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Abstract: The present study was carried out to determine the physico-chemical characteristics and
heavy metal contents in roadside soil samples collected during 2 sampling periods (September
2018 and April 2019) from 8 different roadside sites lying parallel to the Buddha Nullah, an old
rivulet, flowing through Ludhiana, (Punjab) India. The contents (mg/kg) of seven metals (cadmium,
chromium, cobalt, copper, lead, nickel and zinc) were estimated using a flame atomic absorption
spectrophotometer. Among the metals analyzed, the contents of Cd, Co, Cu, Pb and Zn were found
above the permissible limits. The results of the index of geoaccumulation (Igeo), contamination factor
(CF), contamination degree (Cdeg), modified contamination degree (mCdeg), the Nemerow pollution
index (PI) and pollution load index (PLI) indicate a moderate to high heavy metal contamination
of the analyzed soil samples. The results of the potential ecological risk factor (ERi) and potential
ecological risk index (RI) indicate a low to moderate risk of heavy metals in the studied soil samples.
The Pearson correlation analysis revealed that most of the variables exhibited a statistically significant
correlation with one or more variables during the two samplings. Multivariate analysis demonstrates
that contents of heavy metals in the study area are influenced by anthropogenic and geogenic factors.

Keywords: Buddha Nullah; heavy metals; roadside soil; pollution indices; Pearson correlation;
multivariate analysis

1. Introduction

Soil, all over the world in the past years, has been contaminated very rapidly due to
different anthropogenic activities, such as effluent discharges from domestic and industrial
sources, crumbs of vehicular parts, mining activities, power stations and metallurgical
industries [1]. Various types of contaminants, such as heavy metals, pesticides and pol-
yaromatic hydrocarbons, have been documented to enter the soil ecosystem through direct
and indirect human activities [2,3]. Among the various contaminants, heavy metals have
been recognized as potential carcinogens that fall under the category of most hazardous
pollutants due to their direct toxicity, ecological risks and non-degradable nature [4]. Apart
from these, heavy metals upon exposure via inhalation, ingestion or dermal contact can
pose both carcinogenic as well as non-carcinogenic effects on human beings [5–7]. The
ultimate threat of heavy metals in the soil is due to their persistent nature and their potential
to become bio-accumulated in food crop plants [8,9]. Once these heavy metals enter food
crops, they can pose adverse effects upon the consumption of contaminated vegetables and
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grains. Soil pollution, on account of heavy metals, has turned out to be a serious problem
in developing countries due to the increasing number of pollution sources [10]. Various
anthropogenic activities, including automobile emissions, traffic activities and industrial
activities, can cause heavy metals to diffuse into urbanized environments [11]. Based on the
above, roadside soil, street dust, and plants can be exposed to significant levels of metals,
owing to both vehicle emissions and carried harmful chemicals [12–14]. The burning of
fossil fuels, vehicle wear (tires, body and brakes) and vehicular fluids all contribute to
increased metal levels in the environment [15]. It has been observed that roadside soil is
highly contaminated with various heavy metals, namely Ni, Cd, Zn, Cu and Pb [12,13,16].
Many studies found that human activities are the primary source of metal contamination in
different environmental samples, such as soil, dust, sediments and plants. Thus, the study
of heavy metal pollution in soils is the need of the hour. Many studies have been conducted
to explore the spatial distribution of heavy metal pollution in roadside soils [17–24].

The bioaccumulation of different metals in crop plants depends on the physico-
chemical characteristics of the soil. The parameters, such as pH, electrical conductivity,
availability of various cations and anions, play a key role in metal availability to the
plants from the soil. The physico-chemical characteristics of soil differ from place to place
and from time to time, depending on the parent material, due to integrated effects of
natural factors, for example, climate conditions and anthropogenic activities, such as emis-
sion from industrial, domestic and vehicular sources [25]. It is well established that soil
physico-chemical characterization plays a key role in exploring the composition of soil and
evaluating soil pollution [26,27]. Many studies across the world have been conducted to
explore the physico-chemical characteristics of roadside soil in different regions [10,28–32].

Soil, being the major sink for the accumulation of different contaminants, such as
heavy metals released through anthropogenic practices, needs immediate attention [33].
Hence, it has become imperative to comprehend levels the soil pollution in different areas
all over the world. In past decades, the general criteria adopted for the evaluation of soil
pollution mainly focused on the physico-chemical characterization of soil. However, a
number of parameters, the huge data and the variability of data, can designate the level of
pollution, but make it difficult to compare the pollution levels of various sites. To overcome
this problem, a broad ranging approach has been applied by various researchers to assess
the soil pollution, which includes the usage of various indices, such as the heavy metal
pollution index (HPI), geoaccumulation index (Igeo), enrichment factor (EF), contamination
factor (CF) and ecological risk index (RI) [21,24,34–41].

Keeping this in view, the present work is designed to investigate the heavy metal
contents and physico-chemical characteristics in roadside soils alongside the Buddha
Nullah, Ludhiana. Furthermore, the level of contamination and ecological risk of heavy
metals is also measured using various pollution indices, viz., the geoaccumulation index
(Igeo), contamination factor (CF), degree of contamination (Cdeg), modified degree of
contamination (mCdeg), the Numerow pollution index (PI), pollution load index (PLI),
potential ecological risk factor (ERi) and the potential ecological risk index (RI).

2. Material Methods
2.1. Study Area and Sample Collection

The present study was carried out during September 2018 (Sampling 1) and April
2019 (Sampling 2) along the midstream region of Buddha Nullah, Ludhiana (Punjab),
India. Ludhiana is the most polluted and populous city of Punjab State (India) and Buddha
Nullah, a seasonal water stream, passes through this industrial city. Buddha Nullah receives
domestic waste water along with the partially treated or untreated industrial effluent from
industrial units related to electroplating, cycle manufacturing, machine parts, hosiery and
dyeing loaded with mainly toxic and heavy metals. This deteriorates the quality of water
and soil in the vicinity of Buddha Nullah.
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Hence, the area around Buddha Nullah in the Ludhiana city areas was selected for the
present study. The study area lies between a 30◦55′08.5” N and 30◦55′31.2” N latitude, and
a 75◦53′56.3” E and 75◦47′31.5” E longitude (Figure 1).
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of-india/outline-map-of-india-2/ (accessed on 20 December 2021)); (b) map of Punjab (https://www.
shutterstock.com/image-vector/punjab-map-political-administrative-districts-name-1877078080 (ac-
cessed on 20 December 2021)) and (c) Google Earth (with tagged sampling sites) and modifications).
Sample codes as mentioned in Table 1.

Table 1. Description of the sample codes and geographical location of the site of the sample collection.

S. No. Name of Sampling Site Sample Code
Location Contributing Sources of

PollutionLatitude Longitude

1 Site 1: Geeta Nagar GN 30◦55′08.5” N 75◦53′56.3” E Domestic and industrial
2 Site 2: Tajpur Road TR 30◦55′04.6” N 75◦53′08.9” E Dairy, domestic and industrial
3 Site 3: Madho Puri MP 30◦55′09.2” N 75◦51′59.4” E Domestic and industrial
4 Site 4: Arvindra Street AS 30◦55′48.5” N 75◦51′20.0” E Domestic and industrial
5 Site 5: Nanak Nagar NN 30◦55′42.2” N 75◦50′40.3” E Domestic and industrial
6 Site 6: Pritam Nagar PN 30◦55′16.4” N 75◦49′49.5” E Domestic and industrial
7 Site 7: Haibowal Kalan HK 30◦55′03.7” N 75◦48′24.4” E Dairy, domestic and industrial
8 Site 8: Kitchlu Nagar KN 30◦55′31.2” N 75◦47′31.5” E Dairy, domestic and industrial

To investigate the soil quality, soil samples were collected from the 8 different roadside
sites lying parallel to the Buddha Nullah (Table 1). For the collection of soil samples, the soil
was dug to the depth of 20–25 cm. Soil samples were taken from 4–5 locations and pooled
to constitute the sample of the particular site. Soil samples were stored in clean and airtight
polyethylene bags and brought to the laboratory for further analysis. Soil samples were
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then air-dried in the laboratory for 3 days at room temperature. The soil was physically
cleaned, homogenized and sieved through a size 2 mm sieve for further analysis, removing
visible remnants of leaves and other waste elements.

2.2. Sample Preparation and Analysis

For the analysis of the physico-chemical parameters, the soil extract (1: 5 w/v) was
prepared. A total of 20 g of the collected soil sample was added in 100 mL of distilled
water. This solution was maintained at room temperature in a mechanical shaker for 12 h
before being filtered through Whatman No. 1 filter paper. The filtrate was called soil extract
and was used to determine the different physico-chemical parameters, viz., pH, alkalinity,
electrical conductivity (EC), calcium, sodium, magnesium and potassium. The pH and
electrical conductivity of the soil samples were measured using a pH meter (Model: µ pH
system 361; make: Systronics). The sodium and potassium content of the soil samples were
determined using a Flame Photometer (Model-128; make: Systronics). The dry combustion
method was used to determine the total organic carbon in the soil [42]. For the bulk density
(BD) estimation, a core measuring cylinder (100 mL) was utilized [43]. The sieve and
sedimentation method was used to determine the soil texture [44]. Different sizes of the soil
particles are classified as follows: sand, 0.5–2.00 mm; silt, 0.002–0.5 mm and clay, 0.002 mm.
The alkalinity, calcium and magnesium were measured using the titrimetric method [45].

For the heavy metal estimation, the soil samples were digested using aqua regia
following the method described by Ehi-Eromosele et al. [46] with minor modifications. For
this purpose, 1 g of finely ground soil sample was digested slowly with 2–3 mL of aqua
regia (1:3, v/v: HNO3:HCl) on a hot plate in a fume hood. After evaporation, 2–3 mL of HCl
was added to the mixture and again evaporated until white fumes appeared, indicating
the complete digestion of soil sample. The digested soil samples were filtered through
Whatman No.1 filter paper and diluted to a final amount of 50 mL with double distilled
water. This filtrate was used further for the estimation of heavy metal contents, viz., Cd,
Cr, Co, Cu, Pb, Ni and Zn, using atomic absorption spectrophotometer (Model: 240 FS
of Agilent). For the Cd, Cr, Co, Cu, Pb, Ni and Zn estimations, cathode lamps were set
at wavelengths of 228.80 nm, 357.90 nm, 240.70 nm, 324.70 nm, 217.00 nm, 232.0 nm and
213.90 nm, respectively. The airflow rate was set at 13.50 L min−1 for all the heavy metals,
while the acetylene flow rate was kept at 2.00 L min−1 for Cd, Co, Cu, Pb, Ni and Zn,
but 2.90 L min−1 for Cr. Lamp currents were set at 4.00 mA, 7.00 mA, 7.00 mA, 4.00 mA,
5.00 mA, 4.00 mA and 5.00 mA for Cd, Cr, Co, Cu, Pb, Ni and Zn, respectively. Chemicals
and reagents of analytical grade were employed throughout the experiment. For the
preparation and dilution of the reagents, standards and samples, only double distilled
water was utilized. For each metal, calibration curves were carefully produced using
standards prepared by the dilution of stock standards (10,000 mg/L in 5% HNO3) obtained
from Agilent Technologies, Pvt. Limited, Bengaluru, Karnataka, India. Furthermore, blanks
were run on a frequent basis to confirm the quality of the analysis, and washings with
double distilled water were administered at regular intervals to avoid analyte deposition
in the instrument. Triplicate analysis, calibration of the instruments with analytical grade
metal standards, reference standard checks and reagent blank checks were among the
laboratory quality assurance and quality control approaches used in the assessment.

2.3. Pollution and Ecological Risk Assessment

For the exploration of the pollution level caused by the heavy metals in the studied
area, various indices were calculated, such as an index of geoaccumulation (Igeo), contami-
nation factor (CF), contamination degree (Cdeg), modified contamination degree (mCdeg),
Nemerow’s pollution index (PI), pollution load index (PLI), potential ecological risk factor
(ERi) and potential ecological risk index (RI). Table 2 presents a brief overview of these soil
contamination indices.
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Table 2. Descriptions of the soil contamination indices used in the study.

Indices Formula Description Limit
Values Classification References

Index of
geoaccumulation

(Igeo)

Igeo = log2

(
Cn

1.5 Bn

)
Where Cn: content of

heavy metal in soil; Bn:
background value; 1.5:

constant

Igeo is a
comparative

analysis of the
content of any
heavy metal

analyzed in an
existing sample to

pre-industrial.

<0 Class 0: practically
uncontaminated

[47]

0–1 Class 1: uncontaminated to
moderately contaminated

1–2 Class 2: moderately
contaminated

2–3 Class 3: moderately to heavily
contaminated

3–4 Class 4: heavily contaminated

4–5 Class 5: heavily to extremely
contaminated

>5 Class 6: extremely
contaminated

Contamination
factor (CF)

CF = Ci
Cn

Where Ci: content of
heavy metal in soil; Cn:
background value of

heavy metal element i

CF provides the
information to

assess the
pollution level of

individual
elements in the
polluted soil as
compared to the
non-polluted soil.

<1 Class 1: low contamination

[48]

1–3 Class 2: moderate
contamination

3–6 Class 3: considerable
contamination

>6 Class 4: very high
contamination

Contamination
degree (Cdeg)

Cdeg =
n
∑

i=1
CFi

Where CF: contamination
factor of single heavy

metal; n: number of heavy
metals

Cdeg is the sum of
all the

contamination
factors for a given
set of soil samples.

<8 Low degree of contamination

[49,50]

8–16 Moderate degree of
contamination

16–32 Considerable degree of
contamination

>32 Very high degree of
contamination

Modified
contamination

degree (mCdeg)

mCddeg = ∑i=n
i=1 CFi

n
Where CF: contamination

factor of single heavy
metal; n: number of heavy

metals

It is the sum of all
the contamination
factors for a given

set of samples
divided by the

number of
analyzed metals.

<1.5 Nil to very low degree of
contamination

[51]
1.5–2 Low degree of contamination

2–4 Moderate degree of
contamination

4–8 High degree of contamination

8 < 16 Very high degree of
contamination

16–32 Extremely high degree of
contamination

>32 Ultra high degree of
contamination

Nemerow’s
pollution index (PI)

PI =
√

(CFaver)2+(CFmax)2

2
Where CFaver: average

value of the contamination
factor; CFmax: maximum

value of the
contamination factor

It is the
quantitative

evaluation of the
degree of pollution
or contamination.

<0.7 Unpolluted

[50,52]

0.7–1 Slightly unpolluted

1–2 Moderately polluted

2–3 Severely polluted

>3 Heavily polluted
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Table 2. Cont.

Indices Formula Description Limit
Values Classification References

Pollution load
index (PLI)

PLI =
n
√

CF1× CF2× . . .× CFn
Where CF: contamination

factor; n: number of
metals

PLI calculates the
level of metal

contamination in the
soil relatively based
on all metals studied

in the area.

<1 No pollution

[53]
1–2 Moderate pollution

2–3 Heavy pollution

>3 Extremely heavy pollution

Potential
ecological risk

factor (ERi)

ERi = CFi × Tri

Where Tri: toxicity
response coefficient of

heavy metal; CFi:
contamination factor of

heavy metal

ERi is now widely
used to assess the
ecological risk of

heavy metals in soil.

<40 Low potential
ecological risk

[48]

40–80 Moderate potential
ecological risk

80–160 Considerable potential
ecological risk

160–320 High potential
ecological risk

>320 Very high potential
ecological risk

Potential
ecological risk

index (RI)

RI =
n
∑

i=1
ERi

Where Eri: potential
ecological risk factor for

heavy metal; n–number of
analyzed heavy metals

RI initially is widely
adopted to evaluate

the potential
ecological risk of the

studied heavy
metals in the soil.

<150 Low ecological risk

[48]
15–300 Moderate ecological risk

300–600 Considerate ecological risk

>600 Very high ecological risk

2.4. Statistical Analysis

The analysis of all the experiments was performed in triplicates and the data were
presented as the mean ± standard error. The correlation between different soil quality
parameters was calculated by applying the Pearson correlation method using SPSS 16.0
software. The multivariate statistical methods, viz., factor analysis/principal component
analysis and cluster analysis using SPSS 16.0 software, were used for the interpretation of
the soil quality monitoring data.

3. Results and Discussions

The results of the various physico-chemical characteristics analyzed for the soil sam-
ples collected from roadside sites lying along the Buddha Nullah, Ludhiana, during Sam-
pling 1 (September 2018) and Sampling 2 (April 2019) are shown in Table 3.

The pH measures the hydrogen ion concentration and is considered as an important
parameter that indicates the acidic or alkaline nature of the soil. The the pH of soil samples
was found to be slightly acidic to slightly alkaline and remained within the prescribed
limits of 6.5–8.5 provided by Ramachandra et al. [54]. The pH was observed as minimum
(6.66) for the Geeta Nagar (GN) sample collected during Sampling 1, and maximum (7.78)
for the Madhopuri (MP) sample, which was collected during Sampling 2. In the present
study, the content (mS/cm) of EC ranged from 0.14 to 2.60 and 0.16 to 2.16 during the first
and second sampling, respectively. The EC of all the soil samples was found to be less than
the salt concentration limit for the non-saline soil extract, i.e., 4.5 mS/cm, indicated that
the soils under examination were not saline in nature [55]. Our findings are backed up by
Celenk and Kiziloglu [58], who found that the roadway soil in Sakarya city, Turkey, is “salt
free or non-saline”, which could be attributed to a lack of various ions in the soil mixture. A
side variation in EC of roadside soils was also reported in earlier studies [59–61]. The bulk
density (BD) values for roadside soil samples collected during sampling 1 and 2 ranged
from 0.97 g/cc (Tajpur road: TR) to 1.28 g/cc (Arvindra street: AS) and from 0.90 g/cc (TR)
to 1.23 g/cc (AS), respectively.
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Table 3. Physico-chemical characteristics of roadside soil samples collected from the vicinity of Buddha Nullah Ludhiana, Punjab (India).

Site pH EC
(mS/cm) BD (g/cc) Sand (%) Silt (%) Clay (%) SOM (%) T-A

(mg/kg) Ca2+ (mg/kg) Mg2+ (mg/kg) Na (mg/kg) K (mg/kg)

Sampling 1
GN 6.66 ± 0.01 0.49 ± 0.01 1.13 ± 0.00 16.97 ± 0.60 15.47 ± 0.71 67.56 ± 0.27 4.79 ± 0.41 2666.67 ±

166.67 293.92 ± 13.36 32.49 ± 8.12 584.83 ± 2.04 1242.17 ± 2.96

TR 7.03 ± 0.01 0.27 ± 0.00 0.97 ± 0.00 14.35 ± 0.72 17.26 ± 1.37 68.39 ± 0.70 8.65 ± 0.35 500.00 ±
0.00 173.68 ± 13.36 89.34 ± 21.49 548.17 ± 2.25 2507.25 ± 33.23

MP 7.22 ± 0.00 0.16 ± 0.00 1.27 ± 0.01 14.99 ± 0.30 8.58 ± 0.27 76.43 ± 0.41 1.99 ± 0.11 2166.67 ±
166.67 120.24 ± 0.00 32.49 ± 8.12 288.92 ± 0.68 1369.75 ± 14.89

AS 7.28 ± 0.01 0.37 ± 0.01 1.28 ± 0.01 23.49 ± 0.48 10.41 ± 1.90 66.10 ± 2.01 1.33 ± 0.06 1500.00 ±
0.00 146.96 ± 13.36 73.09 ± 14.07 233.92 ± 1.37 760.83 ± 2.21

NN 7.01 ± 0.01 0.18 ± 0.00 1.04 ± 0.00 25.75 ± 0.36 28.68 ± 0.65 45.58 ± 1.00 3.66 ± 0.18 1166.67 ±
166.67 133.60 ± 13.36 73.09 ± 14.07 289.67 ± 0.17 2560.75 ± 9.36

PN 6.89 ± 0.01 0.14 ± 0.00 1.17 ± 0.00 27.24 ± 0.88 16.43 ± 1.02 56.32 ± 1.41 5.89 ± 0.08 1666.67 ±
166.67 561.12 ± 23.14 89.34 ± 8.12 338.75 ± 3.44 2800.83 ± 11.69

HK 7.08 ± 0.00 2.60 ± 0.00 1.01 ± 0.00 1.66 ± 0.58 13.75 ± 0.59 84.59 ± 1.17 9.74 ± 0.10 5000.00 ±
0.00 3139.60 ± 66.80 609.12 ± 70.33 169.75 ± 1.89 249.83 ± 1.69

KN 7.06 ± 0.01 0.66 ± 0.00 1.08 ± 0.00 29.58 ± 0.29 22.31 ± 0.02 48.11 ± 0.27 1.79 ± 0.12 833.33 ±
166.67 574.48 ± 13.36 89.34 ± 8.12 209.00 ± 4.02 1758.50 ± 4.59

Sampling 2
GN 7.32 ± 0.01 0.65 ± 0.00 1.12 ± 0.00 16.17 ± 0.89 15.92 ± 0.98 67.91 ± 1.04 3.96 ± 0.31 2500.00 ±

288.68 240.48 ± 0.00 219.28 ± 0.00 518.58 ± 4.92 1168.00 ± 3.92

TR 7.38 ± 0.01 0.63 ± 0.00 0.90 ± 0.01 3.50 ± 0.09 60.43 ± 0.65 36.07 ± 0.74 10.73 ± 0.16 3333.33 ±
166.67 293.92 ± 13.36 235.53 ± 8.12 507.08 ± 2.07 2360.47 ± 18.19

MP 7.78 ± 0.01 1.77 ± 0.01 0.89 ± 0.00 9.63 ± 0.15 38.37 ± 0.21 52.00 ± 0.28 9.33 ± 0.09 3000.00 ±
0.00 935.20 ± 13.36 422.32 ± 8.12 255.62 ± 2.73 1207.32 ± 5.72

AS 7.45 ± 0.01 2.16 ± 0.01 1.23 ± 0.01 3.61 ± 0.27 29.09 ± 1.17 67.31 ± 0.99 4.64 ± 0.14 1916.67 ±
83.33 360.72 ± 0.00 170.55 ± 0.00 216.08 ± 3.25 699.18 ± 6.85

NN 7.18 ± 0.01 0.94 ± 0.00 1.22 ± 0.00 12.73 ± 1.51 32.10 ± 0.36 55.17 ± 1.31 2.46 ± 0.17 1583.33 ±
83.33 774.88 ± 13.36 97.46 ± 0.00 259.63 ± 1.87 2423.47 ± 9.34

PN 7.50 ± 0.06 0.21 ± 0.00 1.13 ± 0.00 7.46 ± 0.87 39.05 ± 3.09 53.50 ± 2.63 3.31 ± 0.40 2083.33 ±
83.33 227.12 ± 26.72 178.67 ± 16.24 312.13 ± 3.22 2637.22 ± 7.93

HK 7.13 ± 0.01 0.16 ± 0.07 1.11 ± 0.07 9.97 ± 0.61 10.84 ± 0.56 79.20 ± 0.99 4.38 ± 0.35 1416.67 ±
83.33 280.56 ± 0.00 227.40 ± 8.12 151.82 ± 2.54 219.03 ± 3.84

KN 7.34 ± 0.01 0.36 ± 0.00 1.08 ± 0.00 22.12 ± 1.33 29.68 ± 2.41 48.20 ± 2.38 4.38 ± 0.23 3666.67 ±
166.67 334.00 ± 13.36 146.19 ± 0.00 182.57 ± 2.15 1577.07 ± 14.33

Limits 6.5–8.5 a 4.5 b - - - - - - 0–3500 c 0–500 c 0–300 c 0–450 c

(EC: electrical conductivity’ BD: bulk density, SOM: soil organic matter, T-A: alkalinity, Ca2+: calcium, Mg2+: magnesium, Na: sodium and K: potassium); a Ramachandra et al., 2012
[54] (optimum range); b Brouwer et al., 1985 [55] (salt concentration limit for the soil extract of non-saline soils); c Alghobar and Suresha 2017 [62] (as per ISI, 1983 [60] and Awashthi,
2000 [61]) (Indian standards). Sample codes as mentioned in Table 1.
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Soil texture is one of the important parameters, which is defined as the stable aggre-
gates formed by the arrangement of soil particles of varying sizes, such as sand, silt and
clay. The content of clay dominated in all roadside soil samples studied during the two
samplings (Table 3). The overall content (%) of sand, silt and clay particles in the roadside
soil samples ranged as 1.66 (HK: Haibowal Kalan)–29.58 (KN: Kitchlu Nagar), 8.58 (MP:
Madho Puri)–60.43 (TR: Tajpur Road) and 36.07 (TR: Tajpur Road)–84.59 (Haibowal Kalan,
HK), respectively. The clay particles hold cations over their surface due to being negatively
charged. Therefore, these soils are chemically most active due to the fact that absorbed frac-
tion offers an incessant source of cations to the soil and the roots of the plants. In the present
work, the alkalinity of all the roadside soil samples ranged from 500 mg/kg to 5000 mg/kg.
The content (mg/kg) of calcium in the the roadside soil samples varied from 120.24 (MP:
Malakpur) to 3139.60 (HK: Haibowal Kalan). All soil samples showed magnesium content
below the safe limits of 0–500 mg/kg presented by the Indian Standard Institution [56],
Awashthi [57] and Alghobar and Suresha [62], except at the Haibowal Kalan (HK) site dur-
ing Sampling 1, i.e., 609.12 mg/kg. The high content of magnesium and sodium in roadside
soil is linked to vehicle movement, coal combustion, road pavement materials and deicing
substance use [63]. During the present work, the minimum concentration of potassium
was observed as 249.83 mg/kg and 219.03 mg/kg for the RP site, while the maximum was
2800.83 mg/kg and 2637.22 mg/kg for the GR site, during the first and second sampling,
respectively. Degraded conditions may be to blame for the drop in potassium content in
the roadside soil. Basumatary and Bordoloi [64] and Boruah and Nath [65] discovered that
a layer of organic matter boosts potassium retention in soils considerably. Furthermore, a
degraded environment accelerates the leaching of minerals (such as K+) and may reduce
the amount of accessible potassium in the soil. This could explain why potassium levels are
lower at some roadside and higher in all other roadside sites. According to Ghiri et al. [66],
the distribution of different potassium forms in soils differed significantly. This discrepancy
could be due to the changes in soil chemical characteristics, as well as the extent to which
potassium salts leached in distinct soil series. Soil organic matter (SOM) is an important
parameter of the soil that affects nutrient retention and heavy metals in the soil, as well as
helps in the growth of plants [67]. The values of SOM ranged from 1.33 to 10.73% in the
roadside soil samples.

The results of a metal analysis of the roadside soil samples are presented in Table 4.
Wilson et al. [68] documented that soil physico-chemical properties have a strong influence
on the environmental fate and the transport of heavy metals concentrations in soils. The
presence of some metals, such as chromium, copper and cobalt, in the soil are very essential
for the metabolic activities of plants, whereas cadmium and lead are known plant toxins
and human carcinogens [69,70]. It was found that the cadmium content in most of the
roadside soil samples (0.03 to 0.46 mg/kg) of the study area were above the safe limit of 0.06
mg/kg [71]. The main reason for the high cadmium content in the study area is attributed
to various anthropogenic actions, i.e., waste disposal from different industrial units, along
with roadside sites in the study area [72,73]. The concentration (mg/kg) of chromium
in the roadside soil samples in the study area varied from 9.32–104.62 and was less than
the safe limit of 100 mg/kg [71], except at one site, i.e., Geeta Nagar (GN: 104.62 mg/kg)
during Sampling 1. It was observed that most of the soil samples showed cobalt content
(4.15 mg/kg to 11.43 mg/kg) above the typical concentration of 8.00 mg/kg [71]. The
concentration (mg/kg) of Cu, Pb, Ni and Zn in the soil samples varied from 10.05–198.29,
8.83–69.17, 9.18–182.88 and 53.88–303.58. It was found that copper contents in all the
roadside soil samples during Sampling 2 were above the typical soil concentration, i.e.,
20 mg/kg presented by Agarwal [71]. Lead content in most of the roadside soil samples
was observed to be greater than the soil limit, i.e., 10 mg/kg [71], except at one site,
i.e., Haibowal Kalan (HK: 8.83 mg/kg) during Sampling 2. The major anthropogenic
sources in the roadside soils accountable for the higher lead content were attributed to be
a settlement of coal fly ash released from industries in the vicinity of the study area and
vehicular emissions [72,74]. The content of zinc in all the roadside soil samples during both
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samplings, 1 and 2, were observed to be higher than the typical concentration of soil, i.e., 50
mg/kg [71]. Zinc pollution in roadside soils was caused by traffic-related activities, such as
vehicular emissions and the weathering of crash barriers [67,75,76]. Similarly, variations in
the contents of heavy metals in the roadside soils were also reported by various authors
around the world [77–82].

Table 4. Heavy metal contents (mg/kg) of roadside soil samples collected from the vicinity of Buddha
Nullah Ludhiana, Punjab (India).

Site Cadmium Chromium Cobalt Copper Lead Nickel Zinc

Sampling 1
GN 0.31 ± 0.01 104.62 ± 0.25 11.29 ± 0.17 44.04 ± 0.28 57.25 ± 0.76 46.73 ± 0.16 246.84 ± 0.15
TR 0.46 ± 0.02 84.69 ± 0.39 8.24 ± 0.44 67.50 ± 0.46 69.17 ± 1.12 26.99 ± 0.12 196.97 ± 0.18
MP 0.08 ± 0.01 77.18 ± 0.61 8.03 ± 0.30 16.85 ± 0.58 34.75 ± 4.27 13.01 ± 0.35 73.23 ± 0.21
AS 0.14 ± 0.01 73.53 ± 0.35 6.15 ± 0.14 10.05 ± 0.23 19.42 ± 0.79 9.18 ± 0.11 59.42 ± 0.46
NN 0.11 ± 0.01 79.48 ± 0.42 8.61 ± 0.12 20.82 ± 0.21 32.33 ± 1.17 18.51 ± 0.21 73.64 ± 0.61
PN 0.36 ± 0.02 83.77 ± 0.49 10.36 ± 0.26 24.86 ± 0.09 31.25 ± 1.01 21.21 ± 0.10 89.23 ± 1.39
HK 0.07 ± 0.01 86.46 ± 0.64 4.15 ± 0.12 13.75 ± 0.22 14.75 ± 1.23 31.03 ± 0.71 99.69 ± 0.75
KN 0.13 ± 0.01 81.44 ± 0.56 8.51 ± 0.07 15.21 ± 0.05 19.42 ± 0.88 21.23 ± 0.17 107.74 ± 0.37

Sampling 2
GN 0.22 ± 0.01 93.85 ± 0.18 6.83 ± 0.09 79.37 ± 0.09 47.75 ± 0.95 134.08 ± 0.82 303.58 ± 0.28
TR 0.29 ± 0.01 30.58 ± 0.71 6.87 ± 0.07 77.14 ± 0.08 36.67 ± 0.88 33.44 ± 0.09 189.02 ± 0.12
MP 0.08 ± 0.00 76.91 ± 0.08 7.63 ± 0.07 198.29 ± 0.36 43.75 ± 0.66 87.74 ± 0.13 134.61 ± 0.18
AS 0.09 ± 0.01 28.83 ± 0.51 4.92 ± 0.08 87.68 ± 0.10 27.42 ± 1.30 18.97 ± 0.12 61.69 ± 0.11
NN 0.04 ± 0.01 35.83 ± 0.71 7.84 ± 0.09 151.79 ± 0.51 38.42 ± 0.68 32.83 ± 0.09 58.21 ± 1.82
PN 0.26 ± 0.02 24.62 ± 0.08 8.37 ± 0.05 77.12 ± 0.06 33.25 ± 0.76 29.06 ± 0.07 53.88 ± 0.22
HK 0.03 ± 0.00 9.32 ± 0.08 8.87 ± 0.07 52.07 ± 0.09 8.83 ± 0.58 182.88 ± 0.15 287.30 ± 0.28
KN 0.03 ± 0.01 58.67 ± 0.65 11.43 ± 0.08 85.58 ± 0.08 41.75 ± 0.87 120.42 ± 0.13 232.73 ± 0.12

Agarwal (2009) 0.06 100 8 20 10 - 50
Indian-Awasthi

(2000) 3–6 - - 135–270 250–500 - 300–600

European Union
(2009) 1.0 100 50 100 100 - 300

Swedish Limits 0.4 120 30 100 80 - 350

Agarwal, 2009 [71] (typical soil concentration); Indian-Awasthi 2000 [61]; European Union 2009 [83]; SGV-Swedish
limits https://www.naturvardsverket.se/Documents/publikationer/620-5053-2.pdf (accessed on 24 July 2021)
Bhagure and Mirgane, 2011, [84]. Sample codes as mentioned in Table 1.

3.1. Pollution and Ecological Risk Assessment

The level of contamination of the roadside soil samples with studied heavy metals (Cd,
Cr, Co, Cu, Pb, Ni and Zn) were determined by using various indices, such as an index of
geoaccumulation (Igeo), contamination factor (CF), contamination degree (Cdeg), modified
contamination degree (mCdeg), the Nemerow pollution index (PI), potential ecological risk
factor (ERi), potential ecological risk index (RI) and pollution load index (PLI).

The range of index of geoaccumulation (Igeo) for seven heavy metals, viz., Cd, Cr, Co,
Cu, Pb, Ni and Zn, was −2.56 to 1.64, −2.49 to 0.99, −1.85 to −0.39, −1.90 to 2.40, −1.76 to
1.21, −0.66 to 2.61 and −0.30 to 0.45, respectively, for the roadside soil samples, indicating
that the level of contaminants varied from no contamination to moderate contamination of
the soil samples from the study area (Table 5). The moderate contamination of roadside
soils with Cu metal was also documented by several authors [85–87]. Various early studies
also reported the variations from no contamination to moderate contamination with Co in
different roadside soils [88,89].

https://www.naturvardsverket.se/Documents/publikationer/620-5053-2.pdf
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Table 5. Index of the geoaccumulation (Igeo) of roadside soil samples collected from the vicinity
of Buddha Nullah stream, Ludhiana (Punjab), India, during Sampling 1 (S1: September 2018) and
Sampling 2 (S2: April 2019).

Sample
Code

Cd Cr Co Cu Pb Ni Zn

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

GN 1.07 0.56 0.99 0.84 −0.41 −1.14 0.23 1.08 0.93 0.67 0.19 2.16 0.37 0.45

TR 1.64 0.99 0.69 −0.78 −0.86 −1.13 0.85 1.04 1.21 0.29 −0.05 0.16 0.27 0.25

MP −0.82 −0.97 0.56 0.55 −0.90 −0.97 −1.15 2.40 0.21 0.54 −0.36 1.55 −0.16 0.10

AS −0.05 −0.68 0.49 −0.86 −1.29 −1.61 −1.90 1.23 −0.63 −0.13 −0.51 −0.66 −0.25 −0.24

NN −0.44 −1.82 0.60 −0.55 −0.80 −0.94 −0.85 2.02 0.11 0.36 −0.21 0.13 −0.16 −0.26

PN 1.29 0.81 0.67 −1.09 −0.53 −0.84 −0.59 1.04 0.06 0.15 −0.15 −0.05 −0.08 −0.30

HK −1.14 −2.56 0.72 −2.49 −1.85 −0.76 −1.45 0.47 −1.02 −1.76 0.01 2.61 −0.03 0.43

KN −0.14 −2.14 0.63 0.16 −0.82 −0.39 −1.30 1.19 −0.63 0.48 −0.15 2.01 0.01 0.34

Sample codes as mentioned in Table 1.

The pollution level, depending on the values of contamination factor (CF), can be
classified as low contamination (<1), moderate contamination (1–3), considerable contami-
nation (3–6) and very high contamination (>6). On the basis of the results obtained from
CF, the roadside soils were found to be low contamination to moderate contamination with
Cr (0.27 to 2.99) and Co (0.42 to 1.14), low contamination to considerable contamination
with Cd (0.26 to 4.68), Pb (0.44 to 3.46) and Zn (0.76 to 4.28), whereas they were low con-
tamination to heavy contamination with Cu (0.40 to 7.93) and Ni (0.46 to 9.14), as shown in
Table 6. Contamination degree (Cdeg), in the present study, indicated that the pollution
of the roadside soil (7.81 to 22.12) samples was low degree to moderate degree of contam-
ination (Figure 2). The results of the modified contamination degree (mCdeg) indicated
that the quality of the soil in the study area fell into the category of low (0.98) to moderate
(3.16) degree of contamination (Figure 3). According to Nemerow [90], the soil quality can
be categorized as unpolluted (<0.7), slightly polluted (0.7–1), moderately polluted (1–2),
severely polluted (2–3) and heavily polluted (>3) using the Nemerow pollution index (PI).
The PI of the roadside soils was found to be in the range of 1.64 to 6.69, indicating moderate
to heavy pollution with studied heavy metals (Cd, Cr, Co, Cu, Pb, Ni and Zn), as shown
in Figure 4.

Table 6. Contamination factor (CF), of roadside soil samples collected from the vicinity of Buddha
Nullah stream, Ludhiana (Punjab), India, during Sampling 1 (S1: September 2018) and Sampling 2
(S2: April 2019).

Sample
Code

Cd Cr Co Cu Pb Ni Zn

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

GN 3.15 2.21 2.99 2.68 1.13 0.68 1.76 3.17 2.86 2.39 2.34 6.70 3.48 4.28

TR 4.68 2.98 2.42 0.87 0.82 0.69 2.70 3.09 3.46 1.83 1.35 1.67 2.77 2.66

MP 0.85 0.77 2.21 2.20 0.80 0.76 0.67 7.93 1.74 2.19 0.65 4.39 1.03 1.90

AS 1.45 0.94 2.10 0.82 0.62 0.49 0.40 3.51 0.97 1.37 0.46 0.95 0.84 0.87

NN 1.11 0.43 2.27 1.02 0.86 0.78 0.83 6.07 1.62 1.92 0.93 1.64 1.04 0.82

PN 3.66 2.64 2.39 0.70 1.04 0.84 0.99 3.08 1.56 1.66 1.06 1.45 1.26 0.76

HK 0.68 0.26 2.47 0.27 0.42 0.89 0.55 2.08 0.74 0.44 1.55 9.14 1.40 4.05

KN 1.36 0.34 2.33 1.68 0.85 1.14 0.61 3.42 0.97 2.09 1.06 6.02 1.52 3.28

Sample codes as mentioned in Table 1.
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Figure 2. Contamination degree (Cdeg) of roadside soil samples collected from the vicinity of Buddha
Nullah stream, Ludhiana (Punjab), India, during Sampling 1 (September 2018) and Sampling 2 (April
2019). Sample codes as mentioned in Table 1.
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Figure 3. Modified contamination degree (mCdeg) of roadside soil samples collected from the
vicinity of Buddha Nullah stream, Ludhiana (Punjab), India, during Sampling 1 (September 2018)
and Sampling 2 (April 2019). Sample codes as mentioned in Table 1.
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Figure 4. The Nemerow pollution index (PI) of the roadside soil samples collected from the vicinity
of Buddha Nullah stream, Ludhiana (Punjab), India, during Sampling 1 (S1: September 2018) and
Sampling 2 (April 2019). Sample codes as mentioned in Table 1.

The results of ERi show no to low risk with Cr (0.53 to 5.98), Co (2.08 to 5.72), Cu (2.01
to 39.66), Pb (2.21 to 14.31), Ni (2.29 to 45.72) and Zn (0.76 to 4.28), while low to considerable
risk with Cd (7.65 to 140.31) in the roadside soil samples from the study area (Table 7).
The potential ecological risk index (RI) demonstrates low (43.02) to moderate (189.58) risk
in the soil samples (Table 7). According to Tomlinson et al. [53], the pollution load index
(PLI) can be divided into three classes: unpolluted (PLI < 1), baseline levels of pollutants
(PLI = 1) and polluted (PLI > 1). The result of the PLI was found to be in the range of
0.83 to 2.63, which indicates that soils were unpolluted to polluted (Figure 5). The results
of PLI in the present study are in corroboration with Charzynski et al. [91], where it was
demonstrated that the PLI values were in the range of 0.1 to 2.8 in their studies of soils in
northwest Poland.

Table 7. Potential ecological risk factor (ERi) and potential ecological risk index (RI) of roadside
soil samples collected from the vicinity of Buddha Nullah stream, Ludhiana (Punjab), India, during
Sampling 1 (S1: September 2018) and Sampling 2 (S2: April 2019).

Sample
Code

Potential Ecological Risk Factor (ERi)
RI

Cd Cr Co Cu Pb Ni Zn

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

GN 94.39 66.33 5.98 5.36 5.65 3.41 8.81 15.87 14.31 11.94 11.68 33.52 3.48 4.28 144.29 140.71
TR 140.31 89.29 4.84 1.75 4.12 3.43 13.50 15.43 17.29 9.17 6.75 8.36 2.77 2.66 189.58 130.09
MP 25.51 22.96 4.41 4.39 4.01 3.82 3.37 39.66 8.69 10.94 3.25 21.94 1.03 1.90 50.27 105.60
AS 43.37 28.06 4.20 1.65 3.08 2.46 2.01 17.54 4.85 6.85 2.29 4.74 0.84 0.87 60.64 62.17
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Table 7. Cont.

Sample
Code

Potential Ecological Risk Factor (ERi)
RI

Cd Cr Co Cu Pb Ni Zn

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

NN 33.16 12.76 4.54 2.05 4.30 3.92 4.16 30.36 8.08 9.60 4.63 8.21 1.04 0.82 59.92 67.72
PN 109.69 79.08 4.79 1.41 5.18 4.18 4.97 15.42 7.81 8.31 5.30 7.26 1.26 0.76 139.00 116.43
HK 20.41 7.65 4.94 0.53 2.08 4.43 2.75 10.41 3.69 2.21 7.76 45.72 1.40 4.05 43.02 75.01
KN 40.82 10.20 4.65 3.35 4.25 5.72 3.04 17.12 4.85 10.44 5.31 30.10 1.52 3.28 64.44 80.21

Sample codes as mentioned in Table 1.
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TR 140.31 89.29 4.84 1.75 4.12 3.43 13.50 15.43 17.29 9.17 6.75 8.36 2.77 2.66 189.58 130.09 
MP 25.51 22.96 4.41 4.39 4.01 3.82 3.37 39.66 8.69 10.94 3.25 21.94 1.03 1.90 50.27 105.60 
AS 43.37 28.06 4.20 1.65 3.08 2.46 2.01 17.54 4.85 6.85 2.29 4.74 0.84 0.87 60.64 62.17 
NN 33.16 12.76 4.54 2.05 4.30 3.92 4.16 30.36 8.08 9.60 4.63 8.21 1.04 0.82 59.92 67.72 
PN 109.69 79.08 4.79 1.41 5.18 4.18 4.97 15.42 7.81 8.31 5.30 7.26 1.26 0.76 139.00 116.43 
HK 20.41 7.65 4.94 0.53 2.08 4.43 2.75 10.41 3.69 2.21 7.76 45.72 1.40 4.05 43.02 75.01 
KN 40.82 10.20 4.65 3.35 4.25 5.72 3.04 17.12 4.85 10.44 5.31 30.10 1.52 3.28 64.44 80.21 

Sample codes as mentioned in Table 1. 
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Figure 5. Pollution load index (PLI) of roadside soil samples collected from the vicinity of Buddha
Nullah stream, Ludhiana (Punjab), India, during Sampling 1 (September 2018) and Sampling 2 (April
2019). Sample codes as mentioned in Table 1.

3.2. Statistical Analysis

The Pearson correlation analysis was carried out among the soil quality parameters to
measure the relationship between the parameters. The correlation between the physico-
chemical parameters and heavy metals was analyzed during 2 sampling periods and the
significance of value was checked at the level of p < 0.05 and p < 0.01 (Tables 8 and 9).
Electrical conductivity showed a statistically significant positive correlation with calcium
and magnesium during Sampling 1, which indicated that a rise in the levels of these
nutrients leads to a subsequent increase in EC. A statistically significant negative correlation
was observed between the soil organic matter (SOM) and bulk density (BD) during both
samplings. Kizilkaya and Dengiz [92] stated that the loss of organic matter resulted in a
higher bulk density in a study. In the case of the heavy metals, a statistically significant
positive correlation was observed between Cd-Cu, Cd-Pb, Cr-Ni, Cr-Zn, Cu-Pb, Cu-Zn,
Pb-Zn, Ni-Zn and Cr-Pb, Ni-Zn, during Sampling 1 and 2, respectively.
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Table 8. The Pearson correlation coefficient among the roadside soil quality parameters collected from the vicinity of Buddha Nullah, Ludhiana (Punjab), India,
sampled during September 2018 (Sampling 1).

pH EC Sand Silt Clay BD SOM T-A Ca2+ Mg2+ Na K Cd Cr Co Cu Pb Ni Zn

pH 1
EC 0.67 1

Sand −0.06 −0.72 * 1
Silt −0.33 −0.15 0.47 1

Clay 0.20 0.56 −0.91 ** −0.80
* 1

BD 0.34 −0.40 0.29 −0.61 0.10 1
SOM −0.32 0.57 −0.68 0.01 0.46 −0.71 * 1
T-A −0.09 0.84 ** −0.77 * −0.39 0.71 * −0.05 0.46 1
Ca2+ 0.04 0.98 ** −0.69 −0.14 0.54 −0.39 0.63 0.85 ** 1
Mg2+ 0.13 0.97 ** −0.72 * −0.12 0.55 −0.43 0.66 0.81 * 0.99 ** 1

Na −0.67 −0.42 −0.05 0.01 0.03 −0.21 0.27 −0.28 −0.45 −0.46 1
K −0.30 −0.68 0.60 0.58 −0.69 −0.25 0.01 −0.73 * −0.57 −0.56 0.37 1

Cd −0.54 −0.39 0.10 0.0 −0.09 −0.28 0.43 −0.40 −0.34 −0.34 0.82 * 0.57 1
Cr −0.90 ** 0.18 −0.28 0.05 0.17 −0.32 0.40 0.33 0.15 0.06 0.67 −0.08 0.43 1
Co −0.73 * −0.70 0.55 0.28 −0.51 0.10 −0.23 −0.48 −0.65 −0.74 * 0.67 0.64 0.57 0.50 1
Cu −0.50 −0.27 −0.17 0.10 0.07 −0.50 0.5 −0.32 −0.29 −0.26 0.90 ** 0.44 0.86 ** 0.51 0.44 1
Pb −0.51 −0.44 −0.11 0.04 0.06 −0.29 0.31 −0.36 −0.46 −0.44 0.96 ** 0.44 0.79 * 0.52 0.57 0.95 ** 1
Ni −0.85 ** 0.33 −0.39 0.10 0.22 −0.49 0.54 0.39 0.29 0.22 0.61 −0.12 0.40 0.98 ** 0.35 0.53 0.49 1
Zn −0.74 * −0.03 −0.24 0.03 0.15 −0.41 0.40 −0.01 −0.10 −0.14 0.88 ** 0.07 0.66 0.87 ** 0.49 0.82 * 0.80 * 0.86 ** 1

(EC: electrical conductivity; BD: bulk density; SOM: soil organic matter; T-A: alkalinity; Ca2+: calcium; Mg2+: magnesium; Na: sodium; K: potassium; Cd: cadmium; Cr: chromium;
Co: cobalt; Cu: copper; Pb: lead; Ni: nickel and Zn: zinc). * Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
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Table 9. Pearson correlation coefficient among the roadside soil quality parameters collected from the vicinity of Buddha Nullah, Ludhiana (Punjab), India, sampled
during April 2019 (Sampling 2).

pH EC Sand Silt Clay BD SOM T-A Ca2+ Mg2+ Na K Cd Cr Co Cu Pb Ni Zn

pH 1
EC 0.55 1

Sand −0.26 −0.39 1
Silt 0.44 0.13 −0.47 1

Clay −0.38 0.03 0.06 −0.91 ** 1
BD −0.54 0.02 0.13 −0.56 0.57 1

SOM 0.53 0.26 −0.42 0.67 −0.56 −0.91 ** 1
T-A 0.44 −0.03 0.31 0.52 −0.73 * −0.69 0.60 1
Ca2+ 0.41 0.54 0.02 0.16 −0.19 −0.23 0.22 −0.00 1
Mg2+ 0.72 * 0.33 −0.22 0.16 −0.07 −0.787 * 0.71 * 0.31 0.42 1

Na 0.07 −0.13 −0.16 0.39 −0.37 −0.34 0.36 0.31 −0.26 0.11 1
K 0.09 −0.28 −0.05 0.70 −0.77 * −0.11 0.04 0.24 0.08 −0.30 0.40 1

Cd 0.22 −0.22 −0.42 0.53 −0.41 −0.32 0.33 0.24 −0.46 0.09 0.85 ** 0.51 1
Cr 0.40 0.21 0.53 −0.12 −0.12 −0.28 0.14 0.51 0.28 0.39 0.40 −0.06 0.07 1
Co −0.21 −0.66 0.73 * −0.15 −0.17 −0.12 −0.21 0.33 −0.05 −0.15 −0.40 0.13 −0.36 0.02 1
Cu 0.57 0.57 0.04 0.24 −0.29 −0.29 0.26 0.13 0.97 ** 0.47 −0.13 0.17 −0.31 0.43 −0.09 1
Pb 0.44 0.18 0.39 0.34 −0.57 −0.27 0.17 0.62 0.31 0.13 0.53 0.48 0.29 0.82 * 0.01 0.49 1
Ni −0.33 −0.43 0.56 −0.71 * 0.54 −0.11 −0.12 0.00 −0.18 0.23 −0.10 −0.65 −0.37 0.24 0.49 −0.26 −0.26 1
Zn −0.36 −0.48 0.48 −0.45 0.29 −0.27 0.11 0.26 −0.40 0.18 0.22 −0.49 −0.02 0.33 0.34 −0.43 −0.07 0.87 ** 1

(EC: electrical conductivity; BD: bulk density; SOM: soil organic matter; T-A: alkalinity; Ca2+: calcium; Mg2+: magnesium; Na: sodium; K: potassium; Cd: cadmium; Cr: chromium;
Co: cobalt; Cu: copper; Pb: lead; Ni: nickel and Zn: zinc). * Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).
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The variance in the soil quality parameters collected from the 8 different roadside sites
during 2 sampling periods, viz., September 2018 (Sampling 1) and April 2019 (Sampling 2),
was estimated following a factor analysis using principal component analysis as an ex-
traction method and varimax as the rotation method (Figures 6 and 7, and Table 10). The
varifactor with an eigenvalue of more than 1 was taken into consideration, and factor
loading was designated into various classes as weak (0.4–0.5), moderate (0.5–0.75) and
strong (>0.75), as described by Liu et al. [93]. Factor analysis conducted on the parameters
produced 4 and 5 factors explaining 94.88% and 92.98% of the cumulative variance, with an
eigenvalue of more than 1 during Sampling 1 and 2, respectively. Factor 1 provided, during
Sampling 1, 31.77% of the total variance with strong positive factor loadings of EC, SOM,
calcium, and magnesium; strong negative loading of sand; moderate positive loadings
of clay and alkalinity; moderate negative loading of Co; and weak negative loading of
potassium; and, during Sampling 2, 21.88% of total variance with strong positive loadings
of silt and potassium; strong negative loadings of clay and Ni; and moderate negative
loading of Zn. During Sampling 1, factors 2, 3 and 4 explained 25.36%, 21.55% and 16.20%
of the total variance, with strong positive factor loadings of Na, Cd, Cu, Pb; Cr, Ni and clay
content, respectively (Table 10). Similarly, in the case of Sampling 2, factors 2, 3, 4 and 5
provided 21.64%, 18.10%, 16.15% and 15.21% of the total variance, with strong positive
factor loadings of soil organic matter (SOM), magnesium; calcium, Cu; sand content, Co
and Cr, Pb, respectively (Table 10). While studying the soils in the Northern Plateau of
Spain, Santos-Frances et al. [94] discovered Co loading on factor/Principal component 1
and concluded that the source is primarily parent rock. Singh et al. [95], in their study on
soils in the Varanasi area, demonstrated Cu and Pb loadings on factor 2 and Cr loadings on
factor 4, and discovered that factor 2 is controlled by automobile emissions, while factor
4 is represented by parent material in addition to anthropogenic actions. The weather-
ing of crash barriers and the abrasion of automobiles also contributed to higher levels of
lead and zinc in the roadside soil [96,97]. Many researchers around the world reported
traffic-related activities as a major source of Pb and Zn [34,75,98]. Similarly, various re-
searchers throughout the world also reported factor analysis in the different sampling
regions [32,79,99,100].

The hierarchical cluster analysis was used for the grouping of different sampling sites
on the basis of soil quality parameters to identify the spatial variability. The current study
categorized 8 roadside sites into statistically significant clusters based on their similarity
in status, features and pollution source. During Sampling 1 (September 2018), 3 clusters
were formed between 8 roadside sites; cluster 1 was formed by aggregating highly polluted
sites, such as Geeta Nagar (GN), Madho Puri (MP) and Arvindra Street (AS); cluster 2 was
formed by aggregating the extremely polluted sites, such as Nanak Nagar (NN), Pritam
Nagar (PN), Tajpur Road (TR) and Kitchlu Nagar (KN); and cluster 3 contained only one
site, Haibowal Kalan (HK), of the study area (Figure 8). Similarly, during Sampling 2 (April
2019), three clusters were constructed based upon their characteristics and pollution status
(Figure 9). Two sites, Arvindra Street (AS) and Haibowal Kalan (HK), constituted cluster 1.
Cluster 2 was formed by Nanak Nagar (NN) and Pritam Nagar (PN). Cluster 4 was the
aggregation of highly polluted sites Tajpur Road (TR), Kitchlu Nagar (KN), Geeta Nagar
(GN) and Madho Puri (MP). Similarly, cluster analysis was reported by various authors
worldwide [77,101,102].
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Table 10. Factor analysis of the complete data set of roadside soil quality parameters alongside
Buddha Nullah, Ludhiana (Punjab), India, sampled in September 2018 (Sampling 1) and April 2019
(Sampling 2).

Parameter
Sampling 1 Sampling 2

Factor 1 Factor 2 Factor 3 Factor 4 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

pH 0.04 −0.26 −0.91 *** 0.26 0.19 0.57 ** 0.47 * −0.29 0.25
EC 0.93 *** −0.30 0.10 0.14 −0.06 0.10 0.67 ** −0.63 ** 0.10

Sand −0.78 *** −0.21 −0.07 −0.52 ** −0.24 −0.26 0.07 0.78 *** 0.50 *
Silt −0.03 −0.03 0.13 −0.96 *** 0.84 *** 0.51 ** 0.01 −0.15 −0.04

Clay 0.55 ** 0.16 −0.02 0.82 *** −0.84 *** −0.45 * −0.04 −0.19 −0.19
Bulk density −0.63 ** −0.40 ** −0.16 0.61 ** −0.12 −0.97 *** −0.00 −0.12 −0.13
Soil organic

matter 0.80 *** 0.51 ** 0.16 −0.08 0.16 0.94 *** 0.03 −0.18 0.01

Alkalinity 0.72 ** −0.36 0.30 0.44 * 0.29 0.63 ** −0.05 0.37 0.45*
Calcium 0.93 *** −0.30 0.08 0.09 0.08 0.16 0.90 *** −0.01 0.11

Magnesium 0.96 *** −0.24 −0.04 0.08 −0.30 0.82 *** 0.30 −0.19 0.13
Sodium −0.26 0.80 *** 0.53 ** 0.07 0.28 0.25 −0.55 ** −0.36 0.60 **

Potassium −0.44 * 0.46 * −0.07 −0.68 ** 0.93 *** −0.07 −0.09 0.11 0.17
Cadmium −0.17 0.84 *** 0.26 −0.13 0.45 * 0.28 −0.64 ** −0.41 0.27
Chromium 0.16 0.26 0.95 *** 0.07 −0.20 0.19 0.20 0.07 0.94 ***
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Table 10. Cont.

Parameter
Sampling 1 Sampling 2

Factor 1 Factor 2 Factor 3 Factor 4 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Cobalt −0.67 ** 0.28 0.59 ** −0.25 0.01 0.01 −0.01 0.98 *** −0.05
Copper −0.01 0.95 *** 0.28 −0.08 0.16 0.21 0.88 *** −0.06 0.28

Lead −0.21 0.90 *** 0.33 0.03 0.38 0.12 0.20 0.06 0.89 ***
Nickel 0.34 0.29 0.89 *** 0.01 −0.82 *** 0.13 −0.20 0.51 ** 0.06
Zinc 0.05 0.63 ** 0.72 ** 0.07 −0.64 ** 0.27 −0.51 ** 0.39 0.25

Eigenvalue 6.04 4.82 4.10 3.08 4.16 4.11 3.44 3.07 2.89
% Total

Variance 31.77 25.36 21.55 16.20 21.88 21.64 18.10 16.15 15.21

Cumulative
% Variance 31.77 57.13 78.68 94.88 21.88 43.52 61.62 77.78 92.98

Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization.
*, **, *** represent weak, moderate and strong factor loadings, respectively.
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4. Conclusions

The roadside soil alongside the Buddha Nullah, Ludhiana was contaminated as a
result of poor solid/liquid waste disposal and industrial activities. The high concentration
of metals, such as Cd, Co, Cu, Pb and Zn, implies that the soil of the studied area was
polluted with heavy metals, which arise from industrial activities and may have a direct
influence on human health, groundwater, terrestrial and therefore ecological systems. This
study warns that precautions must be taken to prevent soil pollution in the area. Igeo,
CF, Cdeg, mCdeg, PI, PLI, ERi and RI indices show that the soil in the studied area is
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moderate to extremely contaminated with few metals. The Igeo values of Cd, Cr, Co, Pb
and Zn indicate no contamination to moderate contamination, whereas Cu and Ni shows
moderate to heavy contamination in the studied area. The contamination factor values
reveal that Cu and Ni show very high contamination in the study area. The results of
the contamination degree and modified contamination degree show a considerable and
moderate degree of contamination, respectively. On the basis of the results inferred from
the Nemerow pollution index (PI), the soil samples under the study area were found to
show moderate to heavy pollution. The results of ERi and RI indicated a low to moderate
risk of heavy metals in the studied soil samples. The Pearson correlation analysis shows
that pH is correlated with Mg2+, Cr, Co, Ni and Zn, while EC shows a relationship with the
sand content, alkalinity, Ca2+ and Mg2+. The clay content was observed to be statistically
negatively correlated with the silt and sand contents in the roadside soil samples. Heavy
metals were observed to be significantly correlated with each other, highlighting their
similar origin.
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