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ABSTRACT

Objectives: This study investigated the e�ects of physically damaged and resin-contaminated 

tips on radiant emittance, comparing them with new undamaged, non-contaminated tips 

using 3 pieces of spectrophotometric laboratory equipment.

Materials and Methods: Nine tips with damage and/or resin contaminants from actual 

clinical situations were compared with a new tip without damage or contamination (control 

group). The radiant emittance was recorded using 3 spectrophotometric methods: a 

laboratory-grade thermopile, a laboratory-grade integrating sphere, and a portable light 

collector (checkMARC).

Results: A signi�cant di�erence between the laboratory-grade thermopile and the 

laboratory-grade integrating sphere was found when the radiant emittance values of the 

control or damaged/contaminated tips were investigated (p < 0.05), but both methods 

were comparable to checkMARC (p > 0.05). Regardless of the method used to quantify the 

light output, the mean radiant emittance values of the damaged/contaminated tips were 

signi�cantly lower than those of the control (p < 0.05). The beam pro�le of the damaged/

contaminated tips was less homogeneous than that of the control.

Conclusions: Damaged/contaminated tips can reduce the radiant emittance output and the 

homogeneity of the beam, which may a�ect the energy delivered to composite restorations. 

The checkMARC spectrophotometer device can be used in dental o�ces, as it provided values 

close to those produced by a laboratory-grade integrated sphere spectrophotometer. Dentists 

should assess the radiant emittance of their light-curing units to ensure optimal curing in 

photoactivated, resin-based materials.
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INTRODUCTION

The use of resin composite restorations has remarkably increased due to signi�cant 

improvements in material properties and appearance in the last 2 decades [1]. Despite the 

advancement of resin composite materials, the replacement rate in clinical practice is a 

prominent issue [2]. Restoration replacement accounts for 60% of the procedures performed 

in dental practice [3]. The replacement of restorations can lead to the additional removal 

of the tooth structure and may cause more stress to the pulp [4]. Several factors can have a 

signi�cant in�uence on the longevity and clinical performance of resin composites, including 

the e�ciency and quality of light-curing units [5].

Light-curing units should generate a proper amount of radiant emittance, in a speci�c 

wavelength range, to excite the photoinitiators responsible for the polymerization reaction 

[6]. Resin composites that receive adequate radiant exposure may provide long-term clinical 

service [7-9]. The amount of radiant exposure energy received by resin composites depends 

on several factors related to the light-curing unit itself, the operator, and the materials used 

[9-11]. Resin composite restorations that receive low radiant exposure might have inferior 

mechanical properties, low dimensional stability, increased bio�lm formation, and color 

change over time, which may lead to the premature failure of such restorations [12].

Light-curing units may di�er in their characteristics and capacity of radiant emittance they 

generate [8]. Various types of equipment can be used to check the performance of light-

curing unit output on a regular basis [13]. Dental hand-held radiometers are generally 

the �rst choice commercially available for dentists. Dental radiometers can quantify an 

electric response that varies with incident light. Previous studies over the last 2 decades 

have identi�ed factors associated with the inaccuracy and lack of full characterization of 

measurements of the energy delivered at the end of the tip (radiant emittance) [10,14]. For 

this reason, considerable e�orts have been made in recent years to develop more accurate 

methods based on spectrophotometers to measure the spectral radiant emittance of light-

curing units. These methods identify variations in the distribution of beam intensity across 

the light-curing tip that dentists use. A reliable spectrophotometry-based method can help 

clinicians to recognize light-curing units with low performance, and then to �x or replace 

them to assure adequate energy delivery when placing light-cured restorations. Among the 

spectrophotometers that are currently available on the market, the checkMARC light collector 

is portable, facilitating its use in dental settings. A comparative assessment of this portable 

spectrophotometer with other spectrophotometric devices would help us to understand the 

quality of its outcomes.

Furthermore, in the hectic routine of daily practice, where very o�en more 60% of 

procedures require light-curing, abrasions, striations, and chipping of the light-curing tip 

may lead to the formation of surface microcracks and sometimes craters on the surface 

tip [15]. Another route through which tips are damaged is the presence of contaminants 

and chemical deterioration by disinfectants on the tip surface. Generally speaking, 

contamination is a removable defect on the tip surface or on the barriers used over the tip 

surface, such as remaining dental materials and aerosols [16]. Most commonly, composite 

is the main contaminant [17-21]. However, dental bonding and other translucent materials 

are omnipresent and usually are not visible to the naked eye. Residual composite is opaque 

and cannot transmit light. Even small opaque residues obstruct the light transmitted by 

the tip, just as the moon blocks the sun during a solar eclipse [22-25]. These defects and 
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contaminants a�ect the optical quality of the tip surface, regardless of the type of materials 

that it is made of, and may lead to a drop in the optical transmission [26-28]. These factors 

underscore the importance of developing a suitable method of recording the radiant 

emittance values of damaged/contaminated light-curing tips.

Thus, the purpose of this study was to investigate the e�ects of physically damaged 

and resin-contaminated tips on radiant emittance using 3 pieces of accurate laboratory 

equipment based on spectrophotometers. The null hypotheses tested were (I) that the radiant 

emittance values would not be in�uenced by the spectrophotometric methods used, and (II) 

that the radiant emittance values would not be in�uenced by the presence of damage and 

contaminants on the tip surface.

MATERIALS AND METHODS

Study design

Nine tips with damage or resin contaminants with the same tip design and diameter (ø = 11 

mm) from di�erent light-curing units (Demetron VCL Optilux 401 Dental Curing Light, Kerr, 

Brea, CA, USA) used for clinical service were selected for this study.

To avoid the in�uence of the clinical age of the donor units, the light tips were removed from 

their respective light-curing units and assembled with a new unit (Demetron VCL Optilux 401 

Dental Curing Light, Kerr; power input: 160 VA, lamp: 12 V, 80 W) before assessment.

Figure 1 illustrates the appearance of the tip surface with damage or contamination. Light-

curing units of the corresponding design without damage that were free of contamination 

were used as a control group. The radiant emittance values were recorded via a laboratory-

grade integrating sphere, laboratory-grade thermopile, and portable light collector 

(checkMARC). Three measures were performed for each sample using the 3 di�erent devices. 

Figure 2 illustrates the 3 devices used in this study. Damaged/contaminated light tips of 

light-curing units (experimental) and light-curing units with no damage or contamination 

(control) were assessed.
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Light tip contaminated with
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A B Light tip damaged by
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Figure 1. Contaminated and damaged light tips. (A) Light tip contaminated with resin composite and debris. (B) 

Damaged light tip by scratches, dents, and chipping.

https://rde.ac


Laboratory-grade thermopile system

A laboratory grade thermopile with a power of 10 W (S310C, Thor Labs, Newton, NJ, USA) 

was used to quantify the amount of radiant emittance produced by each light-curing unit. 

Radiant emittance power between 400 and 490 nm is expected to be measured by this device 

with an accuracy of ± 5% [29]. The distance between the tip and the sensor was minimized 

to the extent possible. The amount of radiant emittance was then calculated as the power 

divided by the cross-sectional surface area (cm2) of the tips [29].

Laboratory-grade integrating sphere spectrophotometer

The output of each light-curing unit was analyzed using a 6-inch integrating sphere 

(Labsphere, North Sutton, NH, USA) attached to a �beroptic spectrophotometer (USB 

4000, Ocean Optics, Dunedin, FL, USA) [30]. The spectrophotometer was calibrated using 

a National Institute of Standards and Technology (Gaithersburg, MD, USA) traceable light 

source (Labsphere). Each light-curing unit tip was placed at the entrance of the sphere to 

calculate the light-curing unit output using Spectrasuite v2.0.162 so�ware (Ocean Optics). 

The radiant emittance values were obtained from the power output emitted between 340 nm 

and 550 nm [31].

Portable light collector (checkMARC)

The portable spectrophotometer analyzed in this study (Managing Accurate Resin Curing; 

checkMARC, BlueLight Analytics, Halifax, NS, Canada) was a system connected to a 

laboratory-grade spectroradiometer (USB 4000, Ocean Optics). The sensor is connected to 

a spectrophotometer with a bifurcated �ber optic cable. A pre-con�gured laptop computer 

with custom so�ware (MARC Light Collector) was used to collect and export the data. 

Based on the light-curing unit selected in the so�ware, checkMARC can quantify the radiant 

emittance of the light-curing unit [32,33].

Beam profile

A laser beam pro�ler camera with a 50-mm focal length lens (USB-L070, Ophir-Spiricon, 

Logan, UT, USA) was used to capture the radiant emittance distribution across the light-

curing tip. The same distance between the camera and the light was maintained and focused 

onto the frosted surface plane of a translucent, ground-glass target (DG2X2-1500, Thor Labs) 

as previously described [29]. A�er 10 seconds of light emission by the light-curing unit, the 

light distribution was captured using the beam analyzer so�ware (BeamGage v5.11, Ophir-

Spiricon), taking into consideration the mean radiant emittance values produced by the 

laboratory-grade integrating sphere spectrophotometer [34,35]. Graphics so�ware (Origin 
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Figure 2. The radiant emittance values were recorded via spectrophotometric methods. (A) A laboratory-grade thermopile system. (B) A laboratory-grade 

integrating sphere spectrophotometer. (C) An in-office checkMARC portable spectrophotometer.
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Pro v9.0, OriginLab, Northampton, MA, USA) was used to export the numerical data of each 

image. The so�ware was used to generate an average radiant emittance value for each square 

from the approximately 3,200 individual pixels in the square. The areas with high or low 

radiant emittance were then recorded [36].

Statistical analysis

Data normality was evaluated via the Shapiro-Wilk test (SigmaPlot, version 12.0, Systat 

So�ware, Inc., San Jose, CA, USA). Analysis of variance for ranks and the Dunn test were 

used to compare the radiant emittance values generated by the 3 spectrophotometric 

methods. The Student's t-test was used to compare the radiant emittance from the tip 

without damage and/or resin contaminants (control) to that of the tips with damage and/

or resin contaminants within the laboratory-grade thermopile group and the laboratory-

grade integrating sphere group. The Mann-Whitney U test was used to compare the radiant 

emittance from the tip without damage and/or resin contaminants (control) to that of the tips 

with damage and/or resin contaminants within the checkMARC group. A p value < 0.05 was 

considered to indicate statistical signi�cance.

RESULTS

Radiant emittance by spectrophotometric methods

Figure 3A displays the appearance of the control tip and the measured active tip diameter. 

Figure 3B shows a representative image of the light beam radiant emittance pro�le for the 

control tip. The color bar on the right shows the visual representation of radiant emittance 

expressed in mW/cm2 corresponding to the colors seen. The pro�le presents an abundance 

of the green color, representative of the range of 600–700 mW/cm2, with scattered dots in 

a hot color (yellow-orange) representing radiance with emissions in the range of 800–900 

mW/cm2. The pro�le beam image also shows peripheral areas in blue and gray colors 

representative of radiance at 400 and below 400 mW/cm2, respectively. In Figure 3C, the 
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Figure 3. Radiant emittance levels of the control tip. (A) An appearance of the control tip and the measured active tip diameter. (B) Representative image of the 

light beam radiant emittance profile for the control tip. The color bar on the right shows the visual representation of radiant emittance expressed in mW per cm2 

corresponding to the colors seen. The profile presents an abundance of the green color representative of the range of 600–700 mW/cm2 with scattered dots in a 

hot color (yellow-orange) representing radiance with emission in the range of 800–900 mW/cm2. The profile beam image also shows peripheral areas in blue and 

gray colors, representative of radiance at 400 and below 400 mW/cm2, respectively. (C) Radiant emittance assessment of non-damaged and non-contaminated 

tips by the 3 spectrophotometric methods. No significant difference was found between the checkMARC spectrophotometer and the other methods (p < 0.05). 

Values with different letters are significantly different (p < 0.05).
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radiant emittance assessment of the non-damaged and non-contaminated tips by the 3 

spectrophotometric methods are shown. The radiant emittance assessed by the thermopile 

for the control tip was signi�cantly (p < 0.05) lower than the values for the laboratory-grade 

sphere. No signi�cant di�erence was found between the checkMARC spectrophotometer and 

the other methods (p > 0.05).

Figure 4A displays representative images of the beam pro�le of the damaged/contaminated 

light tips. The colors in the beam pro�le represent the amount of radiant emittance captured 

at each area across the light-curing unit tip. The higher the normalized radiant emittance 

value, the better performance of the light-curing unit (high-value areas: light green). The 

color bar on the right shows the visual representation of radiant emittance, expressed in 

mW/cm2, corresponding to the colors seen. The pro�le beam images for damaged and 

contaminated tips show an increased abundance of peripheral and central areas in blue and 

gray colors, representative of radiance at 400 and below 400 mW/cm2, respectively. The 

surface area of the radiant emittance value of > 700 mW/cm2 across the tips is smaller for 

the damaged/contaminated light tips compared to the control. The surface area with a lower 

radiant emittance (400–534 mW/cm2) is more prominent and can be seen more extensively in 

the peripheries and as small dots in the middle of the tip.
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Figure 4. Radiant emittance levels of the damaged/contaminated tips. (A) Representative images of the beam profile of damaged/contaminated light tips. The 

colors in the beam profile represent the amount of radiant emittance captured at each area across the light-curing unit tip. The higher the normalized radiant 

emittance value, the better the performance of the light-curing unit (high-value areas: light green). The color bar on the right shows the visual representation 

of radiant emittance expressed in mW per cm2 corresponding to the colors seen. The profile beam images for damaged/contaminated tips show an increased 

abundance of peripheral and central areas in blue and gray colors representative of radiance at 400 and below 400 mW/cm2, respectively. In B, the radiant 

emittance assessments of damaged/contaminated tips (n = 9) by the 3 spectrophotometric methods are shown. The radiant emittance assessed by the 

thermopile was significantly (p < 0.05) lower than the values for the laboratory-grade sphere. No significant differences were found between the checkMARC 

spectrophotometer and the other methods (p < 0.05). Values with different letters are significantly different (p < 0.05).
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In Figure 4B, the radiant emittance assessment of the damaged/ contaminated tips by the 3 

spectrophotometric methods is shown. The mean radiant emittance value measured using 

the thermopile (456.1 ± 39.8 mW/cm2) was signi�cantly (p < 0.05) lower than measured using 

the laboratory-grade sphere (502.0 ± 45.8 mW/cm2). No signi�cant di�erence was found 

between checkMARC (488.9 ± 40.5 mW/cm2) and the other spectrophotometric methods. 

The lowest reported values in a damaged/contaminated tip were 376, 407, and 412 mW/

cm2 for thermopile, laboratory-grade sphere, and checkMARC, respectively, using the same 

tip. The highest reported values were 489, 538, and 520 mW/cm2 when the thermopile, 

laboratory-grade sphere, and checkMARC, respectively, were used.

Effect of damaged/contaminated light-curing unit tips on radiant emittance

Figure 5A presents a representative illustration of a clinical restorative scenario where a 

mesio-distal occlusal composite restoration is placed and cured by a damaged tip. The 

overlapping image of the non-uniform beam pro�le over the composite restoration should be 

noted. A lack of homogeneity in the produced radiant emittance pro�le could compromise 

the optimal polymerization of the restoration. The black arrows indicate the areas that may 

not receive appropriate radiant emittance.

In Figure 5B, the radiant emittance results of each spectrophotometric method in both 

damaged/contaminated and control tips are shown. Each method was used to capture the 

radiant emittance values from damaged/contaminated tips and compared to those of the non-

damaged/non-contaminated tips (control). The di�erence in the power output between the 

damaged/contaminated and control tips was signi�cant when the thermopile and laboratory-

grade sphere spectrophotometer were used. The damaged/contaminated tips signi�cantly 

demonstrated lower radiant emittance values than the control (p < 0.05). In this plot, values 

with dissimilar letters are signi�cantly di�erent (p < 0.05). However, using the checkMARC 

portable device, no signi�cant di�erence was found between the damaged/contaminated and 

control tips (p = 0.05). The amount of reduction observed with the thermopile and laboratory-

grade sphere spectrophotometer was 12.6% and 13.9%, respectively. For the checkMARC 

portable collector, the reduction in the percentage was 11.7% in relation to the control.
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DISCUSSION

Optimal radiant emittance is necessary to transfer the required energy both to the top 

of a resin composite restoration and throughout its bulk. Restorations with low radiant 

exposure are associated with compromised mechanical properties, placing them at high 

risk of failure [8-10]. This study is the �rst to report possible di�erences between di�erent 

spectrophotometric methods in capturing radiant emittance from damaged/contaminated 

tips. This study also found that damaged/contaminated tips had lower radiant emittance 

than their non-damaged and non-contaminated counterparts. Several studies have reported 

variations in radiant emittance when evaluating light-curing units at institutional and private 

dental clinics. In one study, contaminated light-curing tips were signi�cantly associated with 

reduced irradiance [19], which is similar to what was found in our study. El-Mowafy et al. 

[21] reported that around 12% of the light-curing units in 100 dental o�ces had low radiant 

emittance. Another study found that approximately 46.1% of the screened light-curing units in 

295 dental o�ces had radiant emittance of less than 300 mW/cm2 [16]. Reduced power output 

was found in 48% [18] and 30% [17] of the screened light-curing units in other investigations.

In this study, less beam uniformity was observed from damaged/contaminated light tips than 

from the control. The beam pro�le is a qualitative assessment of the light beam produced by 

a light-curing unit. Analyzing the beam pro�le enables reporting of the radiant emittance 

recorded by each pixel on the captured image [29]. A homogeneous beam pro�le is critical 

for ensuring an equal distribution of the energy across the tip [9]. An inhomogeneous beam 

pro�le is associated with unevenly distributed radiant energy exposure to the intended 

surface, which may compromise the integrity of restorations in some areas [9]. Furthermore, 

it is critical to realize that the proper radiant emittance output does not always accompany 

an appropriate beam pro�le, which may a�ect the polymerization of such restorations in 

certain areas over the resin composite surface [37,38]. However, the consequences of an 

inhomogeneous beam pro�le could be overestimated as the transmitted light penetrates the 

resin composite, and the amount of scattering could vary depending on the type of light and 

material [39]. In response to this limitation, microhardness has been suggested as a more 

clinically relevant method to assess homogeneity [29].

Several methods have been suggested to measure the amount of radiant emittance in 

dental clinics. The use of a radiometer was found to be unreliable [26-28]. Moreover, the 

light-curing unit tips cannot �t into the narrow apertures of a radiometer's detector. As 

the light is not uniform, the radiant emittance is in�uenced by the position of the tip [28]. 

Thus, it is necessary to develop another method to quantify the power output. In this study, 

radiant emittance was quanti�ed using 3 di�erent methods. Spectrophotometric methods 

are more accurate than radiometers, as spectrophotometers have internal sensors that can 

instantaneously measure the light and divide the incoming signal across a detector array, 

which measures the signal in small bands or individual wavelengths based on the resolution 

of the system (e.g., with 1 nm, 5 nm, or 10 nm resolution). A laboratory-grade thermopile was 

used, following the current ISO standard 10650 [40], while the laboratory-grade integrating 

sphere was used as the gold standard [25]. The checkMARC device was recently introduced as 

a spectrophotometric method to assess the amount of radiant emittance and radiant exposure. 

This spectrophotometer tool has a light collector chamber to receive the transmitted light. The 

chamber is linked to a �ber optic connector to the built-in spectrophotometer.
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Among the spectrophotometric methods, we included a portable spectrophotometer (the 

checkMARC light collector). The main advantage of using checkMARC is its ability to 

measure the radiant emittance of most available light-curing units while being convenient 

to keep and use inside a dental o�ce. In this study, no signi�cant di�erences in radiant 

emittance values were found between the checkMARC and the laboratory-grade integrating 

sphere. In contrast, the di�erence between the laboratory-grade integrating sphere and the 

thermopile was substantial. These results are in agreement with another study where the 

checkMARC spectrophotometer was more comparable than a thermopile to a laboratory-

grade integrating sphere for 8 commercially available light-curing units [25].

Our results underscore the importance of investigating possible di�erences in the methods 

that are used. Moreover, all of the spectrophotometer methods used in this study to evaluate 

the light-curing tips could be applicable to monitor the quality of the light-curing tips once 

all light-curing units become portable. However, we understand that not all dentists may 

have access to research labs or direct access to laboratory-level devices. For this reason, we 

compared the performance of a portable spectrophotometer, aiming indirectly to highlight a 

possible translation of accurate lab devices to the clinical setting.

The rationale for using laboratory-level spectrophotometric devices is based on a 

comparative assessment of their outcomes regarding the radiant emittance of damaged/

contaminated tips using a more reliable methodology.

It is essential to provide information about the possible di�erences among these methods, 

not only for clinicians, but also to assist in the standardization of protocols for laboratory 

research. The comparative assessment of this portable spectrophotometer with other 

spectrophotometric devices helps to understand the quality of its outcomes. Although the 

ISO standard recommends using a thermopile as a reference, this method presents some 

limitations, including its low response in recording short-time radiation and the lack of 

quanti�cation of radiant exposure energy and spectral characteristics [25].

Furthermore, the current ISO standard can only estimate the radiant emittance between 

400 and 515 nm. As a result, radiant emittance below 400 nm cannot be recorded, and 

subsequently, the protocol cannot be used to assess poly-wave light-curing units [25]. 

Based on these �ndings, the use of checkMARC or a laboratory-grade integrating sphere 

spectrophotometer seems more reliable and e�ective for monitoring the performance of 

light-curing units than using a thermopile.

To ensure the best use of light-curing units, dentists should monitor the output of their 

devices frequently, and carry out the optimum infection control protocols recommended 

by the manufacturer to keep the device clean and non-contaminated [41,42]. Studies in the 

literature contain divergent opinions concerning disposable barriers for infection control. 

A previous study suggested a reduction in radiant emittance of approximately 10% [43]. In 

contrast, others suggested that there was no marked detrimental e�ect on polymerization 

[44]. Using disinfectants to clean the light tips also reduces the re�ector e�ciency of the tips 

[23]. Therefore, the use of autoclavable light tips has been recommended as a gold standard 

to ensure optimum cleaning [23]. Additionally, dentists should follow manufacturers' 

guidelines to disinfect light-curing tips appropriately.
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Future studies may consider light-curing tips and expand the groups to include as many 

commercially available brands and di�erent types of damaged tips as possible. It should 

also be noted that this study was performed at only a single institution. Studies conducted at 

di�erent institutions or in private practice may yield more insights into the e�ect of light tip 

damage and contamination on radiant emittance.

CONCLUSIONS

Damaged/contaminated tips of light-curing units produced reduced radiant emittance and a 

non-uniform beam pro�le. Dentists should optimally and frequently clean their light-curing 

tips and ensure proper handling to prevent damaging the tips. In light of the �ndings of this 

study regarding possible di�erences between di�erent spectrophotometer-based methods, the 

checkMARC portable spectrophotometer device can be used in dental o�ces to monitor the 

output of light-curing units, as it provided values close to those produced by a laboratory-grade 

integrated sphere spectrophotometer. In contrast, the thermopile readings di�ered signi�cantly 

compared to those of a laboratory-grade integrated sphere spectrophotometer. Therefore, 

dentists may consider using the checkMARC portable device to assess the radiant emittance of 

their light-curing units to ensure optimal curing in photoactivated, resin-based materials.
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