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Abstract: 

 We have tested the ability of four commonly used density functionals (three of 

which are semilocal and one of which is nonlocal) to outperform accurate pairwise 

additive approximations in the prediction of binding energies for a series of water clusters 

ranging in size from dimer to pentamer.  Comparison to results obtained with the 

Weizmann-1 (W1) level of wave function theory shows that while all density functionals 

are capable of outperforming the accurate pairwise data, the choice of basis set used is 

crucial to the performance of the method, and if a poor choice of basis set is made the 

errors obtained with density functional theory (DFT) can be larger than those obtained 

with the simple pairwise approximation.  We have also compared the binding energies 

and many-body terms determined with DFT to those obtained with W1, and have found 

that all semilocal functionals have significant errors in the many-body components of the 

full interactions energy.  Despite this limitation, however, we have found that, of the four 

functionals tested, PBE1W/MG3S is the most accurate for predicting the binding energies 

of the clusters. 
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1.  Introduction 

 For a system of N interacting particles one can write the total potential energy of 

the system as a series of n-body potentials:1  

 

! 

V (r1,r2,...,rN ) = V2(ri ,rj )
i< j

N

" + V3(ri ,rj ,rk ) + ...+     Vn (ri ,rj ,rk ,...,rn )
i< j<k,...,n

N

"
i< j<k

N

"  (1) 

where 

! 

Vn  is the n-body interaction term.  Truncation of this series after the first term 

leads to the pairwise additive approximation, that is, the total potential is a sum of all 

two-body interactions in the system.  While such an approximation can often provide 

qualitatively correct results, the many-body terms (n > 2) are often necessary to achieve 

quantitative accuracy.1  Despite this limitation, though, pairwise potentials are widely 

invoked both because of an incomplete understanding of the role of many-body effects 

and also because of the ease with which pairwise methods can be used. 

 The interest in simulating bulk water and ice has lead to the development of a 

number of analytic potential functions designed specifically for water.  The complexity of 

these potentials ranges from simple multi-site fixed-charge models, such as the 

TIPnP (n = 3,4,5) family of potentials2 and the SPC/E model,3 to more complicated 

potentials that introduce fluctuating charges4–7 or polarization terms.6,8–13  These 

potentials are generally parameterized in order to account as fully as possible for 

many-body effects in an average way.  Recently, however, direct dynamics14 and direct 

Monte Carlo15 techniques utilizing density functional theory (DFT) have also been used 

to investigate the properties of condensed-phase water.  The use of DFT instead of an 

analytic potential to calculate the energy of the system greatly increases the cost of the 

calculation, but the added cost is generally rationalized by the belief that the energies 
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obtained are far more accurate than those obtained with simple pair potentials.  While in 

principle the use of DFT to evaluate the energy of the system should give far more 

accurate results, the increased cost often results in the use of smaller simulation boxes, 

and compromises are made in both the size of basis set used and the length of the 

simulation.  If the results are not well converged with respect to all of these issues, 

serious errors can be introduced that may render the simulations less accurate than if a 

simple pair potential had been used. Such concerns may lead one to question whether the 

use of ab initio simulation methods is worth the substantial increase in cost, at least for 

pure liquids without autoionization or reactive solutes.  Furthermore, even some recent 

simulations of bulk water15 that are well converged with respect to such numerical 

parameters have yielded results far worse than those obtained from the simulations with 

analytic potentials. 

 Past work by Hodges et al.16 evaluated the accuracy, as compared to the MP2 

level of theory, of two analytic potentials for predicting the pairwise and many-body 

terms for a set of water clusters, and they used this work to rationalize the use of these 

potentials for simulation.  Here we carry out a similar analysis of density functional 

theory in comparison to highly accurate data from wave function theory.  We will address 

(i) whether DFT is able to outperform accurate, pairwise data for a set of water clusters, 

ranging in size from trimer to pentamer and (ii) whether DFT is able to predict separately 

the pairwise and many-body terms obtained from high-level wave function calculations. 

2.  Pairwise Additive Database 

 The pairwise additive database used in the present study contains eight trimers, 

six tetramers, and a single pentamer.  The trimers used in this study are the same eight as 
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described in previous work.17  The tetramers can be broken down into three classes of 

structures: branched, cyclic, and linear.  One tetramer from each class was obtained from 

a Monte Carlo simulation of bulk water in the NPT ensemble.15  The second geometries 

for both the branched and cyclic tetramers were optimized at the MP2/MG3S (where 

MP2 denotes MØller–Plesset second order perturbation theory18 and the MG3S19 basis 

set is equivalent to 6-311+G(2df,2p)20 for water) level of theory, and they were verified 

to be local minima by harmonic frequency analysis.  The second linear tetramer was 

taken from a molecular dynamics simulation of ice VIII.21  The pentamer structure was 

taken from the same Monte Carlo simulation as the three tetramers.  The structures for 

the clusters are shown in Figures 1 and 2, and the Cartesian coordinates can be found in 

supporting information. 

 After selection of the structures to be used in this study, each cluster was broken 

down into its smaller, constituent clusters.  For example, the pentamer was broken down 

into five tetramers, ten trimers, ten dimers, and five monomers, with the tetramers and 

trimers broken down in a similar manner.  Accurate energies for all structures were 

obtained using the Weizmann-122,23 (W1) level of wave function theory with fixed 

geometries (i.e., omitting the B3LYP geometry optimization in the W1 protocol, see refs. 

22 and 23 for more information), performed with the MOLPRO24 quantum chemistry 

package. 

 We define the binding energy of a cluster containing N water molecules as 

  

! 

Ebind = EA + EB +L+ EN " EAB ...N  (2) 

For this work all binding energies are taken relative to the unrelaxed monomers.  For 

those readers who would like to compare this work to that found in reference 17, we note 
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that two changes have been made with regard to the trimer data.  First, in this work the 

W1 level of theory is used to compute accurate energies for all of the trimers and their 

constituent structures; previously the accurate energies for a subset of the trimers were 

obtained using focal point analysis, as described in the paper25 from which the structures 

were taken.  Second, the binding energies for all trimers are calculated relative to the 

unrelaxed monomers, whereas previously some were calculated relative to the relaxed 

gas phase monomer.  The reader is referred to reference 17 for more information on both 

of these points. 

 For each cluster the accurate pairwise additive energy is given by taking a sum of 

the Weizmann-1 binding energies for the constituent dimers.  The accurate three-body 

potential term from equation 1 is given by: 

 

! 

V3(rA,rB,rC) =V (rA,rB,rC) " V2(ri ,rj )
i< j

3

#  (3) 

 

! 

=V (rA,rB,rC) "V2(rA,rB) "V2(rA,rC) "V2(rB,rC) 

where 

! 

V (rA,rB,rC) is the binding energy of the trimer, evaluated using equation 2.  In the 

same way the four-body term is defined as 

 

! 

V4 (rA,rB,rC,rD) =V (rA,rB,rC,rD) "   V3(ri ,rj ,rk )
i< j<k

4

# " V2(ri ,rj )
i< j

4

#  (4) 

where each V3 is evaluated using equation 3.  The five-body terms are obtained in a 

similar manner. 

3.  Computational Methods 

 We classify the functionals into strictly local, semilocal, and nonlocal.  Strictly 

local and semilocal functionals are both local.  Strictly local functionals depend only on 

the local spin density; such functionals are almost always parameterized to the 
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homogeneous electron gas, and as such they are not usually accurate enough for 

quantitative applications on light elements (like oxygen) and are not considered here.  

Semilocal functionals depend in addition on the gradient and/or Laplacian of the density 

and/or on the kinetic energy density.  The simplest semilocal functionals are generalized 

gradient approximations (GGAs), which depend only on the density and its gradient.  

Functionals that include Hartree–Fock exchange, which are usually called hybrid 

functionals, are nonlocal and are much less computationally convenient for bulk 

simulations.  We have chosen four density functionals to examine in this study: PBE,26 

BLYP,27,28 PBE1W,17 and B3LYP.27–29  PBE and BLYP were chosen because they are 

the two most commonly used GGA functionals in water and ice simulations.30–36  The 

present study also includes the semilocal PBE1W functional, which is also a GGA, 

because it is a variation of PBE that has been optimized specifically for water and ice.  

Finally, we include the hybrid B3LYP functional both because of its widespread use in 

chemistry and also because of its recent use in the simulation of liquid water.64  All 

density functional calculations were carried out using the Gaussian0337 electronic 

structure package. 

In previous work on water clusters we have utilized the MG3S basis set for the 

assessment of all density functional methods.  However, recent work by Csonka et al.38 

has shown that for the calculation of the binding energies of small water clusters, the 

results are highly basis-set dependent, and the empirically optimal basis set is specific to 

each functional.  For this reason we give the results for the MG3S basis set and also, for 

each functional, for the optimal basis set as determined using the method in reference 38. 

The density functionals with their optimal basis sets are: PBE1W/6-311+G(2d,2p), 
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PBE/aug-cc-pVTZ,39 BLYP/6-31+G(d,p),40 and B3LYP/6-31+G(d,2p).40  The 

combination of a density functional and a basis set forms the basis for a theoretical model 

chemistry.41  Although there is fundamental interest in examining the performance of 

functionals in the limit of a complete one-electron basis, selecting and validating well 

balanced basis sets appropriate to each method and application is also an important 

objective of modern theoretical chemistry since practical predictions with well defined 

theoretical models “is of most interest to the larger chemical community.”41  Our original 

goal in developing the PBE1W functional was to optimize a semilocal functional for 

water because of the computational efficiencies achievable with local functionals.  A 

special focus of the present study is therefore to analyze whether theoretical models built 

on semilocal functionals can achieve adequate performance for larger clusters and 

whether they correctly predict the separate pairwise and many-body components of the 

total interaction energies in these clusters. 

Another issue worth addressing is that of basis set superposition error and whether 

counterpoise corrections42 should be applied to the results in this paper.  Xantheas has 

previously applied MP2 theory with a counterpoise correction scheme to evaluate 

many-body terms for small water clusters (n = 2–6).43  For the current work, however, 

the use of W1 theory, which involves an extrapolation to the complete basis set limit, 

should be sufficiently accurate that the inclusion of counterpoise corrections, despite their 

enormous cost, would give only a very small change in the calculated energies.  For the 

DFT calculations, we have chosen to omit the counterpoise correction for several 

reasons: (i) one often finds that for small basis sets the counterpoise corrections are 

significant, and in the right direction, whereas for larger basis sets the corrections are 
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often small and may not improve the accuracy of the calculation,44–47 (ii) for clusters 

larger than the dimer, the definition of the counterpoise correction becomes ambiguous48 

and (iii) the magnitude of the counterpoise corrections is often smaller in DFT than it is 

in wavefunction theory.49 

4.  Results and Discussion 

4.1  Comparison of Accurate Many-Body Terms to Previous Work 

 Previous work by Xantheas has examined the nature of many-body effects in 

cyclic water clusters from the trimer through the hexamer. 43  As the global minima for 

the water trimer and tetramer are examined both in Xantheas’ paper and the current study 

(C1GM and CT2 respectively), it may be worthwhile to compare the accurate many-body 

terms between the two works.  Before such a comparison can be made, however, a few 

differences in procedure must be noted.  In Xantheas’ work, both the trimer and the 

tetramer were optimized at the MP2/aug-cc-pVDZ level of theory, and the many-body 

terms were calculated at the MP2 and MP4 levels with the same basis set.  For the trimer 

the many-body terms were also calculated at the MP2 level of theory using the 

aug-cc-pVTZ basis set.  In the current work the trimer and tetramer were optimized at the 

MP2/aug-cc-pVQZ and MP2/MG3S level of theories respectively (the trimer was taken 

from a previous study of the trimer potential energy surface25), and the many-body 

effects were calculated using the Weizmann-1 level of theory.  Thus the present article 

employs higher levels of theory for both geometries and energies than the levels 

employed by Xantheas. 

 Table 1 shows the comparison of the binding energies and many-body effects 

between the two papers.  Looking at the magnitudes of the binding energies and 
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many-body terms shows that differences may be as large as a couple of kilocalories per 

mole for the binding and pairwise energies, with smaller differences seen for the three- 

and four-body terms.  Owing to the differences in geometries and the levels of theory 

used in the two works, a more valuable comparison may be to look at the percentage of 

the total energy accounted for by each term.  A comparison of these values (given in 

parentheses in Table 1) shows that for the trimer structure all of the results of Xantheas 

agree quite well with our results, with his counterpoise-corrected and non-corrected 

results straddling our results, with particularly good agreement for his 

counterpoise-corrected MP2/aug-cc-pVTZ calculation.  For the tetramer we see slightly 

worse agreement than for the trimer, although the percentages of the total energy that 

each term comprises are quite similar, and we see the same trends in the percentages as 

one goes from the pairwise to the three-body to the four-body terms. 

4.2  Comparison of Density Functionals and the Accurate Pairwise Additive 

Approximation 

 Table 2 compares the DFT binding energies both to the W1 binding energy and to 

the accurate pairwise value.  The reader should keep in mind that a higher binding energy 

corresponds to a lower cluster energy or a higher monomer energy, or both.  A 

comparison of the W1 binding energies to the W1 pairwise additive ones shows that the 

pairwise approximation underestimates the binding energy of the cluster for all but three 

of the structures: the two trimers and cyclic tetramer taken from Monte Carlo simulations.  

The structures in Figure 1 show that all of the trimers taken from the literature (see 

Fig 1a–1f) are arranged in space so that the formation of any of the hydrogen bonds in the 

cluster polarizes the water molecules in a way that makes the formation of the remaining 
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hydrogen bonds more favorable.  In the case of the two trimers taken from the simulation 

we see more complicated hydrogen bonding patterns.  In the G323 structure (see 

Figure 1g) the central molecule is acting as a double hydrogen bond acceptor, leading to a 

destabilization of the trimer with respect to the constituent dimers.  For the NVT structure 

(Figure 1h) the arrangement of the hydrogen bonds should be favorable; however, 

comparing this structure to the literature structures, which are all well defined minima on 

the trimer potential energy surface, shows that the angle between the three oxygen atoms 

is only 51.1°, which is ~9 degrees smaller than the average value (60.0°) from the 

literature structures.  In addition, the O–H–O bond angle of the hydrogen bond in which 

the central water molecule is acting as a hydrogen bond acceptor is substantially closer to 

180° (175°) than the O–H–O bond angles in the optimized structures (average value 

149°).  These two factors together may account for the overestimation of the binding 

energy for this structure.  Figure 2c shows the structure of the cyclic tetramer taken from 

simulation.  This cluster has both a double hydrogen bond acceptor and a double 

hydrogen bond donor, leading to a similar destabilization as in the G323 dimer. 

 One measure of how the density functional methods perform is whether they 

predict binding energies that are higher than those underestimated by the pairwise 

approximation and lower that those that are overestimated.  Looking at the results in 

Table 2 shows that when the optimal basis set is used for each functional, both PBE1W 

and B3LYP always meet this criterion.  PBE has one exception, namely structure BT1; 

however the deviation from the pairwise value is only 0.02 kcal/mol.  BLYP also has 

only one exception, the pentamer structure, for which it underestimates the binding 

energy by 0.33 kcal/mol.  When the MG3S basis set is considered, however, we see that 
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PBE predicts higher binding energies than the pairwise approximation for all structures.  

On the other hand, BLYP predicts binding energies that are almost always lower than the 

accurate pairwise ones.  B3LYP performs reasonably well with the MG3S basis set, as it 

only gives binding energies lower than the pairwise for two structures, BT1 and the 

pentamer, and both of these underestimates are small (0.04 and 0.19 kcal/mol 

respectively). 

Table 3 summarizes the mean deviations of both the converged pairwise binding 

energies and the DFT binding energies from the W1 binding energies.  We see that on 

average, if an optimal basis set is used for each functional, all of the density functional 

methods do perform better than the accurate pairwise potential with respect to both the 

mean unsigned and root mean squared errors.  However, if a non-optimal basis set is 

used, the density functional results can be considerably worse than the accurate pairwise 

potential, as in the case of BLYP/MG3S. 

4.3  Binding Energies 

 Of special interest in Table 3 are the mean errors in the tetramer and pentamer 

binding energies.  In past work17 we have assessed the accuracy of a variety of density 

functional methods for predicting the binding energy of water dimers and trimers, and we 

used this data to develop the PBE1W functional.  It has recently been proposed in the 

literature38 that the optimization procedure used in the development of PBE1W led to a 

functional that was optimized specifically for the trimers present in the test set, and it has 

been implied that its performance will suffer for larger clusters that are outside of the 

database used for the parameterization.  Table 3 provides a test of that speculation.  
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Comparing the PBE1W errors for the trimers to those for the tetramers and 

pentamers, for both the MG3S and 6-311+G(2d,2p) basis sets, shows that both methods 

have mean unsigned errors that are approximately a factor of two smaller for the larger 

clusters than the smaller ones, and have root mean squared errors that also decrease with 

increasing cluster size.  Thus the speculations were not correct.  The only other density 

functional that improves its mean errors upon moving to larger clusters is PBE/aug-cc-

pVTZ, for which the mean unsigned error decreases by approximately 15%.  A 

comparison of the PBE1W results, with either basis set, to the PBE/aug-cc-pVTZ results 

shows that they give nearly identical results for the trimer data, with PBE1W giving 

better results for the larger clusters.  The remaining density functionals show decreased 

performance with increasing cluster size. 

 In order to get better statistics for the accuracy of the density functionals, we have 

calculated the mean errors in the binding energies for not only the 15 structures listed in 

Table 2, but also over all the constituent dimers, trimers, and tetramers used to determine 

the pairwise and many-body terms.  After taking into account structures that were 

equivalent by symmetry this gave a total of 112 pieces of data, hereafter referred to as the 

large data set.  Full W1 calculations were carried out for all 112 structures to perform this 

test.  The results for the large data set are given in Table 4.  For the large data set the 

mean errors increase with increasing cluster size for all four density functionals tested.  

PBE1W/MG3S and PBE1W/6-311+G(2d,2p) give the smallest mean unsigned error 

(0.19 kcal/mol) for all cluster sizes.  Additionally, we see that for both of these levels of 

theory their performance with respect to the other functionals get better with increasing 
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cluster size.  The error seen in PBE1W for the tetramers and pentamer is almost a factor 

of two smaller than the error of the next best method, PBE/aug-cc-pVTZ. 

4.4  Many-Body Terms 

 The investigation of many-body effects in small water clusters is not a new area 

of research,16,43,50–60 however, much of the work in the literature has only looked at the 

many-effects in structures obtained from ab initio geometry optimizations of small water 

clusters.  In contrast, the data set used in the present work includes not only well-defined 

minima, but also structures that have come directly out of simulations of bulk water and 

ice.  Due to environmental effects present in the condensed-phase one might expect the 

many-body effects in these structures to be different than those in gas-phase clusters.  If 

one finds that the many-body effects are quite different for these two different types of 

clusters, and if one is interested in assessing the applicability of different functionals to 

the simulation of condensed phase water, then it may of be of use to see how the 

functionals do at predicting the many-body effects of clusters taken out of 

condensed-phase simulations. 

 Another concern is whether the assessment of the results for these methods on 

small water clusters will be able to help predict their performance in bulk simulations.  

As mentioned in the introduction, the evaluation of the ability of analytic potentials to 

accurately reproduce many-body effects in small clusters has been used in the past as a 

means to validate their use in condensed phase simulation.16  Additionally, work by 

Goldman et. al has shown that the VRT(AP-W)III potential,61 which is based on ab initio 

and spectroscopic data available for the water dimer, is able to accurately reproduce the 

vibrational ground-state structures of small water clusters up to the hexamer,62,63 as well 
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as reproduce many of the condensed-phase properties of liquid water.63  In light of this 

kind of success, it is our hope that the study of the performance of density functionals for 

small water clusters will be able to lend some insight to their performance in 

condensed-phase simulations. 

 Table 5 shows the Weizmann-1 many-body terms for the fifteen structures 

considered in Tables 1 and 2.  Looking at their magnitude shows that the structures taken 

from simulation tend to have smaller many-body effects than the optimized clusters.  We 

also see that with the exception of the four-body term of the BT2 tetramer, all of the 

negative many-body terms correspond to structures that are taken from simulations.  

Additionally, Table 4 shows the rapid convergence of the series in Equation 1.  One can 

see that the average signed value of the interaction terms decreases from 13.46 to 1.89 to 

0.04 to 0.01 kcal/mol as one goes from V2 to V3 to V4 to V5, respectively.  (The average 

absolute magnitudes are 13.46, 2.00, 0.15, and 0.01 kcal/mol respectively.)  Of the seven 

structures larger than trimer, five of them (the exceptions being the CT2 tetramer and the 

pentamer structure) have converged within 0.09 kcal/mol after inclusion of the 

three-body term.  In the case of the CT2 tetramer the high symmetry of the cluster and the 

cooperative nature of the hydrogen bonding around the ring leads to trimers that are 

highly cooperative in nature as well.  For the pentamer structure, the nature of the three- 

and four-body effects have been investigated by Hermansson54 and have been explained 

by the electron density distribution of the constituent water molecules. 

 Table 6 shows the mean errors in the pairwise-additive and many-body terms as 

predicted by the density functionals and illustrates how a theoretical model may be 

analyzed for predicting the constituents of an interaction energy as well as its total 
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magnitude.  For three of the four functionals tested we see that the largest error is in the 

pairwise term with substantial improvement upon moving to the three-body term, which 

is consistent with its smaller magnitude.  The two exceptions, PBE1W/MG3S and 

PBE1W/6-311+G(2d,2p), have similar errors for both the pairwise and three-body term, 

with a difference of only 0.02 kcal/mol in the mean unsigned errors.  While at first glance 

this may be somewhat alarming, the good performance of these methods for the pairwise 

term may make this result appear worse than it really is, as the mean unsigned errors for 

the pairwise term are substantially lower (39% and 33% respectively) than the next best 

result for a local functional (BLYP/6-31+G(d,p)).  Averaging over all the many-body 

terms shows that the nonlocal B3LYP/6-31+G(d,2p) functional has the smallest error of 

the eight model chemistries studied for the many-body terms.  Table 6 also shows that 

BLYP/6-31+G(d,p) is the best of the three semilocal methods for predicting many-body 

effects, however it should be noted that if an optimal basis set is used the three semilocal 

functionals differ from each other in the mean unsigned error by at most 0.04 kcal/mol.  

Comparing the results of the functionals with and without use of the optimal basis set 

again illustrates that the use of the optimal basis set is crucial to maximizing the 

performance of the functionals, as the mean unsigned error can vary by as much as a 

factor of five.  One expects that there could be similar sensitivity to plane wave cutoff 

values and effective core potentials for basis sets consisting of plane waves. 

 Recent work by Todorova et. al64 has involved a series of water simulations with 

the following functionals: LDA, BLYP, XLYP, PBE, rPBE, TPSS, B3LYP, X3LYP, 

PBE1PBE, and Hartree–Fock theory.  In general they find that the hybrid functionals 

(B3LYP, X3LYP, and PBE1PBE) outperform the semilocal GGA and meta-GGA 
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functionals (BLYP, XLYP, PBE, rPBE, TPSS), which, in turn, outperform LDA.  These 

results are consistent with our previous study17 in which we evaluated the accuracy of 25 

density functionals to predict the binding energies for a collection of water dimers and 

trimers and found, in general, that hybrid functionals outperform non-hybrid functionals.  

We would like to note that there was a wide range of performance between the different 

hybrid methods (as with all classes of density functionals tested), and that B3LYP was 

not the best hybrid functional tested in reference 17.  The better performance of B3LYP 

as compared to the non-hybrid methods is also consistent with the results of this study, in 

which we see that B3LYP/6-31+G(d,2p) gives the lowest errors in predicting the 

many-body terms for our set of clusters, however it is likely that other hybrid methods 

would have given results as good, if not better than B3LYP.  Additionally, 

B3LYP/6-31+G(d,2p) has the second lowest error in predicting the binding energies for 

our large data set, having a mean unsigned error only 0.05 kcal/mol higher than either 

PBE1W result.  Since PBE1W does better for predicting binding energies than for 

predicting many-body terms, and B3LYP does the opposite, using PBE1W in the 

simulation of liquid water may be useful for determining which of these two criteria is 

more important for correctly predicting the properties of bulk water. 

5. Concluding Remarks 

 In this study we have evaluated the accuracy of a set of density functional 

methods for predicting the binding energies and many-body terms in a set of water 

clusters.  We have compared the binding energies obtained from DFT to accurate 

pairwise additive energies obtained using the very accurateWeizmann-1 level of theory, 

and have found that while all density functionals tested are capable of outperforming the 
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accurate pairwise data, the correct choice of basis set used is crucial to ensure good 

results.  This illustrates the importance of the choice of basis set used in simulation of 

bulk water and ice. 

 We have also shown that of the four density functionals tested, PBE1W/MG3S 

and PBE1W/6-311+G(2d,2p) provide the most accurate binding energies for a large 

database containing 112 water clusters ranging in size from dimer to pentamer.  The 

success of PBE1W in predicting the binding energy for a wide range of trimers and 

tetramers that were not included in its parameterization set is encouraging for its 

performance when used in simulation of bulk systems or for larger water clusters. 

Finally, we have shown that the ability of DFT to correctly predict many-body 

terms for small water clusters is also dependent both on the density functional used and 

on the basis set employed.  We have found that all semilocal functionals have significant 

errors in predicting the many-body terms, but that this does not necessarily mean that 

they are unable to accurately predict useful binding energies.  Which of these two factors 

will prove to be more crucial for good performance in simulations of bulk water remains 

to be seen. 
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Table 1: Comparison of Accurate Many-Body Terms (kcal/mol) for the Global 
Minima Structures of the Water Trimer and Tetramer as Compared to 
Previous Work.25 
 Ebindc PA V3 V4 
C1GMa 16.39 13.92 (85)d 2.46 (15)  
MP2/aug-cc-pVDZb 16.94 14.68 (87) 2.27 (13)  
MP4/aug-cc-pVDZ 16.92 14.71 (87) 2.20 (13)  
MP2/aug-cc-pVTZ 17.99 15.65 (87) 2.34 (13)  
MP2/aug-cc-pVDZ cpe 14.25 11.80 (83) 2.45 (17)  
MP4/aug-cc-pVDZ cp 13.97 11.57 (83) 2.40 (17)  
MP2/aug-cc-pVTZ cp 15.59 13.14 (84) 2.45 (16)  
 
CT2a 28.62 22.23 (78) 5.86 (20) 0.53 (2) 
MP2/aug-cc-pVDZ 30.12 23.60 (78) 5.88 (20) 0.64 (2) 
MP4/aug-cc-pVDZ 24.37 23.48 (79) 5.76 (19) 0.67 (2) 
MP2/aug-cc-pVDZ cp 25.33 18.55 (73) 6.24 (25) 0.54 (2) 
MP4/aug-cc-pVDZ cp 24.56 17.97 (73) 6.16 (25) 0.56 (2) 
a Structures taken from current study. 
b All MP2 energies taken from reference 25. 
c The MP2 binding energies are given by Ebind = BEn – ER where BEn and ER are 
the binding and relaxation energies, respectively, given in reference 25 for the trimer 
(n = 3) and tetramer (n = 4). 
d The percentage of the total energy is given in parentheses. 
e cp denotes counterpoise corrected values. 
 



 25 

Table 2: Comparison of DFT Binding Energies (kcal/mol) to Weizmann-1 (W1) Binding Energies and W1 Pairwise Additive 
(W1 PA) Energies. 
  MG3S  6-311+G(2d,2p) aug-cc-pVTZ DIDZ 6-31+G(d,2p) 
Structure W1 PA W1 PBE1W PBE BLYP B3LYP PBE1W PBE BLYP B3LYP 
Trimersa            
BTS 12.45 14.15 13.56 14.51 11.67 13.17 13.63 13.39 14.05 13.96 
C1C1TS 13.81 16.13 15.38 16.45 13.55 15.11 15.41 15.44 16.00 16.02 
C1C3TS 13.29 15.56 14.80 15.84 12.98 14.51 14.81 14.86 15.29 15.37 
C1GM 13.92 16.39 15.89 17.02 14.00 15.49 15.97 15.97 16.37 16.35 
C3LM 13.25 15.59 14.95 16.01 11.90 14.59 14.98 15.01 15.34 15.41 
C3h3rdOSP 13.03 15.00 13.57 14.47 13.10 13.61 13.46 13.62 14.44 14.65 
G323 7.50 7.04 7.02 7.64 5.54 6.51 7.05 6.89 6.88 6.97 
NVT 7.15 7.05 6.81 7.46 5.12 6.08 6.84 6.79 6.18 6.43 
Tetramers and Pentamerb           
BT1 10.17 10.72 10.67 11.11 9.04 10.13 10.65 10.15 11.12 10.93 
CT1 11.88 11.55 11.62 12.49 9.18 10.51 11.71 11.45 10.73 10.98 
LT1 11.87 13.02 12.98 13.62 11.16 12.44 12.94 12.65 13.39 13.31 
BT2 20.69 23.57 22.44 24.13 19.30 21.67 22.59 22.39 22.42 22.63 
CT2 22.23 28.62 28.51 30.28 25.55 27.86 28.65 28.75 29.84 29.58 
LT2 14.87 18.31 18.58 20.21 15.87 17.84 18.73 19.00 19.01 19.18 
Pentamer 15.81 17.84 17.16 19.86 12.55 15.62 17.42 18.52 15.48 16.87 
a Names of structures correspond to those used to label geometries in the supporting information of reference 17. 
b Abbreviations stand for branched (BT), cyclic (CT) and linear (LT) tetramer.  Abbreviations with a 1 indicate that the structure was 
taken from a NPT Monte Carlo simulation; those with a 2 were obtained as described in the text. 
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Table 3 : Mean Errorsa (kcal/mol) in DFT Binding and W1 Pairwise Additive Energies 
Compared to W1 Binding Energies. 
  Trimers  Tetramers and Pentamer  All  
 MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE 
W1 PA -1.56 1.70 1.91 -2.30 2.40 3.09 -1.91 2.03 2.53 
 
PBE1W/MG3S -0.62 0.62 0.73 -0.24 0.33 0.51 -0.44 0.48 0.64 
PBE1W/6-311+G(2d,2p) -0.60 0.60 0.73 -0.14 0.27 0.41 -0.38 0.46 0.61 
 
PBE/MG3S 0.31 0.44 0.46 1.15 1.15 1.32 0.70 0.77 0.96 
PBE/aug-cc-pVTZ -0.62 0.62 0.71 -0.11 0.53 0.63 -0.38 0.58 0.68 
 
BLYP/MG3S -2.38 2.38 2.46 -3.00 3.00 3.24 -2.67 2.67 2.85 
BLYP/6-31+G(d,p) -0.29 0.29 0.40 -0.23 1.00 1.19 -0.27 0.63 0.86 
 
B3LYP/MG3S -0.98 0.98 1.00 -1.08 1.08 1.26 -1.03 1.03 1.13 
B3LYP/6-31+G(d,2p) -0.22 0.22 0.28 -0.02 0.69 0.75 -0.13 0.44 0.55 
a MSE, MUE, and RMSE denote mean signed error, mean unsigned error, and root mean squared 
error, respectively.  
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Table 4 : Mean Errors (kcal/mol) in DFT Binding Energies for Large Data Set,a Compared to W1 Binding Energies 
  Dimers   Trimers  Tetramers and Pentamer  All  
 MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE 
PBE1W/MG3S -0.01 0.10 0.15 -0.13 0.28 0.40 -0.21 0.31 0.45 -0.07 0.19 0.30 
PBE1W/6-311+G(2d,2p) 0.00 0.11 0.16 -0.09 0.29 0.41 -0.09 0.28 0.39 -0.04 0.19 0.30 
 
PBE/MG3S 0.21 0.22 0.31 0.55 0.58 0.73 1.27 1.27 1.44 0.44 0.46 0.68 
PBE/aug-cc-pVTZ -0.05 0.15 0.22 -0.11 0.39 0.51 0.17 0.57 0.69 -0.05 0.28 0.41 
 
BLYP/MG3S -0.56 0.56 0.66 -1.59 1.59 1.76 -3.06 3.06 3.26 -1.18 1.18 1.57 
BLYP/6-31+G(d,p) -0.06 0.17 0.23 -0.23 0.42 0.53 -0.71 1.16 1.30 -0.19 0.36 0.56 
 
B3LYP/MG3S -0.21 0.21 0.25 -0.61 0.61 0.69 -1.17 1.17 1.28 -0.45 0.45 0.61 
B3LYP/6-31+G(d,2p) -0.03 0.12 0.17 -0.10 0.30 0.36 -0.24 0.63 0.71 -0.08 0.24 0.34 
a The large data set consists of 61 dimers, 39 trimers, 11 tetramers, and one pentamer for a total of 112 structures.  
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Table 5 : Weizmann-1 Many-Body Terms (kcal/mol)    
 V3 V4 V5 
BTS  1.70   
C1C1TS  2.32   
C1C3TS  2.28   
C1GM  2.46   
C3LM  2.34   
C3h3rdOSP  1.97   
G323  -0.46   
NVT  -0.10   
BT1  0.55 0.00  
CT1  -0.44 0.05  
LT1  1.11 0.04  
BT2  2.98 -0.09  
CT2  5.86 0.53  
LT2  3.36 0.04  
P  2.26 -0.24 0.01 
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Table 6 : Mean Errors (kcal/mol) for DFT Pairwise Additive and Many Body Terms Compared to W1 Results 
  PA   V3   V4 & V5   All  
 MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE MSE MUE RMSE 
PBE1W/MG3S -0.11 0.35 0.47 -0.37 0.37 0.54 0.08 0.08 0.12 -0.17 0.30 0.45 
PBE1W/6-311+G(2d,2p) -0.06 0.38 0.52 -0.36 0.36 0.53 0.08 0.08 0.12 -0.15 0.31 0.47 
 
PBE/MG3S 0.99 1.04 1.30 -0.33 0.33 0.49 0.08 0.08 0.12 0.28 0.56 0.87 
PBE/aug-cc-pVTZ -0.29 0.60 0.73 -0.12 0.17 0.30 0.05 0.05 0.09 -0.15 0.32 0.50 
 
BLYP/MG3S -2.75 2.75 2.91 0.06 0.13 0.18 0.02 0.05 0.07 -1.05 1.14 1.83 
BLYP/6-31G+(d,p) -0.17 0.57 0.79 -0.10 0.11 0.16 0.02 0.04 0.06 -0.11 0.28 0.51 
 
B3LYP/MG3S -0.99 0.99 1.07 -0.05 0.07 0.11 0.03 0.03 0.05 -0.41 0.43 0.68 
B3LYP/6-31+G(d,2p) -0.06 0.37 0.47 -0.08 0.10 0.13 0.02 0.03 0.04 -0.05 0.19 0.31 
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Figure 1:  Trimer Water Clusters : (a–f) Optimized Gas Phase Clusters, (g,h) 
taken from Monte Carlo Simulations of Bulk Water 
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Figure 2 :  Tetramer and Pentamer Water Clusters : (a,c,e,g) taken from Monte 
Carlo Simulations of Bulk Water (b,d) Gas Phase Optimized Structures (f) 
taken from a Molecular Dynamics Simulation of Ice VIII 


