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Abstract

Purpose—While deep learning has shown great promise for MR image reconstruction, an open 

question regarding the success of this approach is the robustness in the case of deviations between 

training and test data. The goal of this study is to assess the influence of image contrast, SNR and 

image content on the generalization of learned image reconstruction, and to demonstrate the 

potential for transfer learning.

Methods—Reconstructions were trained from undersampled data using data sets with varying 

SNR, sampling pattern, image contrast and synthetic data generated from a public image database. 

The performance of the trained reconstructions was evaluated on 10 in-vivo patient knee MRI 

acquisitions from two different pulse sequences that were not used during training. Transfer 

learning was evaluated by fine-tuning baseline trainings from synthetic data with a small subset of 

in-vivo MR training data.

Results—Deviations in SNR between training and testing lead to substantial decreases in 

reconstruction image quality, while image contrast was less relevant. Trainings from 

heterogeneous training data generalized well towards test data with a range of acquisition 

parameters. Trainings from synthetic non-MR image data showed residual aliasing artifacts, which 

could be removed by transfer learning inspired fine-tuning.

Conclusion—This study presents insights into the generalization ability of learned image 

reconstruction with respect to deviations in the acquisition settings between training and testing. It 

also provides an outlook for the potential of transfer learning to fine-tune trainings to a particular 

target application using only a small number of training cases.
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Introduction

The use of deep learning [1] for medical image reconstruction is a new and emerging field. 

The first early stage developments were reported in 2016. Wang et al. proposed to augment a 

conventional compressed sensing reconstruction with a regularizer that is based on a 

convolutional neural network [2]. Kwon et al. proposed to learn a parallel imaging 

reconstruction without explicit use of coil sensitivity maps that operates entirely within 

image space [3,4]. We proposed a learning approach based on the framework of variational 

optimization with the goal of learning the complete reconstruction procedure, which maps 

from multi-channel k-space rawdata to image space, and the associated numerical procedure 

[5,6]. Since then, a substantial increase of developments occurred around the world. At the 

2017 annual meeting of ISMRM, work was shown that employed learning for image 

reconstruction for angiography [7], multi-contrast MRI [8], cardiac imaging [9], MR 

fingerprinting [10], manifold learning [11], partial Fourier imaging [12], projection 

reconstruction [13] and compressed sensing using residual learning [14]. Our own recent 

developments presented at ISMRM 2017 included a preliminary investigation of the 

influence of sampling patterns on the training procedure [15], the influence of different loss 

functions that are used in the training [16], and a first clinical reader study with the goal of 

evaluating the diagnostic content of accelerated images that were reconstructed using a 

variational network [17].

One of the biggest open questions regarding the success of these technologies in practice is 

generalization. To what degree can the test data deviate from the data that was used during 

training? This is important for several reasons. First, one of the key strengths of MRI is the 

flexibility during data acquisition. Due to the range of available MR-systems and protocols, 

images from different institutions commonly vary with respect to acquisition parameters. A 

learned reconstruction procedure that works only for a specific set of imaging parameters 

would therefore be only of limited practical use, since it would require re-training for every 

new setup. Second, collecting large data sets for training is usually expensive in medical 

imaging. In some cases, it is even impossible, for example in in the case of time-resolved 

imaging, where a high spatial and temporal resolution ground truth cannot be obtained. The 

necessity to collect separate training data for all protocol versions of a particular sequence 

would put substantial restrictions on clinical translation of these new technologies.

The main goal of this study is to assess the influence of image contrast, SNR, sampling 

pattern and image content on the generalization of a learned image reconstruction. These 

design parameters were chosen for investigation because the goal of learning a 

reconstruction for accelerated data is the separation of aliasing artifacts and true image 

content. These parameters have a strong influence on the structure of the aliasing artifacts 

and consequently, the conditioning of the reconstruction problem.
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The additional goal, which is also related to the question of generalization and the issue of 

limited training data is to investigate the potential for transfer learning [18] for image 

reconstruction using our proposed variational network architecture [6]. This particular topic 

was recently investigated for MR-image reconstruction of brain data (Dar and Cukur arXiv, 

2017) with a deep CNN architecture recently proposed in [9]. In the context of image 

processing and computer vision, the general hypothesis behind transfer learning is that low 

level image features, for example edges and simple geometrical structures, are independent 

of the actual image content of the target application. As a consequence, they can be learned 

from arbitrary data sets where large amounts of training data are available. These pre-trained 

models then serve as a baseline, which is then fine-tuned to the target domain using less 

training data than what would be required when training from scratch. This concept is 

appealing for MR image reconstruction because non-medical image data are easily available 

[19],[20], which can be used to simulate synthetic k-space data. In contrast, large amounts of 

true measurement training data are often challenging to obtain.

Methods

We used a combination of true measurement k-space data from clinical patients, additionally 

processed k-space data and completely synthetic data for the experiments in this study. For 

in-vivo data acquisition 40 consecutive patients referred for diagnostic knee MRI to evaluate 

for internal derangement were enrolled in the study, which was approved by the IRB. Fully 

sampled rawdata were acquired on a clinical 3T system (Siemens Magnetom Skyra) with a 

standard 15 channel knee coil. We acquired data with the conventional 2D TSE protocol that 

is used clinically at our institution. Coronal proton-density weighted (PDw) sequences with 

and without fat suppression (FS) were acquired. Technologists were instructed to keep the 

following sequence parameters constant during the study:

• PDw: TR=2750ms, TE=27ms, echo-train-length 4, matrix size 320×288, in-plane 

resolution 0.49×0.44mm2, slice thickness 3mm.

• PDw FS: TR=2870ms, TE=33ms, echo-train-length 4, matrix size 320×288, in-

plane resolution 0.49×0.44mm2, slice thickness 3mm.

The number of acquired slices varied depending on the size of the patient. 20 cases were 

acquired for both the PDw (5 female / 15 male, age 15–76, BMI 20–33) and the PDw FS (10 

female / 10 male, age 30–80, BMI 20–34) sequence. The data was split equally in two 

categories. The first 10 acquisitions were used for training, the remaining half was used for 

validation. A selection of slices reconstructed by an inverse Fourier transform followed by a 

sum-of-squares combination of the individual coil elements is shown in Supporting 

Information Figure S1. These data show strong similarities in terms of the actual image 

content, but have fundamentally different contrast and SNR. The noise level σest of the two 

sequences was estimated from an off-center slice that showed only background uσ. The 

estimation was performed by averaging the standard deviation from the real and imaginary 

channels of the uncombined multi-channel data, and then averaging over all Nk training data 

cases n: σ
est

(u
σ
) =

1
N

k
∑

n = 1

N
k (std(Re(u

σ
)) + std(Im(u

σ
))). This resulted in an estimated noise 

level of σest = 10−5, which was identical for both the fat-suppressed and the non-fat-
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suppressed sequence. The signal level μest was then estimated by calculating the l2 norm of 

the complex multi-channel k-space data f, averaged over the central Nsl = 20 slices of all 

training data cases: μ
est

( f ) =
1

N
k

∑
n = 1

N
k 1

N
sl

∑
sl = 1

N
sl

‖ f ‖2
length( f )

. The central 20 slices were 

selected to ensure that no slices that contained no signal because they were outside the 

imaged anatomy were included in this analysis. In this definition f is organized as single 

stacked column vector of the data from all receive coils. The estimated SNR =
μ

est

σ
est

 of the 

PDw data was approximately 80, that of the PDw FS data was approximately 20. A third 

dataset was then generated by adding additional complex Gaussian noise to the PDw data 

such that the SNR corresponded to the PDw FS data. These datasets allow to study the 

generalization influences of SNR and image contrast independently from each other.

Synthetic k-space data were generated using 200 images from the Berkeley segmentation 

database (BSDS) [19]. Images were cropped according to the matrix size of the knee k-space 

data, including readout oversampling. The images were modulated with a synthetic 

sinusoidal phase using different randomly selected frequencies. After point-wise 

multiplication with randomly selected coil sensitivity maps estimated from our knee training 

data, the images were Fourier transformed. Complex Gaussian noise was then added to this 

synthetic k-space data according to the noise levels of our knee imaging data. We generated 

three different versions of this data. The first was generated at the SNR level of the PDw 

data, the second at the SNR level of the PDw FS data. The third was generated with a 

randomly selected level of SNR for every single image using the PDw FS data as the lower 

and the PDw data as the upper bound of SNR.

K-space data were undersampled by a factor of 4, according to a regular Cartesian 

undersampling pattern as implemented by the scanner vendor for accelerated acquisitions 

using parallel imaging, and variable density pseudorandom sampling according to [21]. The 

same random sampling pattern was used in all experiments. 24 reference lines at the center 

of k-space were used for the estimation of coil sensitivity maps in both cases, using ESPIRiT 

[22].

We followed the learned image reconstruction procedure using a variational network 

described in [5] for this study. In this approach a regularized iterative image reconstruction 

defined by:

E(u) = R(u) + λ

2
‖Au − f ‖2

2 (1)

is learned from the training data. The input of the variational network is the undersampled k-

space rawdata f and the corresponding coil sensitivity maps (included in the forward 

sampling operator A in Eq. 1), the output is a complex-valued coil-combined image u. All 

computations are performed accounting for the complex valued data with exception of the 

application of the regularizer on the image u, where the image is split up into the real and 

imaginary part. The regularizer is defined as:
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R(u) = ∑i = 1

N
k

ρi(ki ∗ u), ki ∗ u = ki, Re ∗ uRe + ki, Im ∗ uIm . (2)

It consists of a set of Nk spatial filter kernels k for the real and imaginary component of an 

MR image and potential functions ρ, which are learned from the data together with the 

regularization parameter λ. Inserting this regularizer in an iterative image reconstruction 

yields the following update:

u
t + 1 = u

t
− ∑

i = 1

N
k

k
i
t ∗ ρ

i, t
′ (k

i
t ∗ u

t
) − λ

t
A

∗(Au
t

− f ), λ
t

> 0, 0 ≤ t ≤ T − 1

where k
i
t denote the filter kernels k

i
t rotated by 180°. ρ

i, t
′  are the first derivatives of the 

potential functions ρi, t. Unfolding several iterations of the above scheme, leads to the 

variational network structure depicted in Figure 1 [6]. Essentially, one gradient step GD of 

an iterative reconstruction can be related to one stage t in a network with a total of T stages. 

For reference, the used network architecture is shown in Figure 1. 10 stages were used, each 

consisting of 24 convolution kernels of size 11×11. The iPalm optimizer and the variational 

network architecture were implemented and trained using Tensorflow [23], which was 

extended with additional operators such as the trainable activation functions and (inverse) 

Fourier shift operations. Source code of our extended Tensorflow library will be provided 

online (https://github.com/VLOGroup/tensorflow-icg). In addition, example training and 

testing code for MRI reconstruction will be provided online as well (https://github.com/

VLOGroup/mri-variationalnetwork). Trainings were performed slice by slice. During both 

training and testing each slice u was normalized between 0 and 1 u =
u
orig

max( ∣ u
orig

∣ )
 for the 

application of the learned regularizer. The pixel-by-pixel mean-squared-error to the fully 

sampled reference was used as the error metric that was minimized during the training 

process. All trainings were performed with 150 epochs with a batch-size of 5, using the 

iPalm algorithm [24]. One epoch is being defined as a sequence of updates of the network 

parameters when all training examples have been used exactly once. Trainings were 

performed using the following training data:

First set of experiments: Assessment of generalization with respect to contrast and SNR

1 PDw using the central 20 slices from 10 patients (total of N=200 slices).

2 PDw FS using the central 20 slices from 10 patients (total of N=200 slices).

3 PDw using the central 20 slices from 10 patients (total of N=200 slices) with 

additional noise added to the complex multi-channel k-space data such that the 

SNR corresponds to the SNR level of the FS sequence.

4 Joint PDw (5 patients) and PDw FS (5 patients) training, each using the central 

20 slices (total of N=200 slices).
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5 Joint PDw (5 patients) and PDw with additional noise added (5 patients) training, 

each using the central 20 slices (total of N=200 slices).

Second set of experiments: Influence of the number of training samples and the 

heterogeneity of the training data

1 Joint PDw (10 patients) and PDw FS (10 patients) training, each using the central 

20 slices (total of N=400 slices).

7 PDw using the central 20 slices from the 5 patients used in the joint training in 

experiment Nr. 4 in the first set of experiments (total of N=100 slices).

8 PDw FS using the central 20 slices from the 5 patients used in the joint training 

in experiment Nr. 4 in the first set of experiments (total of N=100 slices).

Third set of experiments: Assessment of generalization with respect to the sampling 

pattern

9 Training with regular sampling, testing with regular sampling.

10 Training with random sampling, testing with regular sampling.

11 Training with regular sampling, testing with random sampling.

12 Training with random sampling, testing with regular sampling.

13 Joint training with regular and random sampling, testing with regular sampling.

14 Joint training with regular and random sampling, testing with random sampling.

Fourth set of experiments: Training with synthetic data

15 Synthetic BSDS data (total of N=200 images) with (high) SNR level of PDw, 

regular sampling.

16 Synthetic BSDS data (total of N=200 images) with (low) SNR level of PDw FS, 

regular sampling.

17 Synthetic BSDS data (total of N=200 images) with variable SNR, regular 

sampling.

18 Synthetic BSDS data (total of N=200 images) with variable SNR, random 

sampling.

Transfer learning experiments: Fine-tuning the regular sampling variable SNR synthetic 

BSDS model for another 150 epochs

19 Fine-tuning using a subset of N=20 slices selected from all PDw cases.

20 Fine-tuning using a subset of N=20 slices selected from all PDw FS cases.

In addition, trainings using only the reduced subsets that were used for fine-tuning were 

performed as a reference for the transfer learning experiments.

The remaining 10 knee measurement datasets of both sequences and the dataset with 

additional noise added were used to test the performance of the different learned image 
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reconstruction networks. Quantitative evaluation was performed by calculating the root-

mean-squared-error RMSE u, u
ref

=
‖u

ref
− u‖

2
‖u

ref
‖

2

 and the structural similarity index 

SSIM u, u
ref

=
2 mean(u

ref
) mean(u) + C1 2 cov(u, u

ref
) + C2

mean(u
ref

)2 + mean(u)2 + C1 std(u
ref

)2 + std(u)2 + C2

 to the fully sampled 

reference uref for all test slices (378 slices in the case of PDw and 365 slices in the case of 

PDw FS). In the definition of the SSIM, C1 = (0.01L)2 and C2 = (0.03L)2, with L being the 

dynamic range of the input images, are regularization parameters that are used to avoid 

instabilities in regions of the image where the local mean or standard deviation is close to 

zero [25]. Finally, in order to obtain insight into the fine-tuning process in transfer learning, 

the learned network parameters before and after fine-tuning were visualized together with 

those from the corresponding in-vivo training.

Results

Results of the assessment of generalization with respect to contrast, and SNR are shown in 

Figure 2. A zoomed view to a region of interest that includes complex image texture due to 

bone trabeculae and fine details due to ligaments and cartilage is shown in Supporting 

Information Figure S2. Unsurprisingly, the best results can be achieved when applying the 

network to test data from the same sequence that it was trained on. When applying the 

network trained from high SNR PDw data to the lower SNR fat-suppressed data, a 

substantial level of noise is present in the reconstructed images. This leads to a reduction of 

SSIM from 0.89 to 0.81 for this particular slice. In contrast, applying the network trained 

from low SNR PDw FS data to higher SNR PDw data leads to slightly blurred images with 

some residual artifacts, leading to a SSIM reduction from 0.94 to 0.91. The behavior of the 

network trained from PDw data with additional noise is comparable to the network trained 

from the lower SNR PDw FS data. In particular, the SSIM is 0.88 for PDw FS test data in 

comparison to 0.89 when training with data from the same sequence. In case of the PDw data 

test, the SSIM is identical (0.91). The PDw test data with additional noise results in 

substantially lower quality in case of the PDw training (SSIM of 0.74) in comparison to all 

other trainings, including the individual training from PDw FS data (SSIM of 0.82). The 

results from the joint training using data from both contrasts are identical to using the same 

sequence for training and testing. (SSIM of 0.89 for PDw FS and 0.94 for PDw). The joint 

training from PDw data with and without additional noise leads to identical results for the 

PDw and noisy PDw test data. For the PDw FS test data, SSIM is reduced slightly (0.85 in 

comparison to 0.88 for training with noisy PDw). The visual impression and the SSIM 

values of the individual slices shown for the different experiments are confirmed by the 

quantitative SSIM and RMSE analysis over all cases in the test set (Supporting Information 

Table S1).

The influence of the number of training data points in relation to their heterogeneity is 

shown in Figure 3. No substantial differences in image quality can be observed between the 

results of these trainings and the individual trainings in Figure 2. A small improvement of 

0.01 in the SSIM can be observed in the quantitative analysis (Supporting Information Table 

S2) for the largest training data set that includes all trainings samples from both sequences.
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Figures 4 and 5 show the results of the assessment of generalization with respect to the 

sampling pattern. When the sampling pattern is consistent between training and testing, 

results without aliasing artifacts and preservation of fine details are obtained. Applying a 

network that was trained from random undersampled data to regular undersampling leads to 

subtle residual artifacts. With the exception of application of a network that was trained from 

regular undersampling to random undersampling, which shows a small SSIM drop from 0.96 

to 0.95 for PDw test data, quantitative image metrics were identical for all other 

combinations of training and test data. A joint training with data from both sampling 

patterns leads to results that are comparable to individual trainings with no deviations in 

acquisition parameters. This behavior is identical to the experiments with image contrast and 

SNR. Quantitative SSIM and RMSE analysis over all cases in the test set are also shown in 

Supporting Information Table S3 for this experiment.

To demonstrate that the trainings are properly converged, plots of RMSE and SSIM of the 

training and test sets over the training epochs are shown in Figure 6 for the experiments 

shown in Figures 3, 5 and 6.

The results of the trainings that were performed on synthetic k-space data generated from 

the BSDS database are shown in Figure 7. The most substantial difference to the 

experiments when training with true in-vivo MR-data from the same anatomical area is the 

presence of residual aliasing artifacts in the results (indicated by red arrowheads in Figure 

3). The effects of the influence of SNR can be reproduced with the synthetic data. Training 

data with a substantially higher SNR level leads to noise amplification. This effect is 

strongest in the case of no additional noise, where the SSIM drops to 0.65 for this particular 

slice of PDw FS test data. Training with substantially lower SNR leads to blurring and 

residual artifacts. This effect is strongest when using the network trained at the noise level of 

the PDw FS data for non-fat-suppressed test cases. Again, training with a range of SNR 

values leads to results that are comparable to training with data that is consistent to the test 

data in terms of SNR. The corresponding quantitative analysis is shown in Supporting 

Information Table S4.

The results from the transfer learning experiments are shown in Figure 8. For data of both 

sequences, results from fine-tuned networks outperform both baseline trainings using only 

synthetic data, as well as reference trainings using the same subset of knee MRI data that 

was used during fine-tuning in terms of removal of residual artifacts. Quantitative SSIM and 

RMSE analysis are shown in Supporting Information Table S5. In particular, with the 

exception of SSIM for training and testing with non-fat-suppressed PDW data (0.96, vs. 0.95 

for the corresponding transfer learning experiment), results for transfer learning lead to the 

same SSIM values as the corresponding trainings with in-vivo MRI data from the same 

sequence. Figure 9 shows plots of RMSE and SSIM for the transfer learning experiments. 

The first 150 epochs are baseline training and the training error is shown for synthetic data. 

Epochs 151 to 300 are fine-tuning and the training error is shown for the corresponding 

subset of in-vivo data. The test error is shown for the in-vivo test cases that were used for all 

experiments in this study. A substantial jump in the training error can be observed at the 

transition between baseline training and fine tuning. This is to be expected, because the 

dataset that is used to obtain the error metric changes at this point. The effect is more subtle 
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for the test error, but it can still be seen that the baseline training reached a plateau and is 

then improved further during the fine-tuning period.

Discussion

The results from this study demonstrate that a deviation of SNR between training and test 

data leads to a substantial reduction of image quality when using a trained variational 

network for image reconstruction. This can be related to the influence of two design 

parameters in image reconstruction, which are usually tuned by hand in a conventional 

image reconstruction approach. The number of iterations in an iterative reconstruction [26] 

and the regularization parameter in compressed sensing [21]. These parameters determine 

the tradeoff between resolution, g-factor based noise amplification and residual aliasing 

artifacts. In a machine learning approach, the parameter that balances the data consistency 

term and the regularization term, as well as the step size of the numerical algorithm, is 

learned from the training data. Interestingly, reconstructed test case images showed the same 

behavior when an SNR deviation occurred due to a change of the pulse sequence that was 

used between training and testing, and when data from the same pulse sequence was 

retrospectively corrupted by additional noise. In particular, lower SNR PDw FS test data 

showed comparable image quality for trainings from PDw FS data and PDw data with 

additionally added noise. PDw test data with additionally added noise showed substantially 

higher image quality for trainings from PDw FS data, with different contrast but matched 

SNR, than for trainings from PDw data, with matched contrast but different SNR. This 

demonstrates that while SNR is a critical parameter that has to be consistent between 

training and testing, image contrast is a less critical factor. It should be noted that this 

particular behavior can only be interpreted for our particular network architecture, 

implementation of the training procedure and the difficulty of the reconstruction problem 

defined by the acceleration factor, SNR and the quality of the particular multi-channel 

receive coil.

As expected, since the structure of the aliasing artifacts is influenced by the used sampling 

pattern, deviations between training and testing influence the quality of the reconstructions. 

However, it is important to note that our approach does not learn a particular aliasing pattern 

by heart. Elimination of artifacts is performed locally, by spatial convolution of learned filter 

kernels in image space. This explains why the negative effects on the reconstruction quality 

are relatively benign. However, it cannot be expected that these results generalize to more 

substantial changes in the trajectory, e.g. 3D pseudorandom sampling or non-Cartesian 

trajectories like radial or spirals, which have fundamentally different aliasing properties.

Training a reconstruction from heterogeneous data lead to the same results as training from 

data that were consistent between training and testing. This behavior was consistent for both 

contrast, SNR and multiple sampling patterns. These experiments demonstrate that a 

reconstruction can be learned that generalizes with respect to changes in acquisition 

parameters, under the condition that the corresponding heterogeneity is included in the 

training data. It is currently an open question to what degree an increase of heterogeneity in 

the training data also requires an increase of the total samples to achieve generalization. The 

experiments in this study did not show substantial deviations in performance when varying 
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the number of training samples. However, the goal of these experiments was not a large-

scale analysis of the influence of the number of training data sets in learned image 

reconstruction. The goal was to study the cases where the exact same data sets are used in 

single-contrast and heterogeneous multi-contrast trainings (N=100 to N=400 slices). An 

analysis of the influence of the number of training samples in the context of transfer learning 

for the network architecture proposed in [9] is presented in an arXiv preprint by Dar and 

Cukur (“A Transfer-Learning Approach for Accelerated MRI using Deep Neural Networks,” 

arXiv, 2017). The authors report improvements of SSIM from 0.93 to 0.96 when increasing 

the number of baseline training images by a factor of eight and the number of fine-tuning 

images by a factor of four. While the acquisition of large datasets with sufficient 

heterogeneity can be challenging in practice, the results from this study indicate that data 

augmentation can potentially be used successfully. Given the availability of fully sampled 

training k-space data, experiments with different sampling patterns and acceleration factors 

can be performed without the need to acquire additional measurements. The influence of 

SNR vs. image contrast further supports this strategy. Different levels of SNR can easily be 

achieved with data augmentation, while a change of image contrast would require either 

additional acquisitions or the use of synthetic data and numerical simulations of the MR 

signal of different pulse sequence and sequence parameters.

The influence of SNR that was observed in the generalization experiments with knee data 

from different sequences can be reproduced entirely with experiments using synthetic data. 

This again shows that SNR plays a more critical role than image content in the context of 

learned image reconstruction. However, results from trainings with synthetic data showed a 

substantially higher level of residual aliasing artifacts, illustrating that both the sampling 

pattern and the actual image content define the structure of the introduced aliasing. It should 

be noted that our experiments were designed around the two extreme ends of the spectrum 

of training and test data consistency: Training from the same anatomy and scan orientation, 

and training from arbitrary non-medical images. Future work should be conducted to 

investigate training from the same anatomical structure but different scan orientations and 

scans from different anatomical areas. Also, the particular choice of using natural camera 

images to generate synthetic k-space data, and the particular image database was only one of 

several possible experiment design choices in this study. Another topic of future research is 

the use of dedicated numerical simulation data that are designed specifically with the idea of 

training an image reconstruction procedure. This is particularly interesting for dynamic 

imaging applications, where the acquisition of high spatial and temporal resolution training 

data is even more challenging.

Transfer learning inspired fine-tuning with a substantially smaller size of target domain knee 

MR images reduced the effect of residual aliasing artifacts. The results were close to the 

optimal case of using MR imaging data from the same anatomical area and pulse sequence 

for training and testing. These results are not only in line with studies in computer vision, 

where transfer learning was used to classify class labels that were not present in the original 

training data set [27], they are also comparable to transfer learning for a neural network 

architecture for MR reconstruction proposed in [9] evaluated on brain MR datasets (Dar and 

Cukur, arXiv, 2017) Visualizing the parameters of the learned network provides some 

additional insight into the fine-tuning procedure. Figure 10 shows a visualization of the 
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learned filter kernels kRE and kIM for the real and imaginary plane of the regularizer together 

with the learned nonlinear activation functions ρ′. The fine-tuned kernels closely resemble 

the kernels from the baseline training, indicating that they are not updated substantially 

during the fine-tuning process. Larger updates can be observed for the learned influence 

functions. They still bear closer resemblance to the baseline trainings than the corresponding 

in-vivo trainings. However, a direct comparison between the trainings is challenging because 

they do not necessarily perform the same operations on the images at the same stage in the 

network. The reason for this is that the training process is a highly non-convex optimization 

problem. The parameters of the whole network are trained simultaneously and the error 

metric is the final output after the last stage. This means that the result of each training is 

one of multiple local minima that lead to approximately the same result, a property that is 

known from deep learning [1].

The relation of the number of training data samples that was used for fine-tuning in 

comparison to the full trainings (one tenth) was chosen empirically for this study. A more 

systematic comparison of the influence of the relation between the number of samples for 

baseline training and for fine-tuning is presented by Dar and Cukur (Dar and Cukur arXiv, 

2017). Also, while the particular network architecture that was used in this study can be 

trained successfully from datasets in the order of several hundred samples, it is a topic for 

further research if additional performance benefits can be achieved by training different 

architectures with a larger number of free parameters using synthetic data followed by a 

fine-tuning step using real MR data.

Conclusion

This study presents insights into the general properties and the generalization ability of a 

learned variational network for MR image reconstruction with respect to deviations in the 

acquisition settings between training and testing for a clinically representative set of test 

cases. Our results show that mismatches in SNR have the most severe influence. Our 

experiments also demonstrate that by increasing the heterogeneity of the training data set, 

trained networks can be obtained that generalize towards wide range acquisition settings, 

including contrast, SNR and the particular k-space sampling pattern. Finally, our study 

provides an outlook for the potential of transfer learning to fine-tune trainings of our 

variational network to a particular target application using only a small number of training 

cases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Overview of the variational network architecture used in this work.
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Figure 2. 

Assessment of generalization with respect to contrast and SNR. SSIM to the fully sampled 

reference is shown for the corresponding slices. When applying a network from high SNR 

PDw data to lower SNR PDw FS data, a substantial level of noise is present in the 

reconstructions. Applying the low SNR PDw FS network to higher SNR PDw data leads to 

slightly blurred images with residual aliasing artifacts. The behavior of the network trained 

from PDw data with additional noise was comparable to the network trained from the lower 

SNR PDw FS data. The PDw test data with additional noise results in substantially lower 

quality in case of the PDw training in comparison to all other trainings. The results from the 

joint training using data from both contrasts are identical to using the same sequence for 

training and testing. The joint training from PDw data with and without additional noise 

leads to identical results for the PDw and noisy PDw test data and slightly reduced SSIM for 

the PDw FS test data. A zoomed view of these results is included in the supporting 

information.
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Figure 3. 

Influence of the number of training data points in relation to their heterogeneity. No 

substantial differences in image quality can be observed between the results of these 

trainings and the individual trainings in Figure 2.
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Figure 4. 

Assessment of generalization with respect to the sampling pattern for the higher SNR non-

fat-suppressed data. When the sampling pattern is consistent between training and testing, 

results without aliasing artifacts and preservation of fine details are obtained. Applying a 

network that was trained from regular undersampling to random undersampling leads to 

subtle over-smoothing, which is also reflected in a slight drop of the SSIM from 0.96 to 

0.95. Applying a network that was trained from random undersampled data to regular 

undersampling leads to residual artifacts. Identical to the experiments with image contrast 

and SNR, a joint training with data from both sampling patterns leads to results that are 

comparable to individual trainings with no deviations in acquisition parameters.
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Figure 5. 

Assessment of generalization with respect to the sampling pattern for the lower SNR fat 

suppressed data shows the same behavior as the experiments with non-fat-suppressed data 

(Figure 4). However, residual aliasing artifacts are subtler because the image corruption is 

mainly dominated by noise amplification in this lower SNR case and aliasing artifacts are 

buried under the noise level.
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Figure 6. 

Plots of RMSE and SSIM of the training and test sets over the training epochs for: (a) SNR 

and contrast generalization experiments in Figure 3. (b) Experiments with changes of the 

sampling pattern from figures 5 and 6.

Knoll et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 

Trainings from synthetic, regularly undersampled, k-space data generated from the BSDS 

database. SSIM to the fully sampled reference is shown for the corresponding slices. 

Reconstructions show a larger degree of residual aliasing artifacts (red arrowheads) in 

comparison to trainings with in-vivo knee data. The effects of the influence of SNR can be 

reproduced with the synthetic data. Experiments with deviating SNR levels between training 

and test data again lead to either noise amplification or blurring and residual artifacts. Again, 

training with a range of SNR values leads to results that are comparable to training with data 

that is consistent to the test data in terms of SNR. This particular training was also 

performed and tested with random sampling, with comparable behavior.
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Figure 8. 

Transfer learning experiments. For both PDw and PDw FS data, results from fine-tuned 

networks outperform baseline trainings using only synthetic data, as well as reference 

trainings using the same subset of knee MRI data that was used during fine-tuning in terms 

of removal of residual artifacts. This indicates the possibility of fine-tuning networks that 

were pre-trained from generic data with only a very small number of training cases for a 

particular target application.
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Figure 9. 

Plots of RMSE and SSIM of the training and test sets over the training epochs for the 

transfer learning experiments. The first 150 epochs are baseline training and the training 

error is shown for synthetic data. Epochs 151 to 300 are fine-tuning and the training error is 

shown for the corresponding subset of in-vivo data. The test error is shown for the in-vivo 

test cases that were used for all experiments in this study. The dashed line illustrates the 

epoch where the training changes from baseline training to fine-tuning.
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Figure 10. 

Visualization of a selection of learned nonlinear activation functions ρ′ and filter kernels 

kRE and kIM for the real and imaginary plane of the regularizer. The fine-tuned kernels 

closely resemble the kernels from the baseline training, indicating that they are not updated 

substantially during the fine-tuning process. Larger updates can be observed for the learned 

influence functions.
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