of themodels (eTable 1 in the Supplement).

At 12 hours after inoculation, the binary classificationmodel predicting the future development

of AON vsmoderate H1N1 achieved 83% accuracy (78%precision, 88% sensitivity, 80% specificity,

82% F1 score, and0.88 [95% CI, 0.71-1.00] AUC). For RV, the model predicting the future

development of AON vsmoderate infection reached 92% accuracy (80% precision, 100%

sensitivity, 89% specificity, 89% F1 score, and 1.00 [95% CI, 1.00-1.00] AUC). For both viruses

combined, themodel predicting the future development of AON vsmoderate infection peaked at

84% accuracy (77% precision, 83% sensitivity, 84% specificity, 80% F1 score, and 0.78 [95% CI,

0.61-0.94] AUC) at 12 hours after inoculation (Figure 4A-C; Figure 5A-C; and eFigure 3, eTable 4, and

eTable 5 in the Supplement).

Of the binary classification models for both viral challenge studies, we found that the AON vs

moderate models achieved the highest accuracy and AUC toward predicting infection severity prior

to symptom onset. This finding was expected given that these were the 2most divergent classes of

infection severity. At 12 hours after inoculation, the model predicting mild vs moderate H1N1

Figure 3. PerformanceMetrics of the Best-PerformingModels for Predicting Infection Status (Infected vs Noninfected)
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distinguished between the 2 symptomatic groups with 81% accuracy (75%precision, 75% sensitivity,

85% specificity, 75%F1 score, and0.86 [95%CI, 0.69-1.00] AUC). By 24 hours after inoculation, this

model achieved 90% accuracy (88%precision, 88% sensitivity, 92% specificity, 88% F1 score, and

0.88 [95% CI, 0.72-1.00] AUC). After excluding H1N1 challenge participants in themild andmoderate

classes who did not have an infection per the clinically driven definition, the model predicting mild

vs moderate H1N1 achieved 100% accuracy (100% precision, 100% sensitivity, 100% specificity,

100% F1 score, and 1.00 [95% CI, 1.00-1.00] AUC). By 24 hours after inoculation, the infection

severity predictionmodel was able to distinguish betweenmild andmoderate infection with an

accuracy of 89% for RV (100% precision, 75% sensitivity, 100% specificity, 86% F1 score, and 0.95

[95% CI, 0.79-1.00] AUC). The model predicting mild vs moderate illness for both viruses combined

distinguished between the 2 symptomatic groups with an accuracy of 86% (90% precision, 75%

sensitivity, 94% specificity, 82% F1 score, and 0.91 [95% CI, 0.80-1.00] AUC). After excluding H1N1

challenge participants in the mild and moderate classes who did not have an infection per the

clinically driven definition, the model predicting mild vs moderate illness for both viruses combined

reached an accuracy of 94% (100% precision, 89% sensitivity, 100% specificity, 94% F1 score, and

0.94 [95% CI, 0.82-1.00] AUC) (Figure 4B; Figure 5A and C; eFigure 3, eTable 4, and eTable 5 in the

Supplement). Receiving operator characteristic curves for both viral challenge studies (Figure 5A)

Figure 4. Model Accuracy Over Time Across All Viral Challenges, Infectious Status Groupings, and Infection Severity Groupings
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demonstrated that themodel predicting development of AON vsmoderate illness and themodel

predicting development of mild vs moderate illness yielded higher discriminative ability than the

model predicting AON vsmild illness.

Themulticlass models were built to predict both infection status and infection severity per the

data-driven definitions. We found that the highest performing multiclass models (predicting

development of AON vsmild vs moderate illness) reached 77% accuracy for H1N1 (24 hours after

inoculation; 76% precision, 77% sensitivity, 88% specificity, and 76% F1 score) and 82% accuracy for

RV (36 hours after inoculation; 85% precision, 82% sensitivity, 88% specificity, and 82% F1 score)

(Figure 4B; Figure 5B and C; eFigure 2 and eTable 4 in the Supplement).

Discussion

The aim of this work was to evaluate a novel and scalable approach to identify whether or not a

person will develop an infection after virus exposure and to predict eventual disease severity using

noninvasive, wrist-worn wearables. The approach was tested using 2 viral challenge studies with

influenza H1N1, human RV, or both viruses combined. This study shows that it is feasible to use

wearable data to predict infection status and infection severity 12 to 36 hours before symptomonset,

with most of our models reaching greater than 80% accuracy. Presymptomatic detection of

Figure 5. PerformanceMetrics of the Best-PerformingModels for Predicting Infection Severity
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respiratory viral infection and infection severity predictionmay enable better medical resource

allocation, early quarantine, andmore effective prophylactic measures. Our results show that an

accuracy plateau occurred in the 12- to 24-hour period after inoculation for 24 of 25 infection

detectionmodels (96.0%) and for 64 of 66 infection severity models (97.0%). This finding indicates

that themost critical of the physiologic changes that occur in response to viral inoculation and that

predict pending illness severity occurred within 12 to 24 hours after exposure.

Two factors associated with model accuracy are (1) knowledge of the exact time and dosage of

inoculation and (2) the high-fidelity measurements of the research-grade wearable that enable

intricate feature engineering, neither of which are possible in existing observational studies using

consumer-grade devices. Because the outcome labeling is robust and accurate, there is a significant

reduction in noise that would be present in an observational study.41 The participants in both studies

experienced clinically mild disease, so the physiologic changes in patients with severe disease

outcomes would likely be evenmore extreme and therefore easier to detect. The timing of the

models’ detection and severity prediction is particularly relevant to current work aimed at early

detection of COVID-19 from smartwatches, as presymptomatic and asymptomatic spread are

significant contributors to the SARS-CoV-2 pandemic.9,20-24,26,42-45 Themost important features for

predicting infection severity were resting heart rate andmean heart rate variability. Thus, ourmodel

could be extensible to commercial wearables, which are used by 21% of US adults, for population-

level detection of respiratory viral infections.46,47

Several factors may be associated with the higher accuracy of the RV severity models compared

with the H1N1 severity models, including the longer RV baseline period (4 days vs 1 day) and the

morning vs afternoon inoculation time that may include circadian effects. This possibility was

addressed in part by calculating the differences between baseline and postinoculation only from

measurements taken at the same times of day. The same influenza challenge data were recently used

to predict viral shedding timing, with an AUC of 0.758 using heart rate during sleep as a model

feature.7Nighttime and early morning biometric measurements are potentially more useful than

daytimemeasurements owing to their increased consistency, which should be explored further in

future studies.8,36

Limitations

This study has some limitations. It focuses on 2 common respiratory viruses in a fairly small

population. Expanding the data set to include larger andmore diverse populations and other types

of viruses will be necessary to demonstrate the broad applicability of these findings. Inclusion of

negative control groups (ie, participants with no pathogen exposure and those with conditions that

masquerade as infections [eg, asthma or allergies]) would further improve the work.

Conclusions

This study suggests that routine physiologic monitoring using commonwearable devices may

identify impending viral infection before symptoms develop. The ability to identify individuals during

this critical early phase, whenmanymay be spreading the virus without knowing it, and when

therapies (if available) and public health interventions are most likely to be efficacious, may have a

wide-ranging effect. In themidst of the global SARS-CoV-2 pandemic, the need for novel approaches

like this has never beenmore apparent, and futurework to validate these findings in individuals with

other respiratory infections, such as COVID-19, may be critical given the highly variable and

potentially severe or even fatal presentation of SARS-CoV-2 infection. The ability to detect infection

early, predict how an infection will change over time, and determine when health changes occur that

require clinical care may improve resource allocation and save lives.
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