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Abstract

To further assess vibration exposure on haul trucks (HTs) and front-end wheel loaders (FELs), 

follow-up investigations were conducted at two US crushed stone operations. The purpose was to: 

1) evaluate factors such as load/no-load conditions, speed, load capacity, vehicle age, and seat 

transmissibility relative to vibration exposure; 2) compare exposure levels with existing ISO/ANSI 

and EUGPG guidelines. Increasing HT speed increased recorded vibration at the chassis and seat 

as expected. Neither vehicle load nor vehicle speed increased transmissibility. Increasing HT size 

and age did show transmissibility decreasing. HT dominant-axis wRMS levels (most often the y-

axis, lateral or side-to-side direction) were predominantly within the health guidance caution zone 

(HGCZ). However, several instances showed vibration dose value (VDV) above the exposure 

limit value (ELV) for the ISO/ANSI guidelines. VDV levels (all dominant x-axis or fore-aft) were 

within and above the HGCZ for the EUGPG and above the HGCZ for ISO/ANSI guidelines.
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1 Introduction

Exposures to WBV are evident in the industrial world, in particular for earth-moving 

equipment including off-road vehicles. WBV comprises mechanical vibration or shock 

transmitted to the body as a whole (Griffin, 1990). When WBV is transmitted to the human 
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body at the natural frequency of the body as a whole or of its individual parts a condition 

known as resonance will result. During resonance, the body or a part of the body will 

vibrate at a magnitude higher than the applied excitation force. In response, muscles will 

contract in a voluntary or involuntary way and cause fatigue or a lowering of motor 

performance capacity (Chaffin and Andersson, 1984).

In light of postural elements, WBV is a contributing factor in the development of 

musculoskeletal disorders of the spine among workers exposed to a vibration environment 

(Kittusamy and Buchholz, 2004; Kittusamy, 2003, 2002; Bovenzi and Zadini, 1992; 

Johanning, 1991; Bongers et al., 1988, 1990; Seidel and Heide, 1986). Low-back pain (LBP) 

is a prominent and unfavourable health effect of WBV. A review by the National Institute 

for Occupational Safety and Health (NIOSH) reported a significant positive association 

between WBV exposure and LBP in 15 of 19 WBV studies reviewed by assigning its 

highest ranking descriptor of ‘strong evidence’ to the WBV-LBP relationship (NIOSH, 

1997). A variety of field investigations have reported on WBV exposure for mining and 

quarry machinery (Smets et al., 2010; Mayton et al., 2008, 2009a; Eger et al., 2006; Kumar, 

2004; Miller et al., 2000, 2004). Smets et al. (2010) reported on a review of Canadian 

accident statistics for the Ontario Mining Industry, which showed that 16% of the traumatic 

injuries were associated with HT operation. Moreover, Kumar in his study of WBV on HTs 

concluded that HT operator exposure to WBV posed a significant health risk and noted that 

the exposure limit recommended in ISO 2631 was exceeded for a majority of the exposure 

time (Kumar, 2004; ISO, 1997).

The introduction to the ISO 2631-1 standard, among other things, states that the standard

“... does not cover the potential effects of intense vibration on human performance 

and task capability since such guidance depends critically on ergonomic details 

related to the operator, the situation and the task design. Vibration is often 

complex, contains many frequencies, occurs in several directions and changes over 

time. The effects of vibration may be manifold. Exposure to WBV causes a 

complex distribution of oscillatory motions and forces within the body. There can 

be large variations between subjects with respect to biological effects. WBV may 

cause sensations (e.g., discomfort or annoyance), influence human performance 

capability or present a health and safety risk (e.g., pathological damage or 

physiological change). The presence of oscillatory force with little motion may 

cause similar effects.” (ISO, 1997)

2 Background

This paper discusses a continuation of the work conducted at two US eastern mid-Atlantic 

crushed stone operations with preliminary results reported previously (Mayton et al., 2008, 

2009b). As a follow-up to this work, a more in-depth and systematic study was performed to 

further assess WBV exposure levels for drivers and operators of HTs and FELs relative to 

various factors that may influence them. The factors considered included vehicle, age, 

capacity, travelling with load and no-load, seat transmissibility, and vehicle speed. As part 

of a former NIOSH study that focused on implementing and evaluating ergonomic 

interventions in mining, a worker risk factor assessment was performed. Company 
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management had received verbal and written responses from vehicle operators about back 

symptoms and vibration issues while performing their regular work cycles. Low-back 

discomfort was a frequently reported symptom at one quarry and vehicle vibration 

associated with bouncing and jarring was reported on a high percentage of cards. In some 

cases, employees indicated discomfort relative to the seating in vehicles. Quarry managers 

were thus interested in evaluating seating and operator exposure to WBV with the objective 

of learning how exposure levels compared to existing ISO/ANSI recommended standards.

3 Methods

NIOSH researchers conducted field studies and collected WBV exposure and global 

positioning system (GPS) data for a total of 10 vehicles and machines – three HTs and 

drivers and 2 FELs and operators operating at each of the two quarries (Table 1). The HTs 

were rear-dump, which differed by make/model, age, and capacity. The FELs were wheel-

type and also differed by make/model, age, and capacity. Vibration measurements were 

recorded with an 8-channnel, digital data recorder (model PC208Ax, Sony Manufacturing 

Systems America, Lake Forest, CA). Other instrumentation (PCB Piezotronics, Inc. Depew, 

NY) included tri-axial accelerometers (models 356B18, 356B40), signal conditioning 

amplifiers (model 480E09), and in-line, 150-Hz low-pass filters (model 474M32). The floor- 

or frame-mounted accelerometer featured a frequency range of 0.3 Hz to 5 kHz and a charge 

sensitivity ranging from 949 mV/g to 1052 mV/g for the three orthogonal axes. The seat pad 

accelerometer featured a frequency range of 0.5–1 kHz and a charge sensitivity range of 

97.4–105 mV/g for the three orthogonal axes. Vibration data were collected using 

accelerometers with pre-amplifiers and filters connected to a digital data recorder. The GPS 

unit, a Garmin Etrex C, was taped to the outside handrail of the HTs and FELs.

Installation was done at the maintenance shop and vehicle parking area. Two tri-axial 

accelerometers were installed, one on the frame of the haul truck or loader next to the cab 

window (frame or chassis measurement) and one (encased in a disk-shaped, rigid, black pad) 

on the seat at the operator/seat interface (seat measurement). Frame accelerometers were 

ordinarily mounted on the floor of the operator's compartment near the base of the seat, but 

space and setup constraints within the truck cab necessitated mounting the frame 

accelerometers on small ledges on the cab walls that were rigid and structurally connected to 

the floor. A 12-volt deep-cycle marine battery allowed researchers to avoid interruptions in 

data collection that occurred in earlier field work caused by random vehicle bouncing and 

premature disconnect from the terminals in the recorder and recorder shutdown. Measures 

for the cyclical nature of load-haul-dump activities were considered to be representative of 

exposures for the shift. Quarry management estimated that driver/operator exposure was 9 h 

for a 10-hr shift. Given cab constraints and the setup of data collecting instrumentation, 

researchers decided not to ride along in the vehicles to observe truck operation.

Measurement periods for HTs ranged from 22.1 to 98.9 min with a mean of 68.3 and 

standard deviation of 18.9 min. Similarly, measurement periods for FELs ranged from 43.8 

min to 99.2 min with a mean of 72.0 min and standard deviation of 23.5 min.
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Truck routes began and ended in the pit and plant storage pile areas or the shop area (as was 

the done in earlier field work). Instrumentation were switched on just prior to the truck 

departing this area and returned to the same area at the end of the measurement period for 

uninstalling the instrumentation. Weather conditions during both studies were dry, warm and 

sunny to partly cloudy. The roadways were dusty and required constant watering for dust 

abatement. All of the trucks and their respective seats were considered to be in good 

working order.

ISO 2631 and ANSI S3.18 (ISO, 1997; ANSI, 2002) were used to evaluate the WBV 

exposures for haulage truck drivers. For the x, y, and z directions (Figure 1), wRMS and 

VDV with overall totals of wRMS and VDV were used to evaluate driver/operator exposure. 

Considering an eight-hour exposure period, the European Union Good Practice Guide for 

WBV (EUGPG) recommends, for the worst-case axis, wRMS accelerations of 0.5 m/s2 as 

the action level and 1.15 m/s2 as the exposure limit. In using VDV to assess vibration, the 

EUGPG recommends 9.1 m/s1.75 as the action level and 21 m/s1.75 as the dose limit for an 

eight-hour exposure. The ISO/ANSI standards are slightly more conservative with 

recommended wRMS accelerations of 0.45 m/s2 as the action level and 0.90 m/s2 as the 

exposure limit and, for VDV, 8.2 m/s1.75 as the action level and 16 m/s1.75 Moreover, the 

EUGPG recommends measurement periods totalling a minimum of 20 min or longer, and if 

shorter periods are unavoidable, measurement periods should be at least 3 min long and 

repeated if possible, for a total time of more than 20 min.

Vibration transmitted through the seat was determined by the ratio – transmissibility (T) – of 

vibration level at the vehicle frame or chassis to the vibration level at the seat. A value 

greater than 1.0 (times 100%) would indicate a higher vibration level at the seat and that the 

seat is amplifying rather than attenuating the vehicle ride vibration. Griffin points out that 

comparing the accelerations on the seat with that at the seat base is the most direct method 

of obtaining accelerations. Impedance methods offer another means for measuring or 

predicting transmissibility. The seat effective amplitude transmissibility (SEAT) is given in 

two different ways by the following equations (Griffin, 1990):

(1)

(2)

In equation (1) GSS(f) and Gff(f) are the seat and floor acceleration power spectra and Wi (f) 

is the frequency weighting of the human response to vibration. In equation (2), VDV are the 

seat and floor or frame vibration dose values (VDVs). In this study, the authors used both 

wRMS, and VDV for the seat and frame of the truck cab to approximate and compare T 

values.

3.1 Analysis of whole-body vibration exposure

WBV data were analysed using GPS data and the Garmin Map Source software version 

6.11.5. The GPS logs with time stamps and points were matched with the vibration time 

histories recorded with the Sony data recorder. Measures of wRMS and VDV were 
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computed with Vibration, Acceleration and Statistical Analysis (VASA) developed by W. 

Utt and revised by R.E. Miller and I. May.1 One shortcoming with the VASA analysis was 

that the crest factors calculated by VASA used time domain data (peak/rms) to determine 

crest factor values instead of the frequency-weighted peak and weighted rms. These time 

domain values of crest factor were, in most cases, substantially lower than the designated 

value of 9.

Daily vibration exposures were computed from weighted RMS accelerations for the 

different haul trucks and drivers using equations (3) and (4). The activities of loading, 

roadway travel with full load and no load, and dumping were included in these exposure 

levels. Similarly, VDVs were obtained by using equations (3) and (4) to obtain A(8), 8-hr 

equivalent values the WBV exposures for six haul truck drivers, three drivers at each of two 

quarries.

For the x and y axes

(3)

And for the z axis

(4)

where Texp is the duration of vibration exposure daily and To is the reference duration of 8 h.

VDV exposures were computed from the measured samples as follows: For the x and y axes

(5)

And for the z axis

(6)

where Texp is the duration of vibration exposure daily and Tmeas is the measurement 

duration.

Overall weighted total RMS acceleration or vector sum normalised to an 8-hr shift is 

obtained by equation (7), whereas VDVtot exposure is provided by equation (8).

(7)

(8)

1Vibration, Acceleration, and Statistical Analysis (VASA), 2006. Software Version 1.03 – Original DOS code by W.K. Utt, Revised 
by R.E. Miller and I. May. NIOSH – Spokane Research Laboratory, Spokane, WA.
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Frequency-weighted RMS accelerations were then calculated using the appropriate 

weighting factors as described in ISO 2631-1 (x-axis = Wd; y-axis = Wd; z-axis = Wk) (ISO, 

1997, ANSI, 2002). Scaling factors associated with the determination of health for seated 

exposure were also applied (x-axis, k = 1.4; y-axis, k = 1.4; z-axis, k = 1.0). The axis with the 

highest mean wRMS acceleration level was selected for comparison to the ISO-2631-1 

HGCZ limits associated with 8 h of daily exposure. According to the standard, health effects 

are not well documented for vibration exposure levels below the HGCZ. Exposures falling 

within the HGCZ should be viewed with caution in regards to health risks, while health risks 

are likely if the exposure is above the HGCZ (ISO, 1997; ANSI, 2002).

The axis associated with the highest level of acceleration was used to determine likely health 

risks based on ISO 2631-1 HGCZ limits for 8 h of exposure (Table 2). According to ISO 

2631-1, the frequency-weighted acceleration values corresponding to the lower and upper 

limits of the HGCZ (for 8 h of exposure) are 0.45 m/s2 and 0.90 m/s2 respectively (ISO, 

1997; ANSI, 2002). According to the standard, “health effects are not well documented for 

vibration exposure levels below the HGCZ. Exposures falling within the HGCZ should be 

viewed with caution in regards to health risks, while health risks are likely if the exposure is 

above the HGCZ” (ISO, 1997; ANSI, 2002).

4 Results and discussion

4.1 Overall assessment

4.1.1 Haul trucks—Table 2 shows haul truck driver WBV exposures in terms of wRMS 

accelerations for six haul trucks operating at two stone quarries. Acceleration levels were 

normalised or adjusted using equations (3) and (4) to obtain 8-hr equivalent levels, A(8), of 

WBV exposures for the three drivers haul truck at each of two quarries. The activities 

performed during vibration data collection included loading, roadway travel with full load 

and no load, and dumping.

For all three truck drivers at Quarry 1, the dominant axis (highest level) of vibration 

exposure was the lateral y-axis (lateral or side-to-side direction) primarily and the x-axis 

(fore-aft or front-to-back direction) secondarily. All levels, normalised for an 8-hr shift, 

were within the HGCZ for both ISO and EUGPG boundary conditions.

In Table 3, VDV values showed similar results to those of wRMS, where the dominant axis 

of exposure was again the y-axis, although secondarily the z-axis (vertical or up-and-down 

direction) was dominant. In six of 14 instances, the more conservative ISO ELV was 

exceeded.

Figure 2 shows transmissibility (computed using wRMS and VDV) vs. speed for all haul 

truck drivers driving with no load. The general trend is flat and the trend lines for both 

transmissibility computational methods virtually coincide. The preponderance of 

transmissibility values fell below 1, which indicates the seat is attenuating rather than 

amplifying vibration. Similar results are seen in Figure 3 with a slight upward trend for both 

wRMS and VDV computed transmissibilities for all haul truck drivers driving with a load. 

Figures 4 and 5 show transmissibility vs. speed for all haul truck drivers, using the wRMS 
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and VDV methods of computation, and driving with no-load and a load, respectively. The 

majority of values are again below 1 and the trends are downward with increasing age. The 

trend lines for wRMS and VDV are virtually superimposed on one another in Figure 4 as 

seen for the trend lines in Figure 2. Figure 5, as in Figure 3, shows slight separation in the 

trend lines for wRMS and VDV when HTs were travelling with a load.

Using Driver 1, Quarry 1, Figures 5–7 show examples of how wRMS varied for the 

dominant axis vs. speed when driving vehicles of different makes, models, and ages during 

the loaded/no-load conditions. In Figure 5, the trend lines are upward and the newest of the 

three vehicles, shows the steepest trend. The flatter trend is shown for the oldest vehicle, 

which may be indicative of stiffer vehicle suspensions and related components for the newer 

vehicle. The steeper trends, indicative of higher exposure levels, appear for the unloaded 

condition for the trucks 8, 3, and 9 years of age respectively.

In Figure 6, the wRMS accelerations of the dominant axis are compared against vehicle 

speed for the no-load condition, whereas Figure 7 shows the same for the HT travelling with 

a load. As expected, the exposures for the no-load condition trend higher than those for the 

loaded condition.

Roughly half of the dominant axis exposures were either in z-axis or the y-axis. The 

percentage breakdown of haul truck wRMS for dominant axis with and without a load was 

47% z-axis, 46% y-axis, and 7% x-axis. Of the 275 HT selected incidents (not normalised to 

an equivalent 8-hr shift), 129 were within the HGCZ and 146 of 275 were below the HGCZ. 

Of those within the HGCZ, 56% of the 129 incidents were the vertical or z-axis, whereas 

44% were the lateral y-axis.

4.1.2 Front-end loaders—Tables 4 and 5 show FEL operator exposures in terms of 

wRMS accelerations and VDV. The loader operator exposure included roadway travel, 

pushing/moving material, and loading HTs. The majority of wRMS levels in Table 4 

normalised to 8-hr shift equivalent are shown to be within the HGCZ for both ISO/ANSI 

and EUGPG criteria. Again, the dominant axis levels are for the lateral x- and y-axes vs. the 

vertical z-axis. In contrast to wRMS levels, VDVs in Table 5 show that all recorded levels 

(normalised to the 8-hr equivalent) are dominant along the x-axis and are above the HGCZ 

for the ISO/ANSI criteria and within and above the criteria for the EUGPG. This is not 

entirely surprising, since VDV not only is more reflective of jarring/jolting, but is also 

cumulative across the shift.

4.2 Statistical assessment

Vibration data for both HTs and FELs were analysed using robust multivariate regression 

techniques (SPSS, Inc.) to determine the influence of various independent variables on 

vibration exposure. Independent variables included vehicle load condition (loaded vs. 

unloaded), vehicle speed (mph), vehicle capacity (short tons), and vehicle age (yrs). 

Dependent variables included wRMS vibration in the z axis (chassis) and in x, y, and z axes 

at the seat, along with total RMS vibration at the seat and RMS transmissibility. In addition, 

VDV vibration dependent measures included all three axes (x, y, and z) at the chassis and at 
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the seat, as well as total VDV vibration measured at the seat and VDV computed 

transmissibility. The type I error rate for all analyses was set at 0.05.

4.2.1 Haul trucks—Results for the regression analyses of wRMS and VDV vibration 

measures are presented in Tables 6 and 7, respectively. Examination of wRMS vibration 

effects due to the loading condition of the HT indicated generally lower vibration responses 

when the HT was loaded as opposed to unloaded, as shown in Table 6. This was true for 

vibration measured at the seat in the x (p < 0.001) and y (p < 0.001) directions, as well as for 

total wRMS vibration measured at the seat (p < 0.001). Increased speed was found to lead to 

increased wRMS vibration for all measured axes at both the chassis and the seat (p < 0.001); 

however, speed did not affect wRMS transmissibility (p > 0.05).

Vehicle characteristics of load capacity and age also influenced wRMS vibration measures. 

Specifically, higher load capacities were found to reduce wRMS vibration at the seat in the z 

axis (p < 0.001) as well as total wRMS vibration at the seat (p < 0.001), and was also 

associated with decreased wRMS transmissibility (p < 0.001). Increased vehicle age was 

associated with higher wRMS accelerations at the chassis in the z direction (p < 0.001), but 

was associated with lower accelerations at the seat in the z axis (p < 0.001) and total wRMS 

vibration (p < 0.001), and a decrease in transmissibility (p < 0.001).

Analysis of VDV vibration data in HTs produced similar results to wRMS accelerations (see 

Table 7). Loaded HTs were found to significantly reduce VDV acceleration at the chassis in 

x (p < 0.001), y (p < 0.001), and z (p < 0.001) directions and for x (p < 0.001), y (p < 0.001), 

and VDV total vibration at the seat (p < 0.001). Load condition did not affect VDV vibration 

transmissibility (p > 0.05). Increasing vehicle speed increased VDV vibration in all three 

axes at the chassis (p < 0.001) and all three axes at the seat (p < 0.001). However, vehicle 

speed did not affect VDV transmissibility.

HT load capacity significantly affected VDV vibration measures at the seat and affected 

VDV transmissibility as well. Specifically, increased load capacity was associated with 

decreased VDV vibration at the seat in the y (p < 0.05) and z (p < 0.05) directions as well as 

total VDV vibration at the seat (p < 0.05). VDV transmissibility was also decreased as haul 

truck capacity increased (p < 0.05). Vehicle age was associated with increased VDV 

vibration in the z axis at the chassis (p < 0.01), and with decreased vibration in the z axis (p 

< 0.01) and for total seat vibration (p < 0.05) as well as decreased VDV transmissibility (p < 

0.001).

4.2.2 Front-end loaders—In contrast to HTs, where vibration was affected by all of the 

independent variables tested, FEL vibration was associated with only one of the independent 

variables tested – vehicle age. As Table 8 shows, wRMS vibration was found to increase 

with vehicle age in the z axis at the chassis ((p < 0.05), at the x (p < 0.001), y (p < 0.01), and 

z (p < 0.001) axes at the seat, and for total wRMS vibration measured at the seat (p < 0.001). 

Results of VDV vibration also indicated that vehicle age was the only influential variable, 

with increasing vehicle age being associated with decreased VDV vibration in the x (p < 

0.05) and y (p < 0.01) axes at the chassis (Table 9).
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HT vibration was influenced by a variety of factors, including load condition, vehicle speed, 

vehicle load capacity, and vehicle age. When the HT was loaded, measured vibration was 

significantly lower (at the chassis and at the seat) compared to the unloaded condition. As 

noted in NIOSH underground mine shuttle car studies, the additional weight from the load 

allowed for more damping from the tyres (Mayton et al., 2009a). Increasing vehicle speed 

for the HTs increased the level of vibration at both the chassis and the seat. Seat 

transmissibility was not affected by vehicle load or vehicle speed, which indicates that the 

seat was not amplifying the vibration. Characteristics of the truck (size and age) did affect 

transmissibility. Increasing size and age showed a decrease in transmissibility, z-axis 

vibration, and total vibration at the seat. In contrast with haul trucks, the independent 

variables impacted FELs very little except for vehicle age. Also the size differences between 

the various models of FELs were not significant, which may explain why there was little 

effect. Higher vehicle age for FELs showed an increase in wRMS vibration levels at the 

chassis and the seat, whereas VDV levels showed a decrease (x-axis and y-axis at the chassis 

only).

5 Conclusions

This study compared exposure levels on HTs and FELs with existing ISO/ANSI and 

EUGPG guidelines and evaluated the influence of factors such as load/no-load conditions, 

speed, load capacity, vehicle age, and seat transmissibility on vibration exposures. 

Predictably, recorded vibration at the chassis and seat increased with increasing HT speed. 

Increases in transmissibility were not evident with increasing vehicle load or vehicle speed. 

Conversely, decreases in transmissibility were evident with increases in HT size and age. 

The wRMS exposure levels for HTs, compared to the ISO/ANSI standards and the EUGPG, 

were, in all but one instance, within the HGCZ for the dominant axis of exposure and, in 

43% of the cases for VDV, above the ELV for the ISO/ANSI guidelines. The y-axis (lateral 

or side-to-side direction) was most often the dominant axis. Roughly half of the dominant 

axis exposures were either in z-axis (vertical or up-and-down direction) or the y-axis. Of the 

275 HT separate incidents (not normalised to an equivalent 8-hr shift), 129 were within the 

HGCZ and 146 of 275 were below the HGCZ. Of those within the HGCZ, 56% of the 129 

incidents were the vertical or z-axis, whereas 44% were the lateral y-axis. For FELs, the 

wRMS levels dominant x-axis (fore-aft or front-to-back direction) and were predominantly 

within the ISO/ANSI and EUGPG EAVs. In contrast, VDV levels all in the dominant x-axis, 

were within and above the HGCZ for the EUGPG and above the HGCZ for ISO/ANSI 

guidelines. The higher VDV levels in the fore-aft direction are not surprising and are 

indicative of the quick and sudden start/stop bucket filling-/-emptying activities associated 

with FELs during loading operations. Future work should continue ongoing data collection 

efforts to monitor vibration exposure data on HTs and FELs and solicit feedback from the 

respective drivers/operators over a longer period of time.

6 Limitations

Operating conditions and the mining processes shortened sampling time in some instances. 

There was also an obvious change in the working environment (pit and bench location 

changes for loading operations), and truck driving routes over the 12-month period were a 
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limiting factor in drawing conclusions and comparing to earlier field work. Moreover, the 

accuracy of the GPS information was limited somewhat by fewer visible satellites at a 

relatively high vertical angle, which degraded to some extent the accuracy of the horizontal 

coordinates. The nature of the current data made examination of interactions rather 

problematic, such as interactions between two continuous independent variables (i.e., speed 

and vehicle age). While such analyses can be done, such interactions can be confounding 

and are extremely difficult to interpret.
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ELV Exposure limit value

EUGPG European Union good practices guide on whole-body vibration

FELs Front-end wheel loaders

GPS Global positioning system

HTs Haul trucks

HGCZ Health guidance caution zone

h Hour

ISO International Standards Organization

ANSI American National Standard Institute

LBP Low-back pain

m/s2 Metres per second squared

m/s1.75 Metres per second to the power 1.75

mph Miles per hour

min Minutes

wRMS Frequency-weighted root-mean-square acceleration

VDV Vibration dose value

WBV Whole-body vibration

yrs Years
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Figure 1. 
Vibration is measured along the orthogonal x, y and z axes or vectors (see online version for 

colours)

Source: Griffin et al. (2006). Graphic of seated driver downloaded from the Human Factors 

Research Unit website, Institute of Sound and Vibration, University of Southampton; http://

resource.isvr.soton.ac.uk/HRV/VIBGUIDE/2008_11_08%20WBV_Good_practice_Guide

%20v6.7h%20English.pdf. Orthogonal axes downloaded from Wikipedia http://

en.wikipedia.org/wiki/File:Cartesian_coordinate_system_handedness.svg
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Figure 2. 
Transmissibility (output/input) vs. speed computed from weighted RMS and VDV for all 

haul truck drivers travelling with no load (see online version for colours)
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Figure 3. 
Transmissibility (output/input) vs. speed computed from weighted RMS and VDV for all 

haul truck drivers travelling with full load (see online version for colours)

Mayton et al. Page 15

Int J Heavy Veh Syst. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Transmissibility (output/input) vs. age computed from weighted RMS for all haul truck 

drivers travelling with no load and full load (see online version for colours)
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Figure 5. 
Weighted RMS accelerations, dominant axis, for haul truck driver 1 from quarry 1 vs. 

vehicle speed for roadway travel, with and without a load, and different vehicle age (see 

online version for colours)

Mayton et al. Page 17

Int J Heavy Veh Syst. Author manuscript; available in PMC 2015 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Weighted RMS accelerations, dominant axis, for haul truck driver 1 from quarry 1 vs. 

vehicle speed for no-load conditions and different haul truck makes/models (see online 

version for colours)
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Figure 7. 
Weighted RMS accelerations, dominant axis, for haul truck driver 1 from quarry 1 vs. 

vehicle speed for full-load conditions and different haul truck makes/models (see online 

version for colours)
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Table 1

Description of heavy equipment operating at two aggregate stone quarries evaluated for driver/operator whole-

body vibration exposure

Quarry – 1

Haul truck (HT) Year Age (yrs) Capacity (tons)

HT-1 2000 8 65

HT-2 1999 9 65

HT-3 2005 3 70

Front-end loaders (FELs) Year Age (yrs) Capacity (Cu. Yds)

FEL-1 2005 3 11.2

FEL-2 2004 4 7

Quarry – 2

Haul truck (HT) Year Age (yrs) Capacity (tons)

HT-4 1992 16 50

HT-5 1986 22 50

HT-6 2007 1 70

Front-end loaders (FELs) Year Age (yrs) Capacity (Cu. Yds)

FEL-3 2006 2 8.3

FEL-4 2002 6 8

Capacity is nominal rated value in short tons. Age is computed from vehicle year to date of latest data collection – 2008.
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Table 2

Whole-body vibration exposures evaluated by weighted, root-mean-square (wRMS) accelerations for axes x, 

y, and z and vector summations for haul truck drivers/operators at two stone quarries. Weighted acceleration 

levels for the total sample times were normalised to full-shift equivalent levels to compare with the ISO health 

guidance caution zone (HGCZ) action and limit boundary level conditions of ISO 2631-1 and the European 

Union Directive 2002/44/EC presented in the European Union good practices guide (EUGPG)

Quarry Haul truck driver/operator Total 
sampling 

time 
(min)

A(8) wRMS X-axis A(8) wRMS Y-axis A(8) wRMS Z-axis A(8) 
wRMS 
vector 
sum

ISO 2631-1 

8-hr shift
1 

equivalent 
HGCZ 
dominant 
axis

EUGPG 8-hr 

shift
1 

equivalent 
HGCZ 
dominant 
axis

1 1 82.4 0.41 0.77 0.43 1.30 Within HGCZ Within HGCZ

1 1 98.9 0.33 0.63 0.54 1.13 Within HGCZ Within HGCZ

1 1 83.8 0.42 0.69 0.42 1.21 Within HGCZ Within HGCZ

1 2 22.1 0.49 0.51 0.39 1.06 Within HGCZ Within HGCZ

1 2 75.6 0.49 0.54 0.47 1.13 Within HGCZ Within HGCZ

1 2 81.8 0.49 0.54 0.36 1.08 Within HGCZ Within HGCZ

1 3 61.3 0.50 0.56 0.39 1.12 Within HGCZ Within HGCZ

1 3 60.0 0.47 0.54 0.42 1.09 Within HGCZ Within HGCZ

1 3 66.7 0.44 0.58 0.43 1.11 Within HGCZ Within HGCZ

2 4 85.0 0.62 0.56 0.33 1.22 Within HGCZ Within HGCZ

2 4 65.6 0.99 0.79 0.40 1.82 Within HGCZ Within HGCZ

2 5 67.2 0.45 0.66 0.44 1.20 Within HGCZ Within HGCZ

2 5 47.5 0.42 0.62 0.38 1.12 Within HGCZ Within HGCZ

2 6 59.3 0.44 0.55 0.42 1.07 Within HGCZ Within HGCZ

Mean 68.3 0.50 0.61 0.42 1.19 Within HGCZ Within HGCZ

STD 18.9 0.16 0.09 0.05 0.19

1
Full-shift applies to 9-hr daily exposure during a 10-hr shift for wRMS; International Standards Organization (ISO). The multiple entries for 

individual drivers indicate the operation of different makes and models of haul trucks or ages of the same model. Units of wRMS are presented as 

m/s2. The activities associated with the haul truck driver exposures were loading, roadway travel with full load and no load, and dumping.
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Table 3

Whole-body vibration exposures evaluated by vibration dose value (VDV) for axes x, y, and z and vector 

summations for haul truck drivers/operators at two stone quarries. VDV levels for the total sample times were 

normalised to full-shift equivalent levels to compare with the ISO health guidance caution zone (HGCZ) 

action and limit boundary level conditions of ISO 2631-1 and the European Union Directive 2002/44/EC 

presented in the European Union good practices guide (EUGPG)

Quarry Haul truck driver/operator Total 
sampling 

time 
(min)

A(8) VDV X-axis A(8) VDV Y-axis A(8) VDV Z-axis A(8) VDV total ISO 2631-1 

8-hr shift
1 

equivalent 
HGCZ 
dominant 
axis

EUGPG 8-hr 

shift
1 

equivalent 
HGCZ 
dominant 
axis

1 1 82.4 10.8 19.8 10.8 33.4 Above HGCZ Within HGCZ

1 1 98.9 9.2 15.9 13.9 29.2 Within HGCZ Within HGCZ

1 1 83.8 11.3 18.2 14.5 33.3 Above HGCZ Within HGCZ

1 2 75.6 12.5 13.8 12.2 28.8 Within HGCZ Within HGCZ

1 2 75.6 12.5 13.4 12.6 28.6 Within HGCZ Within HGCZ

1 2 81.8 12.4 13.3 9.5 27.2 Within HGCZ Within HGCZ

1 3 61.3 13.4 13.8 15.1 30.9 Within HGCZ Within HGCZ

1 3 60.0 12.7 13.6 14.3 29.7 Within HGCZ Within HGCZ

1 3 66.7 11.7 14.2 15.5 30.1 Within HGCZ Within HGCZ

2 4 85.0 13.3 18.9 17.5 36.8 Above HGCZ Within HGCZ

2 4 65.6 12.2 16.6 12.0 31.2 Above HGCZ Within HGCZ

2 5 67.2 13.5 16.8 17.3 34.8 Above HGCZ Within HGCZ

2 5 47.5 13.7 13.4 18.8 32.8 Above HGCZ Within HGCZ

2 6 59.3 11.0 11.8 9.3 24.4 Within HGCZ Within HGCZ

Mean 68.3 12.2 15.2 13.8 30.8 Within HGCZ Within HGCZ

STD 18.9 1.3 2.5 2.9 3.2

1
Full-shift applies to 9-hr daily exposure during a 10-hr shift for VDV; International Standards Organization (ISO). The multiple entries for 

individual drivers indicate the operation of different makes and models of haul trucks or ages of the same model. Units of VDV are presented as 

m/s1.75. The activities associated with the haul truck driver exposures were loading, roadway travel with full load and no load, and dumping.
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Table 4

Whole-body vibration exposures evaluated by weighted, root-mean-square (wRMS) accelerations for axes x, 

y, and z and vector summations for front-end loader operators at two stone quarries. Weighted acceleration 

levels for the total sample times were normalised to full-shift equivalent levels to compare with the ISO health 

guidance caution zone (HGCZ) action and limit boundary level conditions of ISO 2631-1 and the European 

Union Directive 2002/44/EC presented in the European Union good practices guide (EUGPG)

Quarry Front-end loader operator Total 
sampling 

time 
(min)

A(8) wRMS X-axis A(8) wRMS Y-axis A(8) wRMS Z-axis A(8) 
wRMS 
vector 
sum

ISO 2631-1 

8-hr shift
1 

equivalent 
HGCZ 
dominant 
axis

EUGPG 8-hr 

shift
1 

equivalent 
HGCZ 
dominant 
axis

1 1 64.7 0.50 0.55 0.53 1.17 Within HGCZ Within HGCZ

1 2 99.2 1.04 0.93 0.49 2.01 Above HGCZ Within HGCZ

2 3 80.1 0.88 0.75 0.40 1.67 Within HGCZ Within HGCZ

2 4 43.8 0.42 0.48 0.35 0.96 Within HGCZ Below HGCZ

Mean 72.0 0.71 0.68 0.44 1.45 Within HGCZ Within HGCZ

STD 23.5 0.29 0.20 0.08 0.47

1
Full-shift applies to 9-hr daily exposure during a 10-hr shift for wRMS; International Standards Organization (ISO). Units of wRMS are presented 

as m/s2. The activities associated with the front-end loader operator exposures were pushing /moving material, loading haul truck, and roadway 

travel.
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Table 5

Whole-body vibration exposures evaluated by vibration dose values (VDVs) levels for axes x, y, and z and 

vector summations for front-end loader operators at two stone quarries. VDVs were normalised to full-shift 

equivalent levels to compare with the ISO health guidance caution zone (HGCZ) action and limit boundary 

level conditions of ISO 2631-1 and the European Union Directive 2002/44/EC presented in the European 

Union good practices guide (EUGPG)

Quarry Front-end loader operator Total 
sampling 

time 
(min)

VDV X-axis VDV Y-axis VDV Z-axis VDV total ISO 2631-1 

8-hr shift
1 

equivalent 
HGCZ 
dominant 
axis

EUGPG 8-hr 

shift
1 

equivalent 
HGCZ 
dominant 
axis

1 1 64.7 18.8 13.0 14.1 35.0 Above HGCZ Within HGCZ

1 2 99.2 21.5 18.3 9.6 40.6 Above HGCZ Above HGCZ

2 3 80.1 23.2 22.2 12.4 46.7 Above HGCZ Above HGCZ

2 4 43.8 19.9 18.9 10.2 39.7 Above HGCZ Within HGCZ

Mean 72.0 20.8 18.1 11.6 40.5 Above HGCZ Within HGCZ

STD 23.5 1.9 3.8 2.1 4.8

1
Full-shift applies to 9-hr daily exposure during a 10-hr shift for wRMS; International Standards Organization (ISO). Units of VDV are presented 

as m/s1.75. The activities associated with the front-end loader operator exposures were pushing /moving material, loading haul truck, and roadway 

travel.
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Table 6

Results of regression results for wRMS vibration and transmissibility for haul trucks

wRMS Z-axis (chassis) wRMS X-axis (seat) wRMS Y-axis (seat) wRMS Z-axis (seat) wRMS 
vector sum 

(seat)

WRMS transmissibility

Constant
–0.0882

***
0.4391

**
0.7555

*** 0.8725
1.5198

***
3.1663

***

Loaded vs. unloaded –0.0202
–0.0551

***
–0.0682

*** 0.0226
–0.0958

*** 0.0366

Speed (mph)
0.0245

***
0.0086

***
0.0138

***
0.0229

***
0.0311

*** 0.0013

Capacity (short tons) –0.0052 –0.0015 –0.0056
–0.0081

**
–0.0108

*
–0.0300

***

Vehicle age (years)
0.0147

*** –0.0045 –0.0057
–0.0141

***
–0.0166

*
–0.0564

***

Adjusted R2 0.48 0.33 0.31 0.53 0.44 0.43

*
p < 0.05

**
p < 0.01

***
p < 0.001).
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Table 8

Results of regression results for wRMS vibration and transmissibility for front-end loaders

wRMS Z-axis (chassis) wRMS X-axis (seat) wRMS Y-axis (seat) wRMS Z-axis (seat) wRMS 
vector 

sum (seat)

WRMS transmissibility

Constant 0.1969 –0.2931 –0.0687 0.1233 –0.3060 0.0631

Loaded vs. unloaded –0.0029 0.1088 0.0502 –0.0230 0.1377 –0.0803

Speed (mph) –0.0014 0.0140 0.0087 –0.0038 0.0201 –0.0077

Vehicle age (years)
0.0451

*
0.0944

***
0.0696

**
0.0480

***
0.1701

*** 0.0102

Vehicle capacity (tons) 0.0071 0.0391 0.0252 0.0080 0.0640 0.0306

Adjusted R2 0.18 0.40 0.24 0.44 0.40 0.00

*
p < 0.05

**
p < 0.01

***
p < 0.001.
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