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�e main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental
impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used
in bioenergy assessment studies. Great e	orts have been directed toward establishing an e
cient method for comprehensively
estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining
LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption
and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile,
ecosystem/biogeochemical process models are adopted to simulate the �uxes and storage of energy, water, carbon, and nitrogen in
the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in
current studies and should be addressed. �is paper reviews the state-of-the-art method for estimating GHG emission reduction
through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining
LCA with biogeochemical process models. �e main achievements of this study along with the problems in current studies are
described and discussed.

1. Introduction

�e increasing consumption of fossil fuel and current eco-
logical environmental problems are global challenges. Plant-
based bioenergy liquid fuel (including biofuel ethanol and
biodiesel) is an e	ective way to relieve the energy crisis and
also protect the environment due to its advantages of clean-
ness, safety, and reproducibility [1, 2]. A�er nearly 10 years,
the worldwide production of liquid fuel is developing very
rapidly, increasing from 0.96 billion in 2001 to 21.4 billion in
2011. �e European Union, the USA, and Brazil are the main
forces in the development of the biomass energy industry
[3]. Although the development of the global biofuel industry
has shown a great trend driven by the energy requirement

and related policies, there are still many challenges in large-
scale production. �e main raw material of liquid biofuel
production is currently cultivated crops. Soybean and corn
are widely used in the USA and rapeseed and soybean are
used in the European Union for biodiesel development.
In Brazil, sugarcane is used for ethanol development [4].
Relatively accurate conclusions regarding productivity and
environmental bene�ts may be drawn based on years of
cultivated experience. �e production of bioethanol and
biodiesel by di	erent energy plants and process techniques
can reduce greenhouse gas (GHG) emissions by 12–125%
compared with traditional fossil fuels [5–7]. Adler et al.
used the DAYCENT biogeochemistrymodel to assess the soil
GHG �uxes and biomass yields for corn, soybean, alfalfa,
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hybrid poplar, reed canarygrass, and switchgrass as bioenergy
crops in Pennsylvania, USA. �e results showed that all
cropping systems considered provided net GHG sinks. �e
net GHG emissions of switchgrass, reed canarygrass, corn-
soybean rotation, corn-soybean-alfalfa rotation, and hybrid
poplar were reduced by −114%, −84%, −38%, −41%, and
−117%, respectively [6]. Large-scale production of biodiesel in
theUKwas found to save 26%ofGWP [8].However, Jatropha
and other noncrop energy plants have not been used long
enough to generate su
cient data. �e key problem of non-
crop energy plants scale development is how to scienti�cally
estimate the potential of GHG emission reduction [9]. If this
problem can be solved, the development of biological liquid
fuels can be more accurately evaluated and more reasonably
planned.

�e main purpose for the development of biological
liquid fuel is to reduce GHG emissions, but great uncertainty
remains regarding its comprehensive environmental impact.
Some researchers believe that the patterns of land use change
will a	ect the GHG emissions. �ese researchers believe that
biological liquid fuel development would have a negative
impact on the environment if the GHG emissions caused by
the land use pattern changes were under consideration [10,
11]. However, according to the latest survey of the American
Department of Energy, certain assumptions in the studies
above have obvious problems. �ey assumed that 30 billion
gallons of ethanol would be produced from corn annually
until 2015, but only 1.5 billion gallons were planned to be
produced according to the Energy Independence and Secu-
rity Act [12]. �ey also assumed that massive deforestation
would occur during the development of biomass energy,
but most of the forests were excluded in the planning.
�erefore, the assumption of a large amount of cultivated land
being occupied is not correct because the biomass energy is
developed based on the sparse forest land, sparse shrub land,
sparse grassland, shoal/bottomland, and bare land rather
than the cultivated land [13].

Regarding the net energy balance problems during pro-
duction, ethanol from corn yields 25% more energy than the
energy invested in its production, whereas biodiesel from
soybeans yields 93% more [5]. Switchgrass produces 540%
more bioethanol than nonrenewable energy consumed [12],
which shows a great advantage of the second generation
of biological liquid fuel. Some controversy also exists as to
whether the development of bioliquid fuel will reduce GHG
emissions. Some studies have indicated that GHG emissions
can be reduced by 12–125% with bioliquid fuel production
compared to traditional fossil fuels [12]. Bioethanol produc-
tion from corn can reduce GHG emissions by 13%. �e
second generation biofuel can reduce more GHG emissions
along with the development of process techniques [14].
Bioethanol production from switchgrass instead of fossil fuels
can reduce GHG emissions by 94% [15]. Sasaki et al. [16]
developed biomass change and harvest models to estimate
the woody biomass availability in forests under the current
management regime. �e total annual production of woody
biomass is 563.4 million tons (11.3 EJ) over the same period
between 1990 and 2020. �e total energy consumption in
Southeast Asia was estimated at 6.4 EJ in 1990 and 15.7 EJ

in 2006, increasing approximately by 9.0% yr−1. Energy from
wood fuels in Southeast Asia (excluding Singapore and
Brunei) was estimated at 2.4 EJ in 1993 or approximately
33.1% of the total energy consumption in that year. Energy
from wood fuels in this region increased by approximately

2.5% yr−1 on average between 1992 and 1995 [17, 18]. �ere-
fore, without e	ective policies to reduce deforestation and
forest degradation, an energy shortage is likely to occur in
Southeast Asia. �e carbon emission reductions associated
with using woody biomass instead of fossil fuels to generate

energy are estimated at 281.7 TgC yr−1for replacing coal,

225.3 TgC yr−1 for replacing petroleum products, and 169.0

TgC yr−1 for replacing natural gas throughout the modeling

period using carbon coe
cients of 25 kgCGJ−1 for coal,

20 kgCGJ−1 for petroleum products, and 15 kgCGJGJ−1 for
natural gas [16].

Some controversy remains about the e	ects of bio-
logical liquid fuel development on the economy, society,
and environment. �erefore, many countries have begun
to reevaluate their future biofuel development strategies,
exploring strategies that have smaller negative e	ects on
the economy, society, and environment. For example, the
European Union decided to postpone the implementation
of their goal of replacing 10% of their transportation energy
with biological liquid fuel by 2020, and the United States
government claimed to assess and monitor the sustainability
of biological liquid fuel development [19]. China’s biofuel
industry is also witnessing rapid development. However, the
development of the biodiesel industry is still faced withmany
uncertainties, among which the accurate estimation of the
potentiality of raw material supply, net energy production,
and GHG emission reduction is the most crucial issue.

�e main objectives of this study are the following:
(1) to review the state-of-the-art method for assessing the
GHG emission reduction by developing energy crops and
(2) to introduce a new approach for assessing the GHG
emission reduction by combining life cycle analysis (LCA)
with biogeochemical process models. �is paper focuses on
estimating the GHG reduction of noncrop energy plants,
especially in the stages of growing,managing, and harvesting.
In addition, the GHG caused by direct land-use changes
were considered, while the GHG caused by indirect land-use
change were beyond the scope of this paper.

2. Life Cycle Analysis

To become a substitute for fossil fuels, bioliquid fuel should
be able to provide net energy, bring environmental and
economic bene�ts, and not reduce the food supply during
mass production [6]. LCA is used to evaluate the energy
consumption of a product or system throughout its life cycle,
including raw material acquisition, production, product use,
and postprocessing [3]. In recent years, LCA has been widely
used as a complete comprehensive analysis method in bioen-
ergy assessment studies. By comparison with fossil fuels, the
consumption across the whole life cycle of biofuels, GHG
emission, and primary energy usage can be reduced. Xing et
al. [20] calculated and evaluated the land use and water and
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energy consumption of three feedstocks, namely, rape seed
oil, Jatropha curcas L. oil, and waste oil, using LCA that con-
sidered planting, harvesting, transportation, pretreatment,
biodiesel production, distribution, and consumption. Hu et
al. established a life cycle energy consumption and emission
assessment model for soybean, rape seed, Cornus wilsoniana
wanaer (CWW), and Jatropha curcas L. as bases for biodiesel
[21].Wang and Lu analyzed the life cycle energy consumption
and pollutant emissions during biodiesel production from
Jatropha curcas [22]. �e costs, energy consumption, and
environmental impact of a bioethanol life cycle that used
wheat, corn, and sweet potato as rawmaterials were analyzed
by Zhang [23]. Dai et al. [24] evaluated the energy e
ciency
of the cassava fuel ethanol life cycle in the Guangxi province,
China. Nguyen et al. [25] assessed the energy balance and
GHG emissions of the cassava fuel ethanol life cycle in
�ailand. Sobrino et al. [1] compared energy consumption
of bioliquid fuels with fossil fuels throughout the life cycle
and found a lower consumption of primary energy and a CO2
emission reduction a�er bioliquid fuel replaced certain fossil
fuels. Razon and Tan [26] analyzed the net energy gain of
bioliquid fuel and biogas using algae. Finally, Lu et al. [27]
and Li et al. [28] established the energy and GHG reduction
potential of Pistacia chinensis.

Most of the current literature is devoted to experimental
or theoretical evaluations in estimating the GHG reduction
e	ects of a certain energy plant for unit volume ormass using
LCA.�e mean value is used when applied on a district level
[29]. �e result is that the spatial di	erences in the GHG
reduction potential resulting from the spatial heterogeneity
of climate, soil, and terrain features cannot be determined.
Hence, the GHG reduction potential is di
cult to evaluate
on a regional scale.

Addressing this problem, some studies proposed intro-
ducing spatial data and spatial analysis methods that couple
LCA with GIS to evaluate the GHG reduction potential.
A multifactor analysis method based on geographic infor-
mation system (GIS) techniques was adopted to identify
marginal lands for bioenergy development. Marginal lands
with potential for planting energy plants were identi�ed for
each 1 km × 1 km grid across China. �e net energy and
emission reduction e
ciency of biological liquid fuel were
identi�ed at each grid and the total GHG emission reduction
was then obtained by accumulating the grids [30]. GIS tech-
niques and multifactor comprehensive analysis methods are
applied to calculate the potential for planting large-scale cas-
sava in Southwest China. �en, the life cycle net energy and
GHG emission reduction capacities of cassava on marginal
land with di	erent suitability degrees were calculated based
on the expanded life cycle model for cassava ethanol fuel.
�e results indicate that adopting spatial data (such as the
climate, soil, and terrain conditions) as well as a spatial
analysis model provides a preliminary solution to solve the
GHG reduction evaluation problem on a regional scale. �e
more reasonable results for GHG reduction potential were
estimated at relatively �ne geographical scale [31]. Dresen and
Jandewerth integrated spatial analyses into LCA-calculated
GHG emissions with GIS systems. Using the example of
the energetic utilization of biomass via conditioned biogas,

the authors presented a GIS-based calculation tool that
combines geodata on biomass potentials, infrastructure, land
use, cost, and technology with analysis tools for the planning
of biogas plants to identify the most e
cient plant locations
and to calculate the emission balances, biomass streams, and
costs in the lower Rhine region and the Altmark region in
Germany. �e results of the GHG balances were presented.
�e balances of the individual sites, the regional balances,
and their temporal development can be calculated in GIS
using LCAmethods. GIS tools not only allow the assessment
of individual plants but also allow the determination of
the GHG reduction potential, the biogas potential, and the
necessary investment costs for entire regions. �us, exploit-
ing regional biogas potentials in a way that is sustainable
and climate-friendly becomes simple [32]. Environmental
integration, such as GIS and LCA, provides a methodol-
ogy capable of providing enough information and results
to determine an energy crop implementation strategy for
reducing the energy consumption and CO2 eq. emissions.
�e methodology was applied and veri�ed in a study area in
Catalonia (southern Europe). �e results showed that a high
impact reduction inGHGcould be achieved annually (annual
reduction of 1,954,904 Mg of CO2 eq.) [33]. However, some
obvious problems remain in the current research. �e same
parameters were used in the “GHG reduction e
ciency”
model without considering natural or social conditions.
Meanwhile, the total GHG emission reduction potential is
not exactly equal to the sum of the grid values, as mutual
in�uences and interactions exist between each grid [29].

3. Model

In recent years, many methods, including LCA, have been
widely used in bioenergy assessment studies. However, pre-
vious studies typically only calculated the unit mass or unit
area of a biofuel life cycle based on a laboratory dataset, that is,
the “GHGemission reduction e
ciency.” Regional total GHG
emission reduction potentials were simply considered as
“e
ciency times total yield.” �e spatiotemporal variation of
environmental factors, such as solar radiation, temperature,
soil, and water, was not well described in previous studies.
To solve this problem, various models have been adopted
for estimating the GHG emission of energy plants. IPCC
Tier 1 provided a very practical method for calculating
GHG emissions. Ecosystem process models and land surface
models have also been used. According to the latest progress
in this �eld, the process-based biogeochemical models were
introduced into the framework of LCA to quantitatively
calculate the C, N, and GHG emissions during the growth of
energy plants and obtain their spatial distribution as well.

3.1. �ree-Tier Approaches of IPCC. De Klein et al. (New
Zealand) used a three-tier approach to estimate the nitrous
oxide (N2O) emissions from managed soils, including indi-
rect N2O emissions from the additions of N to land due
to deposition and leaching and emissions of carbon dioxide
(CO2) following the additions of liming materials and urea-
containing fertilizer. In the most basic form, direct N2O
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emissions from managed soils are estimated using Tier 1
methods ((A.1); see the appendix). If more detailed emission
factors and corresponding activity data are available to a
country than are presented in Tier 1, then Tier 2 can be
undertaken. Tier 3 methods are modeling or measurement
approaches that can relate the soil and environmental vari-
ables responsible forN2Oemissions to the sizes of those emis-
sions [34]. Tier 1 methods were most widely used because of
the data acquisition convenience. Ruesch and Gibbs created
a new global map using the IPCC Tier 1 method of biomass
carbon stored in above- and below-ground living vegetation.
However, the methods they employed are not directly linked
to ground-based measures of carbon stocks and have not
been validated with �eld data [35]. At the national level, the
intergovernmental panel on climate change (IPCC) has pro-
duced a set of guidelines for estimating the GHG inventories
at di	erent tiers of quality, ranging from Tier 1 up to Tier 3.
�e biome averages used in the Tier 1 approach to estimate
forest carbon stocks are freely and immediately available
and currently provide the only source of globally consistent
forest carbon information; however, there are uncertainties
caused by natural disturbance, topography, microclimate,
and soil type. Additionally, the estimates may be too high
or too low for some locations. A study suggested that the
default values used in this approach underestimate the carbon
stocks for ecosystems, such as temperate moist forests [36–
39]. In addition to the weaknesses above, the IPCC guidelines
provide the default values of regular crops without the default
values of most speci�c energy plants, such as sugarcane,
Miscanthus and Cassava.

3.2. Ecosystem Process Model and Land Surface Model. Wu et
al. used a modi�ed version of the soil and water assessment
tool (SWAT) as a basic tool to simulate a series of biofuel
production scenarios involving crop rotation and land cover
changes in the James River Basin of the Midwestern United
States. �e grasslands could be classi�ed based on the
simulations in terms of biomass productivity and nitrogen
loads. �e group further derived the relationship of biomass
production targets and the resulting nitrogen loads, and they
projected the annual average water yield NO3-N load and soil
NO3-N concentration during the 18-year simulation period
(1991–2008) [40]. PnET (photosynthetic/evapotranspiration
model) is a nested series of models of carbon, water, and
nitrogen dynamics for forest ecosystems. �e models were
developed and validated in the Northeastern USA at both
the site and the grid level (to 1 km resolution) by Aber et
al. [41]. To contribute toward more reliable estimates of the
N2O source strength of tropical rainforest ecosystems on
a regional scale, Kiese et al. modi�ed a process-oriented
biogeochemical model, PnET-N-DNDC, and parameterized
it to simulate C and N turnover and the production of
associated N2O emissions in and from tropical rainforest
ecosystems. �e daily simulated N2O emissions based on
site data were in good agreement (model e
ciencies up to
0.83) with �eld observations in the wet tropics of Australia
and Costa Rica [42]. A simulation model, Wetland-DNDC,
for C dynamics and methane (CH4) emissions in wetland

ecosystems was reported; the model’s main structure was
adopted fromPnET-N-DNDC.�emodel has been validated
against various observations from three wetland sites in
Northern America. �e validation results agree with the
�eld measurement data [43]. Predictions using PnET-II at
the stand or community level indicated that the lumped
parameter approach worked well at both large (i.e., multiple
community types) and small (within community types)
spatial scales [44, 45]. However, this type of approach will
provide inaccurate parameter estimates without the right
“mix” of species to o	set over- and underestimates because
the mixture of species resulted in a compensating error [46].

3.3. Biogeochemical Process Models. DAYCENT is a daily
time series biogeochemical model used in agroecosystems to
simulate the �uxes of carbon and nitrogen in the atmosphere,
vegetation, and soil [47, 48]. �e model is a version of the
CENTURY biogeochemical model using a daily scale. �e
DAYCENT land surface submodel simulated the soil water
and soil temperature dynamics well for a variety of sites
ranging from dry grassland, wet managed grassland, and wet
crop land systems.�e simulated results were compared with
observed snow cover data, weekly 0–10 cm soil water data,

daily AET data, and soil temperature data. �e �2 values
from the observed versus simulated results were between
0.58 and 0.96 [49]. �e ability of DAYCENT to simulate
NPP, soil organic carbon, N2O emissions, and NO3 leaching
has been tested with data from various native and managed
systems [50–52]. �e DAYCENT biogeochemical model was
used to represent GHG emissions more realistically for
nonrice major crop types (corn, wheat, and soybean). �e
results indicate a signi�cant potential to the reduce GHG
emissions from cropped soils and to increase yields. Using
nitri�cation inhibitors and split fertilizer applications both
led to increased (∼6%) crop yields, but the inhibitor led to
a larger reduction in N losses (∼10%). No-till cultivation,
which led to C storage, combined with nitri�cation inhibitors
resulted in reduced GHG emissions of ∼50% and increased
crop yields of ∼7% [53]. DAYCENT, used in this study,
is likely to be an improvement over the IPCC method
that estimates N2O emissions based solely on N inputs
and does not account for weather and soil class. However,
the dataset used during the simulation was mapped to an
extremely coarse resolution at 1.9olutio, and the nonspatial
data (e.g., rates and dates of fertilizer applications) were
assumed to be identical within crop types across regions.
Lee et al. calibrated and validated DAYCENT and predicted
the biomass yield potential of switchgrass across the Central
Valley of California. Six common cultivars were calibrated
using published data across the USA and validated with data
generated from four �eld trials in California (2007–2009).
A�er calibration and validation, the model explained 66–
90% of observed yield variation in 2007–2009. �e model

(2.0–9.9Mg ha−1 yr−1) agreed well with the observed yield

variance (1.3–12.2Mg ha−1 yr−1) in the establishment year.
�e Alamo and Kanlow cultivars were estimated to have
biomass production potential within the Central Valley of
California under the selected management practices. �e
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biomass management options of switchgrass were suggested
to di	er depending on the temperature and on the yields of
the di	erent ecotypes [54].

RothC-26.3 was originally developed and parameterized
to model the organic C turnover in arable topsoils from the
Rothamsted long term �eld experiments, hence the name.
�e model uses a monthly time step to calculate the total

organic carbon (t ha−1), microbial biomass carbon (t ha−1),
and D14C (from which the equivalent radiocarbon age of the
soil can be calculated) on timescales from years to centuries
[55–58].�emodel has been evaluated for a range of climates
and vegetation types (e.g., cropland, grassland, and forests)
and has been previously used for prediction on both regional
and global scales [59–64]. Hillier et al. have conducted a
study for England and Wales, using the yield maps of four
bioenergy crops, Miscanthus (Miscanthus giganteus), short
rotation coppice (SRC) poplar (Populus trichocarpa Torr. &
Gray P. trichocarpa, var. Trichobel), winter wheat, and oilseed
rape, with RothC to simulate the soil C turnover over a 20-
year period. �e GHG emissions from soil are placed in
context with the life cycle emissions and then quantify the
potential fossil fuel C that could be displaced. �e GHG
balance is estimated for each of the 12 land use change
transitions associated with replacing arable, grassland, or
forest/seminatural landwith each of the four bioenergy crops.
Miscanthus and SRC are likely to have a mostly bene�cial
impact in reducing GHG emissions, while oilseed rape and
winter wheat have either a net GHG cost or only a marginal
bene�t [65].

Biome-BGCversion 4.1.2was provided by Peter�ornton
at the National Center for Atmospheric Research (NCAR,
sponsored by the National Science Foundation) and by the
Numerical Terradynamic Simulation group (NTSG) at the
University of Montana. �e model is a computer model
that simulates the storage and �uxes of water, carbon, and
nitrogen within the vegetation, litter, and soil components of
a terrestrial ecosystem. Biome-BGC is primarily a research
tool and many versions have been developed for partic-
ular purposes [66]. Biome-BGC was applied to simulate
the behavior of three Mediterranean species (Quercus ilex
L., Quercus cerris L., and Pinus pinaster Ait.) [67]. �e
model was also adapted to managed stands with long term
observations of biomass production. �e exercise includes
a model analysis for 33 stands exemplifying typical forest
management of beech, oak, pine, and spruce, that is, the four
major tree species important to Central-European forestry
[68]. In this area, Schmid et al. analyzed the carbon dynamics
along an altitudinal gradient across the alpine treeline; the
analysis provided insights into the sensitivity of simulated
average carbon pools to the changes in environmental factors
[69]. �e Biome-BGC model was also applied in a forested
area of Sweden. �e current carbon balance of the forested
area and its sensitivity to global change was simulated [70].
Eastaugh et al. applied the species-speci�c adaptation of the
biogeochemical model Biome-BGC to Norway spruce across
a range of Austrian climatic change zones using the Austrian
National Forest Inventory. �e relative in�uence of current
climate change on forest growth was quanti�ed. At the

national scale, climate change was found to have negligible
e	ect onNorway spruce productivity, due in part to opposing
e	ects at the regional level [71]. Based on the Biome-BGC
model, a modi�ed net primary productivity (NPP) calcula-
tion is used to estimate the Jatropha curcas Linnaeus (JCL)
yields. A zoning scheme that considers land cover status and
potential yield levels was formulated and used to evaluate
the potential area and production of future plantations at the
global, regional, and national levels. �e estimated potential
area of JCL plantations is 59–1486million hectares worldwide
and the potential production is 56–3613 million ton dry seed

y−1 [72].�eBiome-BGCoutputs are useful for the following:
(1) establishing the amount and distribution of C storage by
plants; (2) predicting the behavior of di	erent ecosystems in
cases of CO2 concentration changes in the air; (3) exploring
the controls of water stress and drought on plant carbon
balances; (4) exploring the interannual variability of climate
on growing season; and (5) furnishing important parameters
useful to managing ecosystems, particularly forests [67].

�emodels most used for energy plant GHG simulations
are listed in Table 1. It is worth noting that hundreds of
di	erent types of models have been used in the literature.
Table 1 presents only select models that are relatively operable
and widely applied.

4. Discussion and Conclusion

During the last decade, great e	ort has been directed at
establishing an e
cient method for comprehensively esti-
mating the GHG emission reduction potential from large-
scale cultivation of energy plants by combining LCA with
ecosystem/biogeochemical process models. LCA presents a
general framework for evaluating the energy consumption
and GHG emission from energy crop plantation, yield
acquisition, production, product use, and postprocessing.
Meanwhile, ecosystem/biogeochemical process models are
adopted to simulate the �uxes and storage of energy, water,
carbon, and nitrogen in the soil-plant (energy crops) soil
continuum. Although clear progress has been made in recent
years, some problems remain in current studies and should
be addressed.

(1) Localization of key parameters: in some of the “GHG
reduction e
ciency” models, such as [27, 31] the
key parameters are derived from the reference values
of the American Oregon National Laboratory. �e
same parameters were used without considering local
geographical and social conditions. Good examples of
models that incorporate geographical and social con-
ditions were presented by Qin et al. [73] and Gelfand
et al. [74]. �e terrestrial ecosystem model (TEM),
a process-based global-scale ecosystem model, was
used to estimate the C �uxes and pool sizes of
switchgrass and Miscanthus in China. For each crop,
TEM was calibrated against driving data and the
rate limiting parameters for several biogeochemical
processes were obtained from the parameterization
[73]. Many more details regarding the parameteri-
zation of the process model were also presented in
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Table 1: Models mostly used for GHG simulation of energy plant.

Model Study object Study area Author(s)

Tier 1
Vegetation Global Ruesch and Gibbs 2008 [35]

Eucalyptus regnans forests Australian Keith et al. 2009 [36]

SWAT Biofuel
James River Basin of the Midwestern

United States
Wu et al. 2012 [40]

PnET

Forest ecosystems Northeastern USA Aber et al. 2005 [41]

Tropical rainforest ecosystems Wet tropics of Australia and Costa Rica Kiese et al. 2005 [42]

Wetland Northern America Zhang et al. 2002 [43]

DAYCENT

Dry grassland, wet managed grassland,
and wet crop land systems

Minneapolis, Minnesota, USA Parton et al. 1994 [49]

Crops USA del Grosso et al. 2005 [50]

Corn, wheat, and soybean Worldwide del Grosso et al. 2009 [53]

Switchgrass �e Central Valley of California Lee et al. 2012 [54]

RothC

Cropland European Russia and the Ukraine Smith et al. 2007 [59]

Nonwaterlogged soils
Germany, England, the USA, the
Czech Republic, and Australia

Coleman et al. 1997 [60]

Miscanthus, poplar, winter wheat, and
oilseed rape

England and Wales Hillier et al. 2009 [65]

Biome-BGC

Quercus ilex L., Quercus cerris L., and
Pinus pinaster Ait.

�e Mediterranean area Chiesi et al. 2007 [67]

Beech, oak, pine, and spruce Central-European forestry Cienciala and Tatarinov 2006 [68]

Forest Central-European forestry Schmid et al. 2006 [69]

Forest Sweden Lagergren et al. 2006 [70]

Biome
Norway spruce Austrian Eastaugh et al. 2011 [71]

Jatropha curcas Linnaeus Global Li et al. 2010 [72]

[74]. To achieve quali�ed and reliable results, the
localization of key parameters and sensitivity analysis
are very important and worth greater attention in
further studies.

(2) Acquisition of spatially explicit estimations: the total
GHGemission reduction potential is not simply equal
to the sum of the grid values, as in the Biome-
BGC model. Mutual in�uences and interactions exist
between each grid [29]. For example, the Biome-
BGC team recently presented a new model, the
regional hydrological and ecological simulation sys-
tem (RHESSys), that combines the terrestrial ecosys-
tem process model Biome-BGCwith spatially explicit
meteorological information and the TOPMODEL
hydrologic routing model to make spatial and tem-
poral predictions of carbon, water, and nitrogen
dynamics over landscapes [75]. Xu et al. suggested
developing a spatially explicit agent-based LCA anal-
ysis framework for improving the environmental
sustainability of bioenergy systems [76]. Hence, spa-
tially explicit process-based biogeochemical models
are much important for deriving both the amount
and the spatial distribution of the C, N, and GHG
emissions during the growth of energy plants. Using
these models, the GHG reduction e
ciency of scale
development of energy plants can be accurately eval-
uated.

(3) Assessment of the e	ect of management system. �e
e	ect of management system has been neglected in
many existing models. However, the environmen-
tal policy integrated climate (EPIC), provided by
Blackland Research & Extension Center and USDA
Grassland, Soil, and Water Laboratory, could predict
the e	ects of management decisions on soil, water,
nutrient, and pesticide movements [77]. Gelfand
et al. implemented an EPIC-based spatially explicit
integrativemodeling framework to simulate the yields
of perennial species grown on marginal lands across
the ten-state study area in theUS north-central region
[74]. �e international institute for applied systems
analysis (IIASA) suggests that EPIC has accurately
simulated the agricultural conditions and practices
for hundreds of years into the past, providing an
excellent basis for projecting future trends in global
change [78].�erefore, more attention should be paid
to the management system or the practice of energy
crop plantation in future studies.

Appendix

Consider

N2ODirect-N = N2O-NN inputs +N2O-NOS

+N2O-NPRP
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N2O-NN inputs = [[(�SN + �ON + �CR + �SOM) ∙ EF1]

+ [(�SN + �ON + �CR + �SOM)FR + EF1FR]]

N2O-NOS = [(�OS,CG,Temp ∙ EF2CG,Temp)

+ (�OS,CG,Trop ∙ EF2F,Temp,NP)

+ (�OS.F.Temp,NR ∙ EF2F,Temp,NR)

+ (�OS,F,Temp,NP ∙ EF2F,Temp,np)

+ (�OS,F,Trop ∙ EF2F,Trop)]

N2O-NPRP = [(�PRP,CPP ∙ EF3PRP,CPP)

+ (�PRP,SO ∙ EF3PRP,SO)] ,
(A.1)

where

N2ODirect-N = annual direct N2O-N emissions pro-
duced from managed soils, kg N2O-N yr−1,

N2O-N������� = annual direct N2O-N emissions from

N inputs to managed soils, kg N2O-N yr−1,

N2O-NOS = annual direct N2O-N emissions from
managed organic soils, kg N2O-N yr−1,

N2O-NPRP = annual direct N2O-N emissions from
urine and dung inputs to grazed soils, kg N2O-N yr−1,

FSN = annual amount of synthetic fertilizer N applied

to soils, kgN yr−1,

FON = annual amount of animal manure, compost,
sewage sludge, and other organic N additions applied
to soils (note: if including sewage sludge, cross-check
with waste sector to ensure that the N2O emissions
are not double-counted from the N in sewage sludge),

kgN yr−1,

FCR = annual amount of N in crop residues (above-
ground and below-ground), includingN-�xing crops,
and from forage/pasture renewal, returned to soils,

kgN yr−1,

FSOM = annual amount of N in mineral soils that is
mineralized, in association with loss of soil C from
soil organic matter as a result of changes to land use

or management, kgN yr−1,

FOS = annual area of managed/drained organic soils,
ha (note: the subscripts CG, F, Temp, Trop, NR,
and NP refer to cropland and grassland, forest land,
temperate, tropical, nutrient rich, and nutrient poor,
resp.),

FPRP = annual amount of urine and dung N deposited
by grazing animals on pasture, range, and paddock,

kgN yr−1 (note: the subscripts CPP and SO refer to
cattle, poultry, and pigs and sheep and other animals,
resp.),

EF1 = emission factor for N2O emissions from N
inputs, kg N2O-N (kgN input)−1,

EF1FR is the emission factor for N2O emissions from
N inputs to �ooded rice, kg N2O-N (kgN input)−1,

EF2 = emission factor for N2O emissions from
drained/managed organic soils, kg N2O-N ha−1 yr−1;
(note: the subscripts CG, F, Temp, Trop, NR, and
NP refer to cropland and grassland, forest land,
temperate, tropical, nutrient �ch, and nutrient poor,
resp.),

EF3PRP = emission factor for N2O emissions from
urine and dung N deposited on pasture, range,
and paddock by grazing animals, kg N2O-N
(kgN input)−1 (note: the subscripts CPP and SO
refer to cattle, poultry, and pigs, and sheep and other
animals, resp.).
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