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Abstract The Formosa Satellite-7/Constellation Observing System for Meteorology, lonosphere, and
Climate-2 (FORMOSAT-7/COSMIC-2) Global Navigation Satellite System radio occultation (RO) payload can
provide global observations of slant total electron content (sTEC) with an unprecedentedly high spatial
temporal resolution. Recently, a new ionospheric data assimilation system, the Community Gridpoint
Statistical Interpolation (GSI) lonosphere, is constructed with the National Oceanic and Atmospheric
Administration GSI Ensemble Square Root Filter and the Global lonosphere Plasmasphere and the
Thermosphere lonosphere Electrodynamic General Circulation Model. The paper demonstrates the capability
of the GSI lonosphere to improve the ionospheric specification and make a quantitative assessment of the
impact of FORMOSAT-7/COSMIC-2 RO data on the ionospheric observing system simulation experiments
conducted to calibrate key Ensemble Square Root Filter parameters that control detrimental effects of the
sampling errors, particularly on the ensemble-based estimation of the correlation between observations and
model states, in order to yield high-quality assimilation analysis. Results from the observing system
simulation experiments show that (1) an ensemble size larger than 70 is recommended for assimilation of RO
STEC data with the GSI lonosphere and (2) localizing the impact of observations around the tangent
points in the horizontal direction with a length scale of 5,000 km is effective in improving assimilation
analysis quality. Assimilation of sTEC data from FORMOSAT-7/COSMIC-2 can considerably improve the
global ionospheric specification through the application of the GSI lonosphere. The GSI lonosphere can
provide instantaneous global pictures of the ionosphere variability and help characterize day-to-day
variability of the ionosphere and deepen our understanding of the observed day-to-day variability.

1. Introduction

As exemplified by the success of numerical weather prediction, data assimilation has attracted great atten-
tion as a promising approach to integrating geospace observing capabilities with a numerical model of the
ionosphere to improve the specification and forecasting of ionospheric weather. Data assimilation is a power-
ful technique that can optimally combine observations with a numerical model to help initialize model states
and estimate inadequately specified model parameters.

Total electron content (TEC) is one of the most valued data types for ionospheric data assimilation. From the
phase and pseudo range measurements of the Global Navigation Satellite System (GNSS) signals received by
ground-based and satellite-based GNSS receivers, the electron density integrated along the radio path
between GNSS satellites and receivers through the ionosphere and plasmasphere can be calculated and is
referred to as slant TEC (sTEC). Comparing with ground-based TEC, satellite-based TEC data are evenly
distributed over ocean and land areas. A radio occultation (RO) event occurs when the Earth is located
between GNSS and low Earth orbit satellites, while the GNSS raypath between GNSS transmitters and recei-
vers passes through the ionosphere and plasmasphere. Otherwise, the antenna at low Earth orbit receives the
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signal that travels only through the plasmasphere. In this study, we will focus on RO sTEC observations, in
particular, expected to be obtained from the Formosa Satellite Mission 7/Constellation Observing System
for Meteorology, lonosphere and Climate 2 (FORMOSAT-7/COSMIC-2) mission. Thanks to the success of the
FORMOSAT-3/COSMIC mission, the follow-on FORMOSAT-7/COSMIC-2 mission is originally consist of six
low-inclination-angle (24°-28.5°) orbit satellites and six high-inclination-angle orbit (72°) satellites. The six
low-inclination-angle orbit satellites will be launched in 2018. Although the mission of six high-inclination-
angle orbit satellites is cancelled, it is expected that there will very likely an alternative source available from
high latitude constellation from commercial providers. The main payload, TriG GNSS RO System, is capable
of profiling the ionosphere with a great accuracy. The FORMOSAT-7/COSMIC-2 low-inclination angle satellites
are expected to provide a dense spatial and temporal coverage of high-quality sTEC observations evenly
distributed on low latitude and midlatitude (Yue, Schreiner, Kuo, et al., 2014; Yue, Schreiner, Pedatella, et al., 2014).

In the past decade, considerable efforts have been made to assimilate TEC data into numerical ionospheric
models (e.g., Chartier et al,, 2016; Chen et al., 2016; Scherliess et al., 2006; Schunk et al., 2004; Wang et al.,
2004). One of the most widely recognized ionospheric data assimilation systems is the Global Assimilative
lonospheric Model (GAIM) developed by a joint effort of University of Southern California and Jet
Propulsion Laboratory (USC-JPL GAIM). The USC-JPL GAIM can assimilate multiple types of data into a numer-
ical ionospheric model. The model covers the altitude range from 100 to 1,500 km. The plasma density in this
model is calculated along the geomagnetic field lines, and the thermospheric states and electric fields along
with other drivers such as solar extreme ultraviolet (EUV), on the other hand, are parameterized or specified
by empirical models. In the USC-JPL GAIM, two data assimilation schemes are used to update different vari-
ables. The four-dimensional variation data assimilation method is used to estimate model drivers, and a
band-limited Kalman Filter is used to estimate the plasma density model state (Hajj et al., 2004). Hajj et al.
(2004) have successfully assimilated ground-based TEC data into the USC-JPL GAIM by using this band-
limited Kalman Filter. Komjathy et al. (2010) have assimilated both ground-based Global Positioning
System (GPS) TEC and the FORMOSAT-3/COSMIC TEC data into the USC-JPL GAIM. Their results show assim-
ilating satellite-based TEC data helps improve vertical electron density specifications.

The Global Assimilation of lonospheric Measurement (GAIM) developed by Utah State University (USU GAIM)
is another well-recognized ionospheric data assimilation system. This system has two different data assimila-
tion approaches, the USU GAIM-GM (Scherliess et al., 2006; Schunk et al., 2004, 2016) and the USU GAIM-FP
(Scherliess, Thompson, & Schunk, 2009; Schunk et al., 2016). The model used in the USU GAIM-GM is the
lonosphere Forecast Model (IFM), and the data assimilation scheme is Gauss-Markov Kalman filter. The IFM
covers the altitude range from 90 to 1,400 km, and the plasma density is calculated along the geomagnetic
field lines. In IFM, thermospheric compositions, temperatures, and winds as well as electric field and precipi-
tation patterns are specified by empirical models (Scherliess et al., 2006; Schunk et al., 2004). On the other
hand, the model used in the USU GAIM-FP is the lonosphere-Plasmasphere Model (IPM) that covers the
altitude range from 90 to 30,000 km. As for the IFM, the IPM needs thermospheric state variables and other
external drivers to be specified by empirical models but can be adjusted by the data assimilation system. In
addition, the electron and ion temperature from empirical models are necessary because energy equations
are not solved in the IPM. The data assimilation scheme used in the USU GAIM-FP is ensemble Kalman filter
(Scherliess, Thompson, & Schunk, 2009; Schunk et al., 2004). Both the USU GAIM-GM and the USU GAIM-FP
can assimilate TEC data into models adequately (Scherliess et al., 2006; Scherliess, Thompson, & Schunk,
2009; Schunk et al., 2016).

Recently, another data assimilation system has been built for the National Center for Atmospheric Research
(NCAR) Thermosphere lonosphere Electrodynamic General Circulation Model (TIE-GCM) (Richmond, Ridley, &
Roble, 1992) using the Ensemble Square Root Filter (EnSRF) implemented in Data Assimilation Research
Testbed (DART) (Anderson, 2001, 2003). The TIE-GCM is a three-dimensional, physical-based model that
can self-consistently simulate the coupled processes of ionosphere and thermosphere in hydrostatic pressure
coordinates. The DART is a flexible ensemble data assimilation software framework with various options for
filtering methods. Unlike the GAIM systems, the DART/TIE-GCM has been designed to take a full advantage of
thermosphere-ionosphere coupling in both analysis and forecast steps of EnSRF (e.g., Hsu et al., 2014; Lee
etal, 2012; Matsuo & Araujo-Pradere, 2011; Matsuo, Lee, & Anderson, 2013). The DART/TIE-GCM has also been
used to assimilate ground-based TEC data successfully during ionospheric storm periods (e.g., Chartier et al.,
2016; Chen et al., 2016). Because the upper boundary of the TIE-GCM is too low to represent contributions of
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the topside ionosphere and plasmasphere electron density to sTEC adequately, Chen et al. (2016) and
Chartier et al. (2016) had to extrapolate electron densities above the model upper boundary to assimilate ver-
tical TEC into the DART/TIE-GCM. Vertical TEC is the vertical integration of the electron density in the direction
perpendicular to the ground and can be geometrically converted from sTEC under some assumptions. To
avoid the errors introduced by vertical extrapolation of the model electron densities, it is desirable to use a
model that includes the ionosphere and plasmasphere for assimilation of sTEC data.

In order to take an advantage of ionosphere-thermosphere coupling in data assimilation methods and to
overcome limitations of earlier works by the DART/TIE-GCM, in this study, we present a new approach for
assimilation of satellite-based RO sTEC data. The study focuses on assessment of the impact of STEC observa-
tions from the upcoming FORMOSAT-7/COSMIC-2 low-inclination satellite constellation on the low-latitude
and midlatitude ionospheric specification.

2, Data Assimilation System

In this study, a coupled model of the thermosphere, ionosphere, and plasmasphere developed as result of
collaboration between NCAR and National Oceanic and Atmospheric Administration (NOAA) has been
incorporated in an ensemble-based data assimilation scheme, which is part of the Gridpoint Statistical
Interpolation (GSI) data assimilation system operationally used for numerical weather prediction at NOAA
in order to build a new ionospheric data assimilation system. This system is hereafter referred to as the
GSl lonosphere.

2.1. Model

The model used in this study is a fully coupled model of the Global lonosphere Plasmasphere (GIP) and the
TIE-GCM (Pedatella et al.,, 2011). While the GIP simulates the ionosphere and plasmasphere processes, the
TIE-GCM solves for the thermospheric processes including the electrodynamic processes. In the following,
we refer to this coupled model as the GIP/TIE-GCM.

The GIP is developed from the ionosphere and plasmasphere part of the Coupled Thermosphere-lonosphere-
Plasmasphere Model (Millward et al., 2001). The GIP solves the continuity, momentum, and energy equations
for plasma along geomagnetic field prescribed according to the International Geomagnetic Reference Field
using the apex coordinate system (Richmond, 1995). In the GIP, the distribution of atomic oxygen and
hydrogen ion densities are determined with consideration of the transport and diffusion processes. Other
ion species solved by using atomic oxygen ion densities from the flux-tube solver and assume chemical
equilibrium, a balance between production and loss. Therefore, both atomic oxygen and hydrogen ions
are primary prognostic model state variables that are dynamically evolved from the previous model time step
to the next in the GIP. The GIP model consists of two model domains: the low-latitude and midlatitude
regions and the high-latitude region. The GIP fluxtubes at a given magnetic longitude are distributed with
respect to L shell. The boundary between low-latitude and midlatitude and high-latitude regions is fixed at
L = 4. For the low-latitude and midlatitude regions, the GIP solves the plasma along closed fluxtubes that
move perpendicular to the magnetic field (B) in the magnetic meridional/vertical direction by E x B and
parallel to B by ambipolar diffusion (Millward et al., 2001). The altitude range of low-latitude and midlatitude
parts of the GIP is approximately from 90 to 19,000 km, which covers the most of GNSS raypath of
FORMOSAT-7/COSMIC-2 RO that traverses through the ionosphere and plasmasphere. On the other hand,
the open fluxtubes in the high-latitude region are cut off at around 10,000 km in altitude, and therefore,
the altitude range of the GIP high-latitude region is approximately from 100 to 10,000 km.

As mentioned above, the TIE-GCM solves for the thermospheric states, including electrodynamics, in the
fixed pressure coordinates (Richmond, Ridley, & Roble, 1992). The horizontal resolution of the TIE-GCM ver-
sion used for this study is 5° x 5°, and the vertical resolution is two levels per scale height. The altitude of
the lower boundary of the TIE-GCM is approximately 97 km, and the upper boundary ranges from 400 to
700 km depending on solar activity levels. By using the GIP/TIE-GCM, we are able to account for
ionosphere-thermosphere coupling in the process of data assimilation. The main drivers of the GIP/TIE-
GCM include F10.7 index (F107), cross-tail potential drop (CP), auroral hemispheric power (HP), and
atmospheric tides. F107 represents the solar EUV level that determines the photoionization rates,
photo-dissociation rates, and heating rates of the neutral and ionized species in the model. HP and CP
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indexes represent the magnitude of auroral particle precipitation and the ionospheric convective electric
fields imposed from the magnetosphere. The atmospheric tides control the lower boundary conditions of
the model.

2.2. Data Assimilation Methods

The data assimilation system under consideration is composed of an analysis step and a forecast step. In the
analysis step, a selected set of the model state variables are updated through assimilation of observations. In
the forecast step, updated state variables are fed back to the model and used as initial conditions to forecast
the future state. In a data assimilation system, cycling of these two steps is carried out over an extended
period. This is the so-called data assimilation cycle.

In this study, the atomic oxygen ion density and electron density on the model grid are selected to be
estimated and updated during the analysis step. The electron density is an observed variable, but in the
GIP/TIE-GCM, the electron density is recomputed as a sum of the atomic and molecular ion species at each
model time step. In fact, the atomic oxygen ion is one of the main prognostic model state variables and
the dominant ion species in the F region, whose number density is largely equal to the electron number den-
sity. The data assimilation scheme used in the analysis step in this study is the EnSRF developed by Whitaker
and Hamill (2002) implemented in NOAA'’s GSI data assimilation system.

The EnSRF can be presented as a modification to the traditional Kalman filter (Kalman, 1960) and to the
ensemble Kalman filter (Evensen, 1994). Following the standard notation used in the atmospheric data assim-
ilation (e.g., Ide et al., 1997), let x° and x° be an m-dimensional vector of the updated state variables and fore-
cast state variables, respectively, and y° be a p-dimensional vector of observational variables. P* and P® here
represent an m x m analysis error covariance matrix and forecast error covariance matrix, respectively, and R
denotes a p x p observational error covariance matrix. The Kalman gain matrix and the gain used to update

deviations are demoted as K and K, respectively. The forward operator that converts the state in the model
space to the observation space is represented by a p x m matrix, H. Following the formulation presented in
Whitaker and Hamill (2002), a prime here denotes the deviation from the ensemble mean and an overbar
denotes the ensemble mean. In all ensemble-based Kalman filters, including EnSRF, sample estimates of P’
do not need to be explicitly computed and stored. Instead, the terms PPH” and HPPH" are computed from
model ensemble as shown below. Under the assumption that observational errors are not correlated, obser-
vations can be assimilated sequentially one by one. In this serial application of the analysis update, K and K
become vectors, and HP’H' and R become scalars. This makes the filter implementation computationally
more efficient. For a set of N model ensembles and one observation (p = 1), the state and covariance update
equation in EnSRF are given as

x* =x° +K(y® — Hx®) Q)

X4 =x"+ R(—Hx’g) )
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where n is an index for ensemble member (n =1, ...N), pb and p° are m x p and p X p matrices of the covar-
iance localization function, p (explain later), and - denotes the element-wise multiplication (i.e,, Schur

N
product). The ensemble means of the updated and forecast state variables are given asx“ = Zn—1 x%and x°

N L. . .
= En:1 xﬁ. The deviations of each updated and forecast state variables from the ensemble mean are given
b

— b — . .
asx’s = x? —x?and x’, = x2 — x” for each ensemble member. Please note that since the observation under
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consideration in this study is sTEC, H represents an operation that computes sTEC values from electron
density values on the model grid and will be discussed in detail in the next subsection. In this kind of filter
implementation, the sampling errors, which originate from the use of a finite size of the model ensemble
(N <« m) that detrimentally impacts on the estimation of P°H’ and HP®H', need to be addressed somehow.
As shown later, this detrimental impact can be mitigated by the covariance localization. In the following
section, the prior refers to a probability distribution of the model forecast ensemble before being updated
by data assimilation and the posterior refers to a probability distribution of the model ensemble after the
update in analysis step.

Commonly used auxiliary methods for adjusting P’ to correct the issues associated with sampling errors
include covariance inflation (e.g., Anderson & Anderson, 1999) and covariance localization (e.g., Hamill
et al,, 2001; Houtekamer & Mitchell, 2001). An underdispersed model ensemble leads to an insufficient
variance in P which in turn causes filter divergence. Covariance inflation artificially inflates the sample
variance of the model ensemble by effectively pushing an ensemble member away from the ensemble mean.
The GSI-EnSRF uses the relation to prior spread (Whitaker & Hamill, 2012) that inflates the posterior variance
by multiplying an inflation factor, y, to each model ensembles perturbation.

y:w<g) +1 (8)

where o, is the posterior standard deviation, oy, is the prior standard deviation, and w is the weighting factor
for inflation. If w = 1, the posterior variance is the same as prior variance. If w = 0, there is no inflation.

On the other hand, the correlation estimated from a small number of the model ensemble often leads
to spurious correlation, especially at large-lag distance. To suppress this spurious correlation in P°,
Houtekamer and Mitchell (1998) first introduced a cutoff distance to limit the impact of observation on the
state update beyond a certain distance. This is referred to as localization of the covariance. In the EnSRF,
the covariance localization is achieved via multiplying the sample covariance (or regression coefficient)
between an observation and a state variable on model grid by a localization factor that determined by
tapering (or localization) function. The localization function is essentially a correlation function or a
distance-dependent function with the value ranging from one to zero with an increasing distance. By using
the covariance localization, the impact of a given observation on the state update can be limited around the
observation location.

This study adopts the Gaspari and Cohn (GC) function (Gaspari & Cohn, 1999), which is widely used in atmo-
spheric data assimilation and is denoted as 7 here, to taper the ensemble-based covariance. The GC function
is parameterized by a localization length scale, L, that determines a distance beyond which the correlation
becomes zeros. In the GSI-EnSRF, the localization factor, p, is equal to a vertical localization function, p,, multi-
plied by a horizontal localization function, and py, in the spherical Cartesian coordinates. The localization
factor is given as

P =PyXPp ©)

o, = T(Z—:) (10)
(I
Ph = T(Lh) 11

where ry, is the horizontal distance between an observation location and a model grid point and r, is the
difference in log-scale pressure levels of an observation location and a given model grid level. In other
words, r, is an absolute altitude difference between an observation height and a model grid level given
in terms of the scale height. Both vertical localization and horizontal localization functions are specified
by the GC function with a vertical localization length scale, L,, and a horizontal localization length scale,
Ly, respectively.

It is difficult to define a location of the RO sTEC observation because sTEC is a nonlocal quantity. Therefore,
the tangent point of each raypath is adopted as an observation location for the sake of implementing the
covariance localization. A tangent point is the point along a given raypath that is the closest to the Earth
under the straight-line propagation. In the F region of the ionosphere, electron densities around a tangent
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point usually account for a large proportion of the electron densities integrated to sTEC. Since the RO raypath
for a given sTEC traverses a large distance through the ionosphere and plasmasphere, sSTEC observations con-
tain information about the plasma densities over a large spatial model domain. It is important to note that the
covariance between a given sTEC observation and model state variables is stillinhomogeneous and anisotro-
pic, even after the GC function is applied to taper the sample covariance to localize the impact of observa-
tions around the tangent point.

Generally speaking, the smaller the ensembile size, the higher the sampling errors. The covariance localization
and inflation is used to rectify the issues that arise from spurious correlations due to the sampling errors. This
paper will focus on the impact of both the covariance localization and ensemble size on quality of EnSRF
assimilation analysis. By comparing results from a number of observing system simulation experiments
(OSSEs), the most effective ensemble size and the length scales of the covariance localization to assimilate
sTEC data into GIP/TIE-GCM using the EnSRF are determined in this study.

2.3. Observation Operator

Since the observations are usually not co-located with the model grid points and the observed variable is
often different from the model state variable, the model state variables need to be converted to the observed
variables by using a forward (observation) operator, H. In this study, the observation is RO sTEC; hence, the
sTEC value needs to be computed by integrating electron densities on the GIP/TIE-GCM gird along the RO
raypath to obtain the predicted value sTEC by the model (Hx?). For given hypothetical positions of GPS,
GLONASS, and FORMOSAT-7/COSMIC-2 low-inclination satellites, the RO raypath geometry can be deter-
mined. After that, this raypath is discretized into 20 km segments, and the electron density at the center of
each segment is interpolated from electron densities on the model grid. Finally, the model-predicted sTEC
value is set to the sum of integrated electron densities at each segment along the entire path. The interpola-
tion scheme similar to the one in Yue, Schreiner, Kuo, et al. (2014) is adapted to cope with the irregular grid
distributions of the GIP.

3. Data Assimilation Experiments

OSSEs are one of widely used approaches to evaluate the potential impact of given observing systems before
they are developed or deployed (Hoffman & Atlas, 2016). In OSSEs, the synthetic observations are simulated
from the “true” state provided by a numerical model, often referred to as the nature run (NR), with the
expected coverage, resolution, and accuracy of observation systems. Using synthetically generated
observation, usual data assimilation experiments are carried out. Please note that the model ensemble
members used in the data assimilation experiments are different from NR. By verifying the data assimilation
results against the NR, the impact of assimilating observations from a hypothetical observing system on
specification and forecasting of the geophysical system can be assessed.

The specific purpose of OSSEs here is to assess the ability of FORMOSAT-7/COMSIC-2 observing system
to improve the low-latitude and midlatitude ionospheric specification and forecasting. In this study, a
number of OSSEs with different covariance localization length scales and ensemble sizes are conducted.
All OSSEs are conducted under low solar activity, geomagnetically quiet, and solstice conditions, from
00:00 UT to 12:00 UT of 1 January. Synthetic sTEC observations are assimilated hourly into the GIP/TIE-GCM
as described below.

3.1. Initialization of the Model Ensemble

The model ensemble is generated by perturbing three main model drivers: F107, HP, and CP, according to a
Gaussian distribution with the mean value of F107, HP, and CP set to 120 Solar Flux Unit (SFU), 16 GW, and
45 kV, and with the standard deviation set to 15 SFU, 2 GW, and 10 kV, respectively. When drawing the
ensemble samples of these drivers from the respective Gaussian distribution, we assume that the F107
index is independent of both HP and CP, but HP is correlated to CP. Figure 1 shows the histogram of the
model driver ensembles along with the Gaussian distribution function from which the ensemble members
are randomly drawn. In addition, the NR is executed by running the GIP/TIE-GCM under higher solar and
geomagnetic conditions than those for the ensemble mean. Specifically, the plasma density distributions
of NR are generated with the F107, HP, and CP values of 140 SFU, 18 GW, and 55 kV, respectively.
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Figure 1. Histogram of (a) auroral hemispheric power, (b) cross-tail potential
drop, and (c) solar 10.7 cm radio flux that used to drive the Global lonosphere
Plasmasphere (GIP)/Thermosphere lonosphere Electrodynamic General
Circulation Model (TIE-GCM) model ensemble, along with the underlying
Gaussian probability distribution (shown in blue). The red, yellow, and green bars
are the histograms of GIP/TIE-GCM drivers for the 40-, 70-, and 100-member
ensembles, respectively.

Before data assimilation cycling, the model ensembles need to be spun
up in order to allow enough time for each model ensemble member to
reach the state that is dynamically balanced with perturbed drivers and
to obtain the model ensemble with an adequate spread. In the spin-up
period, the stand-alone TIE-GCM model is run for 23 days. After that, the
thermospheric state obtained from a long integration of the stand-
alone TIE-GCM is used as initial conditions to advance the
GIP/TIE-GCM for another 5 days. Note that the NR is spun up in the
same manner and that all model drivers are fixed during the spin-up
and data assimilation cycling periods.

3.2. Synthetic FORMOSAT-7/COMSIC-2 Observations

The synthetic RO sTEC observations along the raypath between GPS
and GLONASS satellites and FORMOSAT-7/COSMIC-2 low-inclination
satellites are generated as follows. Using the same observation opera-
tor described above, the electron densities from NR on the model grid
first interpolated the values along a raypath with 20 km segments,
and then integrated over a raypath. After that, observational errors
are added based on a centered Gaussian distribution with the stan-
dard deviation of 3 TEC unit. The sampling rate used for each RO
event is 1 Hz. Roughly 300 to 400 FORMOSAT-7/COMSIC-2 RO events
that amount to 200,000 sTEC data are assimilated into the GIP/TIE-
GCM at each data assimilation cycle.

3.3. OSSE Design

The first set of OSSEs is conducted to determine the impact of the
ensemble size on the EnSRF performance and the quality of assimila-
tion analysis. The EnSRFs with three different model ensemble sizes
40, 70, and 100 are executed with the identical covariance localization
setting. In the second set of OSSEs, the EnSRFs with an ensemble size
selected based on the first set of OSSEs are run to further study the
impact of covariance localization. In the covariance localization
scheme, the GC functions with four different horizontal localization
length scales, including 500, 1,000, 5,000, and 10,000 km, and four
different vertical localization length scales, including 0.5, 1, 3, and 7

In(mb), are employed. For comparison, filtering experiments without the horizontal or/and vertical
covariance localization are additionally executed. Considering the horizontal resolution of TIE-GCM is
5° x 5° and an average raypath length that travels through the ionosphere is roughly 7000 km, the
horizontal localization length scale for the GC function investigated here ranges from 500 to 10,000 km.
The vertical localization length scales need to be given in terms of scale height in the GSI-EnSRF. Since
the TIE-GCM vertical resolution is two levels per scale height and the total number of levels of TIE-GCM
interface is 29, the range of vertical localization length scales for the GC function explored is from 0.5 to

7 scale height.

Because the vertical localization length scale is specified in terms of scale height, the covariance localization
is anisotropic in terms of geometric height (km). The cut-off distance of the observation impact is farther
away from an observation in the upward direction than the downward direction. For instance, the impact
of observation located around the F2 peak is more aggressively localized in the bottomside ionosphere than
in the topside ionosphere, which is favorable considering different physical mechanisms determining the F
region and E region plasma density distributions.

According to the accuracy of TriG GNSS RO System, the observation error is 3 TEC unit for all data in OSSEs.
Moreover, The weighting factor for covariance inflation in equation (8), w, is set to 0.9 based on experiments
shown in Figure S1 in the supporting information, which compare two OSSEs with different values of
weighting factor, w = 0.1 and w = 0.9. There is no signification difference, but an OSSE with a larger
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Figure 2. The atomic oxygen ion density averaged over the low- and midgeo-
magnetic latitudes from 200 to 500 km altitude is shown for each ensemble
member from the observing system simulation experiment with the
70-member Ensemble Square Root Filter with a covariance localization with a
length scale of 5,000 km in the horizontal direction. While the grey lines

are for ensemble members, the red line is for the nature run and the black line
is for the ensemble mean.

weighting factor performs slightly better. Therefore, a covariance infla-
tion with w = 0.9 is applied in all the OSSEs presented in this study.

4, Results

The comparison of the prior and posterior ensemble distribution to the
NR is presented in terms of the root-mean-square difference (RMSD)
between the ensemble mean and NR of atomic oxygen ion density,
computed over the geomagnetic low-latitude and midlatitude regions
from 200 to 500 km altitudes, where FORMOSAT-7/COMSIC-2 low-
inclination RO data have the greatest influence on the assimilation
analysis. In addition to the OSSEs described in the previous section, a
control ensemble forecast experiment is executed, with no data
assimilation, using the same perturbed model driver parameters used
to initialize the model ensemble for the OSSEs. The RMSD between
the forecast ensemble mean and the NR is computed in the same
manner as for the posterior and prior ensemble.

If the ionospheric data assimilation of sTEC by the EnSRF is successful,
the RMSD should become smaller after the analysis step, suggesting a
greater proximity of the estimated model state to the NR from which
observations are sampled. The posterior ensemble spread is ought to
become smaller than the prior ensemble spread, reflecting the uncer-
tainty reduction in the state estimation. In the forecast step, the RMSD
of OSSE is likely to increase toward the level of RMSD of control
ensemble forecast experiment because model drivers are not altered
by assimilation and the same perturbed model drivers are used in both
sets of the ensemble simulations. The ensemble spread should also
grow larger during the forecast step of the EnSRF to reflect an
increased degree of uncertainty in the state estimation. Through suc-
cessive applications of the analysis and forecast steps, the RMSD
should overall continue to decrease. Figure 2 displays how the

control

40 ensemble members
70 ensemble members
100 ensemble members

Root-Mean-Square Difference (m‘S)

Universal Time (Hour)

Figure 3. Root-mean-square difference (RMSD) between the ensemble mean and nature run of atomic oxygen ion density, computed over the midgeomagnetic and
low-geomagnetic latitude regions from 200 to 500 km altitude, from 00:00 to 12:00 UT. Results from observing system simulation experiments with the 40-, 70-, and
100-member Ensemble Square Root Filter are shown in red, green, and blue, respectively. Covariance is localized with the Gaspari and Cohn function with
5,000 km length scale in the horizontal direction. No vertical covariance localization is applied. The circles and squares are the prior and posterior RMSD at
analysis steps, respectively. The black line is for the RMSD of the 100-member control ensemble simulation.

HSU ET AL.

2303



@ AG U Journal of Geophysical Research: Space Physics 10.1002/2017JA025109
EnSRF with40 members EnSRF with40 members
Prior Posterior

x10
1
0.8
0 60 120 180 240 300 360 0 60 120 180 240 300 360
04LT 08LT 12LT 16LT 20LT OOLT 04LT 0.6
EnSRF with70 members EnSRF with70 members
Prior Posterior
0.4
0.2
0
-0.2
0 60 120 180 240 300 360 0 60 120 180 240 300 360
-0.4
EnSRF with100 members EnSRF with100 members
Prior Posterior
-0.6
-0.8

0 60 120 180 240 300 360 0 60 120 180 240 300 360

Figure 4. Differences of the atomic oxygen density between the prior and posterior ensemble mean and nature run at
330 km altitude at 04:00 UT are shown for the 40-, 70-, and 100-member Ensemble Square Root Filters (EnSRFs).
Observing system simulation experiment results shown here are the same as those shown in Figure 3. (a) The prior mean
bias for the 40-member EnSRF. (b) The posterior mean bias for the 40-member EnSRF. (c) The prior mean bias for the
70-member EnSRF. (d) The posterior bias for the 70-member EnSRF. (e) The prior mean with the 100-member EnSRF. (f) The
posterior bias for the 100-member EnSRF.

ensemble mean and each ensemble member typically vary, as the global mean atomic oxygen density (in
the geomagnetic low-latitude and midlatitude regions from 200 to 500 km altitudes, over the course of
the entire data assimilation experiment). At the update step, all the ensemble members (grey lines) and the
ensemble mean (black line) shift closer to the NR (red line), and the ensemble spread becomes smaller,
representing the uncertainty reduction after incorporating the observation information into model ensemble.
After that, the ensemble members diverge away from the NR and the ensemble spread grows larger during the
forecast steps, representing the increasing of uncertainty.

4.1. Impact of Size of Model Ensemble on GSI lonosphere Analysis

Figure 3 shows the RMSD of the OSSE results obtained from the EnSRF with 40, 70, and 100 ensemble mem-
bers. In these experiments, the GC localization function is used to localize the covariance in the horizontal
direction with a length scale of 5,000 km. No localization is applied in the vertical direction. The RMSD of
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Figure 5. Examples of the prior covariance between a given slant total electron content (sTEC) observation (whose raypath
is shown in red) and atomic oxygen ion density on model grid are shown for the 40- and 70-member EnSRF at 04:00 UT. The
tangent point of this sSTEC observation is located at 212° longitude and 22.3° latitude and at 04:00 UT. (a) The sample
covariance estimated from 40 ensemble members. (b) The same covariance but with covariance localization applied in the
horizontal direction. (c) The sample covariance estimated from 70 ensemble members. (d) The same covariance but with
covariance localization applied in the horizontal direction. The localization scheme is used with the GC function with a
length scale of 5,000 km.

the control ensemble forecast experiment with 100 ensemble members is also shown in Figure 3. Note that
the performance of the control ensemble forecast experiment does not make much difference among the
ensemble size of 40, 70, and 100.

The RMSD of these three OSSEs is generally smaller than that of control ensemble experiment over the entire
data assimilation experiment of 12 hr. This indicates that the EnSRF can improve the ionospheric specification
by bringing the model ensemble closer to the NR by assimilation of sSTEC observations. The most significant
improvement occurs in the first assimilation cycle. This is because the ionosphere of NR is biased to be higher
in comparison to the ensemble mean, and the first update step is particularly effective in making a gross
correction of the global atomic oxygen ion density distribution. This behavior is explored further with respect
to a choice of the covariance localization parameters later. During the forecast step, the RMSD decreases for
about 30 min and increases toward to the RMSD value of the control ensemble forecast experiment. This
behavior will be future discussed in the next section.

As suggested by the RMSD, the performance of the EnSRF improves with an increasing number of ensemble
members with the 100-member EnSRF at the best among three filters. The same conclusion holds for the
comparison of 40-, 70-, and 100-member EnSRFs with different settings of covariance localization (see
Figures S2, S3, and S4). Comparing with the 100-member EnSRF, the EnSRF with 70 ensemble members
results in a larger RMSD at the beginning of data assimilation experiment, but the RMSD gradually reduces
over time. At the end of the 12-hour data assimilation experiment, the ratio of RMSD to that of the control
experiment is 0.3261 and 0.3215 for 70- and 100-member EnSRFs, respectively. The performance of these
two filters is similar.

Unlike the 70- and 100-member EnSRFs, the 40-member EnSRF’s performance is inconsistent, and some of
the GIP/TIE-GCM ensemble simulations become numerically unstable during forecast steps. At the
beginning, the behaviors of RMSD for the 40- and 70-member EnSRFs are similar, but the posterior
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Figure 6. The analysis increment at 04:00 UT on a model pressure level corresponds to about 350 km in altitude for a slant
total electron content (sTEC) observation whose tangent point is located at 212° longitude and 22.3° latitude estimated by
40- and 70-member Ensemble Square Root Filter (EnSRFs). The grey scale background contour lines represent the prior
mean atomic oxygen ion density distribution. The darker colors represent higher densities. (a) The analysis increment
estimated by the 40-member EnSRF. (b) The analysis increment estimated by the 40-member EnSRF with covariance

localization. (c) The analysis increment estimated by the 70-member EnSRF. (d) The analysis increment estimated by the
70-member EnSRF with covariance localization.

RMSD for the 40-member EnSRF becomes lager than the prior RMSD after the fifth update step at 04:00 UT,
which implies poor performance of the EnSRF. Under certain localization settings, even worse performance
has been observed (see Figures S2, S3, and S4). In Figure 4, differences of the atomic oxygen density
between the prior and posterior ensemble mean and NR at 330 km altitude at 04:00 UT are shown for
the 40-, 70-, and 100-member EnSRF. Positive values indicate a positive bias, meaning that the atomic
oxygen ion density of ensemble mean is larger than that of the NR, and vice versa for negative values.
Since the error covariance estimated by the 40-member ensemble is not accurate enough, the posterior
biases become larger than the prior biases in some regions. Although OSSEs with the 70- and
100-member EnSRFs also have some problems in low- and midlatitudes of postnoon and premidnight
regions, the magnitude of biases decreases with an increasing ensemble size. As a result, when
forecasting, the GIP/TIE-GCM is more stable if the model state is initialized by the EnSRF with the
ensemble size of 70 or higher. At the end of whole data assimilation experiment at 12:00 UT, the ratio of
RMSD to that of the control experiment is 0.5021 for the 40-member EnSRF, which is fairly large in
comparison to the 70- and 100-member EnSRFs.

Figures 5a-5d display how the prior covariance between a given sTEC observation and the atomic oxygen
densities on the model grid looks in the 40- and 70-member EnSRFs without and with the covariance loca-
lization. The raypath of this sTEC observation appears bended in these panels because it is displayed in the
longitude-latitude-altitude coordinates. The tangent point of this raypath is located in the dayside EIA
region at 350 km in altitude. Figure 6 shows the analysis increment, for the same cases, along with the prior
mean atomic oxygen ion density distribution as the grey scale background contour. Note that the analysis
increment refers to K(Y" — H)?b) in equation (1). It is clear that, when no covariance localization is applied,
the analysis increment obtained using the 70-member ensemble reflects better to the prior distribution in
comparison to the 40-member case. As shown in Figure 6a, the analysis increment of the 40-member
EnSRF, without covariance localization, is remarkably large even at distance far from the tangent point.
When the covariance is estimated with a larger-size ensemble, these spuriously large covariance values
are reduced and a more reasonable increment is obtained.
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Figure 7. The posterior root-mean-square difference (RMSD), computed over the low- and midgeomagnetic latitude
regions, from 200 to 500 km altitude, is shown for comparison of the EnSRF with different covariance localizations at
00:00, 02:00, 04:00, 06:00, 08:00, 10:00, and 12:00 UT. The Ensemble Square Root Filter with covariance localization using the
Gaspari and Cohn function with four different vertical localization length scales (including 0.5, 1, 3, and 7 scale heights) and
four different horizontal localization length scales (including 500, 1,000, 5,000, 10,000 km) are applied in the observing
system simulation experiments. The posterior RMSD for the EnSRF without covariance localization is shown for comparison.

4.2. Impact of Covariance Localization on GSI lonosphere Analysis

Figure 7 shows the RMSD of the posterior ensemble from OSSEs with the EnSRF with and without covariance
localizations at 00:00, 02:00, 04:00, 06:00, 08:00, 10:00, and 12:00 UT. Note that the RMSD is computed over
the same region as for Figure 3. For the vertical localization, the GC function with four different vertical loca-
lization length scales, including 0.5, 1, 3, and 7 scale heights, is applied. For the horizontal localization, the GC
function with four different horizontal localization length scales, including 500, 1,000, 5,000, and 10,000 km, is
applied. The ensemble size is 70 for all OSSEs shown here. The RMSD over entire data assimilation cycles can
be found in Figures S5-59. The RMSD of OSSEs that uses the GC function with smallest horizontal and vertical
localization length scales in the localization scheme is considerably larger than other OSSEs. This suggests the
need of careful tuning of covariance localization parameter.

The RMSD is reduced dramatically at the first update step, especially if the covariance is not localized or loca-
lized with the GC function with a large length scale in both the horizontal and vertical directions. As men-
tioned earlier, this is because the gross correction of the prior ensemble, here biased to be higher, is more
effective with no localization of the covariance. In comparison, for the same set of observations, such a reduc-
tion is less dramatic for OSSEs with covariance localization with the GC function with a smaller length scale,
but there is a steady reduction of RMSD over many assimilating cycles. At the end of data assimilation

HSU ET AL.

2307



@AG U Journal of Geophysical Research: Space Physics 10.1002/2017JA025109

(@

500
400
300
200

500

400

300

200

30

-30
0180240300360

o 60 12

(b) (©

500
400
300
200

500

400

300

200

30

500
400 x 10"
300 3
200

2.5
500

2
400

1.5
300

1
200

0.5

0

30

30 . 30
0180240300360

360
0 6012 0180240300

o 60 12

Figure 8. The atomic oxygen ion density distribution at 12:00 UT. (a) The posterior mean from the observing system
simulation experiment with the 70-ensmble Ensemble Square Root Filter. (b) The mean of the ensemble control experiment.

(c) The nature run.

experiment at 12:00 UT, the EnSRF with covariance localization with a length scale of 5,000 km in the
horizontal direction and with no vertical localization leads to the smallest RMSD.
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Figure 9. lllustration of the U-shape root-mean-square difference (RMSD; black

line) and the RMSD from a typical experiment (blue line).

A choice of the localization length scale in the horizontal direction
affects the assimilation analysis considerably as suggested by the
RMSD magnitude. The EnSRF with localization with the GC function
with a length scale of 5,000 to 10,000 km in the horizontal direction
leads to the smallest error regardless of a choice of vertical localization
length scale. Comparing with the horizontal direction, the impact of a
vertical localization length scale appears to be minor. In general, the
use of larger vertical localization length scales results in a smaller RMSD.

As shown in Figure 4, lager analysis biases in regions such as the low-
and midlatitudes of postnoon and premidnight regions still need to
be reduced by applying the covariance localization with a certain
length scale. To further improve specification of the ionosphere in
the EIA and boundary of high- and midlatitude regions, a localization
function that is estimated specifically for the sTEC data using a method
proposed by Anderson and Lei (2013) might be helpful in the future.

In summary, the second set of OSSEs demonstrates that, if the GC func-
tion is used to localize the covariance in the EnSRF, the most appropri-
ate range of the horizontal localization length scale for sTEC data
assimilation is from 5,000 km to 10,000 km. No vertical localization
appears to be the most effective. Figure 8 shows the atomic oxygen
ion density at the end of OSSE at 12:00 UT along with the mean of
the control ensemble simulation and the NR. In this OSSE, the
70-member EnSRF is used with the GC function with a length scale of
5,000 km to localize the impact of observation in the horizontal direc-
tion. A visual inspection of these panels shows that the assimilation
analysis shown in Figure 8a is closer to the NR shown in Figure 8c in
comparison to the control simulation shown in Figure 8b.
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Figure 10. The root-mean-square difference (RMSD) computed for each fluxtube, from the difference between the atomic
oxygen ion density of ensemble mean and nature run from 200 to 500 km altitude, during the fourth data assimilation cycle
from 03:00 to 04:00 UT. This is the same observing system simulation experiment as presented in Figure 3 and executed
with the 70-ensemble Ensemble Square Root Filter. Orange and cyan boxes denote regions A and B. (top row) RMSD before
and after the assimilation update at 03:00 UT. The other panels are the RMSD during the forecast with a 12 min interval.

5. Discussion

As shown in Figure 3, during almost all forecast steps of the EnSRFs, the RMSD grows smaller for about 30 min
before starting to grow larger as expected. This peculiar behavior, here referred to as the “U-shape” RMSD,
suggests that the GIP/TIE-GCM ensemble mean continues shifting toward the NR whose driver setting is
slightly higher than the ensemble mean setting during the forecast step. As illustrated in Figure 9, the
RMSD is expected to continuously grow during a forecast step.

To understand this better, the model state is examined in detail during the forecast step of the fourth data
assimilation cycle when the U-shape RMSD is the most evident from 03:00 to 04:00 UT (see Figure 3).
Figure 10 shows the RMSD computed along each magnetic field line from 200 to 500 km altitude at every
12 min from 03:00 to 04:00 UT. The OSSE used to compute these RMSD maps was obtained with the
70-member EnSRF. The high RMSD region appears roughly from 180° to 300° longitude that corresponds
to 15:00 to 23:00 LT (postnoon to premidnight) at 03:00 UT. An apparently large RMSD region in the
midgeomagnetic latitude at around 200° longitude (marked by a cyan box in Figure 10) and another
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Figure 11. Horizontal distribution of the ensemble mean atomic oxygen ion density at 330 km altitude from 03:00 to 04:00
UT, in the same order as Figure 10.

large RMSD region in low-geomagnetic latitude at around 300° longitude (marked by an orange box) are
referred to as regions A and B, respectively. In the course of the forecast step, the RMSD in the region A
becomes smaller, while the RMSD in the region B increases. The error reduction and increase in these
regions are responsible for the U-shape RMSD computed over a large model domain.

Figure 11 shows the distribution of atomic oxygen ion density at 330 km altitude, and the difference from the
NR is shown in Figure 12 in the same format as in Figure 4 where the positive values mean that the ensemble
mean is larger than the NR. Before the assimilation update at 03:00 UT, the ensemble mean is significantly
larger than the NR in the postnoon to premidnight area in the low-geomagnetic latitude. The EnSRF corrects
the density globally but overcorrects in the postnoon to premidnight area as indicated by negative values in
the posterior bias map shown in Figure 12. Over the course of the forecast step, these negative biases
become smaller, bringing the midgeomagnetic latitude ionosphere state closer to the NR, while the positive
biases start appearing again. The regions of positive and negative biases agree with the regions with large
errors in Figure 10. At the end of current data assimilation cycle, the ensemble mean again becomes larger
than that of the NR.

From the postnoon to premidnight, the photoionization production process becomes weaker and the loss
process through recombination becomes more dominant. As shown in Figure 12, the overall atomic
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Figure 12. Differences of the atomic oxygen ion density between the ensemble mean and nature run, in the same order as
in Figure 10.

oxygen ion densities in the OSSE are smaller than that in the NR at the beginning of forecast step and become
larger. This implies that the loss rate of atomic oxygen ion density in the OSSE is slower than that of the NR.

Because synthetic sTEC observations are sampled from the NR with a higher level of the solar EUV flux, the F
region peak density in the OSSE is being place in the atmosphere with less molecular concentration in com-
parison to the NR when the EnSRF brings both the peak density and peak height up. This results in a smaller
loss rate of the atomic oxygen ion of OSSE than that of the NR through recombination with molecular species
and leads to a positive bias during postnoon and premidnight that appears at the end of forecast step.
Examining the OSSE results shown in Figures 10, 11, and 12 in more detail, 62% of the magnetic fluxtubes
located from 180° to 300° longitude experience an increase in both peak density and peak height by the
assimilation update at 03:00 UT. Figure 13 shows the locations of foot points of these fluxtubes, which largely
overlap with regions A and B. The loss rate of OSSE in the F region is smaller than that of the NR in the majority
(83%) of those fluxtubes whose peak density height is corrected to higher.

In summary, the U-shape RMSD results from limitations of the assimilation method rather than the intrinsic
dynamical behaviors of the thermosphere and ionosphere. The analysis update of the atomic oxygen ion
density in the local postnoon and premidnight regions is inadequate, resulting in a negative bias from the
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Figure 13. Foot points of the fluxtubes, over 180° and 300° longitude, whose peak density and peak height increase by the
assimilation update at 03:00 UT. The black and red dots represent the foot points of fluxtubes in which the loss rate of
observing system simulation experiment is larger and smaller than that of the NR, respectively. The background color
contour represents the posterior mean distribution at 330 km altitude.

NR as shown in Figure 12. Because the neutral composition is unaffected by the assimilation update, the
EnSRF brings the peak density larger and brings peak height to the atmospheric region with a less
abundance of molecular species. As a result, the situation that the loss rate in the OSSE is smaller than that
in the NR. These limitations should be overcome in the future, by updating the thermospheric
compositions in the analysis step as has been done in Hsu et al. (2014) and by improving quality of
assimilation analysis with the help of a nonparametric covariance localization function estimated for a
specific observing system (e.g., Anderson & Lei, 2013).

A few issues with the current localization scheme need to be addressed in the future study. First, the bending
angle of raypath that travel through the ionosphere and plasmasphere is very small, so we could consider the
raypath as a straight line between GNSS (GPS and GLONASS) satellites and FORMOSAT-7/COSMIC-2 low-
inclination satellites in normal Cartesian coordinate. It is ideal to adaptively localize the covariance along
the raypath of a given sTEC observations. On the other hand, currently in the GSI, the horizontal distance
is computed in the spherical Cartesian coordinate with precludes a true representation of distance. This dis-
crepancy causes an incorrect adjustment in covariance localization. Second, the raypath travels over a large
horizontal distance in the ionosphere but confined vertically. Although the vertical localization is expected to
improve quality of the assimilation analysis, an aggressive vertical localization in the OSSEs results in discon-
tinuous ion/electron density profiles that in turn introduce an undesirable unbalance in dynamical and che-
mical processes in the forecast step. A more comprehensible investigation of the covariance localization
scheme for ensemble data assimilation of STEC observation is needed to solve issues addressed above in
the future.

6. Conclusions

Data assimilation is a powerful technique that can be used not only for monitoring the ionospheric weather
but also for gaining a better understanding of various ionospheric phenomena. By systematically contrasting
various observations and a model through the process of data assimilation, we are able to identify our lack of
understanding of fundamental physical processes described in the first-principle model. Although this study
focuses on assimilating the FORMOSAT-7/COSMIC-2 low-inclination RO sTEC data into the GSI lonosphere
system with the practical aim of improving the ionospheric specification and forecasting, this technique will
also be helpful for addressing science questions, for instance, regarding day-to-day variability of ionosphere
by providing an instantaneous global picture of the ionosphere.

The GSl lonosphere is an ionospheric data assimilation system that is constructed with the NOAA GSI-EnSRF
and GIP/TIE-GCM. The impact of sTEC on the low- and midlatitude ionosphere specification has been inves-
tigated through a comparative analysis of OSSEs. By using the GIP/TIE-GCM in conjunction with the EnSRF,
the data assimilation analysis is produced with the benefit of a self-consistent coupling of the ionosphere
and plasmasphere with the thermosphere in the forecast steps. The EnSRF is an ensemble-based data assim-
ilation scheme, and detrimental effects of the sampling errors caused by the use of a finite number of ensem-
ble need to be rectified in order to construct a stable and effective filtering system and to yield high quality
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data assimilation analysis. A number of the OSSEs are carried out, with different ensemble sizes and different
covariance localization scales, to examine the most suitable EnSRF parameters for sTEC data assimilation with
the GIP/TIE-GCM.

Primary findings are summarized as follows:

1. Generally, data assimilation of FORMOSAT-7/COSMIC-2 RO data can improve the low- and midlatitude
ionospheric specification. After the course of data assimilation cycles over 12 hr, the low- and midlatitude
atomic oxygen ion density distribution of OSSEs becomes closer to that of the NR, which results in about
68% reduction of the RMSD in comparison to the control ensemble simulation.

2. For a given localization length scale, the EnSRF with a larger ensemble size (>70) consistently performs
better for assimilation of RO sTEC. The use of the EnSRF with at least 70 ensemble members for sTEC data
assimilation is recommended for future studies.

3. The RO sTEC data assimilation with the EnSRF is sensitive to a choice of the horizontal localization length
scales. The covariance localization with the GC function with a length scale of 5,000-10,000 km in the hor-
izontal direction helps in improving the stability of filtering and the quality of data assimilation analysis.
On the other hand, the vertical localization appears to have a minor or unclear effect.

In the future, the EnSRF performance can be improved further by taking the following measures.
Nonparametric localization functions that are designed specifically to sTEC data with a consideration of the
RO raypath geometry, instead of a parametric function such as the GC, are desirable. In addition, updating
the thermospheric compositions during the analysis step is considered essential to extend the utility of the
FORMOSAT-7/COSMIC-2 RO data to further improve the ionospheric specification using the GSI-EnSRF.
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