
HYPOTHESIS AND THEORY
published: 21 May 2015

doi: 10.3389/fmicb.2015.00484

Frontiers in Microbiology | www.frontiersin.org 1 May 2015 | Volume 6 | Article 484

Edited by:

Hongyue Dang,

Xiamen University, China

Reviewed by:

Stefan M. Sievert,

Woods Hole Oceanographic

Institution, USA

Jesse McNichol,

MIT-Woods Hole Oceanographic

Institution, USA (in collaboration with

Stefan Sievert)

Andreas Schramm,

Aarhus University, Denmark

*Correspondence:

Judith M. Klatt,

Max Planck Institute for Marine

Microbiology, Celsiusstr. 1, D-28357

Bremen, Germany

jklatt@mpi-bremen.de

Lubos Polerecky,

Department of Earth Sciences –

Geochemistry, Faculty of

Geosciences, Utrecht University,

Princetonplein 9, 3584 CC Utrecht,

Netherlands

l.polerecky@uu.nl

Specialty section:

This article was submitted to

Aquatic Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 06 January 2015

Accepted: 02 May 2015

Published: 21 May 2015

Citation:

Klatt JM and Polerecky L (2015)

Assessment of the stoichiometry and

efficiency of CO2 fixation coupled to

reduced sulfur oxidation.

Front. Microbiol. 6:484.

doi: 10.3389/fmicb.2015.00484

Assessment of the stoichiometry and
efficiency of CO2 fixation coupled to
reduced sulfur oxidation
Judith M. Klatt 1* and Lubos Polerecky 1, 2*

1Max Planck Institute for Marine Microbiology, Bremen, Germany, 2Department of Earth Sciences – Geochemistry, Faculty of

Geosciences, Utrecht University, Utrecht, Netherlands

Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced

sulfur compounds to the production of biomass. Their role in the cycling of carbon,

sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of

sulfur oxidation pathways. We describe a generic theoretical framework for linking the

stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while

accounting for the partitioning of the reduced sulfur pool between the energy generating

and energy conserving steps as well as between the main possible products (sulfate vs.

zero-valent sulfur). Using this framework, we show that the energy conservation efficiency

varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB

equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than

those relying on the complete Sox pathway, whereas for anaerobic SOB the presence

of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to

be linked to higher efficiency. We employ the framework to also show how limited rate

measurements can be used to estimate the primary productivity of SOB without the

knowledge of the sulfate-to-zero-valent-sulfur production ratio. Finally, we discuss how

the framework can help researchers gain new insights into the activity of SOB and their

niches.

Keywords: sulfur oxidation pathways, chemolithoautotrophy, energy conservation efficiency, stoichiometry, sulfur

cycle, carbon cycle

Introduction

Autotrophic sulfur oxidizing bacteria (SOB) comprise a phylogenetically diverse group of microbes
that obtain the energy required for growth from the oxidation of reduced sulfur compounds.
Prominent natural habitats of SOB are hydrothermal vents, where these bacteria live in symbiotic
association with invertebrates or, when free-living, form microbial mats (e.g., Sievert and Vetriani,
2012). SOB are found also on top of organic-rich marine sediments, where they typically form
conspicuous and often quite extensive mats. For instance, on the continental shelf off the Namibian
coast, such mats cover an area comparable to the size of Austria (>80,000 km2; Brüchert et al.,
2006). In addition to natural habitats, SOB are important also in industrial applications, where they
are used, for instance, for waste water treatment by biodesulfurisation (Janssen et al., 2009).

A common feature of environments inhabited by SOB is the encounter of sulfide or other
reduced sulfur species with a terminal electron acceptor (TEA) such as oxygen or nitrate. This
encounter creates a chemical disequilibrium from which energy can be harvested and conserved
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in the form of biomass. While the general validity of this
concept is well established, there are still significant gaps in our
understanding of systems driven by chemical energy derived
from reduced sulfur oxidation. This is because the reactions
performed by autotrophic SOB are highly complex and the
assessment of the stoichiometry of sulfur oxidation is not trivial,
even for cultivated SOB.

In chemolithoautotrophic SOB known to date the energy
gained from the reduced sulfur oxidation drives reverse electron
transport within the membrane, which generates sufficiently
negative electron potential to reduce an electron carrier (e.g.,
NAD+) with the reduced sulfur compound as the electron donor
(e.g., Harold, 1986). Thus, the reduced sulfur compound is used
as the electron donor for the reduction of both CO2 (via the
electron carrier) and TEA. The partitioning of the reduced sulfur
pool between these two reductive processes, which is related to
the efficiency of energy conservation and the growth rate per
substrate utilized, is poorly understood and varies substantially
among the different cultivated SOB (Kelly, 1999). Additionally,
the end product of sulfur oxidation (e.g., sulfate vs. zero-valent

FIGURE 1 | Scheme of the main pathways of reduced sulfur oxidation.

Green arrows indicate the traditional Sox pathway, blue arrows the

tetrathionate (SI4) pathway and red arrows correspond to the branched

pathway for thiosulfate oxidation. Possible entry sites of H2S that are not part

of these traditional pathways are shown with a gray dotted arrow. FCC =

flavocytochrome c:oxidoreductase; SQR = sulfide:quinine:oxidoreductase;

GSSH = S-sulfanylglutathione; APS = adenosine-5′-phosphosulfate;

SOAR = sulfite:cyt c:oxidoreductase; rDSR = reverse dissimilatory sulfate

reductase; SDO = sulfur dioxygenase; soxXA, soxYZ, and soxB are subunits

of the thiosulfate-oxidizing multi-enzyme (TOMES) complex.

sulfur) is also variable and appears to exhibit a degree of flexibility
even within individual organisms, as shown for several Beggiatoa
strains (Nelson et al., 1986; Hagen and Nelson, 1997; Berg et al.,
2014).

This complexity is echoed in the diversity of pathways
by which SOB oxidize the reduced sulfur compound. As
summarized in Figure 1, three main pathways have been
identified so far (reviewed, e.g., by Ghosh and Dam, 2009):
(i) the Sox pathway mediated by the thiosulfate-oxidizing
multi-enzyme (TOMES) complex, (ii) the tetrathionate (SI4)
pathway of thiosulfate oxidation, and (iii) the rather recently
described “branched” pathway. The occurrence of individual
enzymes of the traditional pathways does not appear to be
linked to the phylogenetic identity of SOB. This phenomenon
is generally explained by horizontal gene transfer, which is
possibly also responsible for the co-occurrence and linkage of
specific enzymes or even several complete pathways in the same
organism (e.g., Ghosh and Dam, 2009). In addition to the diverse
sulfur oxidation pathways, the complexity of autotrophic sulfur
oxidation by SOB is further increased by the fact that they can
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employ different terminal oxidases for TEA reduction and two
possible pathways for CO2 fixation (namely the Calvin-Benson-
Bassham cycle, hereafter referred to as the Calvin cycle, or the
reverse tricarboxylic acid (rTCA) cycle; e.g., Hügler and Sievert,
2011; Sievert and Vetriani, 2012).

The complexity of SOB physiology and sulfur oxidation
biochemistry hampers our ability to quantify the contribution
of SOB to sulfur, carbon, nitrogen, and oxygen cycling in a
given environment, as well as to understand their niches. This
is especially true for environments with fluctuating conditions,
where also the products and intermediates of sulfur oxidation
vary. Additionally, this complexity hinders the development
of industrial applications that use SOB for processes such as
waste water biodesulfurisation, which require precise control and
predictability of SOB activity.

In this study we describe a generic theoretical framework for
a rapid quantitative assessment of chemolithoautotrophic
sulfur oxidation. First, we demonstrate how to use it
for the quantification of the stoichiometry and energy
conservation efficiency of autotrophic sulfur oxidation from rate
measurements of the reactants involved. Second, we apply it on
literature data and identify possible links between the energy
conservation efficiency and the different oxidative and reductive
pathways employed by SOB. Third, we suggest how it can be used
to estimate chemolithoautotrophic primary productivity by SOB
from limited rate measurements. Finally, we discuss how our
framework makes it possible to formally relate the capabilities
of SOB (e.g., stoichiometry and efficiency) to their environment
and thus gain insight into the differentiation of their niches.

Materials and Methods

Generalized Equations for Aerobic Sulfide
Oxidation
The generalized mass-balanced equations for aerobic sulfide
oxidation coupled to CO2 fixation are derived by considering
the energy generating and energy conserving steps separately.
The energy generating step is performed with zero-valent sulfur
(S0) and sulfate (SO2−

4 ) as two possible end products. The
corresponding reactions are written as (Nelson et al., 1986; Kelly,
1999)

H2S+ 0.5 O2 → S0 +H2O, (1)

H2S+ 2 O2 → SO2−
4 + 2H+

. (2)

When both reactions occur simultaneously, the generalized
equation for the energy generating step is

H2S+ (2− 1.5x) O2 →

x S0 + (1− x) SO2−
4 + x H2O+ (2− 2x) H+

, (3)

where x and (1–x) are the parts of the total H2S pool oxidized to
S0 and SO2−

4 , respectively (0≤x≤1).
In SOB, H2S serves not only as the energy source but also as

the electron donor for the reduction of CO2. Analogously to the

energy generating step, this can occur with S0 or SO2−
4 as two

possible end products, i.e.,

H2S + 0.5 CO2 → S0 + 0.5CH2O + 0.5H2O, (4)

H2S + 2 CO2 + 2 H2O → SO2−
4 + 2CH2O + 2H+

. (5)

A critical assumption in our derivation is that the S0:SO2−
4

product ratio (defined by x) is the same for both the energy
generating and CO2 fixing steps. Consequently, the generalized
equation for the CO2 fixing step is written as

H2S + (2− 1.5x) CO2 + (2− 2.5x)H2O →

x S0 + (1− x) SO2−
4 + (2− 1.5x) CH2O + (2− 2x)H+

.

(6)

To arrive at a generalized equation for the complete aerobic
sulfide oxidation coupled to CO2 reduction, we assume that
part y (0≤y≤1) of the total H2S pool is used for energy
generation (Equation 3) while the remaining part 1–y is used
for CO2 reduction (Equation 6). Thus, by summing Equation (3)
multiplied with y and Equation (6) multiplied with 1–y we obtain

H2S + νO2 O2 + νCO2 CO2 →

νS0 S
0
+ νSO4 SO

2−
4 + νorgC CH2O + νH2OH2O

+ νH+ H+
, (7)

where the stoichiometric coefficients of the reactants involved are
νO2 = y(2 − 1.5x), νCO2 = νorgC = (1 − y)(2 − 1.5x), νS0 = x,
νSO4 = (1−x), νH2O = yx−(1−y)(2−2.5x) and νH+ = 2(1−x).
Equation (7) is the general mass-balanced equation for aerobic
sulfide oxidation coupled to CO2 fixation.

Efficiency of Energy Conservation: The
Traditional Calculation Approach
The thermodynamic efficiency of energy conservation, ε, is
generally defined as the ratio between the Gibbs free energies
of the endergonic (energy-consuming) and exergonic (energy-
generating) reactions. Specifically for aerobic sulfide oxidation,
where CO2 reduction (Equation 6 multiplied by 1−y) and O2

reduction (Equation 3 multiplied by y) are the endergonic and
exergonic reactions, respectively, ε is written as

εI =
(1− y)�Gr(CO2 red)

−y�Gr(O2 red)
, (8)

where �Gr is expressed per mole of H2S oxidized. At non-
standard conditions, the Gibbs free energy of a reaction is
calculated as

�Gr = �G0
r + RT ln Q, (9)

where �G0
r is �Gr at standard biochemical conditions (pH =

7, reactant concentrations 1 M, temperature 25◦C), R is the
universal gas constant, T is temperature, and Q is the ratio of
the activity coefficients of the products and substrates involved,
which can be approximated by the ratio of the corresponding
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concentrations (Thauer et al., 1977). Using Equations (3) and (6),
the respective �Gr values in Equation (8) are calculated as

�Gr(O2red) = x�G0
f (S

0)+ (1− x)�G0
f (SO

2−
4 )

+ x�G0
f (H2O)− �G0

f (H2S)

− (2− 1.5x)�G0
f (O2)+ RT ln Q1, (10)

�Gr(CO2red) = x�G0
f (S

0)+ (1− x)�G0
f (SO

2−
4 )

− �G0
f (H2S)− (2− 2.5x)�G0

f (H2O)

+ (2− 1.5x)[�G0
f (CH2O)− �G0

f (CO2)]

+ RT lnQ2, (11)

where the Gibbs free energies of formation of the respective
reactants at standard biochemical conditions, �G0

f
, are tabulated

in Thauer et al. (1977) and the quotients Q1 and Q2 are given by

Q1 =
[SO2−

4 ](1−x) [H+](2−2x)

[H2S] [O2]
(2−1.5x)

, (12)

Q2 =
[SO2−

4 ](1−x) [H+](2−2x)

[H2S] [CO2]
(2−1.5x)

. (13)

Equations (8–13) summarize the traditional approach for the
calculations of the energy conservation efficiency of autotrophic
aerobic sulfide oxidation (e.g., Nelson and Hagen, 1995).

Factorization of the Traditional Energy
Conservation Efficiency
The general aim of calculating the efficiency of energy
conservation is to gain insights into how the energy generated by
an exergonic reaction is converted into the biochemical currency
ATP and how this ATP is further utilized to drive endergonic
reactions. For the specific case of autotrophic sulfur oxidation,
we divide the flow of energy into three steps: conversion of the
Gibbs free energy released by sulfur oxidation into ATP, transfer
of this ATP to the site of CO2 reduction (that is, not for processes
associated with “cell maintenance”), and ATP utilization for
driving CO2 reduction (see Figure S1). The efficiency of the
first step, εSO, characterizes the efficiency of the sulfur oxidation
pathway. It is calculated as

εSO =
�Er(O2 red)

�Gr(O2 red)
, (14)

where �Er(O2 red) describes the energy gained, in the form of
ATP, from the reduction of O2. Analogously, the efficiency of
ATP utilization for the reduction of CO2, εu, is calculated as

εu =
�Gr(CO2 red)

�Er(CO2 red)
, (15)

where �Er(CO2 red) describes the energy requirements, in the
form of ATP, of CO2 reduction. Finally, the efficiency of the
energy transfer, εt, is calculated as

εt =
(1− y) �Er(CO2 red)

−y �Er(O2 red)
, (16)

where, as above, y and 1–y describe the fractions of the total H2S
pool used for energy generation and CO2 reduction, respectively.
Note that the values of �Er and �Gr in Equations (14–16) are
expressed per mole of H2S.

As follows from Equations (8, 14–16), the overall
thermodynamic efficiency εI can be expressed as a product
of the partial efficiencies of the three steps involved in the energy
flow associated with autotrophic sulfur oxidation, namely

εI = εSO εu εt. (17)

Because εI can be calculated from thermodynamic data based on
the stoichiometry of autotrophic sulfur oxidation, this means that
Equation (17) can be used to calculate any one of the efficiencies
εSO, εu or εt provided that the other two are known. Although this
is not possible at the current state of knowledge, Equation (17)
makes it possible to estimate their minimal values. Specifically,
the minimal value of εSO is reached when both εu and εt are
maximal (i.e., εu = εt = 1), which gives εSO,I,min = εI.
Analogously, εu,min = εt,min = εI. Thus, εI represents the
minimal value of the partial efficiencies εSO, εu and εt.

Efficiency of Energy Conservation: The New
Calculation Approach
The traditional approach of efficiency calculation does not
consider that sulfide oxidation and CO2 reduction in
SOB are coupled via redox couples such as NAD+/NADH,
FAD/FADH2 and oxidized/reduced Ferredoxin (Fdox/Fdred).
In our new approach we account for this coupling explicitly.
Also, we distinguish between two possible CO2 fixation
pathways observed in SOB: the Calvin cycle and the reverse
tricarboxylic acid (rTCA) cycle. In accordance with Bar-Even
et al. (2010), we chose glyceraldehyde-3-phosphate (GA3P)
as the primary product of both CO2 fixation pathways, even
though phosphoenolpyruvate is considered the output of
the rTCA cycle (Buchanan and Arnon, 1990). The choice
of phosphoenolpyruvate would result in small numerical
differences that would, however, not alter significantly our
conclusions.

In the SOB employing the Calvin cycle, CO2 fixation occurs
according to reaction

6 NADH+ 3 CO2 + Pi → 6 NAD+
+ GA3P+ 7 H2O. (18)

This reaction requires conversion of ATP into ADP and Pi,
and its energy requirement is �Gr(CO2 fix) = 69.7 kJ CO−1

2
(Supplemental material of Bar-Even et al., 2010). The reducing
equivalents NADH required for the reduction of CO2 in Equation
(18) are produced via membrane-associated reverse electron
transport (RET) reactions with zero-valent sulfur (S0) or sulfate
(SO2−

4 ) as two possible end products:

H2S+NAD+
→ S0 +NADH+H+

, (19)

H2S+ 4 NAD+
+ 4 H2O → SO2−

4 + 4 NADH+ 6 H+
. (20)

These two endergonic reactions are driven by proton motive
force, which is generated either directly by the exergonic reaction
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given by Equation (3) or by utilizing ATP. When both of them
occur simultaneously, the generalized equation for the RET
reaction is

H2S+ (4− 3x) NAD+
+ (4− 4x) H2O →

x S0 + (1− x) SO2−
4 + (4− 3x) NADH+ (6− 5x) H+

,

(21)

where x again describes the S0: SO2−
4 product ratio, and its energy

requirement is calculated as

�Gr(RET) = x�G0
f (S

0)+ (1− x)�G0
f (SO

2−
4 )− �G0

f (H2S)

− 4(1− x)�G0
f (H2O)+ (4− 3x)

[�G0
f (NADH)− �G0

f (NAD
+)]+ RT ln Q3.

(22)

Here the difference �G0
f
(NADH)–�G0

f
(NAD+)= 60.99 kJ (mol

NADH)−1 (Alberty, 1998) and the reaction quotient Q3 is
given by

Q3 =
[SO2−

4 ](1−x) [NADH](4−3x) [H+](6−5x)

[H2S] [NAD
+](4−3x)

. (23)

In the SOB employing the rTCA cycle, CO2 fixation occurs
according to reaction

3 NADH+ 4Fdred + FADH2 + 3 CO2 →

3 NAD+
+ 4 Fdox + FAD+ GA3P+ 7H2O. (24)

Energy requirement of this reaction is �Gr(CO2 fix) = 64.3 kJ
CO−1

2 (Bar-Even et al., 2010). The reducing equivalents NADH,
FADH2 and Fdred required for the reduction of CO2 in Equation
(24) are produced by the reduction of the corresponding redox
couples with H2S according to two possible reactions:

H2S+ 0.5 NAD+
+ 0.67 Fdox + 0.17 FAD →

S0 + 0.5 NADH+ 0.67 Fdred + 0.17 FADH2 + 1.17 H+
, (25)

H2S+ 2 NAD+
+ 2.67 Fdox + 0.67 FAD+ 4 H2O →

SO2−
4 + 2 NADH+ 2.67 Fdred + 0.67 FADH2 + 6.67 H+

.

(26)

When both of these reactions occur simultaneously, the
generalized equation for the RET reaction is

H2S+ (2− 1.5x) NAD+
+ (2.67− 2x) Fdox + (0.67− 0.5x)

FAD+ (4− 4x) H2O →

x S0 + (1− x) SO2−
4 + (2− 1.5x) NADH+ (2.67− 2x) Fdred

+ (0.67− 0.5x) FADH2 + (6.67− 5.5x) H+

(27)

and its energy requirement is calculated as

�Gr(RET) = x�G0
f (S

0)+ (1− x)�G0
f (SO

2−
4 )− �G0

f (H2S)

− 4(1− x)�G0
f (H2O)+ (2− 1.5x)

[�G0
f (NADH)− �G0

f (NAD
+)]+ (2.67−2x)

[�G0
f (Fdred)− �G0

f (Fdox)]+ (0.67− 0.5x)

[�G0
f (FADH2)−�G0

f (FAD)]+RT ln Q4.

(28)

Here, �G0
f
(NADH) − �G0

f
(NAD+) = 60.99 kJ (mol NADH)−1,

�G0
f
(FADH2) − �G0

f
(FAD) = 42.65 kJ (mol FADH2)

−1,

�G0
f
(Fdred) − �G0

f
(Fdox) = 38.88 kJ (mol Fdred)

−1 (Alberty,

1998) and the reaction quotient Q4 is given by

Q4 =

[SO2−
4 ](1−x) [NADH](2−1.5x) [Fdred]

(2.67−2x)

[FADH2]
(0.67−0.5x) [H+](6.67−5.5x)

[H2S] [NAD
+](2−1.5x) [Fdox](2.67−2x) [FAD](0.67−0.5x)

.

(29)
Taken together, CO2 reduction in SOB comprises two steps:

production of the reducing equivalents (Equations 21 or 27) and
the actual CO2 fixation (Equations 18 or 24), as already pointed
out by Kelly (1999). Thus, the total energy requirement of CO2

reduction is given by the sum of �Gr(RET) and �Gr(CO2 fix).
Analogously to Equation (8), in our new approach we therefore
calculate the thermodynamic energy conservation efficiency of
autotrophic sulfur oxidation as

εII =
(1− y) [�Gr(RET)+ �Gr(CO2 fix)]

−y �Gr(O2 red)
, (30)

where the corresponding �Gr values are calculated as described
above. It should be noted that εII > εI because �Gr(CO2 red)
calculated by the traditional approach (Equation 11) is always
lower than the sum �Gr(RET)+ �Gr(CO2 fix).

Factorization of the New Energy Conservation
Efficiency
Analogously to the factorization of the traditional
thermodynamic efficiency (see Equation 17), the new
thermodynamic efficiency εII defined by Equation (30) can
also be written as a product of partial efficiencies characterizing
the processes involved in the autotrophic sulfur oxidation.
Specifically, because CO2 reduction in our new approach is
divided into RET and CO2 fixation, expression (15) for the
efficiency of ATP utilization must be written as

εu,II =
�Gr(RET)+ �Gr(CO2 fix)

�Er(RET)+ �Er(CO2 fix)
, (31)

where �Er(RET) and �Er(CO2 fix) describe the energy
requirements, in the form of ATP, of the RET and CO2 fixation
reactions, respectively. This implies that εII can be factorized as

εII = εSO εu,II εt. (32)
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To make the influence of the RET and CO2 fixation reactions
more explicit, we define their corresponding efficiencies as

εRET =
�Gr(RET)

�Er(RET)
(33)

and

εCO2 =
�Gr(CO2 fix)

�Er(CO2 fix)
. (34)

This makes it possible to write εII as a product

εII = εSO εt εCO2 εRET [α εRET + (1− α) εCO2]
−1 (35)

where the parameter α is defined as

α =
�Gr(CO2 fix)

�Gr(RET)+ �Gr(CO2 fix)
. (36)

Previous work has already characterized the realistic ATP
requirements of CO2 fixation. Assuming 0% oxygenase activity
of RuBisCO, ATP requirements of the Calvin cycle are 3 ATP
per CO2, whereas ATP requirements of the rTCA cycle are
∼1.67 ATP per CO2 (Bar-Even et al., 2010). As pointed out by
Kelly (1999), these requirements can be considered constant.
Assuming the ATP energy content of 41 kJ (mol ATP)−1, this
translates into �Er(CO2 fix) of 123 kJ (mol CO2)

−1 and 68.3
kJ (mol CO2)

−1 for the Calvin and rTCA cycle, respectively.
Considering the �Gr(CO2 fix) values calculated by Bar-Even
et al. (2010) (see Section Efficiency of Energy Conservation: The
New Calculation Approach), the energy conservation efficiency
of the CO2 fixation can therefore be considered as a known
parameter: εCO2 = 0.57 for the Calvin cycle and εCO2 = 0.94 for
the rTCA cycle (Bar-Even et al., 2010). Similarly, the parameter
α has also a known value depending on the parameter x and on
the CO2 fixation pathway employed by the SOB, as follows from
Equations (22), (28) and (36).

Taken together, this means that although the efficiencies εSO,
εt and εRET are generally unknown, they are related through
Equation (35). This makes it possible to calculate any one of
these efficiencies provided that the other two are known. Since
this is not possible at the current state of knowledge, Equation
(35) can be used to estimate their minimal values. Of specific
interest in this study is the minimal value of the efficiency of the
sulfur oxidation pathway, εSO. This value is reached when the
efficiencies εRET and εt are maximal (i.e., εRET = εt = 1), which
gives

εSO,II,min = εII

[

α

εCO2
+ (1− α)

]

=
(1− y) [�Gr(RET)+ �Er(CO2 fix)]

−y �Gr(O2 red)
, (37)

as follows from Equations (30), (35) and (36). It should be
noted that εSO,II,min > εSO,I,min. Our new approach therefore
provides a more constrained range of possible efficiencies of
sulfur oxidation coupled to O2 reduction in comparison to the
traditional approach.

Generalized Equations and Efficiencies for Other
Reduced Sulfur Oxidation Processes
Many SOB can use alternative reduced sulfur species for the
reduction of O2 and CO2, such as thiosulfate. Additionally,
in anoxic environments or habitats that are characterized by
fluctuating conditions, such as hydrothermal vents, also the
reduction of NO−

3 has to be considered as a possible sink
of electrons during reduced sulfur oxidation. NO−

3 can either
be reduced partially to N2 by denitrification or completely to
NH+

4 by dissimilatory nitrate reduction to ammonia (DNRA)
to generate energy for CO2 fixation. The generalized mass-
balanced equations for these processes are derived analogously
as Equations (1–7) and are given in the Table S1. Furthermore,
the corresponding energy conservation efficiencies εI, εII and
εSO,II,min are calculated from expressions similar to Equations
(8), (30), and (37) with the exception that the �Gr values
in the nominator and denominator are calculated based on
the stoichiometry of the corresponding energy-conserving and
energy-generating reaction. We implemented these calculations
in R (www.cran.r-project.org) as functions and scripts that can
be freely downloaded from the internet (http://nanosims.geo.uu.
nl/SOX; Supplement 1).

Results

Stoichiometry of Autotrophic Sulfur Oxidation
from Rate Measurements
Here we demonstrate how the generic theoretical framework
can be used to rapidly evaluate the stoichiometry of autotrophic
reduced sulfur oxidation from ratemeasurements of the reactants
involved. Additional examples are provided in Supplement 2.

The first example involves marine Beggiatoa strain MS-81-6.
Nelson et al. (1986) reported that this strain performed aerobic
sulfide oxidation coupled to CO2 fixation with the O2:�H2S
consumption ratio of ∼1.65 and the CO2:�H2S consumption
ratio of 0.35. Using Table S1A, these experimental values lead
to equations νO2/νH2S = y(2−1.5x) = 1.65 and νCO2/νH2S =

(1−y)(2−1.5x) = 0.35, which yield y = 0.825 and x = 0. As
follows from Table S1A, this implies that (i) the aerobic oxidation
of sulfide in this strain was performed according to equation

H2S+ 1.65 O2 + 0.35 CO2 + 0.35 H2O →

SO2−
4 + 0.35 CH2O+ 2H+

,

(ii) sulfate was the exclusive product, and (iii) 82.5% of the
sulfide pool was used in the energy gaining reaction with oxygen
(Equation 3) while the remaining 17.5% was used for CO2

fixation (Equation 6). This is consistent with the conclusions of
Nelson et al. (1986).

The second example deals with SOB that live in symbiosis with
tubeworms Riftia. Girguis et al. (2002) reported that the sulfide
consumption rate of 6.75µmol �H2S g−1 h−1 by the whole-
worm symbiosis was accompanied by the total rates of O2 and
CO2 consumption of 12.4µmol O2 g

−1 h−1 and 12.45µmol CO2

g−1 h−1, respectively. Assuming that host respiration constitutes
25% of the whole-wormO2 consumption (see Supplement 3), the
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estimated rates of O2 and CO2 consumption by the symbionts are
9.3µmol O2 g

−1 h−1 and 15.55µmol CO2 g
−1 h−1, respectively.

This directly translates into equations νO2/νH2S = y(2−1.5x) =
9.3/6.75= 1.38 and νCO2/νH2S = (1−y)(2−1.5x)= 15.55/6.75=
2.3, which yield x = −1.12, y = 0.375 and the corresponding
equation

H2S+ 1.12 S0 + 1.38 O2 + 2.3 CO2 + 3.42 H2O →

2.12 SO2−
4 + 2.3 CH2O+ 4.24 H+

.

This means that during the particular experiment reported by
Girguis et al. (2002) the Riftia symbionts probably oxidized not
only H2S but also a relatively large amount of stored zero-valent
sulfur to fix CO2, with 37.5% of this total pool of reduced sulfur
used for energy generation. This result is reasonable considering
that the sum of the O2 and CO2 consumption rates cannot be
larger than double the sulfide consumption rate if aerobic sulfide
oxidation is performed with H2S and SO2−

4 as the only reduced
and oxidized sulfur species, respectively (see Table S1A).

Energy Conservation Efficiency from
Stoichiometry
The energy conservation efficiency of autotrophic sulfur
oxidation can be calculated once the stoichiometry of the
generalized equation is known. First, we demonstrate this
calculation for Beggiatoa strain MS-81-6 analyzed above using
the traditional calculation approach and assuming standard
biochemical conditions. Substitution of x = 0 and of the �G0

f

values tabulated in Thauer et al. (1977) to Equations (10) and (11)
yields �G0

r (O2 red)= −829 kJ mol−1 and �G0
r (CO2 red)= 145

kJ mol−1. Subsequent substitution of these values together with
y = 0.825 obtained above to Equation (8) yields εI = 0.037.
This is consistent with the efficiency value of 0.038 obtained by
Nelson and Hagen (1995). The small discrepancy is most likely
due to the fact that Nelson and Hagen (1995) used �G0

f
(O2) = 0

kJmol−1 for the standard Gibbs energy of formation of O2, which
corresponds to O2 gas, while we used the value of 16.4 kJ mol−1,
which corresponds to dissolved O2.

Traditionally, the efficiency value of 0.037 is interpreted such
that Beggiatoa strain MS-81-6 conserves 3.7% of the energy
gained by aerobic sulfide oxidation into biomass. Based on our
analysis above (Equation 17), a more accurate interpretation is
that 0.037 is the product of the partial efficiencies of (i) ATP
generation by O2 reduction (εSO), (ii) ATP utilization for CO2

fixation (εu) and (iii) the transfer of ATP gained by O2 reduction
for CO2 fixation and thus not for cellular maintenance (εt). For
example, an assumption that Beggiatoa strain MS-81-6 uses ATP
exclusively for CO2 fixation and not for any other biochemical
reaction (εt = 1), and that its ATP utilization for CO2 fixation
occurs without loss of energy (εu = 1), would imply that the
efficiency of ATP generation by O2 reduction (see Equation 14)
in this strain is εSO = εI/(εtεu) = 0.037.

In the second example we analyse the difference between
the efficiency values calculated according to the traditional (εI;
Equation 8) and our new approach (εII; Equation 30). We do this
for aerobic thiosulfate oxidizers Sulfurimonas denitrificans and

Thioalkalivibrio versutus, which fix CO2 using the rTCA cycle
(Hügler et al., 2005) and the Calvin cycle, respectively. Based on
the substrate consumption rates reported by Hoor (1981) and
Sorokin et al. (2001) we calculated x = 0 and y = 0.833 for
S. denitrificans and x = 0 and y = 0.844 for T. versutus (see
Supplement 4). Using these values in the traditional approach,
we obtained the efficiency of εI = 0.0314 for S. denitrificans and
εI = 0.0289 for T. versutus, whereas our new approach gave
values εII = 0.0799 for S. denitrificans and εII = 0.0796 for
T. versutus.

We see that our new approach yields substantially larger
efficiency values than the traditional approach. This is generally
because the new approach accounts for the fact that CO2

reduction by SOB is performed in two separate steps (i.e., the
reduction of an electron carrier via reverse electron transport
followed by the reduction of CO2 coupled to the electron
carrier oxidation in the respective CO2 fixation pathway)
and because the theoretical energy requirements of these two
steps [�Gr(RET) + �Gr(CO2 fix); see Equation (30)] are
substantially larger than the theoretical energy requirement of
the net CO2 reduction reaction [�Gr(CO2 red); see Equation
(8)] considered in the traditional approach. Additionally we
see that the relative difference between the efficiency values of
the compared SOB depends on the choice of the approach,
particularly if the SOB employ different CO2 fixation pathways.
In this specific case the efficiency εI of S. denitrificans is by
about 8% larger than that of T. versutus, whereas their εII values
are practically identical. This is related to the fact that the
�Gr values of the RET and CO2 fixation reactions (Equation
30) depend on the type of the electron carriers involved in
the CO2 fixation pathways, which differ between the rTCA
and Calvin cycle (compare Equations 18 and 21 vs. Equations
24 and 27).

As a last point, we illustrate an additional insight that can be
gained from the factorized form of εII (see Equation 35). The
fact that S. denitrificans and T. versutus have practically identical
values of the overall efficiency εII might be misinterpreted by
concluding that their corresponding partial efficiencies εSO, εRET,
εCO2, and εt are also the same. However, we know that the
efficiency εCO2 of the rTCA cycle used by S. denitrificans to
fix CO2 is almost two-fold larger than that of the Calvin cycle
employed by T. versutus. This implies that at least one of the
efficiencies εSO, εRET, and εt must differ between the two SOB.
By calculating the minimum values of these efficiencies using
Equations (35–37) we found that all of them are higher for T.
versutus (εSO,II,min = εt,II,min = 0.1030 and εRET,II,min =

0.052) than for S. denitrificans (εSO,II,min = εt,II,min = 0.0818
and εRET,II,min = 0.051). This suggests that T. versutus has
a more efficient sulfur oxidation pathway (larger εSO or εRET)
or lower cellular maintenance requirements (larger εt) than S.
denitrificans. It should be noted that this conclusion can only
be drawn based on our new calculation approach but not based
on the traditional approach. Therefore, our new approach, and
particularly the value of εSO,II,min, is better suited to identify
differences between sulfur oxidation pathways among SOB,
particularly if the compared SOB employ different CO2 fixation
pathways.
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Sensitivity of the Calculated Efficiency toward
Reactant Concentrations
Until now our calculations assumed standard biochemical
conditions. However, as pointed out by Nelson and Hagen (1995)
and Kelly (1999), the actual experimental conditions should be
used when calculating the �Gr values for the energy gaining and
energy conserving reactions. In the literature on SOB activity
these concentrations are in most cases not reported or not well
constrained. Thus, it is important to evaluate possible errors
introduced by this uncertainty in the calculation of the energy
conservation efficiency. This is achieved through sensitivity
analysis.

To perform this analysis, we varied the concentration of one
of the reactants between 1M and 1 nM, or the pH between
2 and 12, while keeping the other reactant concentrations as
well as the stoichiometry of the reaction mediated by an SOB
unchanged. In our formalism the variations of the reactant
concentrations and pH are captured in the variation of the
quotients Q (see Equations 12, 13, 23, and 29). As examples,
we used the aerobic sulfide oxidizing bacteria Thermithiobacillus
tepidarius and Halothiobacillus neapolitanus, which employ the
Calvin cycle for CO2 fixation, and the denitrifying thiosulfate
oxidizing bacteria Sulfurimonas hongkongensis and Sulfurimonas
denitrificans, which employ the rTCA cycle for CO2 fixation.

This analysis revealed that the calculated efficiency values
are most sensitive to the concentrations of CO2 (εI) and of
the electron carriers such as NAD+/NADH (εSO,II,min), whereas
the sensitivity toward the concentration of the terminal electron
acceptor (TEA) is lowest (Figure S2). Sensitivities toward pH,
the reduced sulfur compound (e.g., S2O

2−
3 or H2S) and SO2−

4
(Figure S2) as well as toward temperature between 0 and 30◦C
(data not shown) are intermediate but also rather small. For
instance, for the aerobic sulfide oxidizing bacteria T. tepidarius
and H. neapolitanus a change in the concentration of NAD+ by
three orders of magnitude would change the calculated value of
εSO,II,min by ∼14%, while the same change in the concentration
of CO2 would change εI by ∼24%. In contrast the calculated
values of εSO,II,min and εI would only change by ∼4% if the
concentration of O2 changed by three orders of magnitude. The
errors introduced by uncertainties in the reactant concentrations
are similar for the denitrifying thiosulfate oxidizing bacteria S.
hongkongensis and S. denitrificans (Figure S2).

As the aim of this study is to compare efficiencies among
SOB, it is important to evaluate how the errors introduced by
the uncertainties in the reactant concentrations would affect this
comparison. To do this we considered two SOBwhose efficiencies
calculated at standard conditions differ, and determined the
change in the reactant concentrations required to make the
efficiencies equal. We illustrate the result on the same pairs of
aerobic and anaerobic SOB as above. When using the traditional
approach, the efficiency εI calculated for T. tepidarius would
become equal to that of H. neapolitanus if the former were
calculated with a 106-fold lower SO2−

4 concentration than the
standard concentration of 1M or at pH = 10 instead of pH =

7. In contrast, the difference in the SO2−
4 concentration or pH

would need to be considerably larger (∼1020-fold for SO2−
4 , or at

a pH≈11) to achieve the same effect for the efficiency εSO,II,min

calculated by our new approach (Figure S2A). Similar conclusion
can be drawn for S. hongkongensis and S. denitrificans (Figure
S2B) as well as for SOB that perform other types of autotrophic
sulfur oxidation (data not shown). We therefore conclude that,
although the sensitivities toward reactant concentrations are
similar for both approaches, our new approach is more robust
to resolve differences between SOB with respect to their energy
conservation efficiency if the calculations are affected by an
uncertainty in the concentrations of the reactants involved.

Efficiency of Autotrophic Sulfur Oxidation in
Different Strains of SOB
The reason for different efficiencies of autotrophic sulfur
oxidation is generally assumed to lie in the different biochemical
pathways that the SOB employ for the oxidation of the reduced
sulfur compound (e.g., Hagen and Nelson, 1997; Kelly, 1999). To
gain more insights into this possible relationship, we compiled
literature data on cultivated strains of SOB, calculated their
energy conservation efficiencies, and listed them together with
the available information on the identified sulfur oxidation and
carbon fixation pathways and selected specific enzymes. To
follow the outcomes of the above analyses, we used εSO,II,min to
compare the SOB. Specifically, we first calculated the complete
stoichiometry of sulfur oxidation coupled to TEA and CO2

reduction based on rates reported in the literature. As for
most SOB these rates were obtained under not well-constrained
experimental conditions, we could not include the concentration
dependency of the �Gr values (in the form of the reaction
quotient Q) in our efficiency calculations. Thus, to still make a
comparison possible, we chose to calculate the efficiency values
at standard biochemical conditions.

The results of this compilation are summarized in Table 1

and Figure 2. First, they show that the efficiencies cover a
wide range with no apparent clustering according to the SOB
phylogeny. Furthermore, they suggest possible links between
the efficiency, the sulfur oxidation pathway and/or the type
of TEA reductase. This is quite astonishing considering that
the efficiency values were calculated from rate measurements
performed under different experimental settings (e.g., batch
reactor studies, continuous cultivation) and that coherent data
on both stoichiometry and biochemical pathways employed by
SOB are rather limited.

With regard to aerobic thiosulfate oxidizing bacteria, for
which the available literature data is most abundant, our analysis
shows that autotrophic thiosulfate oxidation measured under
aerobic conditions appears to be performed with the highest
efficiency if the SOB are facultatively anaerobic (indicated by
asterisk in Figure 2), a trend noticed already, for instance, by
Kelly (1982). Concerning the pathways of thiosulfate oxidation,
SOB equipped with the enzyme reverse dissimilatory sulfite
reductase (rDSR), which is involved in the branched pathway
(red arrows in Figure 1), tend to have the highest efficiencies
among the aerobic thiosulfate oxidizers, whereas those relying on
the Sox pathway (green arrows in Figure 1) appear to have the
lowest efficiencies. In contrast, no clear patterns are apparent for
the SOB employing the SI4 pathway (blue arrows in Figure 1),
whose efficiencies span from low to high values. The same is true
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FIGURE 2 | Energy conservation efficiencies of SOB performing

aerobic thiosulfate oxidation (A), thiosulfate oxidation coupled to

denitrification (B) and aerobic sulfide oxidation (C). Values were

calculated using experimental data in the literature (see Table 1) based on the

traditional approach (εI) and our new approach (εSO,II,min ). Asterisks in panel A

indicate that the SOB are facultatively anaerobic.

for the APS pathway for sulfite oxidation, which can be part of
both the branched and SI4 pathways (Figure 1).

Aerobic sulfide oxidizing bacteria employing pathways that
involve oxidation of zero-valent sulfur (black arrows in Figure 1)
to sulfite via rDSR (red arrows in Figure 1) have the highest
efficiency (Table 1). This is similar to the pattern identified

for the aerobic thiosulfate oxidizing bacteria. Most strikingly,
extremely high efficiencies of energy conservation are found
among aerobic sulfide oxidizers that live in symbiotic association
with invertebrates such as the Riftia tubeworm. Note that these
high values are not the consequence of the fact that they were
calculated at standard biochemical conditions. Specifically, the
concentrations of the substrates and products involved would
have to be in the kilomolar and picomolar range, respectively,
to obtain efficiency values comparable to those of the other,
less efficient SOB. Since it is unlikely that the host regulates
the substrates and products in such an extreme range of
concentrations, the high efficiency values of the symbiotic SOB
are realistic.

With respect to SOB that couple thiosulfate oxidation to
denitrification, the data available in the literature is very limited.
Nevertheless, the present data indicate that SOB equipped
with a membrane-bound nitrate reductase system (Nar) have
in general high efficiencies whereas those relying exclusively
on a periplasmic nitrate reductase system (Nap), namely S.
denitrificans, have a very low energy conservation efficiency
(Table 1).

Stoichiometry from the Efficiency of Energy
Conservation and Limited Rate Measurements
Most stoichiometries and efficiency values listed in Table 1

and Table S2 were calculated based on rate measurements
during which the studied SOB oxidized the sulfur compound
completely to sulfate. However, for many SOB main products
of sulfur oxidation may include also other sulfur species,
such as zero-valent sulfur (e.g., Ghosh and Dam, 2009). To
calculate the stoichiometry of autotrophic sulfur oxidation at
an arbitrary S0:SO2−

4 production ratio, one generally needs to
provide gross rates of three reactants involved. However, accurate
quantification of three gross rates is often experimentally difficult.
Here we demonstrate that the stoichiometry of autotrophic sulfur
oxidation can be estimated if the consumption/production rates
of only two reactants involved are measured, provided that
certain additional conditions characterizing the activity of an
SOB are known.

Our framework shows that the stoichiometry is completely
determined by the values of the parameters x and y. To find
these values, two constraints are needed. The first constraint
is obtained by measuring the rates of two reactants involved,
whereby their ratio directly provides a relationship between x
and y, as follows from the generalized mass balanced equations
in Table S1. The second constraint is obtained from the
knowledge of how the CO2:TEA consumption ratio (essentially
the parameters y; see Table S1) or the energy conservation
efficiency (e.g., εII) varies depending on the S0:SO2−

4 production
ratio, i.e., on the parameter x. Unfortunately, such information is
presently not available because, to the best of our knowledge, the
complete stoichiometry of autotrophic sulfur oxidation has never
been measured over variable x in an isolated SOB. Therefore, to
illustrate the general approach based on our generic framework,
we first assume that either the CO2:TEA ratio or the efficiency
εII is independent of x and equal to the value calculated
from the known stoichiometry at x = 0 (see Table 1). We
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use the aerobic sulfide oxidizing Beggiatoa str. MS-81-6 as an
example.

Based on the experimental data reported by Nelson et al.
(1986) we showed above that this SOB performs aerobic sulfide
oxidation to SO2−

4 (i.e., x = 0) with the CO2:O2 consumption
ratio of 0.21, O2:�H2S ratio of 1.65 and, when accounting
for the energy requirements of the CO2 fixation pathway,
with the efficiency of εII = 9.60% (Table 1 and Table S2). Let
us now suppose that in a separate experiment the O2:�H2S
consumption ratio by this strain would be 0.5. What would be
the corresponding stoichiometry?

As follows from Table S1A, the generalized stoichiometric
coefficients must be related as νO2/νH2S =O2:�H2S= 0.5, which
yields the first relationship between x and y, namely y(2−1.5x)=
0.5. If we additionally assume that the energy conservation
efficiency εII is independent of x and equal to the value at x = 0
(i.e., 9.60%; Table 1), the second relationship between x and y
is provided by Equation (30). By solving these two equations
numerically (implemented in a script written in R available on
the internet at http://nanosims.geo.uu.nl/SOX; Supplement 1) we
obtained x = 0.920 and y = 0.807 and thus the stoichiometry

H2S+ 0.5 O2 + 0.12 CO2 →

0.08 SO2−
4 + 0.92 S0 + 0.12 CH2O+ 0.8 H2O+ 0.16 H+

.

As mentioned above and applied in the work of Nelson et al.
(1986), the alternative approach assumes that the growth yield
per mole of TEA utilized is independent of x and equal to the
value determined at x = 0 (i.e., CO2:O2 = 0.21). Using the
generalized stoichiometric coefficients (see Table S1), this implies
νCO2/νO2 = (1 − y)/y = 0.21 and thus the value of y = 0.826.

Combination of this value with the first constraint (i.e., y(2–
1.5x) = 0.5; see above) then yields x = 0.929 and thus the
stoichiometry

H2S+ 0.5 O2 + 0.11 CO2 →

0.07 SO2−
4 + 0.93 S0 + 0.11 CH2O+ 0.82 H2O+ 0.14 H+

.

We see that the efficiency-based and CO2:TEA-based
approach give a very similar stoichiometry of the overall sulfide
oxidation reaction, suggesting that they are almost equivalent.
To verify this, we performed the same calculations over all
possible values of x as well as for different aerobic and anaerobic
SOB. If the two approaches were equivalent, the calculated
CO2:TEA consumption ratios would not change with x. As
shown in Figures 3A,B, this is approximately the case, since
the calculated CO2:TEA ratios vary by less than ∼20% over the
complete interval of x. Additionally, this variability is decreased
if the reactant concentrations are decreased from values at
standard biochemical conditions to a more environmentally
relevant range (compare solid and dashed lines in Figures 3A,B).
This means that the possible error made when determining the
stoichiometric coefficients (for an arbitrary value of x) based on
the CO2:TEA-based approach or the efficiency-based approach
will be relatively small (<20%).

The assumption that either the CO2:TEA ratio or the
efficiency εII is independent of x is likely not generally applicable
to all SOB. Indeed, Høgslund et al. (2009) showed that sulfide
oxidation to S0 in bundles of Thioploca spp. is completely
decoupled from CO2 fixation (CO2:TEA = 0), implying y = 1
and εII = 0 at x = 1. It is therefore likely that in some SOB
the variability of the CO2:TEA ratio or of the efficiency εII with

FIGURE 3 | CO2:TEA ratios in selected SOB calculated over the

complete range of S0:SO2−

4
production ratios (represented by

0<x<1). Calculations were done for two aerobic (A,C) and two anaerobic

(B,D) SOB at standard biochemical conditions (solid lines) and with all

reactant concentrations equal to 1mM and pH = 7 (dashed lines), assuming

that the energy conservation efficiency εII is constant (A,B) or linearly

decreasing from the maximum reached at x = 0 toward zero reached at

x = 1 (C,D).
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the parameter x is better approximated by a linear function that,
for instance, reaches a maximum at x = 0 and some other
value, such as zero, at x = 1. By assuming that this is the
case for the efficiency εII, we found that the calculated CO2:TEA
ratio also very closely follows a linear trend (Figures 3C,D). This
means that, again, the possible error made when determining the
stoichiometric coefficients (for an arbitrary value of x) based on
the CO2:TEA-based approach or the efficiency-based approach
will be very small.

Overall, these examples demonstrate how our framework
can be applied to calculate the stoichiometry of autotrophic
sulfur oxidation reactions from two experimentally determined
rates (e.g., the consumption rates of the oxidant and of the
reduced sulfur species) at an arbitrary S0:SO2−

4 production ratio.
Prerequisite for such calculations is the knowledge of a function
that describes the dependency of the CO2:TEA yield or of the
energy conservation efficiency on the S0:SO2−

4 production ratio
parameterized by x. When, due to the lack of experimental data,
these functions need to be approximated based on experiments
performed at only one or two values of x, the results obtained
from the CO2:TEA-based approach and the efficiency-based
approach will be very similar.

Discussion

Calculation of Energy Conservation Efficiency in
SOB
The aim of calculating the energy conservation efficiency is to
gain insights into the relationship between the ATP requirements
and ATP yields of microbially mediated processes (Baas-Becking
and Parks, 1927; Hoor, 1981). For chemolithoautotrophic sulfur
oxidation the efficiency is calculated as the ratio between the
Gibbs free energy required to fix CO2 and the Gibbs free
energy gained from the oxidation of the reduced inorganic
sulfur compound (Kelly, 1982, 1990). However, this ratio is
generally difficult to interpret because of the complexity of
the ATP-consuming and ATP-producing pathways involved.
Specifically, ATP is gained during the transfer of electrons from
the reduced sulfur compound to the TEA (e.g., O2 or NO−

3 ) in
the diverse sulfur oxidation pathways (Figure 1) and additionally
during substrate-level phosphorylation (e.g., in the APS pathway,
Figure 1). In contrast, ATP is required during the reverse
electron transport from the sulfur compound to the electron
carrier such as NAD+ (Elbehti et al., 2000), the reduction of CO2

by the electron carrier in the carbon fixation pathway, and for
all other biochemical pathways associated with cell maintenance.
Since each of the enzymes involved in the diverse steps of sulfur
compound oxidation has a specific electron acceptor in the
electron transport chain, the amount of proton-motive-force, and
thus ATP, generated per electron transferred depends on the level
at which the electron enters the transport chain and the type of
TEA reductase. Similarly, the ATP requirement of the electron
carrier reduction depends on the level at which electrons enter
the transport chain. Last but not least, ATP requirements of the
CO2 fixation also depend on the specific carbon fixation pathway
used.

The traditional calculation approach of the energy
conservation efficiency is based on the Gibbs free energy of
the net reactions involved in energy consumption (Equation
6) and energy generation (Equation 3) (Nelson and Hagen,
1995; Kelly, 1999). Since this approach does not consider the
above-mentioned complexity of the pathways involved in the
autotrophic sulfur oxidation, especially the influence of the CO2

fixation pathway and reverse electron transport reactions, it
cannot identify which biochemical pathway or reaction has the
highest impact on the calculated efficiency. In contrast, our new
approach makes this differentiation at least partially possible.
Specifically, the calculated value of εII represents the overall
energy conservation efficiency of sulfur oxidation that accounts
for the efficiency of the CO2 fixation pathway employed by
the SOB. Additionally, by formulating this overall efficiency
as a product of partial efficiencies of sulfur oxidation coupled
to TEA reduction (εSO), energy utilization for reverse electron
transfer and CO2 fixation (εRET and εCO2 ) and the “transfer
efficiency” (εt) (see Equation 35 and Figure S1B), our new
approach makes it possible to constrain the range of values
that these partial efficiencies can have. Of particular utility is
the minimum efficiency of sulfur oxidation coupled to TEA
reduction (εSO,II,min), which allows the comparison of SOB
with respect to the efficiency of their sulfur oxidation pathways
independent of the type and efficiency of their CO2 fixation
pathway.

Variability of Energy Conservation Efficiencies
Amongst SOB
Possible links between the energy conservation efficiency and
pathways of sulfur oxidation have been extensively discussed
before (Kelly, 1982, 1999, 2003; Nelson and Hagen, 1995;
Hagen and Nelson, 1997). By combining the efficiency values
calculated by our new approach with additional information
derived from diverse research approaches (e.g., physiological
studies, enzyme assays and genome sequencing), our analysis
provides new insights in this discussion. Specifically, it identifies
the importance of rDSR and of the TEA reduction step and
questions the role of the APS pathway.

Role of rDSR
As noticed by Kelly (1982), facultative anaerobic SOB appear
to generally have a higher energy conservation efficiency than
obligate aerobic SOB, a trend clearly supported also by our results
(Figure 2). This pattern can be understood by noticing that most
facultative anaerobic thiosulfate oxidizing SOB are equipped with
the “branched” pathway for thiosulfate oxidation (red arrows
in Figure 1; Table 1), which is characterized by a truncated Sox
system. In SOB that possess a Sox system that is not truncated
(green arrows in Figure 1) a thiosulfate-oxidizing multi-
enzyme (TOMES) complex catalyzes the complete oxidation of
thiosulfate to sulfate, whereby the oxidation of the intermediate
zero-valent sulfur is catalyzed by the soxCD enzymes of this
complex (e.g., Ghosh and Dam, 2009). However, these enzymes
are missing in the branched pathway and, instead, the transiently
stored zero-valent sulfur is oxidized, after its reactivation to
glutathione persulfide (GSSH), by other enzymes such as rDSR
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or the oxygen-dependent sulfur dioxygenase (SDO) (Rohwerder
and Sand, 2003). While the complete TOMES complex directly
channels all electrons derived from thiosulfate oxidation into the
electron transport chain at the level of cyt c (Kelly et al., 1997),
rDSR catalyzes the cytoplasmic oxidation of GSSH to sulfite
and donates the 6 electrons into the electron transport chain
eventually at the level of quinone (Holkenbrink et al., 2011).
This rDSR-mediated mechanism might therefore provide more
ATP and thus eventually lead to a higher energy conservation
efficiency as compared to the Sox pathway.

rDSR is suspected to be the most ancient enzyme equipment
of SOB and was probably employed by anaerobic anoxygenic
phototrophs already in the early Archean era (Meyer and Kuever,
2007). The fact that rDSR is only conserved in extant facultative
anaerobic SOB (and phototrophs) might therefore explain the
apparent link between the high energy conservation efficiency
and the capability of an anaerobic life style.

Role of the Terminal Electron Acceptor Reduction

Step
The importance of the type of TEA reductase for the energy
conservation efficiency is suggested by our data compiled
for the denitrifying SOB (Table 1). Namely, Sulfurimonas

denitrificans exclusively relies on a periplasmically oriented
nitrate reductase system (Nap) and does not possess a
membrane-bound cytoplasmically oriented nitrate reductase
system (Nar) (Sievert et al., 2008). Nitrate oxidation via Nap
was shown not to contribute to the generation of proton-
motive-force and thus ATP (Stewart et al., 2002), which is
consistent with the rather poor energy conservation efficiency
of this Epsilonproteobacterium. Most other known important
denitrifying SOB, such as the large marine Beggiatoa and
Thioploca, are equipped with a membrane-bound nitrate
reductase system (Nar) (e.g., Crossman, 2007), which oxidizes
nitrate on the cytoplasmic side of the membrane and thus
contributes to the generation of proton motive force (Simon
et al., 2008; Simon and Klotz, 2013). This is consistent with their
generally higher energy conservation efficiency (Table 1). Thus,
in denitrifying SOB the enzymes directly involved in TEA (NO−

3 )
reduction appear to have at least a similar impact on the energy
conservation efficiency as the sulfur oxidation pathway.

Role of the APS Pathway
The role of the pathway of sulfite oxidation to sulfate, where
the sulfite is derived, e.g., from sulfide oxidation by rDSR
(Figure 1), has been extensively discussed in the past (e.g., Kelly,
2003). This oxidation step can be mediated either by sulfite:cyt
c:oxidoreductase (SOAR) or via the APS pathway (Figure 1).
Depending on the pathway of sulfur oxidation, SOARs are
either associated with the TOMES complex or are complex-
independent (Figure 1). While SOARs have been identified in
all sulfite oxidizing free-living SOB, the APS pathway appears
to be an “extra” pathway that is not crucial for the operation
of complete sulfur oxidation (Kappler and Dahl, 2001). It is
known that the APS pathway allows additional ATP gain via
substrate level phosphorylation before the electrons enter the
electron transport chain (Aminuddin, 1980), and its use should

thus lead to a higher overall energy conservation efficiency.
However, we did not identify a clear link between the efficiency
and the presence of the APS pathway in our present data
(Table 1), suggesting that the electron transport processes are
more important than this substrate level phosphorylation step.

Nevertheless, the presence of the APS pathway might still be
the cause of variations in efficiency among closely related species,
such as Beggiatoa spp., as suggested by Nelson and Hagen (1995)
and Hagen and Nelson (1997). Also, it has to be considered that
the APS pathway in the anoxygenic phototroph Allochromatium
vinosum only contributes to energy generation at high irradiances
(Sánchez et al., 2001), which correspond to saturating availability
of TEA and sulfur compound in chemolithotrophic SOB when
sulfite oxidation via SOR might become the rate limiting step.
Thus, also in SOB the APS pathway might operate only under
certain growth conditions. It was not shown for all SOB listed
in Table 1 that the APS pathway was active during the rate
measurements, which might disguise a possible link between the
calculated efficiency and the APS pathway.

Sulfur Oxidation at a Variable
Sulfate-to-Zero-Valent-Sulfur Product Ratio
An interesting outcome of our analysis was the way to calculate
the stoichiometry of autotrophic sulfur oxidation at a variable
S0:SO2−

4 production ratio from the rates of only two reactants
involved (see Section Stoichiometry from the efficiency of energy
conservation and limited rate measurements). This calculation
relied on an additional information about the activity of the SOB,
namely on the relationship between the S0:SO2−

4 production
ratio (parameter x) and the energy conservation efficiency or
the CO2:TEA consumption ratio. Ideally, this relationship should
be determined experimentally; however, since such data are
presently not available for an isolated SOB, our calculation
assumed two specific forms of this relationship: a constant or a
linearly decreasing or increasing function of x. In the following
we clarify the biochemical interpretation and limitations of these
assumptions.

The assumption of a constant CO2:TEA consumption ratio is
equivalent to the assumption that the amount of ATP generated
per electron transported to the TEA and the amount of ATP
consumed per electron transported to the electron carrier (e.g.,
NAD+) are independent of the origin of the electrons, i.e.,
whether the electrons are derived from the first (S0 production)
or second (S0 to SO2−

4 ) oxidation step. This is because the rate
of TEA reduction linearly correlates with the rate of electrons
transported (e.g., 4 electrons per O2). In contrast, the assumption
of a constant energy conservation efficiency implicitly assumes
that both the first (reduced sulfur compound to S0) and second
(S0 to SO2−

4 ) oxidation steps have the same efficiency, i.e., the
amount of ATP gained from TEA reduction and required for
the electron carrier reduction per kJ of the calculated Gibbs free
energy is the same for both oxidation steps.

The assumption of a linear dependency of the CO2:TEA
consumption ratio on x considers that the amount of ATP
generated during electron transport to the TEA and the amount
of ATP required during electron transport to the electron carriers
depend on the origin of the electrons. Since the transported
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electrons derived from each oxidation reaction will have a specific
constant potential to generate ATP, a linear dependency of the
CO2:TEA ratio on x will result from the linear “mixing” of
the electrons originating from the first and second oxidation
step. Similarly, the assumption of a linear dependency of the
efficiency on x is a consequence of the linear “mixing” of
the efficiencies specific for the complete and incomplete sulfur
oxidation reactions.

It should be noted that a major shortcoming of the CO2:TEA-
based approach is that it does not consider the experimental
conditions, such as reactant concentrations or the effect of the
oxygen concentration on the efficiency of the CO2 fixation
pathway (εCO2). These conditions are expected to affect the
ATP yield and ATP consumption per transported electron. In
contrast, the efficiency-based approach does allow to account
for this. Specifically, if the conditions were well-constrained
during the experimental determination of the relation between
the efficiency and x, and during the independent measurement of
two reactant rates, our framework would make it possible, at least
theoretically, to precisely predict the complete stoichiometry of
autotrophic sulfur oxidation, and thus primary productivity, at
any experimental condition.

Interpretation of Reactant Fluxes in the
Environment
In mixed microbial communities different processes that utilize
the same reactants often spatially overlap, which hampers our
ability to interpret the measured net consumption/production
rates of the reactants involved. To illustrate how our framework
can aid such interpretation, we considermicrobial mats inhabited
by one dominant SOB in addition to other bacteria. In such
mats, it is often observed that, in the zone where sulfide is
oxidized with oxygen, the ratio between the steady-state O2 and
�H2S consumption rates is 2 (e.g., Jørgensen et al., 2010). What
does this ratio suggest about the S, O, and C cycling in the
system?

Knowing that under steady-state conditions SOB exclusively
produce SO2−

4 and no S0 (Nelson et al., 1986), the O2:�H2S ratio
of 2 suggests complete aerobic sulfide oxidation to sulfate (e.g.,
Jørgensen et al., 2010). Although this interpretation is correct,
it ignores carbon cycling within the sulfide oxidation zone. If
carbon cycling is taken into account, as it should be because the
SOB that mediate the aerobic sulfide oxidation must also grow,
this interpretation must be reevaluated.

Our framework implies that the general stoichiometry of
aerobic sulfide oxidation coupled to CO2 fixation under steady
state is (Table S1A)

H2S+ 2y O2 + 2(1− y) CO2 + 2(1− y) H2O →

SO2−
4 + 2(1− y) CH2O+ 2H+

.

Thus, the O2:�H2S ratio due to the SOB activity is 2y, which
is generally lower than 2 because 0<y<1 (Table S2). This
means that in the mixed community part of the observed O2

consumption must be due to another kind of activity. A plausible

candidate is aerobic respiration according to the stoichiometry

2(1− y) O2 + 2(1− y) CH2O →

2(1− y) CO2 + 2(1− y) H2O.

This shows that when the two processes occur simultaneously the
O2:�H2S ratio of 2 can be achieved only if the stoichiometric
coefficient for CO2 in the SOB-driven reaction is the same as that
in the aerobic respiration reaction [i.e., 2(1−y)]. Thus, assuming
that the steady-state conditions are met, the O2:�H2S ratio of 2
suggests that the biomass built up by the dominant SOB through
aerobic sulfide oxidation is completely recycled within the sulfide
oxidation zone via aerobic respiration. Note that this argument is
independent of y and thus of the energy conservation efficiency
of the dominant SOB. The efficiency only determines the fraction
of the O2 flux that is used for organic carbon recycling.

This analysis can be extended to cases when the O2:�H2S
consumption ratio in the sulfide oxidation zone is different
from 2 while the stoichiometry of the SOB activity remains
unchanged. Specifically, O2:�H2S<2 would suggest export of the
SOB-generated biomass out of the sulfide oxidation zone (e.g.,
for degradation by anaerobic processes), whereas O2:�H2S>2
would indicate import of an external reductant (e.g., organic
carbon) into, and its aerobic oxidation within, the zone.

Implications for Niche Differentiation among SOB
Past and present research on SOB revealed that (i) sulfur
oxidation pathways are highly diverse and characterized by a
degree of redundancy (Figure 1), (ii) the product of sulfide
oxidation can vary substantially (between S0 and SO2−

4 ) even in
one SOB dependent on growth conditions and phase, (iii) the
energy conservation efficiency of SOB varies widely (Table 1),
and (iv) SOB possessing one of the most ancestral enzymes
involved in sulfur oxidation (rDSR) appear to be also the most
efficient (Table 1). In the following we attempt a synthesis of
these findings in the context of niche differentiation among SOB.

To understand the apparent diversification toward lower
energy conservation efficiency, it needs to be realized that
efficiency is generally not the only measure of success in a given
environment. Generally, the success is determined by the growth
rate, which is a product of the substrate uptake rate and the
growth yield (i.e., the amount of organic carbon synthesized per
unit of substrate utilized). Since the growth yield and efficiency
are directly related (as follows from Table S1 and Equations
8 and 30), being efficient is only one of the possibilities for
being successful. If organisms compensate their inefficient energy
conservation by speed with which they utilize the substrate, they
can be equally or even more successful than the efficient ones
(e.g., Sorokin and Kuenen, 2005). These strategies are, however,
likely dominant only in environments with unlimited substrates.

The situation is different in environments where the substrates
are limited, e.g., because of a limited external supply. In the
context of SOB this can occur if the flux of the reduced sulfur
compound (Sred) or of the TEA into the sulfur oxidizing zone
is capped, e.g., by the rate of diffusion or by the substrate
concentration in the seeping water delivering the substrate
through advection. Under such circumstances, the flux of the
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external substrate supply will define the maximum substrate
uptake rate. Ignoring the role of other phenotypes such as
motility, this implies that the success of a specific SOB in the
sulfur oxidizing zone will depend only on its energy utilization
efficiency.

A possible strategy for an SOB to become successful under
such circumstances is to match its substrate uptake stoichiometry
to the TEA:Sred ratio fixed by the environment. Such an SOB
will utilize the available substrates completely, leaving nothing for
potential competitors. Table S1 and Equation (30) show that this
can be achieved essentially by “adjusting” two parameters: y, and
thus the energy conservation efficiency, and x, i.e., the S0:SO2−

4
product ratio. Which of the parameters is “adjusted” depends on
the time-scale at which the environmental setting (the TEA:Sred
ratio) varies.

Specifically, a long-term stable environment with a low
TEA:Sred ratio should select for an SOBwith a high efficiency, and
vice versa. This could, for example, provide a possible explanation
why SOB living in symbiotic association with invertebrates are
highly efficient (Table 1). Specifically, symbiotic SOB need to
compete with the host for O2 and thus likely face O2 limitation,
which requires them to have evolved highly efficient substrate
utilization. On the other hand, they can “afford” to be highly
efficient because they do not have to retain flexibility in the
presumably stable environment regulated by the host.

In contrast, environments with short-term TEA:Sred
fluctuations should select for SOB that possess mechanisms for
rapid optimization of the substrate utilization stoichiometry.
Phenotypic traits operating on short time-scales, such as motility
coupled to chemotaxis or the ability to store TEA (nitrate),
will likely play a role. However, another important mechanism
could be the ability to perform sulfur oxidation at a variable S0:
SO2−

4 ratio. Our framework formulates this ability through the
parameter x while the overall stoichiometry of the autotrophic
sulfur oxidation reaction is additionally dependent on the
parameter y. This makes it possible to predict the optimal range
of sulfur oxidation efficiencies that an SOB should have to be
successful in a given fluctuating environment. Specifically, this
range should be such that the corresponding TEA:Sred utilization
ratios during the incomplete (at x = 1) and complete (at
x = 0) oxidation of Sred would match the range of the TEA:Sred
fluctuations imposed by the environment.

To illustrate this, we assume that the O2:�H2S flux ratio
available in the environment rapidly fluctuates between 0.45 and
1.7. To optimally utilize the available O2 and total sulfide (�H2S)
pool at all times, the SOB should vary the product of its sulfide

oxidation between two extremes: S0 when the O2:�H2S ratio
reaches 0.45, and SO2−

4 when the O2:�H2S ratio reaches 1.7.
As follows from Table S1, the O2:�H2S ratio is equal to y(2-
1.5x), which yields y = 0.9 to satisfy the condition O2:�H2S =

0.45 at x = 1 (incomplete sulfide oxidation) and y = 0.85
to satisfy the condition O2:�H2S = 1.7 at x = 0 (complete
sulfide oxidation). Assuming standard conditions and Calvin
cycle, the efficiency of the most successful SOB should therefore
vary between εII = 4.3% and εII = 8% for the incomplete
and complete aerobic sulfide oxidation, respectively, with the

corresponding stoichiometries varying between

H2S+ 0.45 O2 + 0.05 CO2 → S0 + 0.05 CH2O+ 0.95 H2O

and

H2S+ 1.7 O2 + 0.3 CO2 + 0.3 H2O →

SO2−
4 + 0.3 CH2O+ 2 H+

.

There are possibly other strategies that SOB living in
fluctuating environments employ to become successful,
including minimization of S0 production to prevent cell bursting
(if S0 is stored intra-cellularly) or maximization of the growth
yield. Although they can be explored within our theoretical
framework, their thorough theoretical analysis would go beyond
the scope of this study. Nevertheless, the examples and analyses
discussed above demonstrate that the concepts and equations put
forward in this study provide a generic theoretical framework
that can help researchers gain new insights into the activity of
sulfur oxidizing bacteria in a wide range of environments and
their niches.
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