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Abstract

Background: The number of tumor suppressor genes for which germline mutations have been linked to cancer

risk is steadily increasing. However, while recent reports have linked constitutional normal tissue promoter

methylation of BRCA1 and MLH1 to ovarian and colon cancer risk, the role of epigenetic alterations as cancer risk

factors remains largely unknown, presenting an important area for future research. Currently, we lack fast and

sensitive methods for assessment of promoter methylation status across known tumor suppressor genes.

Results: In this paper, we present a novel NGS-based approach assessing promoter methylation status across a

large panel of defined tumor suppressor genes to base-pair resolution. The method omits the limitations related to

commonly used array-approaches. Our panel includes 565 target regions covering the promoters of 283 defined

tumor suppressors, selected by pre-specified criteria, and was applied for rapid targeted methylation-specific NGS.

The feasibility of the method was assessed by analyzing normal tissue DNA (white blood cells, WBC) samples from

34 healthy postmenopausal women and by performing preliminary assessment of the methylation landscape of

tumor suppressors in these individuals. The mean target coverage was 189.6x providing a sensitivity of 0.53%,

sufficient for promoter methylation assessment of low-level methylated genes like BRCA1. Within this limited test-

set, we detected 206 regions located in the promoters of 149 genes to be differentially methylated (hyper- or hypo-)

at > 99% confidence level. Seven target regions in gene promoters (CIITA, RASSF1, CHN1, PDCD1LG2, GSTP1, XPA,

and ZNF668) were found to be hyper-methylated in a minority of individuals, with a > 20 percent point difference

in mean methylation across the region between individuals. In an exploratory hierarchical clustering analysis, we

found that the individuals analyzed may be grouped into two main groups based on their WBC methylation profile

across the 283 tumor suppressor gene promoters.

Conclusions: Methylation-specific NGS of our tumor suppressor panel, with detailed assessment of differential

methylation in healthy individuals, presents a feasible method for identification of novel epigenetic risk factors for

cancer.
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Introduction
The number of tumor suppressor genes for which germ-

line mutations are linked to elevated cancer risk is stead-

ily increasing [1–3]. Mutations across different genes

present a continuum of penetrance, ranging from mod-

erately to massively elevated risk of different cancer

forms. Further, while mutations in some genes (so far)

are restricted to increased risk of a single, or a few can-

cer forms, mutations in other genes may increase the

risk of multiple different types of cancer [4, 5].

Some of the best described “classical” high penetrance

genes include BRCA1/2, for which germline mutations

are associated with an elevated risk of ovarian and breast

cancer [6], MLH1/MSH2 linked to colorectal cancer [7],

CDKN2A and RB1, associated with melanoma and ret-

inoblastoma, respectively [8–10], as well as TP53, associ-

ated with the Li-Fraumeni syndrome with an elevated

risk for multiple cancer forms [11]. However, the list of

genes for which germline mutations are ascertained to

confer cancer risk is continuously increasing due to ap-

plication of massive parallel sequencing [12, 13]. Still, for

many families with multiple cases of a specific tumor

form (like breast, ovary, or melanomas), no pathogenic

germline gene variant has been identified.

Epigenetic gene inactivation may occur through differ-

ent mechanisms [14, 15]. So far, promoter methylation

is the best studied of all the epigenetic modifications,

and such methylation is well established as a mechanism

of inactivation of tumor suppressor genes. While many

germline mutations affecting tumor suppressor genes

are well studied as cancer risk factors, knowledge regard-

ing constitutional epigenetic inactivation [16] as a poten-

tial cancer risk factor remains limited. Somatic promotor

methylation in tumor suppressor genes is a common

event in cancer [17], but the role of aberrant epigenetic

events, or constitutional promoter methylation of tumor

suppressor genes in normal cells as potential cancer risk

factors, remains largely unexplored. While mosaic

methylation of the MLH1 gene in normal leukocytes has

been observed in colorectal cancer patients [18, 19] and

a haplotype leading to secondary constitutional methyla-

tion in the MGM2 promoter [20] has been found in a

cancer-prone family [21], in general, data on normal tis-

sue methylation patterns and cancer risk are scarce [22].

Recently, in a large study, we reported low-grade mo-

saic (< 10% of alleles) normal tissue BRCA1 promoter

methylation to confer a significantly increased risk of

high-grade serous ovarian cancer (HGSOC) [23]. In our

study, we found > 4% of healthy adult females in a Cau-

casian population to harbor mosaic BRCA1 promoter

methylation in their normal white blood cells (WBC).

Individuals carrying such methylation had a 2-3 fold in-

creased risk of HGSOC. Importantly, WBC BRCA1 pro-

moter methylation was strongly associated with

corresponding methylation in other normal tissues, and,

in HGSOC patients, also associated with methylation in

the tumor. Taken together, this indicated that methyl-

ated normal cells in the ovary may act as tumor

precursors.

Based on these results and the findings of others [19,

24–29], we hypothesized that additional tumor suppres-

sors could be hyper-methylated in normal cells, thereby

causing an elevated risk for certain cancer forms within

subgroups of healthy individuals in the general popula-

tion [30].

To explore such a hypothesis, there is a need for im-

proved methodologies. Although methylation status may

be analyzed by conventional arrays, such assessments are

limited to the selection of CpGs covered by the array

probes. These selected CpGs may not necessarily repre-

sent all the CpGs crucial for gene silencing [23]. An alter-

native is methylation-specific whole genome sequencing,

but this remains prohibitively costly. In the present study,

we aimed to establish, and provide proof-of-concept for, a

novel strategy assessing the full CpG spectrum across pro-

moter areas of tumor suppressor genes. The assay applies

methylation-specific massive parallel sequencing of the

promoter areas of a panel of 283 tumor suppressor genes.

We show the feasibility of the method by depicting pro-

moter methylation variation across the promoter panel in

a set of white blood cell (WBC) DNA obtained from 34

healthy individuals. Further, by performing an exploratory

hierarchical clustering, our findings indicate that the pro-

files of normal cell promoter methylation of tumor sup-

pressor genes fall into two main clusters defined by

differences in genes regulating key biological pathways.

Results
Methylation specific sequencing

We analyzed WBC DNA from 34 healthy individuals.

After bisulfite conversion of the DNA, we performed

methylation-specific sequencing of 565 capture regions

representing 356 target regions from 283 tumor suppres-

sor gene promoters (the full list of genes and regions is

presented as Supplementary Table S1). Sequencing was

performed on an Illumina MiSeq, running 8 samples per

run. Regarding average values per sample, we obtained

4.95 × 106 reads (range 3.36-7.85 × 106) (Fig. 1a; for de-

tails per sample see Table 1). Subsequent to quality fil-

tering, 88% of the reads, were retained. Thus, after

filtering, 4.30 × 106 reads were attempted mapped to the

genome, yielding 4.08 × 106 mapped single reads. Out of

these, 3.6 × 106 reads mapped with properly paired reads

for each sample (average values; Fig. 1a). These reads led

to a mean primary target coverage of 189.6x (114.8x-

269.5x) and a mean capture target coverage of 199.4x

(120.7x-283.4x). Every sample had almost equal
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percentage of reads mapped to capture targets and pri-

mary targets (Fig. 1b).

The overall number of informative CpGs identified for

each sample were on average 1.0 × 105 (range 0.9 × 105

to 1.6 × 105). Restricting the CpGs to those with a

methylation ratio > 0, and more than 10 reads in cover-

age, the number was reduced to 1.5 × 104 (range 1.1 ×

104-1.9 × 104; Fig. 1c).

We defined the sensitivity of our strategy as 1/x, where

x = sequencing depth at any given CpG. With the aver-

age primary target depth being 189.6x, the sensitivity

was 0.53%. In theory, the fragility of this sensitivity esti-

mate lies in that, for some samples, the results may de-

pend on a single read, rendering them more sensitive to

artifacts such as inadequate bisulfite conversion. How-

ever, assessing the bisulfite conversion rate (C to T) of

the internal Lambda DNA control (see the “Methods”

section), we found the conversion efficiency to be on

average 99.7% (range 99.6-99.8%) across the analyzed

samples (Fig. 1d). This indicates a rate of technical arti-

facts (falsely retained C’s instead of T’s) to be lower than

0.2-0.4%, thus approaching the error rate in the sequen-

cing per se (Q30 threshold).

Reproducibility was assessed in a separate standard

sample (pooled DNA from 5 healthy donors) that was

run in 6 parallels per run over 2 independent runs. In a

selection of 12 out of the 565 regions, we found the

mean coefficient of variation to be 7.1% (median 4.4%;

Supplementary Table S2). As such, the technical vari-

ability in this standard sample was considerably lower

than the detected biological variation (see below) in our

study set of 34. Variability was considerably lower when

assessing all CpGs in a region than when limiting ana-

lyses to randomized selections of CpGs within the re-

gions (e.g., for PRDM2, the coefficient of variation was

1.5% when considering all CpGs while it was on average

4.7% when assessing randomized selections of 5 CpGs

within the region).

Methylation landscape of tumor suppressors

For each sample, we calculated the mean methylation

for each of the 565 capture regions based on individual

CpG methylation ratios within each actual region (see

the “Methods” section for details). We observed large

Fig. 1 a Output reads from methylation specific targeted

sequencing. Bars indicate the output yield in terms of number of

reads (millions) for each of the analyzed individuals. Blue bars

indicate the total number of reads, while red bars indicate number

of reads mapping to the genome. b Percentage of mapped reads

on primary (blue) and capture target regions (red) for each sample. c

Number of CpGs called in the analyzed samples. Blue bars show

identified CpGs and red bars show CpGs with > 10 reads in all

samples and a non-zero methylation ratio. d Bisulfite conversion

efficiency (> 99.5% recommended; dotted line) for each sample
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inter-region variation in the methylation levels of the re-

gions within the 283 tumor suppressor gene promoters

analyzed (Fig. 2). Some regions were completely methyl-

ated (e.g., regions within the promoters of AIP, PRDM2,

ATR, DICER1, SFPQ), while others in general were non-

methylated in most individuals (e.g., regions within

ARID2, TRIM33, SETD2, IKZF1, and ARID1B; Supple-

mentary Figure 1).

In some regions, there was a large variability between

CpGs within the promoter region, indicating that some

CpGs may be constitutively methylated, while others

(perhaps more crucial for transcriptional regulation) had

a lower methylation level and may be more dynamically

methylated (Supplementary Figure 2).

Constitutional promoter hyper-methylation has been

classified either as secondary due to a rare genetic/SNP

variant [16], typically resulting in high methylation levels

[31, 32] or primary, in which case, methylation may

occur at a low mosaic level (VAF of < 10%) [23]. As for

both cases, we may not expect identifying several

Table 1 Summary of samples and analyses

Sample Input
reads

% reads
post QC

% reads
mapped

Reads (paired and
clipped)

% reads on target
(primary)

% reads on target
(capture)

Coverage on target
(primary)

Coverage on target
(capture)

10046_S2 5043578 90.39 78.71 3588074 54.01 54.31 209.99 220.84

10071_S7 5167738 89.08 83.62 3849392 44.54 44.81 186.40 196.12

10077_S3 4622790 90.13 81.18 3382228 52.35 52.66 198.17 208.34

10078_S8 4148304 89.91 83.59 3117970 33.13 50.13 175.26 184.27

10081_S4 4408742 89.53 81.99 3236368 50.31 50.60 186.37 195.79

10082_S5 4146244 88.90 82.83 3053058 48.82 49.10 171.00 179.62

10086_S6 4665150 89.39 80.91 3373894 49.76 50.06 186.09 195.68

10088_S2 5683572 88.12 83.26 4169990 49.01 49.29 219.04 230.48

10097_S3 5372752 87.46 84.09 3951544 44.74 45.00 195.13 205.17

10107_S1 4659718 89.67 80.24 3352898 55.68 56.00 213.95 224.78

10110_S6 5369964 86.87 82.21 3835038 47.17 47.45 199.76 210.11

10113_S7 3862862 89.44 83.54 2886124 36.11 36.31 120.48 126.52

10117_S5 4243470 89.93 85.80 3274194 46.15 46.42 169.10 177.78

10126_S7 5490894 87.68 83.36 4013294 44.39 44.65 198.79 209.00

10131_S1 5338282 87.00 82.62 3836988 53.58 53.88 232.54 244.35

10146_S6 4326882 90.13 85.57 3337118 45.47 45.73 168.34 177.00

10149_S7 4129130 90.01 84.46 3139126 45.78 46.04 159.55 167.77

10155_S5 4450890 86.31 84.99 3264796 46.65 46.91 170.60 179.37

20011_S4 5923516 87.27 85.49 4419628 41.19 41.42 203.82 214.20

20019_S1 3972578 89.46 84.62 3007020 49.39 49.68 163.80 172.27

20022_S4 7091616 88.48 81.02 5083584 47.19 47.47 257.88 271.25

20023_S1 7854298 88.16 81.78 5662728 43.72 43.98 269.47 283.35

20024_S5 6284900 88.04 82.23 4549698 41.85 42.09 215.05 225.92

20062_S2 3554848 88.54 84.13 2648098 40.36 40.54 127.76 133.78

20068_S3 3355298 89.51 84.38 2534292 48.89 49.18 138.43 145.54

20078_S2 7541786 88.33 84.85 5651984 38.94 39.16 246.67 259.20

20088_S4 4083996 90.28 84.33 3109332 33.27 33.46 114.79 120.70

20092_S3 4686060 89.01 83.38 3477852 50.58 50.88 196.38 206.39

20098_S1 4501632 88.21 83.23 3305210 53.58 53.89 197.69 207.78

20106_S2 4430250 86.96 83.43 3214408 45.12 45.32 173.69 181.84

20117_S4 4802994 88.70 86.01 3664364 44.22 44.48 178.18 187.37

20119_S5 4525080 89.19 85.57 3453670 46.90 47.16 180.35 189.59

20122_S6 4741150 88.79 85.18 3585870 51.76 52.07 204.62 215.16

20160_S3 5848296 88.30 84.30 4353508 46.02 46.28 220.04 231.29
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affected individuals in a small dataset like the present;

thus, lack of differential methylation here may not ex-

clude a gene as a potential epigenetic pathogenic factor.

Still, to validate the feasibility of our method, we aimed

at exploring potential differential methylation between

individuals across our data set. To do so, we took three

approaches: first, we assessed differential methylation

across the dataset in general. Second, we specifically

assessed for individual hyper-methylation, assuming this

to be the most relevant alteration regarding inactivating

tumor suppressors. Third, we specifically assessed those

tumor suppressors where previous data have linked pro-

moter methylation to cancer risk.

Differential methylation

Subsequent to methylation calling, we identified pro-

moter regions differentially methylated across our sam-

ple set. Although low levels of methylation (allele

methylation frequency of < 5%) have been shown to

affect cancer risk [23], in the present sample set we fo-

cused on identifying those genes presenting the largest

inter individual methylation variation as a proof-of-

concept for our methodological approach. We defined

methylation variation in a region according to the differ-

ence in absolute but also relative methylation level. First,

we assessed the difference in absolute methylation as the

difference in percentage of alleles methylated between

individual (i.e., difference presented as percent points).

Second, we assessed the relative difference between indi-

viduals, i.e., the ratio between the highest and lowest

methylated individual with respect to percentage of

methylated alleles.

Based on a Z-score assessment of a methylation matrix

consisting of averaged methylation ratios for each of the

565 capture regions across all 34 samples (see the

“Methods” section for details), we identified 206 regions

(within the promoters of 149 genes) where a minority

(one-third or less) of the samples analyzed were signifi-

cantly differentially methylated as compared to the ma-

jority of samples at a ≥ 99% confidence level (i.e., outside

the 99% confidence interval; Supplementary Table S3).

Assessing the difference between the samples with the

highest and the lowest level of methylation within these

206 regions, about half of the regions (n = 101) displayed

less than 5 percent point difference. However, several of

the tumor suppressor regions displayed a large variation

in methylation, with 72 regions displaying > 10 percent

point difference and 22 regions displaying > 20 percent

points difference between the highest and the lowest

methylated samples (Table 2). The largest difference was

observed for GAS7, where the difference between the

highest and the lowest methylated sample was 66.6 per-

cent points.

Fig. 2 Heatmap showing average methylation ratio for all samples

and genes. Scale: Red indicates high methylation and blue indicate

low methylation
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Assessing the relative difference (ratio between the high-

est and lowest methylated sample), again GAS7 was the

top-ranking promoter, showing a relative difference of 3.5

fold between the highest and the lowest methylated sam-

ple. As expected, in addition to GAS7, we found a substan-

tial overlap between top-ranking regions based on

absolute differences and the top-ranking regions based on

relative differences (ratio) in methylation levels (Table 2).

Especially the AIP gene also had a region that was highly

differentially methylated both in terms of percentage dif-

ference (> 20%) and fold difference (> 3 fold). The only re-

gions with less than 20 percent point difference but a high

fold difference (> 2 fold), were regions in RABEP1, RASS

F1, AIP, and FOXO4 (Table 2, lower section).

Hyper-methylated tumor suppressors

Regarding tumor suppressor genes, we hypothesized that

in case constitutional methylation is associated with a

significantly elevated cancer risk, we may expect a minor

sub-fraction of healthy individuals to have hyper-

methylated promoters. We therefore performed add-

itional sub-analyses restricting 206 genes identified

above, to the genes/region with positive Z-scores with >

99% confidence level, i.e., genes/regions that were

Table 2 Differentially methylated genes. Gene regions with > 20 percent points difference in methylation ratio, between least

methylated sample to most methylated sample along with fold change differences are listed. Hyper-methylated target region of

those genes are shown in bold

Gene name Gene capture region Min. methylation ratio Max. methylation ratio Difference in methylation ratio Fold change

GAS7 chr17: 10199716 - 10200316 0.2670 0.9332 0.6662 3.4951

ELAC2 chr17: 13019069 - 13019845 0.4581 0.8332 0.3751 1.8188

GSTM1 chr1: 109686327 - 109687046 0.6438 1.0000 0.3562 1.5533

THBS1 chr15: 39579298 - 39579871 0.4671 0.7885 0.3214 1.6881

CIITA chr16: 10874982 - 10875928 0.2511 0.5577 0.3066 2.221

RASSF1 chr3: 50339388 - 50340021 0.1786 0.4720 0.2934 2.6428

CHN1 chr2: 174846842 - 174848034 0.2141 0.5074 0.2933 2.3699

MSH2 chr2: 47401613 - 47402319 0.5897 0.8734 0.2838 1.4811

PALB2 chr16: 23642511 - 23643136 0.6333 0.9134 0.2801 1.4423

RUNX3 chr1: 24964233 - 24965550 0.3920 0.6479 0.2559 1.6528

TP63 chr3: 189789769 - 189790448 0.6612 0.9059 0.2446 1.3701

PDCD1LG2 chr9: 5510022 - 5511326 0.3182 0.5511 0.2330 1.7319

AIP chr11: 67481632 - 67482276 0.6716 0.9002 0.2286 1.3404

GPC3 chrX: 133986729 - 133987434 0.5842 0.8036 0.2194 1.3756

AIP chr11: 67482202 - 67482880 0.1035 0.3214 0.2180 3.1053

GSTP1 chr11: 67581895 - 67582976 0.2673 0.4834 0.2162 1.8085

AIP chr11: 67481257 - 67481869 0.7857 1.0000 0.2143 1.2728

XPA chr9: 97698585 - 97699193 0.6991 0.9130 0.2139 1.306

APC chr5: 112736082 - 112736959 0.6361 0.8479 0.2118 1.333

CTCFL chr20: 57524096 - 57527440 0.6554 0.8663 0.2109 1.3218

CASP8 chr2: 201259179 - 201260169 0.3698 0.5799 0.2102 1.5681

ZNF668 chr16: 31064314 - 31065859 0.4513 0.6584 0.2070 1.4589

-- -- -- -- -- --

RABEP1 chr17: 5281240 - 5283045 0.0415 0.1033 0.0618 2.4902

AIP chr11: 67482382 - 67483805 0.0517 0.1229 0.0712 2.3783

RASSF1 chr3: 50338258 - 50339618 0.0976 0.2178 0.1202 2.2322

FOXO4 chrX: 71094692 - 71096928 0.1256 0.2592 0.1335 2.0629

ZRSR2 chrX: 15789350 - 15791219 0.0559 0.1021 0.0462 1.8252

RUNX1T1 chr8: 92102449 - 92105016 0.0558 0.1008 0.0450 1.8068

RHOH chr4: 40196452 - 40197679 0.1059 0.1914 0.0855 1.8067
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significantly hyper-methylated in a minority of individ-

uals as compared to the majority of individuals (see the

“Methods” section). Among the 206 differentially meth-

ylated regions, 115 revealed positive Z-scores. Out of

these 115, 25 displayed > 10 percent points difference

from the highest to the lowest methylated sample. The

corresponding number of regions revealing > 20 percent

points difference was 7. These 7 regions were within the

promoters of CIITA, RASSF1, CHN1, PDCD1LG2,

GSTP1, XPA, and ZNF668, with the three former genes

revealing a difference of more than 30 percent points

(Table 2). Re-assessing these data based on fold differ-

ence instead of percent points, we identified three re-

gions (in AIP, RABEP1, and RASSF1) with a lower than

20 percent point absolute difference but a relative ratio

> 2. Since another region of RASSF1 was already identi-

fied as having a difference > 20 percent points, this left

us with 9 different genes with substantial differences in

methylation levels.

Further, we reasoned that if methylation of any of

these genes may act as a cancer risk factor, then somatic

methylation of the same genes should be present in a

fraction of human cancers. We therefore mined the

COSMIC data base [33] for reported somatic methyla-

tion of the 9 genes. Six of these genes (CHN1,

PDCD1LG2, XPA, ZNF668, RABEP1, AIP) were not re-

ported to be aberrantly somatically methylated in tu-

mors, while one gene (CIITA) was reported to be hypo-

methylated in a very small fraction (0.19-1.53%) of vari-

ous solid tumors. In contrast, somatic hyper-methylation

of RASSF1 was reported in > 4% of endometrial cancers

and > 1% of breast cancers. Further, somatic hyper-

methylation of GSTP1 was reported in > 7% of prostate

cancers and > 1% of breast cancers. Thus, this finding

indicates that some genes found hyper-methylated in

tumor tissue are also differentially methylated in normal

tissue of healthy individuals. Although these data do not

provide any conclusive evidence per se, the findings war-

rant further investigations exploring constitutional

methylation as a potential cause of cancer risk.

Methylation in established cancer risk genes

Among some of the best-characterized cancer risk genes

in terms of mutations (BRCA1, TP53, and RB1), we

found the mean methylation level to be 0.7% in the

known regulatory region of the BRCA1 promoter, in line

with our previous findings [23]. For TP53, the mean

methylation level was 7.9%, while the corresponding

number for RB1 was 24.9%. For some additional genes

where methylation has been found as a cancer risk fac-

tor, MLH1 and MGMT, these revealed mean methyla-

tion levels of 6.4% and 18.6%, respectively. Among these

established cancer risk genes (BRCA1, TP53, RB1,

MLH1, and MGMT), we found no significant differences

between the individuals in the present data set.

Co-methylated tumor suppressors

The cause of differential DNA methylation, and, in par-

ticular, tumor suppressor promoter methylation, remains

poorly understood. Thus, in an exploratory analysis, we

assessed potential covariation between promoter methy-

lation on an individual basis. For this purpose, we per-

formed hierarchical clustering of the samples by

applying the Z-scores from average methylation ratio

across the 565 capture regions. Doing so, all samples

could be classified into two distinct major clusters, each

harboring distinguishable sub-clusters (Fig. 2). Interest-

ingly, the two major clusters (1 and 2) were character-

ized by different promoter methylation in two groups of

genes (A and B), where cluster 1 had high methylation

in genes in group A and low methylation in genes in

group B, while the opposite methylation pattern was

seen for samples in cluster 2 (Fig. 2).

We identified genes falling into these two groups

(A and B), and analyzed their involvement in func-

tional pathways by KEGG pathway analysis and GO

enrichment analysis via Gather. Many of the genes in-

volved in group A were important in development

and regulation of cellular processes like Wnt signaling

and TGF-beta signaling pathways. In contrast, genes

from group B showed involvement in apoptotic path-

ways and leukocyte differentiation (Supplementary

Table S4).

Notably, some individuals were characterized by hav-

ing a majority of genes either hyper- or hypo-methylated

as compared to the rest of individuals. Applying a 95%

confidence interval across samples with respect to the

overall methylation level of the regions analyzed, one

sample (S24) fell below the lower limit of the CI, while

three fell above the upper limit of the CI (Supplementary

Figure 3). However, these individuals were distributed

across the two main clusters with no preference for one

group over the other. Assessing the available general

clinical data for these individuals, no notable associa-

tions were observed between methylation and factors

such as age or BMI (data not shown).

Validations in external data sets

Although our data are unique since they are generated

by targeted massive parallel sequencing analyses, we

sought to validate our biological findings by mining

available data sets generated by application of methyla-

tion arrays.

A technical concern is that methylation could poten-

tially vary between subfractions of leukocytes and differ-

ential methylation between individuals could then

potentially be a result of individuals having different
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compositions of leukocyte subfractions in their blood.

Assessing the 7 most differentially methylated regions in

our data set, in the leukocyte subfractions published in

the Bioconductor Experiment Data Package FlowSorted.-

Blood.450K revealed no major difference in any of the 7

regions (Supplementary Table S5, with figures). In

GSTP1, 6 out of 19 CpGs revealed lower methylation in

CD14+ T cells and/or CD56+ NK cells than other sub-

fractions, but the impact of this on the average levels in

total WBC was negligible. Very similar observations

were made in another data set of cord blood (R package

FlowSorted. CordBlood Norway.450 K in Bioconductor

[34]; Supplementary Table S6, with figures). This con-

firmed potentially varying composition of leukocyte sub-

fractions not to be a likely cause of the observed

methylation differences.

Further, we sought to validate the biological differences

observed for the 7 most differentially methylated regions

in our sample set, by assessing their methylation in a sam-

ple of blood DNA from 845 individuals (GSE51032). In

this sample set, data was available for CHN1, PDCD1LG2,

GSTP1, and ZNF668. In addition, we here included the

two top-ranking genes with high differential methylation

calculated as ratio, but where percent point difference was

below 20 (see above; RABEP1 and AIP; Table 2). In gen-

eral, the methylation levels were called as slightly higher

in the GSE51032 set than by our own sequencing. How-

ever, the differences between individuals were confirmed

for all genes and the difference in percent points between

the highest and lowest methylated individual was similar

(Supplementary Table S7). The exception was ZNF668,

where our maximum observation was 66% methylation,

while in the GSE51032 set, some individuals were scored

as 100% methylated. This difference probably relates to a

substantially higher number of individuals analyzed in the

validation set increasing the chance of observing outliers.

Discussion
While to this end constitutional epimutations of tumor

suppressors have been linked to cancer risk for a few

genes only [23, 27, 31, 35–37], one may postulate that

constitutional epimutations affect other tumor suppres-

sors as well. This may have implications to our under-

standing of cancer risk. A substantial number of cancer-

prone families in which no underlying germline muta-

tion have been identified, and it is tempting to postulate

that some of these individuals may be at increased can-

cer risk due to constitutional epimutations in tumor

suppressor genes [30]. In addition, germline mutations

in several tumor suppressor genes have been associated

with other conditions such as skin and limb develop-

ment deficiencies, Cowden syndrome, and Fanconi

anemia [38–40]. Thus, exploring constitutional

promoter methylation across tumor suppressor genes

may be of importance to other medical conditions as

well.

To this end, the vast majority of epigenetic data re-

ported in respect to different health conditions are based

on global methylation-array analyses or single gene pro-

moter analyses by methods like MSP or MLPA. While

the array-based approaches do provide data for single

CpGs, a large number of (potentially important) CpGs

are lacking from the arrays, limiting the possibilities to

identify methylation pattern across all regions of interest

(e.g., as seen for BRCA1 [23]). As for MSP and MLPA,

such methods are fast and cheap but they are sensitive

only to a general methylation presence in the CpGs cov-

ered by the primers and probes, precluding assessment

at a single CpG resolution level.

Here, we established a massive parallel sequencing-

based approach, enabling base-pair resolution analyses

of methylation status in gene promoters. The method

provides several advantages as compared to previous

methods. First, as compared to conventional methods

like MSP and MLPA, our method allows for detailed

single-CpG resolution analyses of multiple promoter re-

gions in concert. Second, our method limits both work-

load and costs compared to application whole-genome

methylation sequencing for promoter methylation ana-

lysis. Third, the benefit of determining exact methylation

levels, instead of binary assessments, has been confirmed

in clinical studies [23], underlining the importance of

high sensitivity required to detect low-grade mosaic

methylation [30]. Fourth, as compared to available array-

based approaches, our NGS-assay allows for methylation

assessment of all CpGs in the region of interest, not only

those covered by array probes. As mentioned above, this

proved to be crucial in analyses of the cancer risk associ-

ated with mosaic BRCA1 methylation [23].

In principle, the sequencing of the DNA-libraries we

prepared could be run on any Illumina instrument. As

such, the method is flexible and scalable. Here, we used

the MiSeq instrument due to the rapid run time. In our

set-up, we chose to run 8 samples in one run, yielding

an average coverage of 189.6x, corresponding to a mean

sensitivity limit of 0.53%. Although indicating a very sen-

sitive method, this is an average value, and some regions

reveal lower coverage. If needed, however, coverage

could be increased in order to improve the sensitivity of

the method [23]. Notably, the reproducibility of the

assay may vary between the different covered regions.

However, we show that the reproducibility is very

good even in regions with low levels of methylation.

Importantly, the observed technical variation was con-

sistently negligible compared to the biological varia-

tions described. Further, we found that technical

variations were lower when assessing all CpGs across
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a given region than when assessing randomized selec-

tions of CpGs as “representative” for a region. This

emphasizes the value of applying assays where all

CpGs in a given region are covered, instead of relying

on scattered, selected CpGs.

While constitutional methylation is considered an

early life event affecting different germinal layers, methy-

lation status is also prone to environmental influences

and other factors and has been found to change during

lifetime [41], causing differential methylation of many

genes across different tissues [42]. One potentially im-

portant caveat when analyzing WBCs as surrogate

markers for constitutional methylation is the fact that

different leukocyte fractions may harbor different methy-

lation patterns [43]. While such differences, so far, have

been linked to global methylation patterns, it remains

unclear whether this may represent a problem with re-

spect to specific tumor suppressor methylation. Notably,

differential methylation across WBC subfractions was

found not be an issue regarding BRCA1 promoter

methylation [23], and in the present study, it was not

found to be an issue in the most differentially methyl-

ated promoter regions either.

The methylation level of the genes found to confer

cancer risk, so far, is highly variable. Regarding MLH1,

normal cell methylation affecting ~ 50% of the alleles

has been reported in a limited number of probands with

familial colorectal cancer (for original references, see

[30]). Recently, two families with a high breast and ovar-

ian cancer incidence were found to harbor secondary

constitutional BRCA1 methylation, also with a methyla-

tion level of ~ 50% [31]. In contrast, about 4% of females

in a Caucasian population was found to carry low-level

mosaic constitutional BRCA1 methylation (4-10% of al-

leles). Among these low-level methylated individuals, the

incidence of high-grade serous ovarian cancer was sig-

nificantly elevated with an odds ratio between 2 and 3

across two large cohorts [23]. As for the method pre-

sented here, this has the sensitivity required for explor-

ing both scenarios.

While the limited number of samples analyzed pre-

cludes formal assessments of methylation frequency

and/or potential correlations to health outcome, import-

antly, our findings confirm differential constitutional

promoter methylation across a panel of tumor suppres-

sor genes in healthy individuals. Interestingly, among

those promoter regions found to be hyper-methylated in

the normal tissue of some of the analyzed individuals,

we found promoters in genes previously reported to be

hyper-methylated in tumors (such as RASSF1 and

GSTP1). The presence of epigenetic deregulation of a

distinct tumor suppressor at the somatic (tumor) level

provides no evidence for constitutional methylation of

the same gene. However, the examples related to MLH1

and BRCA1 suggest that potential relationships may

occur for other genes as well. Thus, it is tempting to

speculate that, at least some of the genes detected here

(e.g., RASSF1 and GSTP1) could be constitutionally

methylated and, in such cases, methylated tumor cells

may have originated from the constitutionally methyl-

ated normal cells [30]. Notably, although not directly

comparable to our data, due to a restricted selection of

CpGs covered, mining of a large external data set re-

vealed similar interindividual differences largely confirm-

ing our findings.

Interestingly the methylation patterns revealed across

our gene panel indicated that the individuals analyzed

could be classified into two different methylation clus-

ters. These findings should be interpreted with caution

due to the limited number of individuals analyzed. How-

ever, the fact that the clusters were separated by differ-

ential methylation across important biological pathways

involving Wnt- and TGF-beta signaling pathways as well

as genes involved in apoptotic pathways and leukocyte

differentiation indicate potential underlying biological

differences to be explored in future studies.

Conclusions
We provide a relatively fast and affordable strategy for

detailed assessments of differential methylation of tumor

suppressors. This strategy is attractive in the warranted

search for additional tumor suppressors that may be

cancer risk factors when methylated in normal tissues.

Methods
Samples

The samples analyzed in the present study were from 34

individuals, selected from a set of 114 healthy postmeno-

pausal women previously described [44]. Subsequent to

providing informed consent, each individual donated

anonymized blood samples in accordance with Norwe-

gian regulations. All women were recruited during rou-

tine mammographic screening at Haukeland University

Hospital, Bergen, Norway. Individuals with diabetes or

other types of endocrine diseases as well as individuals

using hormone replacement therapy were excluded. All

samples were drawn > 2 years after the last menstrual

period. Within the selection of 34 individuals analyzed

in the present study, the mean age was 64 years (range

56-71 years) and the mean BMI was 24.8 (range 19.4-

39.6) at the time of sample collection.

DNA isolation

Genomic DNA was extracted from EDTA-whole blood,

using QIAamp DNA Mini kit (Qiagen). The procedure

was performed according to the manufacturer’s instruc-

tions with the exception that 400 μl of whole blood was

used as input.
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Selection of tumor suppressor promoter regions

Regions of interest were defined as 356 regions from the

promoters of 283 tumor suppressor genes. The selection

of genes was based on the cancer gene panel previously

described as “CGPv2/3” [45, 46], Roche’s “Comprehen-

sive Cancer Design” as well as a manual literature re-

view, in order to cover all well-established tumor

suppressor genes, independent of cancer type. As such,

the selection was independent of previous knowledge

about methylation status. For each transcription start

site (TSS), we designed probes covering a region span-

ning from −1500 to +500 relative to TSS. Positions of

TSS were determined by NCBI and Ensembl-curated

transcripts, literature search, and use of the FANTOM5

RNA expression resource (fantom.gsc.riken.jp/5/).

Probes for hybridization to the included regions were

manufactured by Roche and designed to bind the target

DNA of all possible methylation configurations (fully

methylated, partially methylated, and completely

unmethylated). Importantly, both strands were targeted,

in order to enable correction for potential overlap be-

tween CpGs and SNPs. By probe design, the 356 target

regions were split into 565 capture regions. Full lists of

included tumor suppressor genes and target regions are

given in Supplementary Table S1.

Library preparation and methylation sequencing

Processing of the sample libraries was performed using

the solution-based bead capture method for enrichment

of bisulfite-converted DNA, SeqCap Epi Enrichment Sys-

tem (Roche) according to the user guide (version 1.2).

For each sample, 1 μg DNA isolated from blood was

mixed with bisulfite-conversion control (Lambda DNA,

negative for methylation). DNA was fragmented to the

range of 180-220 bp using Covaris M220 followed by

end repair, A-tailing, ligation of index/adapters, and dual

size selection. Using the Zymo Research EZ DNA

Methylation-Lightning kit, the DNA was bisulfite-

converted according to manufactures protocol, and the

resulting sample was amplified prior to nanodrop quan-

tification. Based on these measurements, 1 μg bisulfite-

converted DNA was put into the hybridization with

custom-made probes for 68 h prior to capture by

streptavidin-coated beads, extensive washing, and a final

library amplification step.

The protocol was combined with the use of a custom-

made probe design enabling analysis of only regions of

interest (consisting of 356 promoter regions from 283

tumor suppressor genes, described above and in Supple-

mentary Table S1). In addition, the probe set included

probes targeting (Lambda DNA for conversion control).

The targeted regions were enriched by a bead capturing

method that captures both strands of DNA. Purified li-

braries were pooled, spiked with 10% PhiX, and

sequenced on an Illumina MiSeq sequencer, using v2

chemistry and 2 × 100 (200 cycles) paired-end reads.

RTA v1.18.54 and MCS v2.5.0.5 software was used to

generate data. Eight samples were multiplexed per run,

and resulting data were de-multiplexed based on

sample-specific indexes attached to the sequencing

adaptors. De-multiplexing was run automatically by the

MiSeq Reporter software before further processing.

Methylation calling

Raw sequencing data was analyzed using an in-house

workflow designed in collaboration with Roche, com-

prised of publicly available tools, implemented using

shell script (Fig. 3; for a detailed description see Supple-

mentary information). In brief, the first analytic steps in-

volved quality checking of fastq files by FASTQC.

Paired-end reads were filtered based on quality and

clipped using Trimmomatic [47]. Trimmed sequences

were aligned to the human genome (GRCh38) from

NCBI as well as Enterobacteria phage lambda (NC_

001416.1) complete genome, added for bisulfite conver-

sion efficiency control using the bisulfite mapping algo-

rithm BSMAP [48]. The aligned read statistics and

format conversions were carried out using SAMtools

[49]. After bisulfite conversion, the DNA strands are no

longer complementary. To achieve methylation informa-

tion from both strands, aligned reads were split into the

top and bottom strand [50]. Subsequently, the sequences

were sorted, and duplicates were removed and merged

back using Picard tools. In the next step, the analysis

was further restricted to those read pairs where both

mates in the pair could be mapped in the correct orien-

tation and at given distance consistent with the library

insert size (properly paired reads) using BamTools [51].

To avoid bias, overlapping reads were clipped using

BamUtils. Various statistics for reads, alignment, and

coverage were calculated using SamTools.

For each sample, methylation analysis was carried out

using methratio.py package in BSMAP by calculating

methylation percentage. An additional step involves SNP

calling for the targeted regions with BisSNP [52] from

aligned reads.

DNA conversion rate was calculated based on all ori-

ginal Cs in the Lambda DNA sequence. For all Cs in the

untreated sequence the following formula was used on

sequencing data post bisulfite treatment:

Conversion %ð Þ ¼ T= C þ Tð Þ � 100

Assay reproducibility

To assess reproducibility of the assay, we performed 2

independent experiments with 6 parallels of a standard
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sample in each experiment. The standard sample con-

sisted of pooled DNA of equal amounts from WBC of 5

healthy donors. Reproducibility was assessed across 12

regions, selected based on three separate criteria: First,

we selected 4 regions found to have high biological vari-

ance in our original sample set of 34 healthy women

(GAS7, ELAC2, AIP, ZRSR2). Further, we selected 6 re-

gions in genes known to be high penetrance genes when

either mutated or hypermethylated (BRCA1, TP53 (2 re-

gions), RB1, MLH1, MGMT). Finally, we selected 2

regions at random (PRDM2, TMEFF2). Based on the 12

replicate analyses, we calculated mean methylation,

standard deviation and coefficient of variation for all the

regions (Supplementary Table S2a). Further, within the

2 randomly selected genes (PRDM2, TMEFF2), we per-

formed a randomized selection of 5 CpGs per region,

using the mean methylation in these 5 as “representa-

tive” for the region. Then, we calculated mean methyla-

tion, standard deviation and coefficient of variation

across the 12 replicate analyses of these 5 CpGs. This

Fig. 3 Workflow of the methylation analysis. Flow chart of the steps taken within the informatics analysis pipeline from raw FastQ files to

processed data used for biological interpretations. Main steps are indicated by blue background; smaller steps are indicated by gray background

(figure adapted from original design by Roche)
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randomization was repeated 5 times, yielding a general

overview of the variability when applying limited num-

bers of CpGs as “representative” for a region (Supple-

mentary Table S2b).

Differential methylation assessment

Among all CpGs in the 565 capture regions as well as

250 flanking bps at each end, the analysis was restricted

only to include CpGs with minimum of 10 reads in

coverage in all of the 34 samples. For each sample, we

then calculated the mean methylation per region, based

on individual CpG methylation ratios within the region.

Based on these data, we generated a methylation matrix

for all the common regions across all the samples (n =

34 in the present study), and calculated Z-scores for that

matrix. Then we assessed the Z-scores and identified all

the regions where a minority of individuals were differ-

entially methylated as compared to the majority. Differ-

ential methylation was here defined as Z-scores that

were outside of the 99% confidence interval. We used an

arbitrary definition of minority, set to one-third, or less,

of the total number of samples, i.e., minimum 1 individ-

ual and maximum 12 individuals (this definition may

need adjustment according to the size of subsequent

studies). Regions that had confidence level more than

99% were then categorized into negatively and positively

methylated regions based on the Z-score value and

whether the minority of individuals had higher or lower

methylation levels than the majority.

To find the differentially methylated regions, we calcu-

lated the mean methylation for these regions across

CpGs within individual samples and measured the differ-

ence in methylation between individuals with the lowest

and highest methylation mean. Although relatively small

differences in methylation levels have been shown to

modulate cancer risk [23], we here sought to identify the

regions with larger differences, applying arbitrary thresh-

olds of 5, 10, and 20 percent point difference in methyla-

tion. Further, we performed additional analyses assessing

ratios (fold difference) between individuals, taking into

account that biological important differences may have

high ratios, not necessarily reaching a certain threshold

set by percent point difference (e.g., a difference between

1% and 10% may be important, even if the percent point

difference is only 9).

Hierarchical clustering

We created a matrix of methylation ratios for all genes

across patients. We then calculated a variance for each

gene across patients to identify differential methylation.

Heatmap was produced with heatplot function from

made 4 package [53], with mean linkage cluster analysis

and a correlation metric distance. For the purpose of

clustering, missing values for regions in individual

patients were filled in using the impute R package [54,

55]. (Impute-knn function from impute R package, finds

k-nearest neighbors using a Euclidean metric and uses

their mean to substitute the missing value). Missing

values affected one region of GSTM1 in 16 samples, an-

other region of GSTM1 in 7 samples, and a region of

AIP in 3 samples.

Pathway analysis

We identified groups of genes from cluster analysis and

explored their functional roles by pathway analyses with

GATHER. GATHER is an online platform that predicts

functional molecular patterns and biological context by

incorporation of several biological databases [56]. In

GATHER, we analyzed KEGG pathways and gene ontol-

ogy enrichment analyses [57].

External data sets

We performed data mining and extracted detailed

methylation status for all available CpGs for a given re-

gion (defined by our NGS-panel) from the Bioconductor

Experiment Data Package FlowSorted.Blood.450K

(https://bioconductor.org/packages/release/data/experi-

ment). This data set was generated by methylation array

analyses across 6 independent samples from adult indi-

viduals and contains information on 10 different cat-

egories of leukocytes. The categories include the major

groups of granulocytes and lymphocytes.

We obtained similar data for umbilical cord blood from

newborns [34]. These data were available as the R package

FlowSorted.CordBloodNorway.450K in Bioconductor. This

data set was also based on methylation array and holds in-

formation about 7 categories of leukocytes, including the

major groups of granulocytes and lymphocytes, across 11

independent cord blood samples from newborns.

For validation of methylation differences in blood

DNA from healthy individuals, we mined data from

GSE51032, available through Gene Expression Omnibus

(GEO). This data set was generated by methylation array

and consists of 845 samples from the EPIC-Italy cohort

(out of which 188 were males and 657 were females).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s13148-020-00920-7.

Additional file 1: Supplementary Figure 1. Fraction of methylated

alleles in promoter region of selected tumour suppressor genes. (A)

Regions with high methylation levels across samples from all 34 healthy

individuals. (B) Regions with low methylation levels across the same

samples. Note the different scale on the Y-axis for panel A and B. Data for

AIP were lacking for samples 32, 33, 34 due to low coverage (see details

in Materials and methods). Supplementary Figure 2. Plot examplifying

consistent high and low methylated CpGs in the same promoter, across

patients. Fraction of methylated alleles across CpGs in the promoter re-

gion of RB1 in the two samples S7 and S24 are displayed. These two
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samples were selected because they were the one with highest and low-

est overall methylation across the 283 investigated tumour suppressor

genes, respectively (ref. Supplementary figure 3), and as such should rep-

resent the extremes. Still within the RB1 promoter, they reveal a very simi-

lar pattern of some CpGs being highly methylated, while others are

hardly methylated at all. Supplementary Figure 3. Distribution of over-

all average methylation across 283 tumour suppressor gene promoters in

34 healthy individuals. (A) Bars indicate the average fraction of methyl-

ated alleles for all CpGs covered per patient. Dotted red lines indicate the

upper and lower border of the 95% confidence interval for the average

values per patient (CI for individual observations). Sample S24 falls below

the lower border of the CI, indicating general hypo-methylation. Samples

S4, S8 and S7 fall above the upper border of the CI, indicating general

hyper-methylation. (B) Q-Q plot based on the same data as displayed in

(A). S24 is encircled in green, while S4, S8 and S7 are encircled in red.

Additional file 2: Supplementary information – workflow

Additional file 3: Supplementary Table S1. Pan-cancer panel of 283

tumor suppressor genes for which promoters are included in methylation

analyses. The panel was generated based on CGPv2/3-panels [1], Roche’s

Comprehensive Cancer Design along with manual literature search.

Additional file 4: Supplementary Table S2a. Reproducibility test.

Supplementary Table S2b. Reproducibility test restricted to

randomised CpGs.

Additional file 5: Supplementary Table S3. Genes with >99

confidence level difference in methylation ratio between a minority (one

third or less) of samples versus the majority.

Additional file 6: Supplementary Table S4. groupAB_GE

Additional file 7: Supplementary Table S5. WBC fractions

Additional file 8: Supplementary Table S6. Coord blood

Additional file 9: Supplementary Table S7. EPIC

Abbreviations

BMI: Body mass index; CpG: Cytosine-phosphate-guanine; HGSOC: High

grade serous ovarian cancer; MSP: Methylation-specific polymerase chain

reaction; MLPA: Multiplex ligation-dependent probe amplification; NGS: Next-

generation sequencing; SNP: Single nucleotide polymorphism; WBC: White

blood cells

Acknowledgements

We thank Beryl Leirvaag and Christine Eriksen for technical assistance.

Authors’ contributions

Study design: DBP, EO, PEL, SK. Generation of data: DBP, EO, ZS, EV, GTI, LM.

Interpretation of data: DBP, EO, ZS, PEL, SK. Funding/grants: PEL, SK. Writing

of manuscript: DBP, PEL, SK. Approval of final manuscript: All authors

Funding

This work was performed in the Mohn Cancer Research Laboratory and was

funded by grants from the Bergen Research Foundation, the Norwegian

Cancer Society, the Norwegian Research Council, and the Norwegian Health

Region West.

Availability of data and materials

All data generated or analyzed during this study are included in this

published article (and its supplementary information files). Unprocessed raw

files are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Subsequent to providing informed consent, each individual included in the

present work donated anonymized blood samples for research purposes.

This was done in accordance with Norwegian legislation at the time of

sample collection (late 1990s).

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Author details
1K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of

Clinical Science, University of Bergen, Bergen, Norway. 2Department of

Oncology, Haukeland University Hospital, Bergen, Norway. 3Present address:

Department of Medical Genetics, Haukeland University Hospital, Bergen,

Norway. 4Computational Biology Unit, Department of Informatics, University

of Bergen, Bergen, Norway. 5Sars International Centre for Marine Molecular

Biology, University of Bergen, Bergen, Norway.

Received: 15 April 2020 Accepted: 17 August 2020

References

1. Clark DF, Maxwell KN, Powers J, Lieberman DB, Ebrahimzadeh J, Long JM,

et al. Identification and confirmation of potentially actionable germline

mutations in tumor-only genomic sequencing. JCO Precis Oncol. 2019;3

Epub 2019/09/13. doi: 10.1200/PO.19.00076. PubMed PMID: 31511844;

PubMed Central PMCID: PMCPMC6738953.

2. Hata C, Nakaoka H, Xiang Y, Wang D, Yang A, Liu D, et al. Germline

mutations of multiple breast cancer-related genes are differentially

associated with triple-negative breast cancers and prognostic factors. J Hum

Genet. 2020. https://doi.org/10.1038/s10038-020-0729-7 Epub 2020/02/

08PubMed PMID: 32029870.

3. Jansen AML, Ghosh P, Dakal TC, Slavin TP, Boland CR, Goel A. Novel

candidates in early-onset familial colorectal cancer. Familial Cancer. 2020;

19(1):1–10. https://doi.org/10.1007/s10689-019-00145-5 Epub 2019/09/27.

PubMed PMID: 31555933.

4. Li FP, Fraumeni JF Jr. Soft-tissue sarcomas, breast cancer, and other

neoplasms. A familial syndrome? Ann Intern Med. 1969;71(4):747–52

PubMed PMID: 5360287.

5. Nichols KE, Malkin D, Garber JE, Fraumeni JF Jr, Li FP. Germ-line p53

mutations predispose to a wide spectrum of early-onset cancers. Cancer

Epidemiol Biomark Prev. 2001;10(2):83–7 PubMed PMID: 11219776.

6. Donaldson A, Murray A, Antoniou AC, Brewer C, Houghton C, Evans DG,

et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from

prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105(11):812–22.

https://doi.org/10.1093/jnci/djt095.

7. Bonadona V, Bonaiti B, Olschwang S, Grandjouan S, Huiart L, Longy M, et al.

Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6

genes in Lynch syndrome. JAMA. 2011;305(22):2304–10. https://doi.org/10.

1001/jama.2011.743 Epub 2011/06/07. PubMed PMID: 21642682.

8. Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan

MD, et al. Germline p16 mutations in familial melanoma. Nat Genet. 1994;

8(1):15–21. https://doi.org/10.1038/ng0994-15 Epub 1994/09/01. PubMed

PMID: 7987387.

9. Borg A, Sandberg T, Nilsson K, Johannsson O, Klinker M, Masback A, et al.

High frequency of multiple melanomas and breast and pancreas

carcinomas in CDKN2A mutation-positive melanoma families. J Natl Cancer

Inst. 2000;92(15):1260–6 Epub 2000/08/03. PubMed PMID: 10922411.

10. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma.

Proc Natl Acad Sci U S A. 1971;68(4):820–3 Epub 1971/04/01. PubMed PMID:

5279523; PubMed Central PMCID: PMC389051.

11. Li FP, Fraumeni JF Jr. Rhabdomyosarcoma in children: epidemiologic study

and identification of a familial cancer syndrome. J Natl Cancer Inst. 1969;

43(6):1365–73 PubMed PMID: 5396222.

12. Tung N, Domchek SM, Stadler Z, Nathanson KL, Couch F, Garber JE, et al.

Counselling framework for moderate-penetrance cancer-susceptibility

mutations. Nat Rev Clin Oncol. 2016;13(9):581–8 Epub 2016/06/15. doi: 10.

1038/nrclinonc.2016.90. PubMed PMID: 27296296; PubMed Central PMCID:

PMCPMC5513673.

13. Plichta JK, Griffin M, Thakuria J, Hughes KS. What’s new in genetic testing

for cancer susceptibility? Oncology (Williston Park, NY). 2016;30(9):787–99

Epub 2016/09/17. PubMed PMID: 27633409.

14. Berdasco M, Esteller M. Clinical epigenetics: seizing opportunities for

translation. Nat Rev Genet. 2019;20(2):109–27. https://doi.org/10.1038/

s41576-018-0074-2 PubMed PMID: 30479381. Epub 2018/11/28.

15. Llinas-Arias P, Esteller M. Epigenetic inactivation of tumour suppressor

coding and non-coding genes in human cancer: an update. Open Biol.

2017;7(9) Epub 2017/09/22. doi: 10.1098/rsob.170152. PubMed PMID:

28931650; PubMed Central PMCID: PMCPMC5627056.

Poduval et al. Clinical Epigenetics          (2020) 12:131 Page 13 of 15

https://doi.org/10.1038/s10038-020-0729-7
https://www.ncbi.nlm.nih.gov/pubmed/32029870
https://doi.org/10.1007/s10689-019-00145-5
https://www.ncbi.nlm.nih.gov/pubmed/31555933
https://www.ncbi.nlm.nih.gov/pubmed/5360287
https://www.ncbi.nlm.nih.gov/pubmed/11219776
https://doi.org/10.1093/jnci/djt095
https://doi.org/10.1001/jama.2011.743
https://doi.org/10.1001/jama.2011.743
https://www.ncbi.nlm.nih.gov/pubmed/21642682
https://doi.org/10.1038/ng0994-15
https://www.ncbi.nlm.nih.gov/pubmed/7987387
https://www.ncbi.nlm.nih.gov/pubmed/10922411
https://www.ncbi.nlm.nih.gov/pubmed/5279523
https://www.ncbi.nlm.nih.gov/pubmed/PMC389051
https://www.ncbi.nlm.nih.gov/pubmed/5396222
https://www.ncbi.nlm.nih.gov/pubmed/27633409
https://doi.org/10.1038/s41576-018-0074-2
https://doi.org/10.1038/s41576-018-0074-2
https://www.ncbi.nlm.nih.gov/pubmed/30479381


16. Sloane MA, Ward RL, Hesson LB. Defining the criteria for identifying

constitutional epimutations. Clin Epigenetics. 2016;8:39 Epub 2016/04/21.

doi: 10.1186/s13148-016-0207-4. PubMed PMID: 27096027; PubMed Central

PMCID: PMCPMC4835913.

17. Esteller M. CpG island hypermethylation and tumor suppressor genes: a

booming present, a brighter future. Oncogene. 2002;21(35):5427–40

PubMed PMID: 12154405.

18. Damaso E, Canet-Hermida J, Vargas-Parra G, Velasco A, Marin F, Darder E,

et al. Highly sensitive MLH1 methylation analysis in blood identifies a cancer

patient with low-level mosaic MLH1 epimutation. Clin Epigenetics. 2019;

11(1):171 Epub 2019/11/30. doi: 10.1186/s13148-019-0762-6. PubMed PMID:

31779681; PubMed Central PMCID: PMCPMC6883525.

19. Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD. A hereditary

nonpolyposis colorectal carcinoma case associated with hypermethylation

of the MLH1 gene in normal tissue and loss of heterozygosity of the

unmethylated allele in the resulting microsatellite instability-high tumor.

Cancer Res. 2002;62(14):3925–8 PubMed PMID: WOS:000176871500006.

20. Welin S, Sorbye H, Sebjornsen S, Knappskog S, Busch C, Oberg K. Clinical

effect of temozolomide-based chemotherapy in poorly differentiated

endocrine carcinoma after progression on first-line chemotherapy. Cancer.

2011;117(20):4617–22. https://doi.org/10.1002/cncr.26124 PubMed PMID:

21456005.

21. Hitchins MP. Constitutional epimutation as a mechanism for cancer

causality and heritability? Nat Rev Cancer. 2015;15(10):625–34. https://doi.

org/10.1038/nrc4001 Epub 2015/09/19. PubMed PMID: 26383139.

22. Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Su LJ, et al. Epigenetic

research in cancer epidemiology: trends, opportunities, and challenges.

Cancer Epidemiol Biomark Prev. 2014;23(2):223–33. https://doi.org/10.1158/

1055-9965.epi-13-0573 PubMed PMID: 24326628; PubMed Central PMCID:

PMCPMC3925982.

23. Lonning PE, Berge EO, Bjornslett M, Minsaas L, Chrisanthar R, Hoberg-Vetti

H, et al. White blood cell BRCA1 promoter methylation status and ovarian

cancer risk. Ann Intern Med. 2018;168(5):326–34. https://doi.org/10.7326/

M17-0101 Epub 2018/01/18. PubMed PMID: 29335712.

24. Chan TL, Yuen ST, Kong CK, Chan YW, Chan ASY, Ng WF, et al. Heritable

germline epimutation of MSH2 in a family with hereditary nonpolyposis

colorectal cancer. Nat Genet. 2006;38(10):1178–83. https://doi.org/10.1038/

ng1866.

25. Hesson LB, Hitchins MP, Ward RL. Epimutations and cancer predisposition:

importance and mechanisms. Curr Opin Genet Dev. 2010;20(3):290–8.

https://doi.org/10.1016/j.gde.2010.02.005 Epub 2010/04/03. PubMed PMID:

20359882.

26. Hitchins MP. The role of epigenetics in Lynch syndrome. Familial Cancer.

2013;12(2):189–205. https://doi.org/10.1007/s10689-013-9613-3 Epub 2013/

03/07. PubMed PMID: 23462881.

27. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M,

et al. Heritable somatic methylation and inactivation of MSH2 in families

with Lynch syndrome due to deletion of the 3' exons of TACSTD1. Nat

Genet. 2009;41(1):112–7. https://doi.org/10.1038/ng.283 Epub 2008/12/23.

PubMed PMID: 19098912.

28. Miyakura Y, Sugano K, Akasu T, Yoshida T, Maekawa M, Saitoh S, et al.

Extensive but hemiallelic methylation of the hMLH1 promoter region in

early-onset sporadic colon cancers with microsatellite instability. Clin

Gastroenterol Hepatol. 2004;2(2):147–56 Epub 2004/03/16. PubMed PMID:

15017620.

29. Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J, et al.

MGMT promoter methylation and field defect in sporadic colorectal cancer.

J Natl Cancer Inst. 2005;97(18):1330–8. https://doi.org/10.1093/jnci/dji275.

30. Lonning PE, Eikesdal HP, Loes IM, Knappskog S. Constitutional mosaic

epimutations - a hidden cause of cancer? Cell Stress. 2019;3(4):118–35.

https://doi.org/10.15698/cst2019.04.183 Epub 2019/06/22. PubMed PMID:

31225507; PubMed Central PMCID: PMCPMC6551830.

31. Evans DGR, van Veen EM, Byers HJ, Wallace AJ, Ellingford JM, Beaman G,

et al. A dominantly inherited 5′ UTR variant causing methylation-associated

silencing of BRCA1 as a cause of breast and ovarian cancer. Am J Hum

Genet. 2018;103(2):213–20. https://doi.org/10.1016/j.ajhg.2018.07.002 Epub

2018/08/04. PubMed PMID: 30075112; PubMed Central PMCID: PMCP

MC6080768.

32. Morak M, Schackert HK, Rahner N, Betz B, Ebert M, Walldorf C, et al. Further

evidence for heritability of an epimutation in one of 12 cases with MLH1

promoter methylation in blood cells clinically displaying HNPCC. Eur J Hum

Genet. 2008;16(7):804–11. https://doi.org/10.1038/ejhg.2008.25 Epub 2008/

02/28. PubMed PMID: 18301449.

33. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. COSMIC:

somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45(D1):

D777–D83. https://doi.org/10.1093/nar/gkw1121.

34. Gervin K, Page CM, Aass HC, Jansen MA, Fjeldstad HE, Andreassen BK, et al.

Cell type specific DNA methylation in cord blood: a 450 K-reference data set

and cell count-based validation of estimated cell type composition.

Epigenetics. 2016;11(9):690–8. https://doi.org/10.1080/15592294.2016.

1214782 Epub 2016/08/06. PubMed PMID: 27494297; PubMed Central PMCI

D: PMCPMC5048717.

35. Hansmann T, Pliushch G, Leubner M, Kroll P, Endt D, Gehrig A, et al.

Constitutive promoter methylation of BRCA1 and RAD51C in patients with

familial ovarian cancer and early-onset sporadic breast cancer. Hum Mol Genet.

2012;21(21):4669–79. https://doi.org/10.1093/hmg/dds308 Epub 2012/07/31.

PubMed PMID: 22843497; PubMed Central PMCID: PMCPMC3471399.

36. Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, et al.

Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J

Med. 2007;356(7):697–705. https://doi.org/10.1056/NEJMoa064522 Epub

2007/02/16. PubMed PMID: 17301300.

37. Prajzendanc K, Domagala P, Hybiak J, Rys J, Huzarski T, Szwiec M, et al.

BRCA1 promoter methylation in peripheral blood is associated with the risk

of triple-negative breast cancer. Int J Cancer. 2020;146(5):1293–8. https://doi.

org/10.1002/ijc.32655 Epub 2019/08/31. PubMed PMID: 31469414.

38. Blumenthal GM, Dennis PA. PTEN hamartoma tumor syndromes. Eur J Hum

Genet. 2008;16(11):1289–300. https://doi.org/10.1038/ejhg.2008.162 Epub 2008/

09/11. PubMed PMID: 18781191; PubMed Central PMCID: PMCPMC6939673.

39. Celli J, Duijf P, Hamel BC, Bamshad M, Kramer B, Smits AP, et al.

Heterozygous germline mutations in the p53 homolog p63 are the cause of

EEC syndrome. Cell. 1999;99(2):143–53. https://doi.org/10.1016/s0092-

8674(00)81646-3 Epub 1999/10/27. PubMed PMID: 10535733.

40. Fiesco-Roa MO, Giri N, McReynolds LJ, Best AF, Alter BP. Genotype-

phenotype associations in Fanconi anemia: a literature review. Blood Rev.

2019;37:100589. https://doi.org/10.1016/j.blre.2019.100589 Epub 2019/07/29.

PubMed PMID: 31351673; PubMed Central PMCID: PMCPMC6730648.

41. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al.

Epigenetic differences arise during the lifetime of monozygotic twins. Proc

Natl Acad Sci U S A. 2005;102(30):10604–9. https://doi.org/10.1073/pnas.

0500398102 Epub 2005/07/13. PubMed PMID: 16009939; PubMed Central

PMCID: PMCPMC1174919.

42. Cavalli G, Heard E. Advances in epigenetics link genetics to the

environment and disease. Nature. 2019;571(7766):489–99. https://doi.org/10.

1038/s41586-019-1411-0 Epub 2019/07/26. PubMed PMID: 31341302.

43. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments

in analysis of DNA methylation data. Bioinformatics. 2014;30(10):1431–9.

https://doi.org/10.1093/bioinformatics/btu029 Epub 2014/01/24. PubMed

PMID: 24451622; PubMed Central PMCID: PMCPMC4016702.

44. Helle SI, Ekse D, Holly JMP, Lønning PE. The IGF-system in healthy pre- and

postmenopausal women: relations to demographic variables and sex-

steroids. J Steroid Biochem Mol Biol. 2002;81(1):95-102. doi: http://dx.doi.

org/https://doi.org/10.1016/S0960-0760(02)00052-3.

45. Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P,

et al. Subclonal diversification of primary breast cancer revealed by

multiregion sequencing. Nat Med. 2015;21(7):751–9. https://doi.org/10.1038/

nm.3886 PubMed PMID: 26099045; PubMed Central PMCID: PMC4500826.

46. Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S, Martincorena I,

et al. Genomic evolution of breast cancer metastasis and relapse. Cancer

Cell. 2017;32(2):169-184.e7. doi: https://doi.org/10.1016/j.ccell.2017.07.005.

PubMed PMID: 28810143; PubMed Central PMCID: PMCPMC5559645.

47. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina

sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/

bioinformatics/btu170 PubMed PMID: 24695404; PubMed Central PMCID:

PMCPMC4103590.

48. Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program.

BMC Bioinformatics. 2009;10:232. https://doi.org/10.1186/1471-2105-10-232

PubMed PMID: 19635165; PubMed Central PMCID: PMC2724425.

49. Li H. A statistical framework for SNP calling, mutation discovery, association

mapping and population genetical parameter estimation from sequencing

data. Bioinformatics. 2011;27(21):2987–93. https://doi.org/10.1093/

bioinformatics/btr509 Epub 2011/09/10. PubMed PMID: 21903627; PubMed

Central PMCID: PMCPMC3198575.

Poduval et al. Clinical Epigenetics          (2020) 12:131 Page 14 of 15

https://www.ncbi.nlm.nih.gov/pubmed/12154405
https://doi.org/10.1002/cncr.26124
https://www.ncbi.nlm.nih.gov/pubmed/21456005
https://doi.org/10.1038/nrc4001
https://doi.org/10.1038/nrc4001
https://www.ncbi.nlm.nih.gov/pubmed/26383139
https://doi.org/10.1158/1055-9965.epi-13-0573
https://doi.org/10.1158/1055-9965.epi-13-0573
https://doi.org/10.7326/M17-0101
https://doi.org/10.7326/M17-0101
https://www.ncbi.nlm.nih.gov/pubmed/29335712
https://doi.org/10.1038/ng1866
https://doi.org/10.1038/ng1866
https://doi.org/10.1016/j.gde.2010.02.005
https://www.ncbi.nlm.nih.gov/pubmed/20359882
https://doi.org/10.1007/s10689-013-9613-3
https://www.ncbi.nlm.nih.gov/pubmed/23462881
https://doi.org/10.1038/ng.283
https://www.ncbi.nlm.nih.gov/pubmed/19098912
https://www.ncbi.nlm.nih.gov/pubmed/15017620
https://doi.org/10.1093/jnci/dji275
https://doi.org/10.15698/cst2019.04.183
https://doi.org/10.1016/j.ajhg.2018.07.002
https://doi.org/10.1038/ejhg.2008.25
https://www.ncbi.nlm.nih.gov/pubmed/18301449
https://doi.org/10.1093/nar/gkw1121
https://doi.org/10.1080/15592294.2016.1214782
https://doi.org/10.1080/15592294.2016.1214782
https://doi.org/10.1093/hmg/dds308
https://doi.org/10.1056/NEJMoa064522
https://www.ncbi.nlm.nih.gov/pubmed/17301300
https://doi.org/10.1002/ijc.32655
https://doi.org/10.1002/ijc.32655
https://www.ncbi.nlm.nih.gov/pubmed/31469414
https://doi.org/10.1038/ejhg.2008.162
https://doi.org/10.1016/s0092-8674(00)81646-3
https://doi.org/10.1016/s0092-8674(00)81646-3
https://www.ncbi.nlm.nih.gov/pubmed/10535733
https://doi.org/10.1016/j.blre.2019.100589
https://doi.org/10.1073/pnas.0500398102
https://doi.org/10.1073/pnas.0500398102
https://doi.org/10.1038/s41586-019-1411-0
https://doi.org/10.1038/s41586-019-1411-0
https://www.ncbi.nlm.nih.gov/pubmed/31341302
https://doi.org/10.1093/bioinformatics/btu029
https://doi.org/10.1016/S0960-0760(02)00052-3
https://doi.org/10.1038/nm.3886
https://doi.org/10.1038/nm.3886
https://www.ncbi.nlm.nih.gov/pubmed/26099045
https://www.ncbi.nlm.nih.gov/pubmed/PMC4500826
https://doi.org/10.1016/j.ccell.2017.07.005
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1186/1471-2105-10-232
https://www.ncbi.nlm.nih.gov/pubmed/19635165
https://www.ncbi.nlm.nih.gov/pubmed/PMC2724425
https://doi.org/10.1093/bioinformatics/btr509
https://doi.org/10.1093/bioinformatics/btr509


50. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA

methylation patterns in plants and animals. Nat Rev Genet. 2010;11(3):204–

20. https://doi.org/10.1038/nrg2719 PubMed PMID: 20142834; PubMed

Central PMCID: PMCPMC3034103.

51. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT. BamTools: a

C++ API and toolkit for analyzing and managing BAM files. Bioinformatics.

2011;27(12):1691–2. https://doi.org/10.1093/bioinformatics/btr174 PubMed

PMID: 21493652; PubMed Central PMCID: PMCPMC3106182.

52. Liu Y, Siegmund KD, Laird PW, Berman BP. Bis-SNP: Combined DNA

methylation and SNP calling for Bisulfite-seq data. Genome Biol. 2012;13(7):

1–14. https://doi.org/10.1186/gb-2012-13-7-r61.

53. Culhane AC, Thioulouse J, Perriere G, Higgins DG. MADE4: an R package for

multivariate analysis of gene expression data. Bioinformatics. 2005;21(11):

2789-2790. doi: https://doi.org/10.1093/bioinformatics/bti394. Epub 2005/03/

31. PubMed PMID: 15797915.

54. Hastie T, Tibshirani R, Sherlock G, Eisen M, Brown P, Botstein D. Imputing

missing data for gene expression arrays. Stanford University Statistics

Department Technical report; 1999.

55. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, et al.

Missing value estimation methods for DNA microarrays. Bioinformatics.

2001;17(6):520–5 Epub 2001/06/08. PubMed PMID: 11395428.

56. Chang JT, Nevins JR. GATHER: a systems approach to interpreting genomic

signatures. Bioinformatics. 2006;22(23):2926–33. https://doi.org/10.1093/

bioinformatics/btl483 Epub 2006/09/27. PubMed PMID: 17000751.

57. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Res. 2000;28(1):27–30 Epub 1999/12/11. PubMed PMID:

10592173; PubMed Central PMCID: PMCPMC102409.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Poduval et al. Clinical Epigenetics          (2020) 12:131 Page 15 of 15

https://doi.org/10.1038/nrg2719
https://doi.org/10.1093/bioinformatics/btr174
https://doi.org/10.1186/gb-2012-13-7-r61
https://doi.org/10.1093/bioinformatics/bti3
https://www.ncbi.nlm.nih.gov/pubmed/15797915
https://www.ncbi.nlm.nih.gov/pubmed/11395428
https://doi.org/10.1093/bioinformatics/btl483
https://doi.org/10.1093/bioinformatics/btl483
https://www.ncbi.nlm.nih.gov/pubmed/17000751

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Results
	Methylation specific sequencing
	Methylation landscape of tumor suppressors
	Differential methylation
	Hyper-methylated tumor suppressors
	Methylation in established cancer risk genes
	Co-methylated tumor suppressors
	Validations in external data sets

	Discussion
	Conclusions
	Methods
	Samples
	DNA isolation
	Selection of tumor suppressor promoter regions
	Library preparation and methylation sequencing
	Methylation calling
	Assay reproducibility
	Differential methylation assessment
	Hierarchical clustering
	Pathway analysis
	External data sets

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

