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Abstract:We report some fundamental gamma-ray shielding
properties and individual transmission factors (TFs) of five
distinct glass samples with a nominal composition of
xSb2O3·(40 − x)PbO·60B2O3·0.5CuO and (where; 0 ≤ x ≤
40mol%). Phy-X/PSD and MCNPX (version 2.7.0) Monte
Carlo code are utilized to determine several critical para-
meters, such as cross-sections, attenuation coefficients,
half and tenth value layers, build-up factors, and TFs. A
general transmission setup is designed using basic require-
ments. Accordingly, TFs are evaluated for several medical
radioisotopes. Next, the gamma-ray shielding parameters
and TFs are assessed together in terms of providing the

validity of the findings. Our results showed that there is a
positive contribution of increasing Sb2O3 amount in the
glass matrix owing its direct effect to the density increment
as well. This positive effect on gamma-ray shielding proper-
ties is also observed for decreasing mean free path values
from S1 to S5 samples. The exposure build-up factor (EBF)
and energy absorption build-up factor (EABF) values,
increasing the quantity of Sb2O3 supplementation, resulted
in a general reduction in EBF and EABF values (i.e., from
0.5 to 40mfp). When the quantity of Sb2O3 rises from S1 to
S5, the collision rate of incoming gamma rays in glass samples
increases significantly. The TF figures reveal that S5 showed
the least transmission behavior across all the above-men-
tioned studied glass thicknesses. It can be concluded that
increasing the Sb2O3 additive is a beneficial and monotonic
technique, when the gamma-ray shielding qualities or TF
values must be further enhanced.

Keywords: Sb2O3/PbO/B2O3 glasses, Phy-X/PSD, MCNPX,
radiation shielding

1 Introduction

Radiation shielding is not a matter of choice but rather a
strictly regulated legal procedure. Selecting the most
appropriate shielding barriers is also a very significant
necessity, even though the functioning of this process
is achievable with the enlightened knowledge of the
employees and the society [1,2]. This is because ionizing
radiation is being used more often in scientific and tech-
nological endeavors as well as in the treatment of disease
in humans. The benefits of this radiation type are being
employed in energy production, radiotherapy, medical
diagnostics, nuclear power, and other industrial processes.
Time, distance, and shielding are the three primary concepts
in radiation protection. Increasing a shielding material’s
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capacity to soak up various forms of ionizing radiation [3]
might improve its effectiveness. The most effective shielding
materials have often been made of lead (Pb). Novel targeted
radioisotopes have led to the widespread use of radioisotope
therapy in nuclear medicine clinics, especially for the treat-
ment of cancer. It is important for nuclear medicine facilities
to have certain timing, distance, and shielding characteris-
tics in place to reduce radiation exposure to both staff and
patients [3,4]. These goals include increasing exposure to
radioactive sources among workers, patients, and the
public; keeping all radioisotope and radiopharmaceutical
activity under tight supervision; and preventing the spread
of contamination [5–7]. Because of these drawbacks,
researchers have been working hard to manufacture
next-generation shielding materials that could be an
improvement over the current crop [8]. Glass is a valuable
radiation barrier due to its ability to absorb gamma rays
and neutrons, as well as its transparency and simplicity of
compositional modification. Borate glasses are essential
optical materials owing to their low melting temperatures,
excellent transmittance, and good thermal stability [9].
Typically, they are used in the production of insulating
and dielectric materials. Adding transition metal ions to
their structure, however, results in semi-conductivity. Due
to their existence in two or more valence states, which
influences structural and optical properties [10–17], tran-
sition metals are widely employed in glasses at present. In
addition to optical and structural properties of borate
glasses, studies reported that their radiation shielding
properties are quite satisfactory as proportional to their
ratios when they are doped with transition metals [18–20].
Moreover, boron has neutron capture property and in addi-
tion to doping concrete with boron [21] and glasses also
benefited from this property. Studies related to the binary
glass that B2O3 forms when merged with PbO are mostly on
the investigation of structural properties [22]. However, the
unique property of PbO in respect to shielding gamma and
X-rays, and furthermore, boron’s success in capturing neu-
trons revealed that the glass structure that these two ele-
ments form together might have an important place in
radiation shielding. However, since the density of the final
composition would be relatively lower compared to PbO,
there are studies in the literature on the enrichment of glass
by doping with different elements and especially improve-
ment of the density is encountered [23,24]. Glasses con-
taining heavy metal oxides such as Sb2O3 are frequently
being investigated due to their unique transmittance prop-
erties in the infrared region in the field of optics [25]. Studies
on the impact of glasses containing heavy metal oxides on
radiation shielding are increasing with each passing day
[26,27]. Studies on the impact of the presence of both PbO
and Sb2O3 oxide compoundswithin the same glass structure

on radiation shielding properties set forth interesting results
[28,29]. In this work, we provide the results of a complete
examination of the optically defined xSb2O3·(40 − x)PbO·60-
B2O3·0.5CuO (where, 0 ≤ x ≤ 40mol%) glass systems. This
study’s results provide insight into how the addition of
Sb2O3 to the glass compositions under study led to a propor-
tionate increase in absorption, which might be valuable in
assessing the materials created in the cited article on a
larger scale.

2 Materials and methods

2.1 Glass characterization

Based on the previous research, seven samples of tung-
sten/barium/phosphate glasses having the chemical for-
mula xSb2O3·(40 − x)PbO·60B2O3·0.5CuO and (where, 0 ≤
x ≤ 40mol%) increments were chosen for this inquiry. A
previous study of this class of materials [30] examined
the parameters of gamma-ray absorption for a restricted
energy range. The TF factors are estimated in this study
by utilization of the gamma-ray energies of nuclear-type
radioisotopes. This research will provide essential informa-
tion for more practical applications by maintaining a much
higher level for the photon energy range that is investigated
in this research. This study takes into account several build-
up factors as well as other essential shielding properties,
both of which were omitted from earlier studies.

The following is a list of details regarding the glasses
that were examined:
• S1: 0.240740B + 0.385806O + 0.003974Cu + 0.36948Pb
(ρ: 5.00 g/cm3).

• S2: 0.200616B + 0.342811O + 0.003974Cu + 0.083118Sb
+ 0.369480Pb (ρ: 5.20 g/cm3).

• S3: 0.160493B + 0.299816O + 0.003974Cu + 0.166237Sb
+ 0.369480Pb (ρ: 5.30 g/cm3).

• S4: 0.120370B + 0.256821O + 0.003974Cu + 0.249355Sb
+ 0.369480Pb (ρ: 5.50 g/cm3).

• S5: 0.080247B + 0.213826O + 0.003974Cu + 0.332474Sb
+ 0.369480Pb (ρ: 5.75 g/cm3).

Glass codes, elemental weight fractions, and density
are tabulated in Table 1.

2.2 Shielding parameters and gamma
transmission factors (TFs)

The ability of radiation-shielding materials to absorb a
part of the initial radiation quantity that impacts an
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attenuator is a further essential characteristic. This cri-
terion may be expressed in terms of a value determined
by primary and secondary radiation quantities. The term
TF [1,31,32] is a crucial parameter that enables researchers

to measure the attenuation of incident gamma rays as a
function of secondary gamma-ray intensity. This research
analyzed the TF values of glass samples tested for a variety
of radioisotopes used for nuclear-type disease therapy and

Table 1: Sample code, elemental weight fraction, and density of xSb2O3·(40 − x)PbO·60B2O3·0.5CuO: (0 ≤ x ≤ 40mol%)

Sample code Elemental weight fraction (wt%) Density ρ (g/cm3) [30]

B O Cu Sb Pb

S1 0.240740 0.385806 0.003974 0 0.369480 5.00
S2 0.200616 0.342811 0.003974 0.083118 0.369480 5.20
S3 0.160493 0.299816 0.003974 0.166237 0.369480 5.30
S4 0.120370 0.256821 0.003974 0.249355 0.369480 5.50
S5 0.080247 0.213826 0.003974 0.332474 0.369480 5.75

Figure 1: (a) 2-D view of designed MCNPX simulation setup. (b) 3-D illustration of designed MCNPX setup (2-D and 3-D views are obtained
from MCNPX Visual Editor VisedX22S).

Figure 2: Variation of glass densities.
Figure 3: Variations of linear attenuation coefficient (1/cm) with
photon energy (MeV) for all S1–S5 glasses.
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diagnostics. The radioisotopes indicated 67Ga (0.0086,
0.0093, 0.1840MeV), 57Co (0.0144, 0.1221, 0.1365 MeV),
111In (0.0230, 0.1710, 0.2450MeV), 133Ba (0.0532, 0.0796,
0.0810, 0.2764, 0.3029, 0.3560, 0.3838MeV), 201Tl (0.0710,
0.1350, 0.1670MeV), 99mTc (0.1405MeV), 51Cr (0.3201), 131I
(0.2843, 0.3645, 0.6370, 0.7229MeV), 58Co (0.5110, 0.8108MeV),
137Cs (0.6617MeV), and 60Co (1.1732, 1.3325MeV) specific ener-
gies [8]. This portion of the investigation simulates a large
transmission assembly using the MCNPX method [33]. The
MCNPX method’s resulting configuration is seen in three
dimensions in Figure 1. The graphic illustrates that the
quantity of gamma rays that are absorbed by the glass
material between the two detection zones is the most

important aspect that is considered when calculating the
TF values. The modeling approach was predicated on the
production of the MCNPX input file, and it was considered
complete when the tally values were exported from the
output file and the TF values were specified.

3 Results and discussion

By computing the radiation absorption characteristics of
glass materials in accordance with specified parameters,
the direct contribution of structural changes to their

Figure 4: Variations of mass attenuation coefficients (cm2/g) with
photon energy (MeV) for all S1–S5 glasses.

Figure 5: Variations of HVL (cm) with photon energy (MeV) for all
S1–S5 glasses.

Figure 7: Variations of mean free path (cm) with photon energy
(MeV) for all S1–S5 glasses.

Figure 6: Variations of TVL (cm) with photon energy (MeV) for all
S1–S5 glasses.
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absorption qualities may be analyzed [34–41]. The radia-
tion attenuation properties of five different glass samples
doped with varied amounts of Sb2O3 were investigated.
The Sb2O3 additive ratio was raised to its highest level in
the S5 sample after being raised gradually in numerous
glass compositions from S1 to S5. The density of the glass
samples that were examined varies as shown in Figure 2
depending on the proportion of Sb2O3 that is present in
the overall glass composition. There was a 0.75 g/cm3

difference in glass density between the lowest and highest
Sb2O3 reinforcements due to the increased weight caused

by the increased composition of the components. A feature
of materials that shields against gamma rays is the
linear attenuation coefficient (µ), which increases with
increasing material density [42,43]. For any gamma-ray
energy, the linear attenuation coefficient of a material
may be determined, making it a crucial metric for deter-
mining many others. Figure 3 displays the variation in
linear attenuation coefficients as a function of gamma
rays, as measured for five different glass samples. The
highest linear attenuation coefficient values may be seen
in the low-energy part of the presented diagram. The fact

Figure 8: Variation of EBF of investigated glasses at different mean free path values.
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that the k-absorption edge reached its peak and then gra-
dually started to fade following this significant decrease
in the low-energy region is evidence that Compton scat-
tering was the predominate interaction in the mid-energy
region and that the fall was followed by a lower increase.
The values of the linear attenuation coefficients have
been strongly impacted by the elemental compositions of
the five different glass samples that were evaluated. The
linear attenuation coefficients for all investigated energies
were found to be highest in S5 samples with the highest
Sb2O3 addition rate. This demonstrates that the linear

attenuation coefficient of multi-glass samples improves
when density rises due to Sb2O3 addition rate. Figure 4
depicts the variation pattern of the mass attenuation coef-
ficient (µm). Overall, it was found that the linear and mass
attenuation coefficients have a similar pattern. Since µm
is a density-independent characteristic, it can be said that
as the quantity of Sb2O3 steadily rose from S1 to S5, a clear
pattern of rising m values was also seen. The linear
attenuation coefficient may be used to calculate the half-
value layer (HVL), a critically important feature of gamma-
ray shielding [44,45]. Figure 5 shows that the HVL is a

Figure 9: Variation of EABF of investigated glasses at different mean free path values.
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tangible depiction of the thickness at which the energy of a
photon impinging on a material is decreased by half. This
indicates that the gamma-ray attenuation capabilities of
materials with a small half-value thickness are preferable.
In other words, a material’s ability to shield against a cer-
tain photon energy is improved by decreasing its HVL value.
HVL values between 0.015 and 15MeV are shown in Figure
5 for each of the seven glass samples that were analyzed.
The graph shows that, althoughHVL values are rather small
for low photon energies, they have begun to grow propor-
tionally when photon energy is raised. Consequently, the
HVL values for the S5 sample were the lowest of all the
samples. For all glasses studied, the tenth value layer’s
(TVL) variability as a function of photon energy in MeV is
shown in Figure 6. In all cases, the TVL parameter follows
the same pattern as the HVL. Changes in the mean free path
as a function of the incoming photon energy for glasses S1
through S5 are shown in Figure 7. This graph demonstrates
that the concentration of Sb2O3 has a negative influence on
the evolution of mean free path, which is an obvious indi-
cation of enhanced gamma-ray shielding characteristics.
This is because of the decrease in the value of the mean
free path implies that the distance between two successive
gamma-ray contacts in the material reduces, indicating that
the absorption process will be more efficient at shorter dis-
tances. Therefore, for a photon energy of 15MeV, the values
are lowest for the S5 glass sample and maximum for the S1
glass sample. Figures 8 and 9 demonstrate the gamma-ray
energy (MeV)-dependent changes in the exposure build-up
factor (EBF) and the energy absorption build-up factor
(EABF) throughout a range of mean free path values,
respectively. Both the EBF and EABF values are small in

the low gamma-ray energy band because photoelectric
absorption is responsible for the vast majority of entering
gamma rays. Our results show that both EBF and EABF
values decreased when Sb2O3 dosage was increased (i.e.,
from 0.5 to 40mfp). The rate at which incident gamma
rays collide with glass samples increases dramatically as
the amount of Sb2O3 increases from S1 to S5. The gamma-
ray TF values, which is a critical metric for shielding mate-
rials, was computed for S1, S2, S3, S4, and S5 glass samples
for some well-known isotopes and their characteristic
energies as 67Ga (0.0086, 0.0093, 0.1840MeV), 57Co (0.0144,
0.1221, 0.1365MeV), 111In (0.0230, 0.1710, 0.2450MeV), 133Ba
(0.0532, 0.0796, 0.0810, 0.2764, 0.3029, 0.3560, 0.3838MeV),
201Tl (0.0710, 0.1350, 0.1670MeV), 99mTc (0.1405MeV), 51Cr
(0.3201), 131I (0.2843, 0.3645, 0.6370, 0.7229 MeV), 58Co
(0.5110, 0.8108 MeV), 137Cs (0.6617MeV), 60Co (1.1732,
1.3325MeV). The TF values of the glasses were calculated
using two different methods. Initially, glass thicknesses
were used to analyze the TF factors of samples S1 through
S5. In addition, Figure 10 displays the radiation shielding
parameters ACS and ECS. Figure 10 shows how the ECS
varies as a function of the photon energy entering the
system, whereas Figure 11 shows how the ACS varies.
Figures 10 and 11 show that the ACS and ECS values
decrease with increasing photon energy. In every glass
tested, the ACS values are larger than the ECS values.
This is because the likelihood of total atomic interaction
in any material is greater than the probability of com-
plete electrical contact with incoming photons. Figure 12
displays the transmission functions of the studied glasses
as a function of radioisotope energy and glass thickness
(MeV). As the radioisotope’s energy rises, the TF shifts

Figure 10: Variations of atomic cross-section with photon energy
(MeV) for all S1–S5 glasses.

Figure 11: Variations of electronic cross-section with photon energy
(MeV) for all S1–S5 glasses.
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from 0.0086 to 1.3325MeV. For all measured thicknesses,
glass samples showed the lowest TF values when tested at
low energies. Thicker samples may have an easier time

attenuating low-energy gamma rays due to their high
attenuation capacity. As a result, there is a significant dif-
ference of about 0.1MeV. Glass samples become more

Figure 12: TFs of investigated glasses as a function of used radioisotope energy (MeV) at different glass thicknesses.
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reactive at gamma-ray energies greater than 0.1MeV. Max-
imum attenuation was calculated for all glass samples at
a thickness of 3 cm (i.e., minimum transmission). Increases
in shield thickness have a negative effect on gamma-ray
attenuation because shield thickness affects the effective-
ness of any shielding material. The TF values of the glasses
were then carefully assessed by considering the attenuation
capabilities of various glass thicknesses (0.5, 1.5, 2.5, and
3 cm). Figure 13 displays the relationship between the trans-
mitted energy (in MeV) and the glass thickness used for the
experiment. The graph demonstrates the decline in TF
values when gamma-ray energies are increased. The TF
values of the glass samples examined were lowest for the
thickness of 3 cm.

4 Conclusion

B2O3, which has the tendency to form glasses as com-
bined with various compounds, is effectively being used
in the making of new structures. Glass structures that
B2O3 forms by uniting with heavy metal oxides make
ground with their extraordinary properties in linear and
nonlinear optics. In addition, combination of B2O3 with
heavy metal PbO yields promising materials in radiation
shielding. When Sb2O3 is used in industrial glasses at low
ratios, it has the property to remove bubbles within the
glass and decolorize special glasses. When they are found
in the structure at high ratios, they have the property to
rearrange the glass network; thus, it changes the

Figure 13: Comparison of the TFs as a function of used radioisotope energy (MeV) for different glass thicknesses.
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physical, optical, and structural properties of the glass to
a high extent. The impact of gradual substitution of PbO
with another heavy metal Sb2O3 in the glass network
having Sb2O3–PbO–B2O3–CuO composition is found in
the literature studies in which the examination of struc-
tural properties is prioritized. The effect of PbO/Sb2O3

change in the specified structure on radiation shielding
properties was examined in this study in detail. Examining
all radiation shielding parameters, we conclude that
1. The linear (µ) and mass attenuation (µm) coefficients

trends as: S5µ,µm > S4µ,µm > S3µ,µm > S2µ,µm > S1µ,µm.
2. HVL, TVL, andMFP trends as: S1HVL,TVLMFP > S2HVL,TVL,MFP

> S3HVL,TVL,MFP > S4HVL,TVL,MFP > S5HVL,TVL,MFP.
3. Increasing the amount of Sb2O3 supplementation decreased

the EBF and EABF levels in general (i.e., from 0.5 to
40mfp). When the amount of Sb2O3 rises from S1 to S5,
the collision rate of coming gamma rays in glass samples
considerably increases.

4. The ACS and ECS values decrease when photon energy
rises.

5. The ACS parameter values for all glasses are greater
than the ECS parameter values. This is because the
chance of full electronic contact with incoming photons
is lower than the probability of complete atomic inter-
action in any substance.

6. According to the TF statistics, S5 exhibited the least
transmission characteristic of all the investigated glass
thicknesses.

Lastly, as a part of the scientific community’s ongoing
work on the current promising glass system, we would like
to provide some ideas for future study that may be per-
formed. After taking several factors into account, we were
able to present detailed results in our investigation. A few
significant material properties relate to glass materials; thus,
although the proposed glassy system shows potential, it will
require ongoing optimization and development. Based on
the data obtained, a broad overview of the Sb2O3-containing
glass samples was presented. However, due to the important
material qualities connected with glass components, con-
tinued work is required in terms of overall optimization
and development of the suggested glass system.
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