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Summary 

 

It is commonly known that a diversity of fungi, including yeasts, may occur on 

plant surfaces.  Similarly, on fallen trees an ecological succession of different 

fungal species is known to occur during wood degradation.  Some of these fungi 

may be pioneer fungi contributing to the initial degradation process, while others 

may be yeasts associated with the fruiting bodies of macro-fungi which in turn 

are able to utilize the more recalcitrant polymers in wood.  Previously, it was 

revealed that an increase occurs in the wood degradation rate of certain white-rot 

fungi when co-cultured with selected yeast species.  

 

A well known inhabitant of decomposing trees is the white rot fungus Pycnoporus 

sanguineus.  It was found by some that this fungus is capable of selective 

delignification while growing on the wood of poplar trees, while other authors 

found a simultaneous delignification pattern on Eucalyptus grandis trees.  In the 

latter case cellulose and lignin are degraded simultaneously.  

 

We were interested in how yeasts occurring on the surface of P. sanguineus 

fruiting bodies, and the pioneer fungus Aspergillus flavipes, impact on wood 

degradation by this white-rot fungus.  Restriction Fragment Length 

Polymorphisms (RFLP) analyses were used to obtain an indication of the species 

composition of the culturable yeast community associated with fruiting bodies of 

P. sanguineus.  The impact of the most dominant of these yeasts species, i.e. 

Pichia guilliermondii and Rhodotorula glutinis, as well as A. flavipes, on wood 

degradation by P. sanguineus was then determined by analyzing the major wood 

components after growth of co-cultures on hot water washed E. grandis wood 

chips.  Co-cultures of P. sanguineus with the other fungi were prepared by 

inoculating the wood chips, contained in solid state bioreactors and 

supplemented with molasses and urea, with the an appropriate volume of fungal 

inoculum, resulting in an initial moisture content of 60%.  After two weeks of 

incubation at 30°C with constant aeration, the chips were harvested.  Standard 
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protocol (TAPPI Standard Methods), commonly used by the paper and pulp 

industry, were then employed to determine the percentage cellulose, Klason 

Lignin, as well as polar and solvent-borne extractives in the chips.  The resulting 

data were analyzed using box plots, as well as biplots.  No degradation of Klason 

lignin was observed, while the percentage cellulose did decrease during fungal 

degradation.  Taking into account the inherent shortcomings of the Klason Lignin 

determination, the results supported the findings of others that P. sanguineus 

shows a simultaneous delignification pattern while growing on E. grandis wood. 

In addition, it was found that the yeasts played no significant role in the 

degradation ability of P. sanguineus, while A. flavipes showed an antagonistic 

effect on P. sanguineus with respect to cellulose degradation.  However, it was 

clear that the analytical methods used in this study were inadequate to accurately 

determine fungal degradation of wood.  In addition, it was obvious that the 

methods used did not distinguish between fungal biomass and wood 

components.  Nevertheless, the methods provided us with a fingerprint of each 

culture growing on E. grandis wood, allowing us to compare the chemical 

composition of the different cultures and the un-inoculated hot water washed 

wood chips.  The question, therefore, arose whether the effect of a particular co-

culture, on the chemical composition of wood, differs between tree species.  

Consequently, chemical alterations in different tree species, induced by a P. 

sanguineus / A. flavipes co-culture, were investigated in the next part of the 

study. Wood chips originating from four tree species, i.e. Acacia mearnsii, 

Eucalyptus dunnii, E. grandis, and Eucalyptus macarthurii, were inoculated with 

this co-culture.  The culture conditions and subsequent analyses of the wood 

components were the same as in the first part of the study.  From the box- and 

biplots constructed from the resulting data, it was clear that the chemical 

composition of each tree species were altered in a different manner by the co-

culture.  Lignin content showed an apparent increase in A. mearnsii, while E. 

dunnii showed a decrease in cellulose content.  The results indicate that wood of 

different tree species are degraded in a different manner and this phenomenon 

should be taken into account in selecting fungi for biopulping.   
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Samevatting 

 

Dit is algemeen bekend dat 'n verskeidenheid fungi, insluitend giste, op 

plantoppervlaktes mag voorkom.  Dit is ook bekend dat 'n ekologiese 

opeenvolging van verskillende fungusspesies tydens hout-afbraak op omgevalle 

bome voorkom.  Van hierdie fungi mag pionierfungi wees wat bydra tot die 

aanvanklike afbraakproses, terwyl ander giste mag wees wat geassosieer word 

met die vrugliggame van makro-fungi, wat op hul beurt weer in staat is om die 

meer weerstandbiedende polimere in hout te benut.  Dit is voorheen 

bekendgemaak dat daar 'n toename plaasvind in die tempo van houtafbraak deur 

sekere witvrot-fungi wanneer dit in ko-kulture met geselekteerde gisspesies 

voorkom.  

 

'n Bekende bewoner van verrottende bome is die wit-vrotfungus Pycnoporus 

sanguineus.  Dit is gevind dat hierdie fungus tot selektiewe delignifikasie in staat 

is terwyl dit op die hout van populierbome groei, terwyl ander outeurs 'n 

gelyktydige patroon van delignifisering op Eucalyptus grandis bome gevind het.  

In laasgenoemde geval is sellulose en lignien gelyktydig afgebreek.  

 

Ons was geïnteresseerd in die effek van giste op die oppervlak van vrugliggame 

van P. sanguineus, en die pionierfungus Aspergillus flavipes, op die houtafbraak 

deur hierdie wit-vrotfungus.  Restriction Fragment Length Polymorphisms (RFLP) 

analises is gevolglik gebruik om 'n aanduiding te kry van die spesiesamestelling 

van die kweekbare gisgemeenskap wat met die vrugliggame van P. sanguineus 

geassosieer word.  Die impak van die mees dominante van hierdie gisspesies, 

naamlik Pichia guilliermondii en Rhodotorula glutinis, asook A. flavipes, op 

houtafbraak deur P. sanguineus is voorts bepaal deur die analise van die 

belangrikste houtkomponente na die kweek van ko-kulture op E. grandis 

houtskyfies wat met warm water gewas is.  Ko-kulture van P. sanguineus met die 

ander fungi is voorberei deur die houtskyfies in vaste fase bioreaktore, aangevul 

met melasse en ureum, te inokuleer met 'n toepaslike volume van die fungus-
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inokulum om 'n aanvanklike voginhoud van 60% te verkry.  Na twee weke se 

inkubasie by 30°C met konstante belugting is die skyfies ge-oes.  Standaard 

protokol (TAPPI Standard Methods), algemeen deur die papier en pulpindustrie 

gebruik, is ingespan om die persentasie sellulose, Klason Lignien, asook polêre 

en oplosmiddel-gedraagde ekstrakte in die skyfies te bepaal.  Die gevolglike data 

is geanaliseer deur gebruik te maak van box plots en biplots.  Daar is geen 

afbraak van Klason Lignien bespeur nie, terwyl die persentasie sellulose wel 

toegeneem het tydens fungus degradasie.  Met die inherente tekortkominge van 

die Klason Lignien bepaling inaggenome, het die resultate die bevindings 

ondersteun van andere wat getoon het dat P. sanguineus 'n gelyktydige 

delignifikasiepatroon openbaar terwyl dit op E. grandis hout groei.  Daarby is dit 

gevind dat die giste geen beduidende rol in die afbraakvermoeë  van P. 

sanguineus gespeel het nie, terwyl A. flavipes 'n antagonisiese effek ten opsigte 

van die sellulose degradering van P. sanguineus getoon het.  Dit was egter 

duidelik dat die analitiese metodes wat in hierdie studie gebruik is, onvoldoende 

was om die degradering van hout akkuraat te bepaal.  Daarby was dit duidelik 

dat die metodes nie tussen fungus biomassa en houtkomponente kon onderskei 

nie.  Nogtans het die metodes 'n vingerafdruk verskaf van elke kultuur wat op E. 

grandis hout groei, wat ons toegelaat het om die chemiese samestelling van die 

verskillende kulture en die ongeïnokuleerde, met warm water gewasde 

houtskyfies te vergelyk.  Die vraag het gevolglik ontstaan of die effek van 'n 

bepaalde ko-kultuur op die chemiese samestelling van hout van boomspesie tot 

boomspesie verskil.  Gevolglik is die chemiese wisselinge in verskillende 

boomspesies, geïnduseer deur 'n P. sanguineus / A. flavipes ko-kultuur, in die 

volgende gedeelte van die studie ondersoek.  Houtskyfies van vier boomspesies, 

naamlik Acacia mearnsii, Eucalyptus dunnii, E. grandis, en Eucalyptus 

macarthurii, is met hierdie ko-kultuur geïnokuleer.  Die kultuurkondisies en 

daaropvolgende analises van die houtkomponente was dieselfde as in die eerste 

deel van die studie.  Van die box- en biplots wat van die resultate getrek is, is dit 

duidelik dat die chemiese samestelling van elke boomspesie op 'n verskillende 

manier deur die ko-kulture verander is.  Lignien-inhoud het ’n waarskynlike 
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toename getoon in A. mearnsii, terwyl E. dunnii 'n afname in sellulose-inhoud 

getoon het.  Die resultate toon dat hout van verskillende boomspesies op 

verskillende maniere afgebreek word en dat hierdie fenomeen in aanmerking 

geneem moet word wanneer fungi vir bioverpulping geselekteer word.   
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1.1 Motivation 

 

Basidiomycetous white-rot fungi play a pivotal role in forest ecosystems (Otjen & 

Blanchette, 1986; Myneni et al., 2001).  They are the only fungal group capable 

of degrading all three chemical constituents of wood, namely cellulose, 

hemicellulose and lignin.  White-rot fungi secrete hydrolases that target cellulose 

and hemicellulose, while lignin degradation requires more complex enzymes 

such as lignin peroxidase, manganese peroxidase, and laccase (Zabel & Morrell, 

1992; Leonowicz et al., 1999).  Two wood degradation patterns are known to 

occur in this group of fungi.  The fungus can either degrade all three chemical 

components simultaneously, or select for the degradation of lignin (Schwarze et 

al., 2000).  The latter is important for the paper and pulp industry, as the residual 

cellulose fibers are the main component for paper.  Not surprisingly, many 

researchers have embarked upon studying the so-called biopulping process 

(Akhtar et al., 1993; Luna et al., 2004).  The main drive behind this research was 

to reduce costs of chemicals needed and the resulting pollution during the 

pulping process (Guitiérrez et al., 1999).   

 

The majority of these investigations however, focused on the degradation of 

wood from a single tree species by pure cultures of white-rot fungi (Luna et al., 

2004) and very few studied the effect of co-cultures on wood degradation.  The 

latter scenario would be closer to the situation in nature, where consortia of 

microbes are known to degrade lignocellulosic material (Watanabe et al., 2003).  

Studies conducted by Blanchette and co-workers in 1978, showed an increase in 

the degradation rate of certain white-rot fungi when co-cultured with selected 

bacterial and yeast species.  When a co-culture of a known pioneer fungus of 

wood, Aspergillus flavipes, and a common white-rot fungus, Pycnoporus 

sanguineus, were evaluated in a biopulping process, it was found that the pulping 

properties of E. grandis were enhanced (Domisse, 1998).   

 

 1
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Since it is known that fungal fruiting bodies may harbor yeasts (Kurtzman & Fell, 

1998) we were interested in the identity of yeast populations occurring on the 

fruiting bodies of P. sanguineus and how these yeasts, as well A. flavipes, impact 

on the degradation of E. grandis wood by this white-rot fungus. Since 

contradicting results regarding the wood degradation pattern of P. sanguineus on 

different wood species exists in literature (Ferraz et al. 1998; Luna et al. 2004), 

this phenomenon needs to be further investigated. 

 

With the above as background, the aim of this study was: 1) To characterize the 

natural yeast population on the fruiting bodies of a common white-rot fungus 

Pycnoporus sanguineus and to study the impact of yeasts originating from these 

fruiting bodies on the degradation of Eucalyptus grandis wood chips by this 

white-rot fungus.  2) To study the influence of wood species on the degradation 

pattern of Pycnoporus sanguineus when co-cultured with a known wood pioneer 

fungus.  

 

1.2. Basidiomycetes and wood degradation 

 

Basidiomycetes are regarded as the most important fungi that inhabit the forest 

floor (Otjen & Blanchette, 1986; Myneni et al., 2001).  It is thought that their 

principle role within the forest ecosystem is to degrade woody material, since 

they are the only known fungi capable of degrading all the major cell wall 

components of wood (cellulose, hemicellulose, and lignin).  These fungi however, 

may differ in the extent to which the different wood components are degraded 

and much research has been conducted to understand these wood degrading 

processes.  Many of these studies were conducted on fungi that selectively 

degrade lignin resulting in residual cellulose components in the wood.  The latter 

fungi thus found potential application in the pulping industry.  To appreciate the 

role of these fungi in wood degradation, a better understanding of the general 

structure of wood is necessary.  

 

 2
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1.3. Wood tissue elements 

 

Cells that compose wood differ in type and arrangement (Sjöström, 1993; 

Wiedenhoeft & Miller, 2005).  These differences are used to classify wood as 

either soft-, or hardwood.  Softwood has a simple basic structure, while 

hardwood is much more complex regarding cell morphology and functionality 

(Wiedenhoeft & Miller, 2005).  Only two cell types occur in softwood.  The first, 

called tracheids, is the major component of this type of wood serving a 

conductive and mechanical role.  The second type is the parenchyma cells that 

may either be ray parenchyma or axial parenchyma.  Parenchyma cells play an 

important role in the synthesis, storage and lateral transport of biochemicals.    

 

Hardwoods have characteristic conducting cells called vessel elements 

(Wiedenhoeft & Miller, 2005).  These cells are stacked on top op each other and 

connected with pores to form vessels.  Other cell types like fibers only play a role 

in support and the amount of strength depends on the thickness of the fiber cell 

wall.  Axial parenchyma cells in hardwoods also contain storage material and are 

either associated with the vessels (Paratracheal) or not (Apotracheal).  Rays in 

hardwoods are more diverse than that found in softwoods and generally span 

more than one cell in width.  Despite different tissue and cellular morphology, the 

cell walls of all the cell types mentioned above, contain a number of 

characteristic layers.       

 

1.4.  Cell wall structure. 

 

A typical lignified cell wall consists of five cell-wall layers (fig. 1); the middle 

lamella (M) on the outer side, the primary wall (P), and a three–layer secondary 

wall consisting of the outer (S ), middle (S ) and inner (S1 2 3) secondary cell wall 

layers on the inner side (Schwarze et al., 2000).  These layers differ in their fine 

structure, orientation of the microfibrils, and chemical composition.  

 3
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  (a)       (b) 

Figure 1.  (a) A cell wall model showing the five different cell wall layers (Schwarze et al., 

2000). (b) A transmission electron micrograph of earlywood tracheids showing the 

different layers of the cell wall.  Scalebar = 1 μm.  (Sjöström, 1993). 

 

1.4.1. Middle lamella 

 

The middle lamella (fig. 1) connects neighboring cells to allow for movement of 

biochemicals and water (Wiedenhoeft & Miller, 2005).  This layer consists mainly 

of amorphous substances like pectin and lignin (Schwarze et al., 2000).  Pectin 

acts as a cement-like substance for cell elements in non-woody organs, while 

lignin provides rigidness in the wood cell. 

 

1.4.2. Primary wall 

 

In general, the primary wall (fig. 1) in wood is thin and indistinguishable from the 

middle lamella (Schwarze et al., 2000; Wiedenhoeft & Miller, 2005).  These two 

layers are, therefore, called the compound middle lamella.  The primary wall 

consists of randomly orientated cellulose microfibrils providing strength to this 

layer. 
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1.4.3. Secondary wall 

 

This three layer cell wall (fig. 1a), comprising of 94% cellulose, represents the 

largest part of the cell wall (Schwarze et al., 2000; Wiedenhoeft & Miller, 2005).  

Its primary function is to provide strength to the cell.  The outer secondary wall 

(S1) is a thin layer (0.2 µm thick in Birch fibers) next to the primary wall (fig. 1b). 

The cellulose fibers of this layer show a weak parallel arrangement to the 

longitudinal axis of the cell (Wiedenhoeft & Miller, 2005).   

 

The middle secondary wall (S2) forms the largest part of the secondary wall (1 to 

5 µm thick in Spruce tracheids) and the most important in establishing the 

properties of the cell.  The fibrils are arranged parallel to each other in a spiral in 

the direction of the cell’s longitudinal axis.  This layer has a low lignin and high 

cellulose content and it was found to be the preferred substrate for brown and soft 

rot fungi as these two groups can only degrade cellulose (Schwarze et al., 2000; 

Wiedenhoeft & Miller, 2005).   

 

The inner secondary wall (S3) is a relatively thin layer (0.1 to 0.15 µm in spruce 

tracheids) and separates the cell wall from the lumen (Schwarze et al., 2000).  

The arrangement of the microfibrils in this layer resembles those of the primary 

cell wall.  The inner secondary cell wall has the lowest percentage of lignin 

compared to the other layers of the secondary wall (Wiedenhoeft & Miller, 2005).  

The reason for this low lignin content may be found in the basic physiology of a 

tree.  Water needs significant adhesion to the cell walls to move upwards via 

transpiration and since lignin is a hydrophobic polymer, low concentrations in the 

S  layer will allow transpiration to occur. 3

 

1.5. Cell wall chemistry 

 

It is obvious from the preceding paragraphs that cellulose, comprising ca. 45% 

(w/w) of wood, plays a pivotal role in the morphology of the wood cell (Rowell et 

 5
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al., 2005).  Individual cellulose molecules are arranged in bundles known as 

microfibrils which in turn are arranged in lamellae in the cell wall plane.  Within 

these microfibrils, the cellulose has a crystalline appearance due to its highly 

ordered orientation.  Despite the crystalline structure of some cellulose 

components, this carbohydrate homopolymer and hemicellulose, a carbohydrate 

heteropolymer, are readily utilized by many microorganisms.  In contrast, lignin is 

an aromatic heteropolymer that consists of phenylpropane monomers and is only 

utilized by a few specialized fungal groups or bacteria.  Hemicellulose and lignin 

are covalently bonded to one another and form a coating around the cellulose 

microfibrils.  This coating protects the easily degradable cellulose from microbial 

attacks (Rayner & Boddy, 1988; Zabel & Morrell, 1992).  Since most of the plant 

cell wall consists of cellulose, hemicellulose, and lignin, these polymers represent 

the majority of organic compounds in the biosphere and are the most important 

carbon sink in terrestrial ecosystems. 

 

1.5.1. Cellulose 

 

Cellulose is a long, linear homopolymer (fig. 2) consisting of β-D-glucose residues 

with (1→4) glucosidic linkages (Zabel & Morrell, 1992; Rowell et al., 2005).  The 

anhydroglucose monomers on the surface of the cellulose molecules each 

contain three hydroxyl groups.  These groups determine the physical and 

chemical properties of the wood, as well as the structural properties in the cell 

wall.   

 

Cellulose molecules tend to form intra- and intermolecular hydrogen bonds.  

Crystalline regions (fig. 3) are then formed as the packing densities of cellulose 

increases.  As much as 65 % of wood derived cellulose may be crystalline.  Apart 

from being crystalline or non crystalline, cellulose may also be classified as 

accessible or non-accessible.  This refers to the accessibility of the cellulose to 

water and microorganisms.   

 6
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Figure 2.  The structural formula of cellulose (Rayner & Boddy, 1988) 

 

Crystalline cellulose is accessible on the surface but not inside the crystal.  Non-

crystalline cellulose is mostly accessible, but some, as already mentioned, are 

covered with hemicellulose and lignin rendering the molecule non-accessible.   

 

 

Figure 3.  Crystalline structure of cellulose showing the planar orientation of the glucose 

monomers in relation to each other (Rowell et al., 2005). 

 

1.5.2. Hemicellulose 

 

Hemicellulose differs from cellulose as it consists of a shorter carbohydrate 

backbone containing other sugar monomers than just glucose, and side chains 

that can be branched (Rayner & Boddy, 1988; Rowell et al., 2005).  The polymer 

backbone of hemicellulose consists mainly of D-xylopyranose, D-glucopyranose, 

D-galactopyranose, L-arabinofuranose, D-mannopyranose, D-

 7
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glucopyranosyluronic acid, and D-galactopyranosyluronic acid (fig. 4).  More 

hemicellulose is present in hardwoods than in softwoods. Hemicelluloses in 

hardwoods are referred to as glucuronoxylan and are characterized by a 

backbone of D-xylopyranose monomers that are β-(1→4) linked to acetyl groups 

(Rowell et al., 2005).  In the backbone, side chains of 4-O-methylglucoronic acid 

monomers are linked to the xylan and substitute the xylan with intervals (fig. 5a).   

 

 

Figure 4. Structural monomers of hemicellulose (adapted from Resende, 2005). 

 

In softwood, the hemicellulose consists of glucomannans and has a slightly 

branched chain with β-(1→4) linkages (fig. 5b).  Another hemicellulose polymer in 

softwoods is an arabinoglucoronoxylan consisting of a backbone of β-(1→4) 

xylopyranose units and branches containing D-glucopyranosyluronic acid and L-

arabinofuranose (Rowell et al., 2005).  The fact that hemicellulose has short chain 

lengths and is situated on the outer surface of the microfibrils may explain why 

these cell wall components are attacked first by decay fungi.  Since this polymer 

coats the cellulose microfibrils, it possibly serves a structural role in cell walls. 
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Figure 5.  Partial chemical structures of the predominant hemicellulose polymers found in 

wood.  (a) Structure of O-acetyl-4-O-methylglucuronoxylan, the major hemicellulose of 

hardwoods.  (b) Structure of O-acetylgalactoglucomannan, the major hemicellulose of 

softwoods (Kirk & Cullen, 1998). 

 

1.5.3. Lignin 

 

Lignin occurs in all vascular plants and comprises 20 to 30 % of the wood cell wall 

(Zabel & Morrell, 1992).  It protects the stem tissue and strengthens the plant.  

Lignin is a polyphenolic polymer consisting of phenylpropane units, (fig.6) and is 

the most complex of the plant cell wall constituents.  Its monomers are held 

together by C-O-C and C-C linkages. 

 

Different types of lignin are classified according to their structural elements, while 

lignin in general consists mainly of dimethoxylated (syringyl), monomethoxylated 

(guaiacyl), and non-methoxylated (p-hydroxyphenyl) phenylpropanoid monomers 

(Zabel & Morrell, 1992; Rowell et al, 2005).  The precursors of lignin biosynthesis 

are p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol (fig. 7).   
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Figure 6.  A structural model of lignin found in spruce (Zabel & Morrell, 1992). 

 

These units are compressed by free radical polymerization to form the 

heterogeneous aromatic biopolymer (Rayner & Boddy, 1988).  P-coumaryl is a 

minor precursor of soft- and hardwood lignins, coniferyl is the major precursor of 

softwood lignin, while coniferyl and sinapyl are both precursors of hardwood 

lignin.   

 

Figure 7.  Chemical structures of lignin precursors. (a) p-coumaryl alcohol, (b) coniferyl 

alcohol, (c) sinapyl alcohol (Zabel & Morrell, 1992). 
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The highest concentration of lignin is found in the middle lamellae, but almost 

70% of total lignin in wood is located in the secondary cell wall due to the 

difference in volume of middle lamella to secondary wall.   

 

With the above as background, it is possible to construct a schematic illustration 

of the wood cell (fig. 8) showing the relative position of the main chemical 

components of the cell.  Such an illustration is essential to explain the mechanics 

of fungal degradation of these cells. 

Middle Lamella: 
Lignin 

Primary cell wall: 
Secondary cell wall: 
Cellulose and Lignin 

Cellulose 

 

 

Figure 8.  A schematic illustration of the wood cell showing the cell wall structures and 

their main chemical components. 

 

 

1.6.  Features of fungal wood decay. 

 

Fungal decay of wood results in major economical losses and can be grouped 

into brown, white, and soft rots (Martínez et al., 2005).  This classification is based 

on the properties and colors of the residual wood.  In the case of brown-rot, the 

brownish colored lignin remains after decay. White rot is characterized by the 

white-colored cellulose that remains after decay.  Soft-rot decay is characterized 

by surface softness of the wood.  Both brown and white-rot fungi are 
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basidiomycetes that are able to overcome low nitrogen conditions, toxins and 

antibiotics present in wood.  Soft-rot fungi are ascomycetes that are able to 

degrade wood under extreme environmental conditions such as high or low water 

potential.  

     

1.6.1 Brown-rot 

 

Brown-rot fungi grow mainly on softwoods and represent only 6% of the known 

wood-rotting Basidiomycetes (Schwarze et al., 2000).  Common brown-rot fungi 

are listed in table 1.  These fungi degrade carbohydrates in the cell wall at a 

distance from the hyphae by a diffusion mechanism leaving a modified, 

demethoxylated lignin residue behind.  This diffusion mechanism is based on the 

ability of fungi to secrete hydrolases that use cellulose and hemicellulose as 

substrate (Zabel & Morrell, 1992). 

 

Table 1.  Fungal species that result in different decay patterns (Martínez et al., 

2005). 

Brown-rot Soft-rot White-rot 

Gloeophyllum trabeum Ustulina deusta Trametes versicolor 

Laetiporus sulphureus Alternaria alternata Heterobasidium annosum 

Piptoporus betulinus Thielavia terrestris Phlebia tremellosa 

Postia placenta  Pycnoporus sanguineus 

 

The different stages of brown-rot, brought about by the synergistic action of a 

number of fungal enzymes, are illustrated in figure 9.  Hydrogen peroxide, formed 

as the result of glucose oxidase, glyoxal oxidase, and aryl alcohol oxidase (Evans 

& Hedger, 2001), penetrates the cell wall and depolymerizes the lignocellulose 

matrix (Schwarze et al., 2000; Rayner & Boddy, 1988).  This results in cellulose 

and hemicellulose being more accessible to fungal hydrolases.   
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Figure 9.  A schematic illustration of the stages of brown-rot. (i) The enzymes start to 

penetrate the cell wall from the lumen. (ii) The degree of degradation starts to increase as 

enzymes penetrated the secondary wall. (iii)  Cracks appear in the cell wall and the 

volume of the latter starts to decrease. (iv) Only modified lignin remains at this stage of 

the degradation (Adapted from Schwarze et al., 2000). 

 

After separation of the cellulose chains, endo-1,4-β-glucanases cleave the 

cellulose molecule and 1,4-β-glucosidases transform the cellobiose to glucose.  

Due to the rapid depolymerization of carbohydrates, the water solubility of the 

lignocellulose may also increase during this stage of the degradation process.  

This type of wood depolymerization occurs more rapidly than the metabolization 

of the resulting degradation products.  Consequently, the partially degraded 

lignocellulosic material and smaller degradation products become available to 

Lumen 

Penetrating 
enzymes 

Hyphae 
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scavenger fungi and bacteria on the wood.    The final product of the decayed 

wood is brown, dry, brittle and powdery.  This residue predominantly composes of 

modified lignin (Rayner & Boddy, 1988). 

 

1.6.2. Soft-rot 

 

Soft-rot is caused by a small group of fungi (Table 1) that mainly attacks 

hardwoods rendering it soft and crumbly (Rayner & Boddy, 1988; Schwarze et al., 

2000).  Fungal species associated with this kind of wood degradation may vary in 

their effects on the cell wall, while sharing features of both white and brown-rot 

fungi.  

 

Similar to brown-rot fungi, soft-rot fungi target the carbohydrates in the cell wall, 

but as with white-rot fungi they also contain oxidative enzyme systems (Rayner & 

Boddy, 1988).  Soft-rot fungi however, are characterized by their preferred growth 

within the cellulose rich secondary cell wall where they form a series of 

successive cavities with conically shaped ends that follows the direction of the 

microfibrils in the S  layer (fig. 10).  2

 

Some soft-rot fungi are able to degrade cellulose using exo-1,4-β-glucanases, 

endo-1,4-β-glucanases, and 1,4-β-glucanases (Schwarze et al., 2000).  Other 

species do not utilize exo-1,4-β-glucanases and only degrade the amorphous 

cellulose zones in the microfibrils.   

 

1.6.3. White-rot 

 

The group of fungi resulting in this type of rot is able to degrade lignin, 

hemicellulose, and cellulose (Rayner & Boddy, 1988; Schwarze et al., 2000).  

Ligninolytic fungi use hydrolases to produce monosaccharides from 

polysaccharide components in wood (Leonowicz et al., 1999).  However, when 
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these components are in a complex with lignin, hydrolytic breakdown does not 

occur.  Thus, lignin appears to inhibit hydrolytic activity (Martínez et al., 2005).   

 

 

Figure 10.  A schematic illustration of the stages of-soft rot. (i)  The hyphae penetrate the 

lignified cell wall. (ii)  Hyphae form branches parallel to the direction of the cellulose 

microfibrils in the S2 layer. (iii)  Cavities form in the cell wall due to degradation. (iv) Here 

the secondary wall is almost completely degraded, while the compound middle lamella 

stays intact (Adapted from Schwarze et al., 2000). 

 

Two patterns of lignin degradation have been identified. The first, selective 

delignification, occurs when lignin is degraded before hemicellulose and cellulose.   

This leads to dissolution of the middle lamella and defibrillation.  The other type of 

lignin degradation is simultaneous delignification, where lignin and structural 

S2

Penetrating 
hyphae 

Cell wall 
cavities 

Middle 
lamella 
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carbohydrates are removed at the same rate (Pandey & Pitman, 2003). This 

pattern occurs mainly on hardwoods while selective rot may occur on both hard 

and softwoods. 

 

1.6.3.1. Selective delignification 

 

During selective delignification lignin is the first wood component to be degraded.  

A typical example of this is the wood rot brought about by the fungus Phellinus 

pini (Schwarze et al., 2000).  Firstly, the middle lamella is degraded together with 

the secondary wall (fig. 11). Later, individual cells will become separated from 

their matrix.  This results in fibrous and stringy wood that has lost it stiffness and 

compression strength (fig. 13a).  Cellulose is degraded at a slower rate than in 

brown or soft rot, and the reduction in wood strength is not as severe as in the 

latter two cases.   

 

1.6.3.2. Simultaneous delignification 

 

This type of white-rot occurs mainly on broad-leaved trees when the fungal 

enzymes are able to degrade all the main components of the lignified cell wall 

simultaneously (Schwarze et al., 2000).  Degradation takes place in the 

immediate vicinity of the hyphae that grows in the lumen and leads to the 

formation of erosion channels (fig. 12).  The degradation of the cell wall is 

enhanced by a biofilm coating around the hyphae that result in closer contact 

between the hyphae and the cell wall components (Lynd et al., 2002).   The cell 

wall gradually becomes thinner from the inside out as degradation continues.  In 

contrast to selective delignification, the wood in this case becomes brittle because 

of the degradation of the cellulose-rich secondary wall (fig. 13b).  Regardless the 

pattern of lignin degradation in wood, the process of delignification is brought 

about by the action of three enzymes.   
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Figuur 11.  A schematic illustration of the stages of selective delignification. (i) Hyphae 

grow in the lumen and the degradation enzymes diffuse into the secondary wall where 

lignin is degraded. (ii)  Degradation of secondary wall lignin spreads to the middle 

lamella. (iii, iv)  Later during lignin degradation, the individual cells separate from one 

another (Adapted from Schwarze et al., 2000). 

  

1.6.4. Lignin degrading enzymes.   

 

The pivotal enzymes in lignin degradation are, lignin peroxidase (LiP), 

manganese peroxidase (MnP), and laccase (Zabel & Morrell, 1992).  LiP and 

MnP were first discovered in Phanerochaete chrysosporium in the mid-1980s.  

These enzymes were described as true ligninases because of their high redox 

potential (Gold et al., 2000; Martínez, 2002).   

 

Degradation 
Hyphae 
growing in 
lumen 

Enzymes 

Separating 
cells 
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Outwards 
degradation 
of the cell 
wall. 

Holes between 
neighboring cells 

 

Figure 12.  A schematic illustration of the stages of simultaneous delignification. (i)  The 

degradation enzymes from the hyphae start to attack the cell wall in their immediate 

vicinity. (ii)  The cell wall is degraded from the lumen outwards. (iii)  The cell wall 

becomes thinner and holes appear between neighboring cells. (iv) At the final stage of 

degradation, the middle lamella and cell corners are degraded (Adapted from Schwarze 

et al., 2000). 

 

Other enzymes that are involved in lignin degradation are H O2 2 generating 

oxidases, and mycelium associated dehydrogenases that reduce compounds 

derived from lignin (Gutiérrez et al., 1994; Guillén et al., 1997).  LiP is able to 

degrade non-phenolic lignin units to aryl cation radicals which then use non 

enzymatic reactions to cleave C-C and C-O bonds.  MnP on the other hand 

oxidize Mn2+ to Mn3+ (Jansen et al., 1996).  The latter then acts on phenolic or 

non-phenolic lignin units as a diffusible oxidizer via lipid peroxidation reactions.   
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Figure 13.  Scanning-electron microscopy images showing the wood anatomy after 

fungal degradation.  (a) Selective delignification of wood.  Black arrows indicate the 

degradation of lignin in the fiber cell walls.  (b)  Simultaneous delignification of wood.  All 

the cell wall components are degraded and the fungal hyphae can be seen in the center.  

Black arrows indicate the separation of the fibers.  Bars: (a) 20 μm, (b) 50 μm (Martínez 

et al., 2005). 

 

Laccases are known to commonly occur in plants, insects, and fungi where they 

play a role in detoxification, fruiting body morphogenesis, or pigment synthesis 

(Mayer & Staples, 2002).  Because laccases have low redox potentials, they only 

allow for the direct oxidation of phenolic lignin units.  Laccase cause oxidation of 

the alpha carbon, demethoxylation cleavages in phenyl groups, and Cα – Cβ 

cleavage in syringyl structures (Fig.14).  As the result of lignin decomposition, 

laccases also provide the quinones and phenoxyradicals that are important in the 

decomposition of cellobiose through the action of cellobiose dehydrogenase 

(Zabel & Morrell, 1992).  Figure 14 illustrates the degradation of lignin via 

enzymatic reactions.   

 

Laccase, LiP, and MnP oxidize the lignin polymer and generate aromatic radicals 

(a).  These radicals may be involved in a number of non-enzymatic reactions 

including C4-ether breakdown (b), the cleavage of the aromatic ring (c), cleavage 

of the Cα – Cβ bond (d), and demethoxylation (e). The cleavage of the Cα – Cβ 

bond in lignin releases aromatic aldehydes that are the substrate for H O2 2 

generation by aryl-alcohol dehydrogenases and aryl alcohol oxidase in cyclic 

redox reactions.  If phenoxy radicals from C4-ether breakdown (b) are not 

 19

Stellenbosch University http://scholar.sun.ac.za



reduced by oxidases to phenolic compounds (i), they can repolymerize on the 

lignin polymer (h).  Laccase or peroxidases can reoxidize the phenolic 

compounds formed (j).  Phenoxy radicals may also undergo Cα – Cβ breakdown 

(k), resulting in the formation of p-quinones.  These quinines indicated by (g) and 

(k) in figure 14 play a role in oxygen activation in redox cycling reactions (l, m).  

The ferric iron present in wood is reduced (n) and reoxidized while H O2 2 is  

reduced to a hydroxyl free radical (OH-) (o).  The latter is a strong oxidizer and 

plays an important role in the initial stages of wood degradation, as it attacks the 

lignin (p) when the pore sizes are still too small for penetration by other 

ligninolytic enzymes. 

 

Figure14.  An illustration of the chemical and enzymatic degradation of lignin (Martínez 

et al., 2005). 

 

From the above paragraphs, it is clear that basidiomycetous white-rot fungi use 

hydrolytic enzymes to degrade cellulose and hemicellulose, and oxidative 
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enzymes for the degradation of lignin.  The carbohydrate monomers and organic 

acids formed by these degradation activities are re-absorbed by the fungal 

hyphae (fig. 15) and converted to new fungal biomass, water and carbon dioxide 

(Kirk & Cullen, 1998).  This fungal growth and the concomitant production of 

degradation enzymes however, are subjected to environmental conditions. 

 

 

Figure 15.  Schematic illustration of the degradation of wood polymers by the 

extracellular enzymes of white rot fungi (Kirk & Cullen, 1998). 

 

1.7. Factors influencing wood degradation.  

 

Physical conditions that play a role in the ability of fungi to degrade wood include 

temperature, concentration of oxygen in the substrate, and moisture content 

(Schwarze et al., 2000).  Fungi grow optimally at temperatures between 20 and 

30°C.  In the dormant state however, many fungi are able to tolerate extreme 

temperatures (-5 to +55°C).  Fungi appear to be selective regarding the 

colonization of certain wood.  This may be related to temperature optima.  For 

example, some fungal species show selectivity for wooden slats of cooling 

towers where temperatures are higher.  Others are associated with utility poles 

below ground zones where temperatures are low (Rayner & Boddy, 1988).   
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It was stated that the optimum oxygen concentration for fungal degradation is ca. 

10% (Schwarze et al., 2000).  This concentration allows for degradation of wood 

while an oxygen concentration of ca. 1% will only ensure the survival of the 

fungus.  However, the most important factor impacting on fungal wood 

degradation is the moisture content of the wood (Rayner & Boddy, 1988).  Very 

few fungus species are able to degrade wood below a moisture content of 25%, 

whereas the optimum moisture content for wood degradation ranges from 40 to 

70% (Schwarze et al., 2000).  Various authors, however, demonstrated that 

fungal degradation of wood may even occur at a moisture content of 200% and 

higher.   Interestingly, the activities of wood degradation fungi are known to 

impact on the moisture content of wood during degradation.  The degradation of 

lignin and hemicellulose by white-rot fungi results in an increase in the moisture 

absorption capacity as a result of a relative increase in cellulose content.  Brown-

rot fungi on the other hand result in a decrease in moisture absorption as the 

hydrophilic cellulose and hemicellulose are degraded first.    

 

Another factor that plays a role in wood degradation is the chemical composition 

of wood, such as the relative proportions of cellulose, hemicellulose, lignin 

monomers and anti-fungal compounds, as well as the nitrogen content of the 

wood (Schwarze et al., 2000).  Phenolic substances are known to protect the 

wood and inhibit the activity of degradation fungi.  In contrast, it was found that 

an increased nitrogen concentration resulted in an increased rate of wood 

degradation by the fungus Heterobasidium annosum (Schwarze et al., 2000).  As 

in many natural habitats, a consortium of microbes may occur on the wood and 

interactions between the individuals are inevitable.  These interactions may take 

the form of different symbiotic relations among the fungi occurring on the wood. 

 

1.8.  Interspecific fungal interactions in wood degradation 

 

The different types of fungal symbioses are classified into competitive, 

neutralistic, and mutualistic interactions (Rayner & Boddy, 1988).  With 

 22

Stellenbosch University http://scholar.sun.ac.za



competitive interaction, the outcome is detrimental to either or both of the species 

involved.  In the case of neutralistic and mutualistic interactions, no detrimental 

effects to either species are involved, and benefits may be absent, unilateral, or 

bilateral.  Such benefits may result for various reasons: one organism may 

provide waste products or exudates as a resource for the other; the vegetative or 

reproductive development of one organism may be stimulated by products from 

the other; or a complementary enzyme action may be achieved for both 

organisms.  

 

Wood inhabiting fungi rarely show a truly non-antagonistic interaction with each 

other.  Rather, it is common to find deadlock where neither mycelium can enter 

the other’s domain or where one is replaced by the other.  True symbiotic 

interaction between fungi was studied by Maijala (2005) when he co-cultured 

different white rot fungi on wood.  This co-culturing lead to enhanced lignin 

degradation.  The degree of enhancement varied between different co-culture 

combinations.  Elevated levels of laccase and manganese peroxidase activity 

were observed through experimental work, and Pleurotus ostreatus was 

identified as a promising partner fungus for species such as Ceriporiopsis 

subvermispora, Physisporinus rivulosus and Phanerochaete chrysosporium 

(Maijala, 2005).  Recently, co-cultures of a known pioneer fungus of wood, 

Aspergillus flavipes, and a common white-rot fungus, Pycnoporus sanguineus, 

were evaluated in a biopulping process (Domisse, 1998).  It was found that this 

co-culture enhanced the pulping properties of E. grandis wood.    

 

Previously, associations between bacteria (Enterobacter spp.) and white rot fungi 

were studied and indications of mutualistic interactions were found (Blanchette & 

Shaw, 1978).  It was stated that within these interactions, the bacteria supply 

vitamins and growth stimulating substances to the fungi, while they utilize 

nutrients originating from the wood cell wall that is being degraded by the fungal 

enzymes.  Some bacteria have the ability to fix atmospheric nitrogen (Blanchette 

& Shaw, 1978).  This may also have enhanced mycelial growth and promote the 
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rate of wood degradation.  The role of yeasts in the colonization of wood has also 

been studied (Blanchette & Shaw, 1978; González et al., 1989).  Since yeasts 

lack the ability to penetrate wood, they need to form an association with mycelial 

fungi.  Studies by Blanchette showed an increase in wood degradation rate by 

white rot fungi in the presence of yeasts such as Saccharomyces bailii var. bailii 

(syn. Zygossaccharomyces bailii) and Pichia pinus (syn. Pichia pini).  These 

yeasts species are normally associated with spoiled food and decaying trees 

(Kurtzman & Fell, 1998).  Since it is known that fungal fruiting bodies may harbor 

yeast populations, the question arose whether yeasts naturally occurring on P. 

sanguineus, a common white-rot fungus, may impact on the degradation of wood 

by this macro fungus.  Furthermore, studies by Dommisse (1998) showed that a 

co-culture of P. sanguineus and A. flavipes improved the pulping properties of E. 

grandis wood chips.  Consequently, we were interested to determine whether the 

degradation pattern of this co-culture will vary when grown on different tree 

species. 

 

1.9.  Purpose of study 

 

With the above as background, the first goal of this study became to characterize 

the natural yeast populations on the fruiting bodies of Pycnoporus sanguineus 

(Chapter 2). The impact of some of these yeasts, as well as the pioneer fungus 

A. flavipes, on wood degradation by P. sanguineus was then determined by 

analyzing the major wood components after growth of co-cultures on E. grandis 

wood chips.  Standard protocols, commonly used by the paper and pulp industry, 

were employed to measure parameters of the wood and boxplots, a Principal 

Component Analysis (PCA) biplot, a Canonical Variate Analysis (CVA) biplot, as 

well as an analysis-of-distance (AOD) biplot were subsequently used to analyse 

the data.  Biplots were used since it is known that these graphs provide a means 

for displaying in a single graph all samples that were measured together with 

information of all parameters measured for all the analysed samples (Gabriel, 

1971). In Chapter 3 the same protocols were used to investigate chemical 
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alterations in different tree species, induced by a P. sanguineus / A. flavipes co-

culture. 
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2.1.  Introduction 

 

It is commonly known that a diversity of yeasts may occur on plant surfaces 

(Fonseca and Inácio, 2006) and that the composition of the phylloplane yeast 

community is influenced by a number of factors.  The latter may include the 

chemical and physical composition of the plant and its leachates, relative 

humidity, heat and sunlight. Basidiomycetous yeasts containing photoprotective 

carotenoids, such as Rhodotorula and Sporobolomyces, are frequently 

encountered on the phylloplane (Bai et al., 2002).  However, ascomycetous yeast 

species were also observed on plant surfaces.  A number of yeasts were found 

as endophytes within plants (Camatti-sartori et al., 2005; Nassar et al., 2005).  

The latter include representatives of the genera Sporobolomyces, Rhodotorula, 

Debaryomyces, Cryptococcus, and Williopsis.  It is thus inevitable that 

filamentous fungi growing on wood as substrate (Van der Westhuizen & Eicker, 

1994), such as the cosmopolitan white rot Pycnoporus sanguineus, will 

encounter yeasts during the course of its life cycle.  This ligninolitic fungus, that 

also produces extracellular cellulases for the utilization of carbohydrates (de 

Almeida et al., 1997), forms large conspicuous dimidiate fruiting bodies on a 

variety of fallen tree species.  Pycnoporus sanguineus degrades the lignin in 

wood by using oxidative enzymes systems.  However, contradicting results were 

obtained with regards to its pattern of delignification.  Luna et al. (2004) indicated 

selective delignification of poplar trees, while Ferraz et al. (1998) found a 

simultaneous delignification pattern on Eucalyptus grandis trees. 

 

The colonization of fallen trees by P. sanguineus is part of an ecological 

succession of different fungal species (Schwarze et al., 2000).  Prior to the 

degradation by this white-rot, pioneer fungi such as Aspergillus flavipes will 

colonize the wood.  These fungi utilize readily available sugars and do not cause 

extensive structural changes in the wood.  Strains representing A. flavipes have 

been isolated from decaying vegetation and were previously used in co-culturing 

studies on wood chips (Domisse, 1998). 
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Studies by Blanchette and co-workers (1978) showed elevated levels of wood 

degradation when white rot fungi such as Coriolus versicolor were co-cultured 

with Saccharomyces bailii (syn. Zygosaccharomyces bailii) and Pichia pinus (syn. 

Pichia pini).  It is known that macro-fungal fruiting bodies may harbor yeast 

populations i.e. Cryptococcus humicola on Amanita muscaria and Dipodascus 

armillariae on decaying Armillaria fungi (Kurtzman & Fell, 1998).  

 

Restriction Fragment Length Polymorphisms (RFLP) analysis were recently 

applied to estimate the diversity of large populations of microbes such as 

mycotoxin-producing Fusarium isolates from different hosts (Llorens et al., 2006) 

and genotypes of Mycobacterium tuberculosis isolates from patients with 

tuberculosis  (Chan-Yeung et al., 2006).  Previously RFLP analyses were applied 

to estimate the diversity of yeast communities associated with wine and food and 

it was concluded that the method is reproducible, easy and useful to rapidly 

identify different species (Guillamón et al., 1998; Esteve-Zarzoso et al., 1999).  

 

We were interested in the composition of the yeast community associated with 

the fruiting body of P. sanguineus, and how these yeasts and the pioneer fungus 

A. flavipes impact on wood degradation by this white-rot fungus. With the above 

as background, the aim of this study was to utilize RFLP analyses to obtain an 

indication of the species composition of the culturable yeast community 

associated with fruiting bodies of P. sanguineus. The impact of some of these 

yeasts, as well as A. flavipes, on wood degradation by P. sanguineus was then 

determined by analyzing the major wood components after growth of co-cultures 

on E. grandis wood chips.  Standard protocols, commonly used by the paper and 

pulp industry, were employed to analyze the wood chips.    
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2.2.  Materials and methods 

 

2.2.1.  Enumeration and isolation of yeasts 

 

Yeasts on the surface of three fruiting bodies of Pycnoporus sanguineus were 

enumerated and randomly isolated. During June and July 2004 swabs were 

applied to take yeast samples from 2 cm2 surface areas on fruiting bodies 

growing on weathered tree stumps near Stellenbosch, South Africa. Two 

samples were taken from the upper surface of each fruiting body, two from the 

lower surface in the pore area, and two from the woody phylloplane next to the 

fruiting body.  The swabs were vortexed (Vortex Genie-2 at setting eight, from 

Scientific Industries) for ten seconds in 10 ml physiological salt solution (PSS) to 

wash the microbes from each swab.  Dilutions of suspended organisms were 

transferred to plates with malt extract-agar (MEA) containing 50 mg.l-1 

streptomycin.   After three days of incubation at 22°C, yeast colonies larger than 

one millimeter in diameter were counted.  To estimate the yeast species 

composition on the surface of the fruiting bodies, yeasts were randomly isolated 

from the plates using a modification of the Harrison’s disc method as described 

by Harrigan and McCance (1967).  Successive inoculation and incubation on 

MEA at 22°C were used to purify the isolates.   

 

To verify the identity of the white rot, a section of the fruiting body was first used 

to inoculate plates containing benomyl–dichloran–streptomycin medium (BDS-

medium, Appendix A, Table A, Worrall, 1991).  After two weeks of incubation at 

22°C the culture was purified by successive inoculation and incubation on BDS-

medium, before identification using sequence analyses of selected ribosomal 

genes.   
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2.2.2.  Classification of yeast isolates using RFLP analysis 

 

Yeast isolates were incubated for three days in 10 ml yeast-peptone-dextrose 

(YPD) broth [2% glucose (Saarchem), 2% peptone (Biolab), 1% yeast-extract 

(Biolab)].  Genomic DNA was then extracted according to the method of Hoffman 

and Winston (1987).  The rRNA gene region was amplified in a Perkin-Elmer 

thermal cycler.  Primer pairs used to amplify the ITS region were ITS1 (5’-

TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-TCCTCCGCTTATTGATATGC-

3’).  The parameters for thermal cycling were an initial denaturation at 95°C for 3 

min, followed by 36 cycles of denaturation at 95°C for 45 s, annealing at 58°C for 

45 s, extension at 72°C for 1 min, and a final extension at 72°C for 4 min. The 

PCR products were then digested with the restriction endonucleases HinfI, Hin6I, 

and MboII according to their specific instructions (Fermentas Life Sciences).  The 

restriction fragments were then electrophoresed on a 5% polyacrylamide gel 

stained with ethidium bromide and photographed.  A 50 bp DNA ladder marker 

(Hyperladder v, Bioline) was used as the size standard. 

 

2.2.3.  Identification of yeast and white rot fungal isolates 

 

Yeast isolates, representative of the different yeast RFLP profiles originating from 

the white rot fruiting bodies, were incubated for three days in 10 ml YPD broth.  

Genomic DNA was then extracted according to the method of Hoffman and 

Winston (1987).  The D1/D2 600-650 bp region of the large subunit of ribosomal 

DNA (rDNA) was subsequently amplified using the polymerase chain reaction 

(PCR).  The DNA was amplified with the forward primer F63 (5’-GCA TATA CAA 

TAA GCG GAG GAA AAG-3’) and the reverse primer LR3 (5’- GGT CCG TGT 

TTC AAG ACG G-3’) in a Perkin-Elmer thermal cycler (Fell et al., 2000).  The 

PCR products were purified with Nucleospin® (Separations) chromotography 

columns.  Sequences representing the D1/D2 of the rDNA from the strains were 

then obtained using an ABI PRISM model 3100 genetic sequencer.  The forward 

and reverse sequences were aligned with DNAMAN Version 4.13 for WINDOWS 
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(Lynnon Biosoft).  The yeast strains were then identified by comparing the 

sequencing results with known sequencing results using the BLAST program 

(www.ncbi.nlm.nih.gov/blast).   

 

The identity of the white rot isolates was confirmed using sequence analyses of 

the two internal transcribed spacers (ITS 1 and ITS 2) of the ribosomal gene 

cluster. Genomic DNA was extracted using a method based on the protocol of 

Raeder & Broda (1985).  Using acid-washed sand, frozen mycelia were ground to 

a fine powder in a mortar and pestle.  The powdered mycelia were transferred to 

4 ml ice cold extraction buffer (200 mM Tris-HCl pH 8.5, 250 mM NaCl, 25 mM 

EDTA, 0.5% SDS).  The resulting suspension was extracted on ice, using 3 ml 

phenol and 1.2 ml chloroform:isoamylalcohol (24:1). The supernatant was 

removed, re-extracted with phenol and centrifuged (6000 g, 50 min at 4°C).  The 

aqueous phase was subsequently treated with RNase, then extracted twice using 

chloroform. Afterwards the nucleic acids were precipitated with 0.54 vol. of 

isopropanol.  After washing, the DNA pellet was dissolved overnight in TE (10 

mM Tris-HCl pH 8.0, 1mM EDTA) at 4°C. 

 

Using the polymerase chain reaction (PCR), the DNA was amplified with 

ExpandTM High Fidelity DNA Polymerase from Boehringer Mannheim (South 

Africa) in a Perkin-Elmer 2400 thermal cycler.  Boehringer Mannheim, Germany, 

synthesized primers used for the PCR experiments.  Primers ITS 5 (5' -GGA 

AGT AAA AGT CGT AAC AAG G - 3') and ITS 4 (5' - TCC TCC GCT TAT TGA 

TAT GC - 3') were used to amplify the ITS region according to the method of 

White et al. 1990.  The PCR products were purified by column chromatography 

(Sephadex G-50, Sigma) and sequenced using an ABI PRISM model 3100 

genetic sequencer. The forward and reverse sequences were aligned with 

DNAMAN for WINDOWS Version 4.13. The fungal strains were identified by 

comparing the sequencing results with known sequences using the BLAST 

program (www.ncbi.nlm.nih.gov./blast). 
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2.2.4. Assessing the degradation of wood components by yeast/white rot 

fungal co-cultures 

 

A fungal strain representing P. sanguineus was obtained from the fungal culture 

collection of the ARC-Plant Protection Research Institute (PPRI), Pretoria, South 

Africa. This white rot fungus (P. sanguineus PPRI 6762), as well as A. flavipes 

J11904 and selected yeast isolates (Table 1) are being maintained at 22°C on 

MEA in the fungal culture collection of the Department of Microbiology, University 

of Stellenbosch, South Africa. 

 

Twelve year old E. grandis trees were obtained from plantations on the Eastern 

Highveld of South-Africa.  The trees were chipped and only the fraction greater 

than 6 mm and less than 9 mm in thickness was retained for experimentation.  To 

enhance weathering, the wood chips were pre-treated in a pressure vessel of 15 

dm3 capacity with a hot water wash at 150°C for two hours.  To ensure that the 

water mixes well with the wood chips and fibres, the vessel oscillated through 45° 

to either side.  When the temperature reached 150°C, the vessel degassed 

automatically and the pressure dropped in about 12 minutes from 800 kPa to 0 

kPa. Thereafter, the pressure was increased until it reached the maximum 

800kPa where it was maintained for 25 minutes.  

 

In order to obtain a final moisture content of 60% (Wolfaardt et al., 2004), a 

nutrient supplement [5% (w/v) molasses and 0.28% (w/v) urea], as well as an 

appropriate volume of fungal inoculum, were added to the chips.  Inocula of A. 

flavipes J11904 and P. sanguineus PPRI 6762 were prepared by growing these 

strains at 30°C in 5% (w/v) molasses broth. After one week of incubation, the 

fungal biomass of each culture was homogenized using a blender (Pineware) for 

30 s.  This homogenized fungal biomass was subsequently used to inoculate the 

woodchips, resulting in a final concentration of 1.8 x 10-4 g and 1.7 x 10-4 g dry 

biomass per gram of oven dried wood for A. flavipes, and P. sanguineus 

respectively. A monoculture of P. sanguineus was prepared by inoculating 1.7 x 
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10-4 g dry fungal biomass per gram of oven dried wood. To prepare P. 

sanguineus / yeast co-cultures each of the selected yeast isolates (Table 1) was 

inoculated onto wood containing P. sanguineus (1.7 x 10-4 g dry fungal biomass 

per gram of oven dried wood). In each case 9 ml (A600 = 0.21) of a liquid culture 

in stationary phase, suspended in YPD broth, was transferred to a solid state bio-

reactor. 

 

These bio-reactors consisted of closed cylindrical plastic vessels (17 cm high and 

23 cm in diameter), each containing 1 kg of wood chips resting on a grid 5 cm 

from the bottom to allow for aeration.  After inoculation, each bio-reactor was 

incubated at 30°C, while being aerated from below the grid with 10 L.min-1 sterile 

moist air blown through a water trap using an electro-magnetic air compressor 

(Style King, Model ACQ-009A). After 14 days of incubation the cultures were 

harvested and the chemical properties of the residual wood were analyzed using 

standard TAPPI methodology.  

 

Table 1.  Combinations of filamentous fungal strains and yeast isolates used to inoculate 

hot water washed E. grandis wood chips. 

Culture name Culture combination 

Mono culture Pycnoporus sanguineus PPRI 6762 

Co-culture 1 P. sanguineus PPRI 6762  + Pichia guilliermondii ABA006 

Co-culture 2  P. sanguineus PPRI 6762  + P. guilliermondii ABA006 + 

Rhodotorula glutinis ABA003 

Co-culture 3* P. sanguineus PPRI 6762  + autoclaved P. guilliermondii 

ABA006 + autoclaved R.glutinis ABA003 

Co-culture 4 P. sanguineus PPRI 6762 + Aspergillus flavipes J11904 

Un-inoculated Un-inoculated hot water washed wood chips 

Untreated Un-inoculated unwashed wood chips 

*Yeasts were autoclaved at 121°C for 20 minutes.  
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2.2.5.  Chemical analyses of wood chips. 

 

To provide an indication of the chemical changes that occurred during treatment 

of the wood chips, the residual wood chips obtained after fungal cultivation, the 

un-inoculated hot water washed chips, as well as un-inoculated untreated wood 

chips were analysed. Alcohol-benzene and water soluble extractive contents as 

well as lignin and cellulose content were determined during this process.   

 

Extractions were conducted by boiling 3 g of the residual wood chips in either 

200 ml ethanol-benzene or water for six to eight hours (TAPPI Standard Methods 

T 264 om-88).  After ethanol-benzene extraction, the wood was washed with 95% 

ethanol to remove the benzene.  This was followed by washing the chips with 

distilled water to remove ethanol.  The chips were subsequently boiled in 500 ml 

distilled water for one hour, whereafter it was washed with 500 ml boiling water 

and air dried.  Subsequently, the moisture content was quantified to calculate the 

percentage extractives in the wood. 

 

Klason Lignin is defined as the wood components that are insoluble in sulphuric 

acid (72%) [TAPPI Standard Methods T 222 om-88].  For the determination of 

lignin content, 15 ml  sulphuric acid (72%) was added to 5 g oven dried extractive 

free wood.  This reaction mixture was subsequently incubated at 20°C for two 

hours.  After the incubation period, the material was suspended in water until a 

3% concentration of the sulfuric acid was reached.  The resulting suspension was 

boiled for four hours at a constant volume.  After boiling, the insoluble material 

(lignin) was allowed to settle.  The supernatant was subsequently discarded and 

the precipitate washed with water, dried and weighed. 

 

The Seifert method was used to gravimetrically determine cellulose in the 

residual wood chips (Browning, 1967).  Using a boiling water bath, 1 g of 

extractive free wood meal was refluxed in a solution containing 6 ml 

acetylacetone, 2 ml dioxane and 1.5 ml hydrochloric acid.  After 30 min the 
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mixture was then washed successively with methanol, dioxane, hot water, 

dioxane, methanol and ether. The residue was subsequently weighed after drying 

at 105°C. 

    

2.3.  Results and Discussion 

 

2.3.1.  Yeast numbers and community composition  

 

The quantity of yeasts on the fruiting bodies of P. sanguineus were log 4.1 ± 1.6 

per cm2. The majority of the yeasts on these structures belonged to the 

ascomycetous species, Pichia guilliermondii while the rest were representatives 

of the basidiomycetous species Rhodotorula glutinis (Table 2).  Both species 

could be differentiated by characteristic RFLP banding patterns formed in 

polyacrylamide gels (Figure 1).   
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Figure 1.  Polyacrylamide gel containing digestion products that originate from the ITS 

region within the rRNA gene cluster of P. guiliermondii and R. glutinis.  The restriction 

enzymes Hin6l, Hinfl, and Mboll, were used in the experimentation. 
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Rhodotorula glutinis is known to occur on plant surfaces (Fonseca and Inácio, 

2006), while P. guilliermondii and related species were found to be associated 

with basidiocarps and xylophagous beetles that may be found on these 

structures (Zacchi and Vaughan-Martini, 2002; Suh and Blackwell, 2004; Ganter, 

2006).  The yeast community on the woody phylloplane seemed to be smaller 

(log 2.3 ± 1.1) but more diverse than the yeast community on the fruiting bodies 

since four basidiomycetous species, belonging to the genera Fellomyces and 

Rhodotorula, as well as the ascomycete Pichia guilliermondii were recovered 

from this habitat (Table 2).  

 

Table 2. Yeast community composition associated with the fruiting bodies of P. 

sanguineus and the adjacent decaying wood surface. The identity of the yeasts was 

determined by RFLP analyses, followed by sequence analyses of ribosomal gene 

sequences in yeasts representing different RFLP profiles. 

Habitat Yeast species Percentage of species 

associated with habitat

Fruiting bodies of P. 

sanguineus 

  

 Pichia guilliermondii 74 % 

 Rhodotorula glutinis 26 % 

   

Woody phylloplane  

next to fruiting bodies 

  

 Fellomyces penicillatus 7 % 

 Pichia guilliermondii 65 % 

 Rhodotorula ingeniosa 7 % 

 Rhodotorula glutinis 15 % 

 Rhodotorula mucilaginosa 7 % 
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Each of these species was characterized by a unique RFLP profile (Table 3).   

The fact that notably more yeasts occurred on the fruiting bodies of the white rot 

than on the adjacent wood, indicated that the yeasts may have been deposited 

on the fruiting bodies by foraging insects known to be associated with Pichia 

guilliermondii (Zacchi and Vaughan-Martini, 2002).  Another possibility is that a 

symbiosis exists between the yeasts and this basidiomycetous macro-fungus. It 

was, therefore, decided to test co-cultures of P. sanguineus and representative 

isolates of the two dominant yeast species for the synergistic degradation of 

wood. 

 

Table 3.  Size in bp of restriction fragments obtained from yeasts species isolated from 

the fungal fruiting bodies and adjacent wood 

Species  Hin6l Hinfl Mboll 

Pichia guilliermondii 274+255+49 293+287 337+187+64 

Rhodotorula glutinis 283+182+80 180+94+70 422+358+216+81 

Fellomyces penicillatus 195+147+63 206+105+68 262+233+162+93 

Rhodotorula ingeniosa 250+218 245+176+147 393+273+235+96 

Rhodotorula mucilaginosa 295+172+96 287+210+58 232+150+104+77 

 

2.3.2.  Motivation for and results of statistical analyses 

 

Three replicate culture treatments were performed for each of the culture 

combinations: Mono culture, Co-culture 1, Co-culture 2 and Co-culture 3 (Table 

1). Three further chemical analysis replicates were obtained for each of the 

above samples. One sample was obtained for each of the culture combinations: 

Co-culture 4 and Un-inoculated. Three chemical analysis replicates were 

obtained for each of these samples. The Untreated data consisted of three 

chemical analysis replicates of chip samples originating from two trees randomly 

selected from five locations representing the area of largest biological variation. 

The complete data set is given in Table 4. 
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Table 4. Measurements (%) obtained during chemical analyses described in section 

2.2.5.  “Class” depicts the culture name as listed in Table 1, A = Mono culture; B = 

Co-culture 1; C = Co-culture 2; D = Co-culture 3; E = Co-culture 4; F = Un-

inoculated; Untreat = Untreated. Abbreviations: Cel = % Cellulose; Lig = % Lignin; 

EBE = % Solvent-borne extractives; EH2 = % Polar extractives. 

  

Class Cel Lig   EBE EH2 Class Cel Lig   EBE EH2
A 54.41 25.97 3.40 1.87 E 61.28 26.68 8.51 2.98
A 54.04 30.08 3.33 1.46 E 61.13 28.49 8.51 2.13
A 50.51 27.71 2.97 2.50 E 60.01 28.58 9.35 2.55
A 58.24 26.55 2.70 4.41 F 75.83 26.30 7.58 2.53
A 57.70 28.35 3.58 1.89 F 62.95 26.35 7.79 2.74
A 55.13 26.38 3.71 4.62 F 74.04 24.18 8.21 2.95
A 54.90 32.95 2.87 2.92 Untreat 46.39 26.09 3.20 2.00
A 57.12 30.72 2.77 1.67 Untreat 45.55 22.15 3.00 3.60
A 55.35 28.83 2.75 2.50 Untreat 45.29 26.03 3.00 4.00
B 54.56 32.83 3.33 3.37 Untreat 47.14 18.07 2.00 2.00
B 53.46 29.84 2.31 1.89 Untreat 46.39 25.93 1.80 2.00
B 53.38 29.54 2.82 1.89 Untreat 48.34 26.16 1.80 2.20
B 56.45 30.45 3.02 1.87 Untreat 52.85 26.02 3.00 1.80
B 55.92 30.84 7.91 1.87 Untreat 53.46 22.03 2.60 2.00
B 55.17 30.35 2.13 1.67 Untreat 56.14 20.02 2.40 1.60
B 57.28 30.95 1.94 2.50 Untreat 46.31 22.08 3.00 3.00
B 56.25 33.34 2.48 1.87 Untreat 46.48 20.02 3.40 3.60
B 55.66 31.04 1.54 2.50 Untreat 49.10 21.93 3.20 2.40
C 57.49 32.85 2.67 1.89 Untreat 48.00 17.96 2.40 4.20
C 55.13 29.25 2.03 1.89 Untreat 48.05 23.93 2.20 4.20
C 58.04 32.28 1.73 2.10 Untreat 48.02 20.15 2.60 1.60
C 56.09 31.35 2.20 1.69 Untreat 52.80 23.83 3.40 2.00
C 59.63 29.46 1.98 1.90 Untreat 54.38 20.07 3.60 1.60
C 58.60 30.36 2.76 1.90 Untreat 52.90 20.06 3.40 1.40
C 55.57 30.53 1.97 2.30 Untreat 51.02 20.08 2.20 4.60
C 54.36 30.44 2.24 1.25 Untreat 49.92 18.00 2.60 5.20
C 55.57 30.85 2.20 1.46 Untreat 48.10 15.90 2.20 4.20
D 53.94 28.13 2.85 1.47 Untreat 47.21 20.03 3.80 3.80
D 68.24 28.38 2.71 2.30 Untreat 47.21 18.03 3.20 3.60
D 64.29 26.12 2.64 1.68 Untreat 46.24 24.20 3.20 3.60
D 54.79 30.64 2.19 1.46 Untreat 57.19 18.00 2.20 2.20
D 58.43 31.00 1.83 2.08 Untreat 58.40 18.04 2.40 2.00
D 55.50 30.96 1.91 1.67 Untreat 56.51 22.06 2.80 2.40
D 55.45 28.31 2.92 1.89 Untreat 49.15 20.06 1.20 4.40
D 57.77 30.77 3.26 2.10 Untreat 49.27 18.12 1.00 4.60
D 56.97 30.88 2.70 1.47 Untreat 49.01 16.02 1.60 3.40
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Since in data “there are many patterns and relationships that are easier to 

discern in graphical displays than by any other data analysis method” (Everitt, 

1994), box plots and biplots were extensively used for analysing the data 

presented in Table 4.  Notched box plots not only provide for a visual appraisal of 

data, but also make available approximate hypothesis testing in providing an 

approximate confidence interval for the median: if two notches do not overlap (i.e. 

if the approximate 95% confidence intervals for the corresponding medians do 

not overlap) this can be considered as rejecting the hypothesis of equal medians 

at an approximate 5% significance level (McGill, Tukey & Larsen, 1978).  

However, the box plots depicted in Figure 3 are univariate displays of the data. 

Since four chemical properties were considered, a graphical display taking into 

account the multivariate character of the data contained in Table 4 was a 

necessity. Consequently, biplot representations of the data were considered. 

 

Although users of statistics are often bewildered by all the statistical procedures 

available for analysing their data, it is not inconceivable for them to agree with 

Chambers, Cleveland, Kleiner and Tukey (1983) that “there is no statistical tool 

that is as powerful as a well-chosen graph”.  Indeed, scatterplots and box plots 

are simple graphical devices almost universally understood and used in data 

analysis.  Unfortunately, only two characteristics can be visually displayed in an 

ordinary scatterplot.  However, in this study we investigated four chemical 

properties of wood chips. The biplot, introduced by Gabriel (1971) provides a 

means for displaying in a single graph all samples that were measured together 

with information on all characteristics measured for all of these samples.   

 

The fact that distances in the classical Gabriel biplot are to be interpreted in 

terms of inner products between vectors complicates interpretation of these 

distances for the untrained eye.  However, Gower and Hand (1996) show how 

biplots can be constructed so that it can be interpreted analogous to ordinary 

scatterplots.  The basic idea is to construct a two dimensional (displaying a biplot 

in three dimensions is also possible) scatterplot of all the sample points together 
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with p > 2 axes – an axis for each of the properties measured. These axes are 

calibrated in the original units of measurement just as in an ordinary scatterplot.  

Although the biplot axes do not intersect at right angles they are used exactly as 

in an ordinary scatterplot: a line is drawn perpendicular from any point on the 

graph to any biplot axis and the value for that variable or property is read from 

the scale on the particular axis. Distances among the various points (samples) on 

the biplot are interpreted exactly as distances measured by an ordinary ruler. 

However care must be taken if a new point is to be added to the graph.  In fact 

since p > 2 properties are to be taken into account statistical theory tells us that 

we should construct two different sets of biplot axes: one to read-off values as 

described above and another set for adding new points to the graph. This of 

course is different from ordinary scatterplots where the two rectangular axes are 

used for both these processes. All biplots presented here are equipped with 

calibrated axes allowing the reading-off of values as described above (Figures 4, 

5 and 6). If a new point is to be added to this biplot, it can easily be done 

algebraically by utilizing the computer program used for constructing the biplot. 

Since p > 2 variables are represented in a two-dimensional graph, there is some 

loss of information. The quality of display provides a numerical indication 

(expressed as a percentage) of this loss.  Similarly the adequacy associated with 

an axis provides a measurement of how successful that particular axis is 

represented in the two-dimensional biplot display. 

 

Finally, it can be stated that several different types of biplots can be constructed. 

Here only the following are mentioned: Principal Component Analysis (PCA), 

Canonical Variate Analysis (CVA) and analysis-of-distance (AOD) biplots 

(Figures 4, 5 and 6).  A PCA biplot show distances among the various samples 

and their variation with respect to the various properties measured (Gower & 

Hand, 1996) However, when the researcher is interested in displaying differences 

and overlap among different classes a CVA or perhaps an AOD biplot should be 

considered (Gower & Krzanowski, 1999).  In a CVA biplot the aim is to maximise 

the between class variation with respect to the within classes variation.  
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When the different classes have covariance matrices that differ significantly, then 

AOD biplots are more appropriate for investigating differences among the class 

means. 

 

A one-way multivariate analysis of variance (MANOVA) was performed on the 

data contained in Table 4. The null hypothesis of no significant differences with 

respect to the mean vectors associated with the four chemical properties 

measured for the seven treatment classes was rejected with a p-value 

approaching zero.  This indicates that some differences between the classes are 

present.  Accordingly, the MANOVA was followed by performing one-way 

univariate analysis of variance (ANOVA) procedures on the seven treatment 

classes treating in turn each of % Cellulose, % Lignin, % Solvent-borne 

extractives and % Polar extractives as the response variable. Table 5 contains 

the means and standard deviations for the data used in the ANOVA procedures 

while Table 6 contains the associated ANOVA tables. 

 
Table 5. Means and, in brackets, standard deviations of the four chemical properties 

measured for each of seven treatment classes. 

Treatment class % Cellulose % Lignin % Solvent-borne 
extractives 

% Polar extractives 

Mono culture 55.27 (2.32) 28.62 
(2.31) 

3.12 (0.39) 2.65 (1.15) 

Co-culture 1 55.35 (1.33) 31.02 
(1.28) 

3.05 (1.90) 2.16 (0.54) 

Co-culture 2 56.72 (1.78) 30.82 
(1.19) 

2.20 (0.33) 1.82 (0.31) 

Co-culture 3 58.38 (4.80) 29.46 
(1.77) 

2.56 (0.48) 1.79 (0.32) 

Co-culture 4 60.80 (0.70) 27.92 
(1.07) 

8.79 (0.49) 2.55 (0.42) 

Un-inoculated 70.94 (6.98) 25.61 
(1.24) 

7.86 (0.32) 2.74 (0.21) 

Untreated 49.89 (3.77) 21.04 
(3.10) 

2.61 (0.70) 2.97 (1.13) 
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Table 6. ANOVA tables associated with one-way ANOVAs performed on four chemical  

properties measured for seven different treatment classes 

 Df Sum of Sq Mean Sq F Value Pr(F) 

Response:  % Cellulose      
Class 6 1757.752 292.9586 24.5 0.000
Residuals 65 777.35 11.9592  
Response: % Lignin  
Class 6 1356.02 226.0033 38.99 0.000
Residuals 65 376.745 5.7961  
Response: % Solvent-borne extrs  
Class 6 181.995 30.3325 41.04 0.000
Residuals 65 48.0402 0.73908  
Response: % Polar extractives  
Class 6 16.85328 2.808881 3.49 0.005
Residuals 65 52.3104 0.804775  

 

It follows from Table 6 that each of the four null hypotheses, stating that the 

seven treatment classes have similar mean % Cellulose values; similar mean % 

Lignin values; similar mean % Solvent-borne extractive values and similar mean 

% Polar extractive values, is to be rejected with a p-value ≤ 0.005. 

 

Consequently, in order to investigate the differences among the seven treatment 

classes, 99% simultaneous confidence intervals for all pair-wise differences 

between the means of the treatment classes were calculated according to 

Tukey’s method (Scheffé, 1959). This was done for each of the four chemical 

properties. These confidence intervals are listed in Table 7.  An interval excluding 

zero suggests the rejection at a 1% significance level of the null hypothesis that 

the corresponding means are equal. Such intervals are marked in grey in Table 

7. 

 

Perusal of Table 7 leads to the following conclusion in the case of % Cellulose:  

The Untreated mean value is statistically significantly lower than the mean value 

of the other treatment classes while the Un-inoculated mean value is significantly 

higher than the mean value of all other treatment classes.  These findings are 

supported when comparing the notches in Figure 3 A.  However, Figure 3 A also 

suggests the mean value of Co-culture 4 to be significantly higher than those of 

the other Co-cultures as well as the Mono culture.  
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Table 7. 99% Tukey simultaneous confidence intervals for pair-wise differences among treatment 

class mean values.  Intervals excluding zero appear in grey. (“Treatment classes” are the culture 

names as listed in Table 1, A = Mono culture; B = Co-culture 1; C = Co-culture 2; D = Co-culture 3; 

E = Co-culture 4; F=Un-inoculated; Untreat = Untreated). 

% Cellulose  % Solvent-borne extractives 
 estimate stderr lower upper  estimate stderr lower upper 

A–B –0.08 1.63 –5.97 5.81  A–B 0.07 0.41 –1.40 1.53
A–C –1.45 1.63 –7.35 4.44  A–C 0.92 0.41 –0.54 2.39
A–D –3.11 1.63 –9.00 2.79  A–D 0.56 0.41 –0.90 2.03
A–E –5.54 2.31 –13.87 2.80  A–E –5.67 0.57 –7.74 –3.60
A–F –15.67 2.31 –24.01 –7.34  A–F –4.74 0.57 –6.81 –2.67
A–Untreat 5.37 1.31 0.62 10.12  A–Untreat 0.51 0.33 –0.68 1.69
B–C –1.37 1.63 –7.27 4.52  B–C 0.86 0.41 –0.61 2.32
B–D –3.03 1.63 –8.92 2.87  B–D 0.50 0.41 –0.97 1.96
B–E –5.46 2.31 –13.79 2.88  B–E –5.74 0.57 –7.81 –3.67
B–F –15.59 2.31 –23.93 –7.26  B–F –4.80 0.57 –6.88 –2.73
B–Untreat 5.45 1.31 0.70 10.2  B–Untreat 0.44 0.33 –0.74 1.62
C–D –1.66 1.63 –7.55 4.24  C–D –0.36 0.41 –1.82 1.11
C–E –4.09 2.31 –12.42 4.25  C–E –6.59 0.57 –8.66 –4.52
C–F –14.22 2.31 –22.56 –5.89  C–F –5.66 0.57 –7.73 –3.59
C–Untreat 6.82 1.31 2.07 11.58  C–Untreat –0.42 0.33 –1.60 0.77
D–E –2.43 2.31 –10.76 5.91  D–E –6.23 0.57 –8.31 –4.16
D–F –12.56 2.31 –20.9 –4.23  D–F –5.30 0.57 –7.37 –3.23
D–Untreat 8.48 1.31 3.73 13.23  D–Untreat –0.06 0.33 –1.24 1.12
E–F –10.14 2.82 –20.34 0.07  E–F 0.93 0.70 –1.60 3.47
E–Untreat 10.91 2.09 3.34 18.48  E–Untreat 6.18 0.52 4.30 8.06
F–Untreat 21.05 2.09 13.48 28.62  F–Untreat 5.24 0.52 3.36 7.13
       

% Lignin  % Polar extractives 

 estimate stderr lower upper  estimate stderr lower Upper 
A–B –2.40 1.13 –6.51 1.70  A–B 0.49 0.42 –1.04 2.02
A–C –2.20 1.13 –6.31 1.90  A–C 0.83 0.42 –0.70 2.36
A–D –0.85 1.13 –4.95 3.26  A–D 0.86 0.42 –0.67 2.39
A–E 0.70 1.61 –5.10 6.50  A–E 0.09 0.6 –2.07 2.26
A–F 3.01 1.61 –2.80 8.81  A–F –0.09 0.6 –2.25 2.07
A–Untreat 7.58 0.91 4.27 10.89  A–Untreat –0.33 0.34 –1.56 0.91
B–C 0.20 1.13 –3.90 4.30  B–C 0.34 0.42 –1.19 1.87
B–D 1.56 1.13 –2.55 5.66  B–D 0.37 0.42 –1.16 1.90
B–E 3.10 1.61 –2.70 8.90  B–E –0.39 0.6 –2.56 1.77
B–F 5.41 1.61 –0.39 11.21  B–F –0.58 0.6 –2.74 1.59
B–Untreat 9.98 0.91 6.68 13.29  B–Untreat –0.81 0.34 –2.05 0.42
C–D 1.35 1.13 –2.75 5.46  C–D 0.03 0.42 –1.50 1.56
C–E 2.90 1.61 –2.90 8.70  C–E –0.73 0.6 –2.90 1.43
C–F 5.21 1.61 –0.59 11.01  C–F –0.92 0.6 –3.08 1.24
C–Untreat 9.78 0.91 6.47 13.09  C–Untreat –1.16 0.34 –2.39 0.08
D–E 1.55 1.61 –4.26 7.35  D–E –0.76 0.6 –2.92 1.40
D–F 3.85 1.61 –1.95 9.66  D–F –0.95 0.6 –3.11 1.22
D–Untreat 8.43 0.91 5.12 11.74  D–Untreat –1.18 0.34 –2.42 0.05
E–F 2.31 1.97 –4.80 9.42  E–F –0.18 0.73 –2.83 2.46
E–Untreat 6.88 1.46 1.61 12.15  E–Untreat –0.42 0.54 –2.39 1.54
F–Untreat 4.57 1.46 –0.70 9.84  F–Untreat –0.24 0.54 –2.20 1.73
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This finding is not supported by the simultaneous confidence intervals in Table 7.  

However, the number of observations available for Co-culture 4 is rather small.  

Therefore, the differences between the Mono-culture and the four Co-culture 

treatment classes were also investigated by means of permutation tests (see 

Good, 2000).  Figure 2 contains the results of several permutation tests, each 

based upon 5000 permutation repetitions, performed to investigate these 

differences. 

 

In Figure 2 the 5000 permutation repetitions for each test is indicated by a 

density estimate.  The observed value (B) is indicated by a vertical line.  Having 

an observed value significantly different from the permutation repetitions (under 

the null hypothesis), i.e. very far to the right, will provide evidence that the null 

hypothesis is not true for the observed data.  To assess the evidence against the 

null hypothesis the area under the density estimate to the right of B (p-value) is 

calculated. 

 

Inspection of  Panel A in Figure 2 reveals that the null-hypothesis, stating that the 

mean % Cellulose obtained with Mono culture, Co-culture 1 and Co-culture 2 are 

similar, can not be rejected at a 20% significance level; inspection of Panel B 

reveals that, the null-hypothesis stating that the mean % Cellulose obtained with 

Mono culture, Co-culture 1, Co-culture 2 and Co-culture 3 are similar, should be 

rejected at a 7.7% significance level, while inspection of Panel C reveals that, the 

null-hypothesis stating that five culture classes do not differ with respect to their 

mean % Cellulose, should be rejected at a 1.8% level of significance.  Taking into 

account the effect of the two outliers obtained with Co-culture 3 (see Figure 3 A), 

it can thus be concluded that the results with the permutation tests support the 

suggestion of the notched box plots in Figure 3 A that the Co-culture 4 treatment 

class has a higher mean % Cellulose than the other culture classes. 
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Figure 2. Results of permutation test investigation into the mean % Cellulose difference among 

treatment classes Mono culture, Co-Cultures 1, 2, 3 and 4. 

 

 

Returning to Table 7, it follows that the simultaneous confidence intervals are in 

agreement with the deductions suggested by the notched box plots in Figure 3 B: 

The five culture treatment classes do not differ with respect to their mean % 

Lignin.  These five classes have mean % Lignin values statistically significantly 

higher than that of the Un-inoculated class that in turn has a statistically 

significantly higher mean % Lignin value than the Untreated class. 

 

The simultaneous pair-wise confidence intervals for mean % Solvent-borne 

extractives (Table 7) support what can be deduced from the notched box plots in 
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Figure 3 C: The Co-culture 4 class and the Un-inoculated treatment class have 

similar mean values statistically significantly larger than those of all other 

treatment classes.  Note the large outlier in the case of Co-culture 1.  The size of 

this outlier leaves some doubt about the correctness of that measurement. 

 

The simultaneous confidence intervals for the pair-wise differences in mean % 

Polar extractives (Table 7) support what can also be deduced from Figure 3 D: 

No statistically significantly differences between any two treatment classes are 

obtained. Note however, the large variation obtained in some of the treatment 

classes; especially with the Untreated and the Mono culture treatment classes. 

 

2.3.3.  Analyses of residual wood components following growth of P. 

sanguineus on E. grandis woodchips   

 

The results of Seifert analyses conducted on the residual wood chips, following a 

two week incubation period of P. sanguineus culture combinations (Table 1), are 

depicted in Figure 3A. When the performance of the P. sanguineus monoculture 

was compared to the different co-culture combinations, it is obvious that the 

yeasts had no significant impact on the degradation of cellulose by the white-rot 

fungus. In contrast, it seemed that the presence of A. flavipes resulted in 

inhibition of the degradation of this polymer. This may point to a potential 

antagonistic interaction between P. sanguineus and the hyphomycetous pioneer 

wood colonizing fungus.  

 

Our results on cellulose degradation by P. sanguineus are in contrast to the 

findings of Luna et al. (2004) who observed that P. sanguineus selectively 

delignified poplar wood however, it corroborates the results of Ferraz et al. 

(1998). The latter authors found that P. sanguineus exerts simultaneous 

delignification of E. grandis wood, resulting in the concurrent degradation of 

cellulose and lignin.  
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Interestingly, the cellulose content of the untreated wood chips, as determined 

using the Seifert method, seemed to increase with ca. 30% after the hot water 

wash (Figure 3A). This may be explained by removal of the hemicellulose 

component during the latter process with the concomitant increase in the relative 

cellulose content.  It is known that hemicellulose is hydrolyzed by hot water and 

steam, leading to leaching of the resultant monosaccharides from the wood 

(Rowell et al., 2002; Williams, 2005).  In addition, some of the hemicelluloses 

could also have been removed by the formation of volatile furan-type breakdown 

products (Rowell et al., 2002). 
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Figure 3.  Notched Box plot presentation of the chemical analysis on wood chips after 

biotreatment. The three observations made respectively for classes Co-culture 4 and Un-

inoculated are shown as line plots. (A) Percentage cellulose in wood after treatments.  

(B) Percentage lignin in wood after treatments. (C) Percentage solvent-borne extractives 

in wood after treatments.  (D) Percentage polar extractives in wood after treatments. 

Monoculture = Pycnoporus sanguineus PPRI 6762; Co-culture 1 = P. sanguineus PPRI 

6762  + Pichia guilliermondii ABA006;  Co-culture 2 = P. sanguineus PPRI 6762  + P. 

guilliermondii ABA006 + Rhodotorula glutinis ABA003; Co-culture 3 = P. sanguineus 

PPRI 6762  + autoclaved P. guilliermondii ABA006 + autoclaved R.glutinis ABA003; Co-

culture 4 = P. sanguineus PPRI 6762 + Aspergillus flavipes J11904; Un-inoculated = Un-

inoculated hot water washed wood chips ; Untreated = Un-inoculated unwashed wood 

chips.  

 

The results of Klason Lignin analyses conducted on the residual wood, following 

growth of P. sanguineus culture combinations on E grandis wood chips, are 
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depicted in Figure 3B. Strikingly, the lignin content of the wood appeared to 

increase during growth of all the cultures. Although no significant difference in 

lignin content was observed between co-cultures, the lignin content of the P. 

sanguineus / Pichia guilliermondii co-culture seemed slightly more than that of 

the P. sanguineus monoculture. The apparent increase in lignin content may be 

explained by the removal of celluloses and other bio-degradable wood 

components during fungal growth, resulting in a relative increase in the 

polyphenolic compound. The latter phenomenon may be especially evident 

where readily available cellulose is utilized to the expense of lignin degradation 

(Evans & Hedger, 2001).   

 

In addition, as argued by Weiland and Guyonnet (2003), the heat from the warm 

water wash may have modified the lignin polymer to such an extent that the 

degradative enzymatic systems of the fungi were no longer effective. Also, it is 

known that protein contamination as a result of fungal growth may result in 

inflated Klason lignin values (Hatfield & Fukushima, 2005).   

 

Similar to the apparent increase in cellulose content during hot water wash, the 

lignin content also appeared to increase during this process (Figure 3B).   This 

may also be explained by removal of the hemicellulose component during the 

latter process with the concomitant increase in the relative lignin content 

(Nuopponen et al., 2004; Garcia et al., 2006). 

 

Analyses of the solvent-borne extractives obtained from the residual wood, 

following growth of P. sanguineus culture combinations on E. grandis wood 

chips, revealed significant differences between the cultures (Figure 3C and Table 

7). These extractives that typically consist of mixtures of aliphatic ketones, 

alkanes, fatty acids, sitosterol esters, triglycerides and waxes (Gutiérrez et al., 

1999) were significantly more in residual wood following growth of the P. 
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sanguineus / A. flavipes co-culture compared to residual wood of the other 

cultures. The lipid compounds in the residual wood may have originated both 

from degradation of wood components by the fungi such as hydrolyses of esters, 

as well as from fungal anabolism (Gutiérrez et al., 2002).  Since Aspergillus is not 

a known oleogenous genus such as Mucor (Ratledge & Wilkinson 1988; Knutzon 

et al. 1998), and the monoculture of P. sanguineus contained significantly less 

lipids than the P. sanguineus / A. flavipes co-cultures, the relatively high lipid 

content of the latter may been the result of interactions between these two fungi 

within the co-culture.   

 

The significant increase in solvent-borne extractives after the hot water wash of 

the untreated woodchips, but before inoculation (Figure 3C and Table 7),   may 

also be explained by removal of the hemicellulose component during the latter 

process with the concomitant relative increase in lipophilic compounds. In 

addition, the hot water wash may have increased the availability of these 

lipophilic compounds to the extraction process, which involves boiling of the chips 

in ethanol-benzene (TAPPI Tests Methods, T264 om-88).  

 

Polar extractives from wood mainly consist of amino acids, phenols, simple 

sugars and starches (Martin & Aber, 1996).  Analyses of these polar compounds 

after fungal growth on the wood chips, revealed no significant difference between 

cultures (Figure 3D and Table 7).  Although the co-cultures containing the mixed 

yeast species (Co-culture 2) and the autoclaved yeasts (Co-culture 3) contained 

significantly less extractives than the untreated wood chips, no difference was 

observed between the untreated wood chips and the wood treated with the hot 

water wash.  It may be assumed that these extractives include enzymatic 

degradation products of wood components, as well as water extractable 

components of fungal biomass. 
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2.4.  CONCLUSIONS  

 

The Seifert analysis is known to be accurate for the determination of the cellulose 

content of wood (Browning, 1967).  In contrast, no test method currently exists for 

the accurate determination of the total lignin content of wood (Hatfield & 

Fukushima, 2005). The Klason Lignin analysis however, is known to be 

repeatable, showing a relatively small standard deviation between repetitions 

(Hatfield & Fukushima, 2005; TAPPI Tests Methods, T222 om-88). It was, 

therefore, suggested that the most important consideration during wood analyses 

should be consistency in the methods used despite inherent shortcomings. From 

the above it is clear that the analytical methods used in this study are inadequate 

to accurately determine fungal degradation of wood. In addition, it is obvious that 

the methods used did not distinguish between fungal biomass and wood 

components. Nevertheless, the methods provided us with a fingerprint of each 

culture growing on the wood allowing us to compare the chemical composition of 

the different cultures and the un-inoculated hot water washed wood chips 

(Figures 4, 5 and 6). 

 

A PCA biplot of the data showed that growth of all the cultures impacted on the 

chemical composition of the washed wood, because the latter formed a separate 

group from the cultures on the resulting biplot (Figure 4). From the graph, it is 

also clear that significant variation was present among the repeats of specific 

yeast co-culture combinations, as well as among the repeats of the mono culture.  

Despite these variations, the yeast co-culture combinations and the mono culture 

grouped separately from the P. sanguineus / A. flavipes co-culture on the PCA  

biplot (Figure 4). To compare these differences between the culture combinations 

used, a CVA biplot was constructed (Figure 5).  

 

The construction of a CVA biplot (Figure 5) makes use of equality of the within 

classes covariance matrices.  However, inspection of the box plots in Figure 3 as 
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well as the PCA biplot in Figure 4 cast a shadow of doubt on the truth of this 

assumption.  Consequently, an AOD biplot that does not require this assumption 

was constructed (Figure 6). Strikingly, similar results were obtained for the two 

biplots (Figures 5 and 6) that were interpreted in the same manner. 

 

The chemical composition of the hot water washed wood chips (Treatment class 

“un-inoculated” in Figures 5 and 6) was significantly different from the fungal 

cultures grown on these chips, indicating that the fungi impacted on the wood 

components.  However, the chemical composition of the monoculture of P. 

sanguineus was similar to that of the P. sanguineus / yeast co-cultures, indicating 

that the yeasts had no effect on the growth of P. sanguineus and its degradation 

of E. grandis woodchips (Figures 5 and 6). These figures clearly show that the 

nature of the differences in the chemical composition described above consisted 

of the Un-inoculated and P. sanguineus / A. flavipes classes to have a larger 

cellulose and solvent-borne extractives content and a lower lignin content than 

the P. sanguineus / yeast co-cultures together.  

 

The greater numbers of these yeasts, especially that of Pichia guilliermondii, on 

the fruiting bodies than on the adjacent woody phyloplane, may be as a result of 

the deposition of yeasts by basidiocarp-feeding insects. The yeast P. 

guilliermondii is associated with a wide diversity of insects (Zacchi & Vauchan-

Martini, 2002), while closely related species were isolated from the gut of 

basidiocarp-feeding beetles (Suh & Blackwell, 2004). The greater numbers of 

yeasts on the fruiting bodies may also have been as a result of a commensalistic  

relationship between the white-rot fungus and the yeasts, the latter being the 

commensals. This potential relationship should be investigated in future. 

 

In contrast to the results obtained with the P. sanguineus / yeast co-cultures, the 

presence of A. flavipes impacted on the chemical composition of P. sanguineus 
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cultures (Figures 5 and 6). It seems that the pioneering hyphomycetous fungus 

(Schwarze et al., 2000) exerts an antagonistic effect on the white-rot fungus 

known to occur later in the succession of fungi growing on decaying wood.  This 

supports the contention that the fungal succession on wood is not only as a result 

of the availability of nutrients, but is also as a result the inhibitory effects of fungal 

competitors. 

 

The protocol used in the analyses of the cultures discerned between different 

fungal co-cultures growing on a particular wood species. The question, therefore, 

arose whether the effect of a particular co-culture, on the chemical composition of 

wood, differs between tree species.  Consequently chemical alterations in 

different tree species, induced by a P. sanguineus / A. flavipes co-culture, were 

investigated in the following chapter. 
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Figure 4. A PCA biplot showing distances among the various samples and their variation 

with respect to the chemical properties measured. The means of the parameters 

measured for each culture are indicated as a solid symbol.  (S-b extractives = solvent 

borne extractives). Monoculture = Pycnoporus sanguineus PPRI 6762; Co-culture 1 = P. 

sanguineus PPRI 6762 + Pichia guilliermondii ABA006; Co-culture 2 = P. sanguineus 

PPRI 6762  + P. guilliermondii ABA006 + Rhodotorula glutinis ABA003; Co-culture 3 = P. 

sanguineus PPRI 6762  + autoclaved P. guilliermondii ABA006 + autoclaved R.glutinis 

ABA003; Co-culture 4 = P. sanguineus PPRI 6762 + Aspergillus flavipes J11904; Un-

inoculated = Un-inoculated hot water washed wood chips.  
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Figure 5.  A CVA biplot displaying the differences and overlap between the culture 

combinations.  (S-b extractives = solvent borne extractives). Monoculture = Pycnoporus 

sanguineus PPRI 6762; Co-culture 1 = P. sanguineus PPRI 6762 + Pichia guilliermondii 

ABA006;  Co-culture 2 = P. sanguineus PPRI 6762  + P. guilliermondii ABA006 + 

Rhodotorula glutinis ABA003; Co-culture 3 = P. sanguineus PPRI 6762  + autoclaved P. 

guilliermondii ABA006 + autoclaved R.glutinis ABA003; Co-culture 4 = P. sanguineus 

PPRI 6762 + Aspergillus flavipes J11904; Un-inoculated = Un-inoculated hot water 

washed wood chips. 
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Figure 6.  An AOD biplot displaying the differences and overlap between the culture 

combinations. (S-b extractives = solvent borne extractives). Monoculture = Pycnoporus 

sanguineus PPRI 6762; Co-culture 1 = P. sanguineus PPRI 6762 + Pichia guilliermondii 

ABA006;  Co-culture 2 = P. sanguineus PPRI 6762  + P. guilliermondii ABA006 + 

Rhodotorula glutinis ABA003; Co-culture 3 = P. sanguineus PPRI 6762  + autoclaved P. 

guilliermondii ABA006 + autoclaved R.glutinis ABA003; Co-culture 4 = P. sanguineus 

PPRI 6762 + Aspergillus flavipes J11904; Un-inoculated = Un-inoculated hot water 

washed wood chips. 
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3.1. Introduction 

 

Among the microorganisms responsible for wood degradation, fungi are the 

dominant group in terrestrial ecosystems (Schwarze et al., 2000).  They use 

various processes to degrade woody tissues resulting in three forms of decay: 

Brown-rot, soft-rot and white-rot.  The latter form of decay is caused by a group of 

fungi that are able to degrade lignin in addition to cellulose and hemicellulose 

(Otjen & Blanchette, 1986; Myneni et al., 2001).  White-rot fungi, for example 

Fomes fomentarius, simultaneously degrade cellulose, hemicellulose and lignin, 

while Ganoderma pheifferi selectively degrades lignin and hemicelluloses first 

(Schwarze et al., 2000).  Pycnoporus sanguineus, a known white-rot fungus, 

showed a selective delignification pattern on poplar trees, while exerting a 

simultaneous delignification pattern when cultured on Eucalyptus grandis wood 

(Ferraz et al., 1998; Luna et al., 2004).   This indicates that this white-rot fungus 

may shift between delignification patterns depending on the wood it grows on.   

 

The majority of studies on delignification of wood focused on pure cultures of 

white-rot fungi (Luna et al., 2004).  The effect of co-cultures on wood is, however, 

closer to the situation in nature, as consortia of microbes are known to degrade 

lignocellulosic material (Watanabe et al., 2003).  Studies by Dommisse in 1998 

indicated that a co-culture of Pycnoporus sanguineus and Aspergillus flavipes 

enhanced the pulping properties of E. grandis. Our own results (Chapter 2) 

indicated that the P. sanguineus / A. flavipes co-culture caused less cellulose 

degradation compared to the mono cultures of this white-rot fungus. 

 

Since literature indicates that P. sanguineus may have the ability to shift between 

degradation patterns, the question arose whether the effect of a P. sanguineus / 

A. flavipes co-culture on the chemical composition of wood, will differ between 

tree species.  Subsequently, the aim of this study was to investigate chemical 

alterations in different tree species, induced by a P. sanguineus / A. flavipes co-

culture. 
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3.2. Materials and Methods 

 

3.2.1. Assessing the degradation of wood components by P.sanguineus/A. 

flavipes co-cultures 

 

A strain representing P. sanguineus was obtained from the fungal culture 

collection of the ARC-Plant Protection Research Institute (PPRI), Pretoria, South 

Africa. This white rot fungus (P. sanguineus PPRI 6762), as well as A. flavipes 

J11904 are being maintained at 22°C on MEA in the fungal culture collection of 

the Department of Microbiology, University of Stellenbosch, South Africa. 

 

Twelve year old Acacia mearnsii, Eucalyptus dunnii, Eucalyptus grandis, and 

Eucalyptus macarthurii trees were obtained from plantations on the Eastern 

Highveld of South-Africa.  The trees were chipped and only the fraction greater 

than 6 mm and less than 9 mm in thickness was retained for experimentation. To 

enhance weathering, the wood chips were pre-treated in a pressure vessel of 15 

dm3 capacity with a hot water wash at 150°C for two hours.  To ensure that the 

water mixes well with the wood chips and fibres, the vessel oscillated through 45° 

to either side.  When the temperature reached 150°C, the vessel degassed 

automatically and the pressure dropped in about 12 minutes from 800 kPa to 0 

kPa. Thereafter the pressure was increased until it reached the maximum 800kPa 

where it was maintained for 25 minutes. 

 

To determine the moisture content of the wood a sub-sample of these chips (± 

20g) was oven dried for 14 h at 100°C and weighed.  In order to obtain a final 

moisture content of 60% (Wolfaardt et al., 2004) a nutrient supplement [5% (w/v) 

molasses and 0.28% (w/v) urea], as well as an appropriate volume of fungal 

inoculum, were added to the chips.  

 

Inoculums of A. flavipes J11904 and P. sanguineus PPRI 6762 were prepared by 

growing these strains at 30°C in 5% (w/v) molasses broth. After one week of 
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incubation, the fungal biomass of each culture was homogenized using a blender 

(Pineware) for 30 s.  This homogenized fungal biomass was subsequently used to 

inoculate woodchips from different tree species (Table 1). The latter were 

contained in bio-reactors, respectively each receiving an inoculum of 1.8 x 10-4 g 

and 1.7 x 10-4 g dry biomass per gram oven dried wood for A. flavipes, and P. 

sanguineus.  

 

Table 1. Different treatments of wood chips originating from the different tree species 

including inoculation with P. sanguineus PPRI 6762 / A. flavipes J11904 co-cultures.  

Acronym for 

treatment class 

Tree species and treatment of wood chips 

AmUN Acacia mearnsii; no hot water wash; no inoculum 

AmWO Acacia mearnsii; hot water wash; no inoculum 

AmWB Acacia mearnsii; hot water wash; co-culture inoculum 

EdUN Eucalyptus dunnii; no hot water wash; no inoculum 

EdWO Eucalyptus dunnii; hot water wash; no inoculum 

EdWB Eucalyptus dunnii; hot water wash; co-culture inoculum 

EgUN Eucalyptus grandis; no hot water wash; no inoculum 

EgWO Eucalyptus grandis; hot water wash; no inoculum 

EgWB Eucalyptus grandis; hot water wash; co-culture inoculum 

EmUN Eucalyptus macarthurii; no hot water wash; no inoculum 

EmWO Eucalyptus macarthurii; hot water wash; no inoculum 

EmWB Eucalyptus macarthurii; hot water wash; co-culture inoculum 

 

These bio-reactors consisted of closed cylindrical plastic vessels (17 cm high and 

23 cm in diameter), each containing 1 kg of wood chip woods resting on a grid 5 

cm from the bottom to allow for aeration.  After inoculation each bio-reactor was 

incubated at 30°C, while being aerated from below the grid with 10 L/ min sterile 
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moist air blown through a water trap using an electro-magnetic air compressor 

(Style King, Model ACQ-009A). After 14 days of incubation the cultures were 

harvested and the chemical properties of the residual wood were analyzed using 

standard TAPPI methodology.   

 

3.2.2. Chemical analyses of wood chips. 

 

To provide an indication of the chemical alterations that occurred in the wood 

chips during treatment of the wood chips, the residual wood chips obtained after 

fungal cultivation, the un-inoculated hot water washed chips, as well as un-

inoculated untreated wood chips (Table 1) were analysed. Alcohol-benzene and 

water soluble extractive contents as well as lignin and cellulose content were 

determined during this process.   

 

Extractions were done by boiling 3 g of the residual wood chips in either 200 ml 

ethanol-benzene or water for six to eight hours (TAPPI Standard Methods T 264 

om-88).  After ethanol-benzene extraction, the wood was washed with 95% 

ethanol to remove the benzene.  This was followed by washing the chips with 

distilled water to remove ethanol.  The chips were subsequently boiled in 500 ml 

distilled water for one hour, whereafter it was washed with 500 ml boiling water 

and air dried.  Subsequently, the moisture content was determined to calculate the 

percentage extractives in the wood. 

 

Klason Lignin is defined as the wood components that are insoluble in 72% 

sulphuric acid (TAPPI Standard Methods T 222 om-88).  For the determination of 

lignin content, 15 ml 72% sulphuric acid was added to 5 g oven dried extractive 

free wood.  This reaction mixture was subsequently incubated at 20°C for two 

hours.  After the incubation period, the material was added to a beaker of water 

until a 3% concentration of the sulfuric acid was reached.  The resulting 

suspension was boiled for four hours at a constant volume.  After boiling, the 

insoluble material (lignin) was allowed to settle.  The supernatant was 
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subsequently discarded and the precipitate washed with water, dried and 

weighed. 

 

The Seifert method was used to gravimetrically determine cellulose in the residual 

wood chips (Browning, 1967).  Using a boiling water bath, 1 g of extractive free 

wood meal was refluxed in a solution containing 6 ml acetylacetone, 2 ml dioxane 

and 1.5 ml hydrochloric acid.  After 30 min the mixture was then washed 

successively with methanol, dioxane, hot water, dioxane, methanol and ether. The 

residue was subsequently weighed after drying at 105°C.    

 

 

3.3. Results and Discussion 

 

3.3.1.  Motivation for and results of statistical analyses 

 

Similar to the data described in section 2.3.2, three replicate chemical analyses 

were performed on a single co-culture treated sample of each species, as well as 

three replicate chemical analyses on an un-inoculated sample obtained for each 

tree species after the hot water wash.  As is described in section 2.3.2 the 

Untreated data for each tree species consisted of a total of 30 observations: Three 

chemical analysis replicates of chip samples originating from two trees randomly 

selected from five locations representing the area of largest biological variation.  

Unfortunately, the results for three chemical analyses of A. mearnsii were lost 

during the chemical analysis process.  The complete data set is provided in Table 

2. 
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Table 2.  Measurements (%) obtained during chemical analyses as described in section 3.3.1.  

Treatment Species Class Cel Lig EBE EH2  Treatment Species Class Cel Lig EBE EH2 
HWE Amea AmWO 59.18 17.36 5.65 2.72  UNTREAT Edun EdUN 46.31 18.01 2.60 1.80 
HWE Amea AmWO 65.44 19.05 4.81 3.14  UNTREAT Edun EdUN 47.38 19.98 1.80 2.20 
HWE Amea AmWO 66.15 21.40 5.02 3.56  UNTREAT Edun EdUN 47.37 23.94 1.60 2.60 
HWE Edun EdWO 67.14 22.38 10.10 4.54  UNTREAT Edun EdUN 48.19 19.88 1.60 2.60 
HWE Edun EdWO 67.23 24.00 10.68 2.26  UNTREAT Edun EdUN 58.40 18.09 1.40 1.40 
HWE Edun EdWO 70.19 21.91 10.25 2.61  UNTREAT Edun EdUN 45.32 19.88 1.80 1.20 
HWE Egran EgWO 75.83 26.30 7.58 2.53  UNTREAT Edun EdUN 42.64 15.87 1.60 1.80 
HWE Egran EgWO 62.95 26.35 7.79 2.74  UNTREAT Edun EdUN 43.57 22.11 2.40 2.40 
HWE Egran EgWO 74.04 24.18 8.21 2.95  UNTREAT Edun EdUN 41.89 19.84 2.20 3.40 
HWE Emac EmWO 57.03 25.96 7.07 3.33  UNTREAT Edun EdUN 43.79 22.04 2.80 4.00 
HWE Emac EmWO 56.43 26.14 6.66 4.58  UNTREAT Egran EgUN 46.39 26.09 3.20 2.00 
HWE Emac EmWO 55.51 21.42 7.07 2.08  UNTREAT Egran EgUN 45.55 22.15 3.00 3.60 
HWEBP Amea AmWB 71.56 22.11 6.60 1.92  UNTREAT Egran EgUN 45.29 26.03 3.00 4.00 
HWEBP Amea AmWB 65.78 22.21 7.88 1.49  UNTREAT Egran EgUN 47.14 18.07 2.00 2.00 
HWEBP Amea AmWB 69.35 24.54 7.67 1.28  UNTREAT Egran EgUN 46.39 25.93 1.80 2.00 
HWEBP Edun EdWB 68.23 24.26 9.92 1.90  UNTREAT Egran EgUN 48.34 26.16 1.80 2.20 
HWEBP Edun EdWB 67.33 23.96 9.50 2.53  UNTREAT Egran EgUN 52.85 26.02 3.00 1.80 
HWEBP Edun EdWB 65.58 24.09 9.92 2.53  UNTREAT Egran EgUN 53.46 22.03 2.60 2.00 
HWEBP Egran EgWB 61.28 26.68 8.51 2.98  UNTREAT Egran EgUN 56.14 20.02 2.40 1.60 
HWEBP Egran EgWB 61.13 28.49 8.51 2.13  UNTREAT Egran EgUN 46.31 22.08 3.00 3.00 
HWEBP Egran EgWB 60.01 28.58 9.35 2.55  UNTREAT Egran EgUN 46.48 20.02 3.40 3.60 
HWEBP Emac EmWB 56.79 25.86 6.56 1.90  UNTREAT Egran EgUN 49.10 21.93 3.20 2.40 
HWEBP Emac EmWB 55.08 25.37 8.04 1.48  UNTREAT Egran EgUN 48.00 17.96 2.40 4.20 
HWEBP Emac EmWB 56.31 28.12 7.19 1.69  UNTREAT Egran EgUN 48.05 23.93 2.20 4.20 
UNTREAT Amea AmUN 45.36 20.09 2.60 2.00  UNTREAT Egran EgUN 48.02 20.15 2.60 1.60 
UNTREAT Amea AmUN 45.61 21.83 2.60 2.00  UNTREAT Egran EgUN 52.80 23.83 3.40 2.00 
UNTREAT Amea AmUN 50.84 17.95 3.20 2.20  UNTREAT Egran EgUN 54.38 20.07 3.60 1.60 
UNTREAT Amea AmUN 49.20 19.85 3.20 1.40  UNTREAT Egran EgUN 52.90 20.06 3.40 1.40 
UNTREAT Amea AmUN 48.94 20.14 2.80 1.60  UNTREAT Egran EgUN 51.02 20.08 2.20 4.60 
UNTREAT Amea AmUN 55.66 24.17 1.80 2.20  UNTREAT Egran EgUN 49.92 18.00 2.60 5.20 
UNTREAT Amea AmUN 55.67 20.04 1.20 1.00  UNTREAT Egran EgUN 48.10 15.90 2.20 4.20 
UNTREAT Amea AmUN 57.18 19.97 1.60 1.20  UNTREAT Egran EgUN 47.21 20.03 3.80 3.80 
UNTREAT Amea AmUN 54.39 21.97 1.40 0.80  UNTREAT Egran EgUN 47.21 18.03 3.20 3.60 
UNTREAT Amea AmUN 46.36 19.83 2.20 2.40  UNTREAT Egran EgUN 46.24 24.20 3.20 3.60 
UNTREAT Amea AmUN 46.47 21.83 2.20 2.40  UNTREAT Egran EgUN 57.19 18.00 2.20 2.20 
UNTREAT Amea AmUN 48.08 22.13 2.20 2.20  UNTREAT Egran EgUN 58.40 18.04 2.40 2.00 
UNTREAT Amea AmUN 48.15 23.80 2.60 2.60  UNTREAT Egran EgUN 56.51 22.06 2.80 2.40 
UNTREAT Amea AmUN 46.31 20.01 2.40 2.20  UNTREAT Egran EgUN 49.15 20.06 1.20 4.40 
UNTREAT Amea AmUN 48.06 22.12 2.60 2.60  UNTREAT Egran EgUN 49.27 18.12 1.00 4.60 
UNTREAT Amea AmUN 45.45 19.83 3.40 1.60  UNTREAT Egran EgUN 49.01 16.02 1.60 3.40 
UNTREAT Amea AmUN 46.36 22.00 3.60 2.00  UNTREAT Emac EmUN 43.78 21.83 1.40 1.80 
UNTREAT Amea AmUN 46.53 20.04 3.00 2.00  UNTREAT Emac EmUN 50.91 22.00 1.80 2.40 
UNTREAT Amea AmUN 51.39 24.04 2.60 1.80  UNTREAT Emac EmUN 43.58 22.07 2.20 2.20 
UNTREAT Amea AmUN 50.49 21.82 2.60 2.00  UNTREAT Emac EmUN 44.60 26.20 1.80 2.20 
UNTREAT Amea AmUN 48.08 21.90 3.00 1.80  UNTREAT Emac EmUN 46.47 26.18 2.20 1.80 
UNTREAT Amea AmUN 47.44 25.84 2.80 1.80  UNTREAT Emac EmUN 45.36 25.90 2.20 2.00 
UNTREAT Amea AmUN 49.14 19.85 3.20 1.60  UNTREAT Emac EmUN 41.02 26.03 2.20 2.60 
UNTREAT Amea AmUN 49.98 19.83 2.00 1.20  UNTREAT Emac EmUN 39.91 25.94 2.40 2.60 
UNTREAT Amea AmUN 48.10 20.13 1.60 2.60  UNTREAT Emac EmUN 41.02 25.82 2.60 2.00 
UNTREAT Amea AmUN 54.71 24.03 1.60 1.80  UNTREAT Emac EmUN 41.77 30.22 2.20 3.00 
UNTREAT Amea AmUN 54.56 21.97 1.20 1.20  UNTREAT Emac EmUN 41.66 19.93 2.40 3.60 
UNTREAT Edun EdUN 49.08 21.89 3.20 2.60  UNTREAT Emac EmUN 40.88 27.75 2.40 2.80 
UNTREAT Edun EdUN 49.21 22.06 3.60 2.40  UNTREAT Emac EmUN 46.51 24.15 3.20 3.00 
UNTREAT Edun EdUN 34.68 17.92 2.60 2.20  UNTREAT Emac EmUN 42.63 24.05 3.00 3.40 
UNTREAT Edun EdUN 48.09 19.96 2.60 2.40  UNTREAT Emac EmUN 43.56 21.90 3.60 2.80 
UNTREAT Edun EdUN 55.60 22.15 2.80 2.40  UNTREAT Emac EmUN 44.62 18.09 1.80 2.20 
UNTREAT Edun EdUN 49.86 24.15 2.40 2.20  UNTREAT Emac EmUN 45.61 22.18 1.60 3.00 
UNTREAT Edun EdUN 46.48 15.99 2.80 2.40  UNTREAT Emac EmUN 46.34 21.88 2.00 2.00 
UNTREAT Edun EdUN 45.33 15.98 2.20 2.40  UNTREAT Emac EmUN 42.72 28.18 2.40 1.20 
UNTREAT Edun EdUN 47.13 13.98 2.60 2.00  UNTREAT Emac EmUN 47.21 29.92 2.20 2.60 
UNTREAT Edun EdUN 46.19 16.02 2.20 2.20  UNTREAT Emac EmUN 47.41 28.13 2.60 2.80 
UNTREAT Edun EdUN 43.67 23.94 2.00 2.00  UNTREAT Emac EmUN 46.27 23.99 2.40 3.00 
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Table 2.  (Continued) 

Treatment Species Class Cel Lig EBE EH2  Treatment Species Class Cel Lig EBE EH2 
UNTREAT Edun EdUN 48.09 22.16 2.00 2.60  UNTREAT Emac EmUN 48.00 23.95 2.20 2.80 
UNTREAT Edun EdUN 40.14 23.87 2.00 2.80  UNTREAT Emac EmUN 47.14 24.09 2.20 2.20 
UNTREAT Edun EdUN 42.68 25.82 2.20 2.60  UNTREAT Emac EmUN 40.11 25.87 3.00 2.20 
UNTREAT Edun EdUN 43.54 21.92 2.40 2.40  UNTREAT Emac EmUN 40.85 23.82 2.80 2.20 
UNTREAT Edun EdUN 42.89 21.92 2.40 3.60  UNTREAT Emac EmUN 44.61 25.80 3.20 2.00 
UNTREAT Edun EdUN 42.67 23.89 2.20 2.60  UNTREAT Emac EmUN 40.14 17.86 2.60 2.60 
UNTREAT Edun EdUN 41.79 24.10 2.20 2.80  UNTREAT Emac EmUN 39.88 25.92 2.60 2.40 
UNTREAT Edun EdUN 40.89 16.04 2.40 1.60  UNTREAT Emac EmUN 40.15 26.10 2.80 3.00 
UNTREAT Edun EdUN 48.08 20.02 2.20 1.80         

Explanations for acronyms listed in the “treatment column” are; HWE = Hot water extracted wood chips; HWEBP 

= Hot water extracted wood chips, followed by inoculation of fungal co-culture; UNTREAT = untreated wood 

chips. The acronyms in the “species column” designate different tree/wood species; Amea = Acacia mearnsii; 

Edun = Eucalyptus dunnii; Egran = Eucalyptus grandis; Emac = Eucalyptus macarthurii. Explanations for 

acronyms listed in the “class column” designate different treatment classes and are provided in Table 1. 

Abbreviations for measured variables: Cel = % Cellulose; Lig = % Lignin; EBE = % Solvent-borne extractives; 

EH2 = % Polar extractives. 

 

The above data are visually displayed in the form of notched box plots in Figure 1. 

Before discussing this figure however, the following had to be taken into account. 

The statistical analysis of the data in Table 2 (Chapter 3) differed in an important 

aspect from the statistical analysis of the data presented in Table 4 of Chapter 2: 

The data in Table 2 (Chapter 3) constitute two-way data viz. tree species x 

treatment.  Therefore the first question that had to be addressed was the 

significance of the interaction between these two factors.  This was done by 

performing a two-way MANOVA on the data. Since each cell in the two-way table 

associated with the data in Table 2 (Chapter 3) did not contain the same number 

of replicates, the order of terms entering the MANOVA model had to be taken into 

account. Table 3 contains the results of these MANOVAs. 

 
Table 3.  Results of MANOVA procedures performed on the two-way data in Table 2.  

 Df Pillai 
Trace 

Approx. 
F 

Num. df Denom. 
df 

P-value 

Species 3 0.8844 13.3781 12 384 0 
Treatment 2 1.1165 40.1221 8 254 0 
Species:Treatment 6 0.8353 5.6744 24 516 0 
Residuals 129      
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Table 3.  (Continued) 

 Df Pillai 
Trace 

Approx. 
F 

Num. df Denom. 
df 

P-value 

Treatment 2 1.1164 40.1191 8 254 0 
Species 3 0.9 13.7141 12 384 0 
Species:Treatment 6 0.8353 5.6744 24 516 0 
Residuals 129      

 

It is clear from Table 3 that the species x treatment interaction was statistically 

highly significant.  Accordingly, the MANOVA was followed by performing two-way 

univariate analysis of variance (ANOVA) procedures on the data treating in turn 

each of % Cellulose, % Lignin, % Solvent-borne extractives and % Polar 

extractives as the response variable.  Table 4 contains the mean values 

associated with the ANOVA procedures 

 

Table 4. Means associated with the two-way ANOVA procedures 

  Chemical property 

  % Cellulose % Lignin % Solvent-borne 
extractives 

% Polar 
extractives 

AmUN 49.57 21.37 2.41 1.86 

AmWB 68.90 22.95 7.38 1.56 

AmWO 63.59 19.27 5.16 3.14 

EdUN 45.70 20.45 2.29 2.38 

EdWB 67.04 24.10 9.78 2.32 

EdWO 68.18 22.76                   10.34 3.14 

EgUN 49.89 21.04 2.61 2.97 

EgWB 60.80 27.92 8.79 2.55 

EgWO 70.94 25.61 7.86 2.74 

EmUN 43.82 24.52 2.40 2.48 

EmWB 56.06 26.45 7.26 1.69 

S
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EmWO 56.32 24.51 6.93 3.33 

 

 The two-way ANOVA tables for % Cellulose, % Lignin, % Solvent-borne 

extractives and % Polar extractives are provided in Tables 5, 7, 9 and 11, 

respectively. 
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Table 5.  ANOVA table for two-way ANOVA performed with % Cellulose as response 

variable. 

 Df Sum of Sq Mean Sq F Value Pr(F) 
Species 3 1083.507 361.169 26.740 0.0000 
Treatment 2 5589.150 2794.575 206.902 0.0000 
Species:Treatment 6 416.266 69.378 5.137 0.0000 
Residuals 129 1742.371 13.507   

 

It follows from Table 5 that the species x treatment interaction for % Cellulose is 

statistically highly significant.  Therefore simultaneous Tukey 99% confidence 

intervals (Scheffé,1959) were calculated for all pair-wise comparisons between the 

species x  treatment  combinations.  These intervals are displayed in Table 6.   The 

interpretation of the results of table 6 is deferred to section 3.3. 

 
Table 6. Simultaneous Tukey 99% pair-wise confidence intervals between all species x 

treatment combinations in the case of mean % Cellulose values.  An interval excluding 

zero (coloured in grey) suggests the rejection at a 1% significance level of the null 

hypothesis that the corresponding means are equal.  

Contrast Estimate Stderr Lower Upper 
AmUN–AmWB –19.32 2.24 –27.91 –10.73 
AmUN–AmWO –14.02 2.24 –22.61 –5.43 
AmUN–EdUN 3.88 0.97 0.13 7.62 
AmUN–EdWB –17.47 2.24 –26.06 –8.88 
AmUN–EdWO –18.61 2.24 –27.20 –10.02 
AmUN–EgUN –0.32 0.97 –4.06 3.43 
AmUN–EgWB –11.23 2.24 –19.82 –2.64 
AmUN–EgWO –21.37 2.24 –29.96 –12.77 
AmUN–EmUN 5.75 0.97 2.01 9.49 
AmUN–EmWB –6.49 2.24 –15.08 2.10 
AmUN–EmWO –6.75 2.24 –15.34 1.84 
AmWB–AmWO 5.31 3.00 –6.22 16.83 
AmWB–EdUN 23.2 2.23 14.65 31.75 
AmWB–EdWB 1.85 3.00 –9.67 13.38 
AmWB–EdWO 0.71 3.00 –10.81 12.24 
AmWB–EgUN 19.00 2.23 10.45 27.55 
AmWB–EgWB 8.09 3.00 –3.43 19.62 
AmWB–EgWO –2.04 3.00 –13.57 9.48 
AmWB–EmUN 25.07 2.23 16.52 33.62 
AmWB–EmWB 12.83 3.00 1.31 24.36 
AmWB–EmWO 12.57 3.00 1.05 24.10 
AmWO–EdUN 17.89 2.23 9.34 26.44 
AmWO–EdWB –3.45 3.00 –14.98 8.07 
AmWO–EdWO –4.59 3.00 –16.12 6.93 
AmWO–EgUN 13.70 2.23 5.15 22.25 
AmWO–EgWB 2.79 3.00 –8.74 14.31 
AmWO–EgWO –7.35 3.00 –18.88 4.18 
AmWO–EmUN 19.77 2.23 11.22 28.31 
AmWO–EmWB 7.53 3.00 –4.00 19.05 
AmWO–EmWO 7.27 3.00 –4.26 18.79 
EdUN–EdWB –21.35 2.23 –29.89 –12.8 
EdUN–EdWO –22.49 2.23 –31.03 –13.94 
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Table 6.  (Continued) 
 

Contrast Estimate Stderr Lower Upper 
EdUN–EgUN –4.20 0.95 –7.84 –0.55 
EdUN–EgWB –15.11 2.23 –23.65 –6.56 
EdUN–EgWO –25.24 2.23 –33.79 –16.69 
EdUN–EmUN 1.87 0.95 –1.77 5.52 
EdUN–EmWB –10.36 2.23 –18.91 –1.82 
EdUN–EmWO –10.62 2.23 –19.17 –2.08 
EdWB–EdWO –1.14 3.00 –12.67 10.39 
EdWB–EgUN 17.15 2.23 8.60 25.70 
EdWB–EgWB 6.24 3.00 –5.29 17.77 
EdWB–EgWO –3.90 3.00 –15.42 7.63 
EdWB–EmUN 23.22 2.23 14.67 31.77 
EdWB–EmWB 10.98 3.00 –0.54 22.51 
EdWB–EmWO 10.72 3.00 –0.80 22.25 
EdWO–EgUN 18.29 2.23 9.74 26.84 
EdWO–EgWB 7.38 3.00 –4.15 18.91 
EdWO–EgWO –2.76 3.00 –14.28 8.77 
EdWO–EmUN 24.36 2.23 15.81 32.91 
EdWO–EmWB 12.12 3.00 0.60 23.65 
EdWO–EmWO 11.86 3.00 0.34 23.39 
EgUN–EgWB –10.91 2.23 –19.46 –2.36 
EgUN–EgWO –21.05 2.23 –29.59 –12.50 
EgUN–EmUN 6.07 0.95 2.42 9.71 
EgUN–EmWB –6.17 2.23 –14.72 2.38 
EgUN–EmWO –6.43 2.23 –14.98 2.12 
EgWB–EgWO –10.14 3.00 –21.66 1.39 
EgWB–EmUN 16.98 2.23 8.43 25.53 
EgWB–EmWB 4.74 3.00 –6.78 16.27 
EgWB–EmWO 4.48 3.00 –7.04 16.01 
EgWO–EmUN 27.12 2.23 18.57 35.66 
EgWO–EmWB 14.88 3.00 3.35 26.40 
EgWO–EmWO 14.62 3.00 3.09 26.14 
EmUN–EmWB –12.24 2.23 –20.79 –3.69 
EmUN–EmWO –12.50 2.23 –21.05 –3.95 
EmWB–EmWO –0.26 3.00 –11.79 11.27 

 

 

Table 7. ANOVA table for two-way ANOVA performed with % Lignin as response variable. 

 Df Sum of Sq Mean Sq F Value Pr(F) 
Species 3 305.1844 101.7281 13.716 0.0000 
Treatment 2 143.5718 71.7859 9.679 0.0001 
Species:Treatment 6 106.6522 17.7754 2.397 0.0315 
Residuals 129 956.7328 7.4165   

 

It follows from Table 7 that the species x treatment interaction for % Lignin is 

statistically significant at an approximate 3% level of significance.  Therefore 

simultaneous Tukey 95% confidence intervals (Scheffé, 1955) were calculated for 

all pair-wise comparisons between the % Lignin means for all species x treatment 

combinations.  These intervals are displayed in Table 8. 
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Table 8. Simultaneous Tukey 95% pair-wise confidence intervals between all species x 

treatment combinations in the case of mean % Lignin values. An interval excluding zero 

(coloured in grey) suggests the rejection at a 1% significance level of the null hypothesis 

that the corresponding means are equal. 

Contrast Estimate Stderr Lower Upper 
AmUN–AmWB –1.58 1.66 –7.10 3.93 
AmUN–AmWO 2.10 1.66 –3.42 7.62 
AmUN–EdUN 0.92 0.72 –1.48 3.33 
AmUN–EdWB –2.73 1.66 –8.25 2.78 
AmUN–EdWO –1.39 1.66 –6.91 4.13 
AmUN–EgUN 0.34 0.72 –2.07 2.74 
AmUN–EgWB –6.55 1.66 –12.06 –1.03 
AmUN–EgWO –4.24 1.66 –9.76 1.28 
AmUN–EmUN –3.15 0.72 –5.56 –0.75 
AmUN–EmWB –5.08 1.66 –10.60 0.44 
AmUN–EmWO –3.13 1.66 –8.65 2.38 
AmWB–AmWO 3.68 2.22 –3.72 11.08 
AmWB–EdUN 2.51 1.65 –2.98 8.00 
AmWB–EdWB –1.15 2.22 –8.55 6.25 
AmWB–EdWO 0.19 2.22 –7.21 7.59 
AmWB–EgUN 1.92 1.65 –3.57 7.41 
AmWB–EgWB –4.96 2.22 –12.37 2.44 
AmWB–EgWO –2.66 2.22 –10.06 4.75 
AmWB–EmUN –1.57 1.65 –7.06 3.92 
AmWB–EmWB –3.50 2.22 –10.90 3.91 
AmWB–EmWO –1.55 2.22 –8.95 5.85 
AmWO–EdUN –1.18 1.65 –6.66 4.31 
AmWO–EdWB –4.83 2.22 –12.23 2.57 
AmWO–EdWO –3.49 2.22 –10.89 3.91 
AmWO–EgUN –1.76 1.65 –7.25 3.73 
AmWO–EgWB –8.65 2.22 –16.05 –1.24 
AmWO–EgWO –6.34 2.22 –13.74 1.06 
AmWO–EmUN –5.25 1.65 –10.74 0.24 
AmWO–EmWB –7.18 2.22 –14.58 0.22 
AmWO–EmWO –5.23 2.22 –12.64 2.17 
EdUN–EdWB –3.66 1.65 –9.15 1.83 
EdUN–EdWO –2.32 1.65 –7.81 3.17 
EdUN–EgUN –0.59 0.70 –2.93 1.75 
EdUN–EgWB –7.47 1.65 –12.96 –1.98 
EdUN–EgWO –5.16 1.65 –10.65 0.33 
EdUN–EmUN –4.08 0.70 –6.42 –1.74 
EdUN–EmWB –6.00 1.65 –11.49 –0.51 
EdUN–EmWO –4.06 1.65 –9.55 1.43 
EdWB–EdWO 1.34 2.22 –6.06 8.74 
EdWB–EgUN 3.07 1.65 –2.42 8.56 
EdWB–EgWB –3.81 2.22 –11.22 3.59 
EdWB–EgWO –1.51 2.22 –8.91 5.90 
EdWB–EmUN –0.42 1.65 –5.91 5.07 
EdWB–EmWB –2.35 2.22 –9.75 5.06 
EdWB–EmWO –0.40 2.22 –7.80 7.00 
EdWO–EgUN 1.73 1.65 –3.76 7.22 
EdWO–EgWB –5.16 2.22 –12.56 2.25 
EdWO–EgWO –2.85 2.22 –10.25 4.55 
EdWO–EmUN –1.76 1.65 –7.25 3.73 
EdWO–EmWB –3.69 2.22 –11.09 3.71 
EdWO–EmWO –1.74 2.22 –9.15 5.66 
EgUN–EgWB –6.88 1.65 –12.37 –1.39 
EgUN–EgWO –4.57 1.65 –10.06 0.92 
EgUN–EmUN –3.49 0.70 –5.83 –1.15 
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Table 8.  (Continued)  

Contrast Estimate Stderr Lower Upper 
EgUN–EmWB –5.41 1.65 –10.90 0.08 
EgUN–EmWO –3.47 1.65 –8.96 2.02 
EgWB–EgWO 2.31 2.22 –5.09 9.71 
EgWB–EmUN 3.39 1.65 –2.10 8.88 
EgWB–EmWB 1.47 2.22 –5.93 8.87 
EgWB–EmWO 3.41 2.22 –3.99 10.81 
EgWO–EmUN 1.09 1.65 –4.40 6.58 
EgWO–EmWB –0.84 2.22 –8.24 6.56 
EgWO–EmWO 1.10 2.22 –6.30 8.51 
EmUN–EmWB –1.93 1.65 –7.42 3.56 
EmUN–EmWO 0.02 1.65 –5.47 5.51 
EmWB–EmWO 1.94 2.22 –5.46 9.35 

 

Table 9. ANOVA table for two-way ANOVA performed with % solvent-borne extractives as 

response variable. 

 Df Sum of Sq Mean Sq F Value Pr(F) 
Species 3 6.4727 2.1576 6.338 0.0005 
Treatment 2 609.1101 304.5550 894.610 0.0000 
Species:Treatment 6 48.5598 8.0933 23.774 0.0000 
Residuals 129 43.9159 0.3404   

 

It follows from Table 9 that the species x treatment interaction for % solvent-

borne extractives is statistically highly significant.  Therefore simultaneous Tukey 

99% confidence intervals (Scheffé, 1955) were calculated for all pair-wise 

comparisons between the species x treatment combinations in the case of % 

Solvent-borne extractives.  These intervals are displayed in Table 10.  

 
Table 10. Simultaneous Tukey 99% pair-wise confidence intervals between all species x 

treatment combinations in the case of mean % Solvent-borne extractives values. An 

interval excluding zero (coloured in grey) suggests the rejection at a 1% significance 

level of the null hypothesis that the corresponding means are equal. 

Contrast Estimate Stderr Lower Upper 
AmUN–AmWB –4.97 0.36 –6.33 –3.60 
AmUN–AmWO –2.75 0.36 –4.11 –1.39 
AmUN–EdUN 0.12 0.15 –0.47 0.72 
AmUN–EdWB –7.37 0.36 –8.73 –6.00 
AmUN–EdWO –7.93 0.36 –9.29 –6.57 
AmUN–EgUN –0.20 0.15 –0.79 0.40 
AmUN–EgWB –6.38 0.36 –7.74 –5.01 
AmUN–EgWO –5.44 0.36 –6.81 –4.08 
AmUN–EmUN 0.01 0.15 –0.58 0.61 
AmUN–EmWB –4.85 0.36 –6.21 –3.48 
AmUN–EmWO –4.52 0.36 –5.88 –3.15 
AmWB–AmWO 2.22 0.48 0.39 4.05 
AmWB–EdUN 5.09 0.35 3.73 6.45 
AmWB–EdWB –2.40 0.48 –4.23 –0.57 
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Table 10 .  (Continued) 

 
Contrast Estimate Stderr Lower Upper 
AmWB–EdWO –2.96 0.48 –4.79 –1.13 
AmWB–EgUN 4.77 0.35 3.41 6.13 
AmWB–EgWB –1.41 0.48 –3.24 0.42 
AmWB–EgWO –0.48 0.48 –2.31 1.35 
AmWB–EmUN 4.98 0.35 3.62 6.34 
AmWB–EmWB 0.12 0.48 –1.71 1.95 
AmWB–EmWO 0.45 0.48 –1.38 2.28 
AmWO–EdUN 2.87 0.35 1.51 4.23 
AmWO–EdWB –4.62 0.48 –6.45 –2.79 
AmWO–EdWO –5.18 0.48 –7.01 –3.35 
AmWO–EgUN 2.55 0.35 1.19 3.91 
AmWO–EgWB –3.63 0.48 –5.46 –1.80 
AmWO–EgWO –2.69 0.48 –4.52 –0.86 
AmWO–EmUN 2.76 0.35 1.41 4.12 
AmWO–EmWB –2.10 0.48 –3.93 –0.27 
AmWO–EmWO –1.77 0.48 –3.60 0.06 
EdUN–EdWB –7.49 0.35 –8.84 –6.13 
EdUN–EdWO –8.05 0.35 –9.41 –6.69 
EdUN–EgUN –0.32 0.15 –0.90 0.26 
EdUN–EgWB –6.50 0.35 –7.86 –5.14 
EdUN–EgWO –5.56 0.35 –6.92 –4.21 
EdUN–EmUN –0.11 0.15 –0.69 0.47 
EdUN–EmWB –4.97 0.35 –6.33 –3.61 
EdUN–EmWO –4.64 0.35 –6.00 –3.28 
EdWB–EdWO –0.56 0.48 –2.39 1.27 
EdWB–EgUN 7.17 0.35 5.81 8.52 
EdWB–EgWB 0.99 0.48 –0.84 2.82 
EdWB–EgWO 1.92 0.48 0.09 3.75 
EdWB–EmUN 7.38 0.35 6.02 8.74 
EdWB–EmWB 2.52 0.48 0.69 4.35 
EdWB–EmWO 2.85 0.48 1.02 4.68 
EdWO–EgUN 7.73 0.35 6.37 9.09 
EdWO–EgWB 1.55 0.48 –0.28 3.38 
EdWO–EgWO 2.49 0.48 0.66 4.32 
EdWO–EmUN 7.94 0.35 6.59 9.30 
EdWO–EmWB 3.08 0.48 1.25 4.91 
EdWO–EmWO 3.41 0.48 1.58 5.24 
EgUN–EgWB –6.18 0.35 –7.53 –4.82 
EgUN–EgWO –5.24 0.35 –6.60 –3.89 
EgUN–EmUN 0.21 0.15 –0.37 0.79 
EgUN–EmWB –4.65 0.35 –6.01 –3.29 
EgUN–EmWO –4.32 0.35 –5.68 –2.96 
EgWB–EgWO 0.93 0.48 –0.90 2.76 
EgWB–EmUN 6.39 0.35 5.03 7.75 
EgWB–EmWB 1.53 0.48 –0.30 3.36 
EgWB–EmWO 1.86 0.48 0.03 3.69 
EgWO–EmUN 5.46 0.35 4.10 6.81 
EgWO–EmWB 0.59 0.48 –1.24 2.42 
EgWO–EmWO 0.92 0.48 –0.91 2.75 
EmUN–EmWB –4.86 0.35 –6.22 –3.51 
EmUN–EmWO –4.53 0.35 –5.89 –3.18 
EmWB–EmWO 0.33 0.48 –1.50 2.16 
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Table 11.  ANOVA table for two-way ANOVA performed with % Polar extractives as 

response variable. 

 Df Sum of Sq Mean Sq F Value Pr(F) 
Species 3 16.2522 5.4174 10.0923 0.0000 
Treatment 2 7.0090 3.5045 6.5287 0.0020 
Species:Treatment 6 4.1298 0.6883 1.2823 0.2699 
Residuals 129 69.2453 0.5368   

 

 Df Sum of Sq Mean Sq F Value Pr(F) 
Treatment 2 6.9441 3.4720 6.4682 0.0021 
Species 3 16.3172 5.4391 10.1327 0.0000 
Species:Treatment 6 4.1298 0.6883 1.2823 0.2699 
Residuals 129 69.2453 0.5368   

 

Table 11 consists of two sections: The upper one shows the ANOVA table where 

Species was fitted before Treatment and in the lower one Treatment is fitted 

before Species.  Perusal of Table 11 leads to the following conclusions: When 

only % Polar extractives are considered, the interaction between species and 

treatment is negligible.  Therefore, the species and treatment main effects can be 

considered separately. It is also clear that both these effects are statistically 

highly significant.  The means associated with these two main effects are given in 

Table 12 and the associated pair wise 95% simultaneous confidence intervals in 

Tables 13 and 14, respectively. 

 
Table 12. Mean % Polar extractives associated with the species and treatment main 

effects. 

HWE 3.09 

HWEBP 2.03 

UNTREAT 2.44 

Amea 1.95 

Edun 2.44 

Egran 2.92 

Emac 2.49 
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Table 13. Simultaneous pair-wise 95% confidence intervals associated with the  

species main effect for % Polar extractives. 

Contrast Estimate Stderr Lower Upper 
Amea-Edun -0.492 0.178 –0.95 –0.03
Amea-Egran -0.972 0.178 –1.43 –0.51
Amea-Emac -0.539 0.178 –1.00 –0.08
Edun-Egran -0.481 0.174 –0.93 –0.03
Edun-Emac -0.047 0.174 –0.50 0.41
Egran-Emac  0.434 0.174 –0.02 0.89

 

 
 
Table 14. Simultaneous pair-wise 95% confidence intervals associated with the 

treatment main effect for % Polar extractives. 

Contrast Estimate Stderr Lower Upper 

HWE–HWEBP  1.05 0.30 0.34 1.77
HWE–UNTREAT  0.66 0.22 0.13 1.19
HWEBP–UNTREAT –0.39 0.22 –0.92 0.14

 

3.3.2.  Degradation of wood components by P.sanguineus/A. flavipes co-

cultures 

 

The results of Seifert analyses conducted on untreated wood chips, on hot water 

washed wood chips, and on residual wood chips after a two week incubation 

period of a P. sanguineus / A. flavipes co-culture, are depicted in figure 1A.  

Interestingly, the cellulose content of all four wood species, which were all similar 

in the untreated state, increased after the two hour hot water wash at 150°C. 

These findings were supported by Tukey’s simultaneous confidence intervals 

(Table 6). As pointed out in Chapter 2 this increase may be as a result of the 

removal of the hemicellulose component during the latter process with the 

concomitant increase in the relative cellulose content. It is known that 

hemicellulose is hydrolyzed by hot water and steam, leading to leaching of the 

resultant monosaccharides from the wood (Rowell et al., 2002; Williams, 2005).  

 

Fungal treatment of A. mearnsii, E. dunnii and E. macarthurii hot water washed 

wood chips, resulted in no significant change in the cellulose content of the wood 

(figure 1A, Table 6).  Interestingly, although the results depicted in Figure 1A 
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suggested that the fungal co-culture decreased the cellulose content of E. 

grandis hot water washed wood chips, these findings were not supported by 

Tukey’s simultaneous confidence intervals (Table 6).  

 

The results of Klason Lignin analyses conducted on untreated wood chips, on hot 

water washed wood chips, and on residual wood chips after a two week 

incubation period of a P. sanguineus / A. flavipes co-culture, are depicted in 

figure 1B.  Although a tendency was noted in figure 1B for the hot water wash to 

increase the lignin content of untreated E. dunnii and E. grandis woodchips, 

which may be ascribed to the removal of the hemicellulose component during the 

hot water wash with the concomitant increase in the relative lignin content 

(Nuopponen et al., 2004; Garcia et al., 2005), these findings were not supported 

by Tukey’s simultaneous confidence intervals (Table 6).  
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Figure 1.  Notched box plot representation of differences between tree species.  (A) 

Percentage cellulose in wood after treatments.  (B) Percentage lignin in wood after 

treatments. (C) Percentage solvent-borne extractives in wood after treatments.  (D) 

Percentage polar extractives in wood after treatments. Explanations of the acronyms on 

the x-axes are listed in Table 1.    

 

Similar to the findings reported in Chapter 2, though also not supported by 

Tukey’s simultaneous confidence intervals (Table 6), a tendency was noted for 

fungal growth to increase the lignin content of the wood (figure 1B). This may be 

ascribed to modification of the lignin polymer during the hot water wash as a 

result of excessive heat, rendering it recalcitrant against fungal degradation 

(Weiland & Guyonnet, 2003), thus increasing the relative content of this polymer 

during degradation of other wood components. The perceived increased lignin 

content during fungal growth may also have been as a result of protein 

contamination (Hatfield & Fukushima, 2005).  

 

D 
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Analyses of the solvent-borne extractives obtained from the residual wood 

revealed significant increases in all the wood after the hot water wash (Figure 1C, 

Table 6).  The hot water wash may have removed some of the hemicellulose 

components, thereby, increasing the relative quantities of solvent-borne 

extractives, and/or may have increased the availability of the lipophilic 

compounds during analysis (Chapter 2; TAPPI Tests Methods, T264 om-88).  

 

Fungal treatment of A. mearnsii wood chips resulted in an increase in the 

solvent-borne extractives present in hot water washed wood (Figure 1C, Table 

6). Though not supported by Tukey’s simultaneous confidence intervals (Table 

6), a tendency was noted for these extractives to increase during fungal 

treatment of hot water washed E. grandis wood chips (Figure 1C).  As pointed 

out in Chapter 2 these increases may be the result of fungal anabolism or the 

degradation of wood components by the fungi.  Fungal treatment of E. 

macarthurii had no effect on the solvent-borne extractives (Figure 1C) while this 

treatment tended to decrease the solvent-borne extractives in E. dunnii wood 

chips.  The latter was not supported by Tukey’s simultaneous confidence 

intervals (Table 6). Nevertheless, these results on solvent-borne extractives 

indicate differences in the lipid metabolism and interactions within the fungal co-

culture when growing on different wood species. 

 

The data obtained after analyses of the polar extractives in the wood were 

displayed in the form of notched box plots in Figure 1D. No obvious difference 

between the treatment classes was revealed after the hot water wash, except for 

an increase in the quantities of these polar compounds after the hot water wash 

of A. mearnsii wood chips. However, a Two-way ANOVA performed with “% 

Polar extractives” as response variable, revealed negligible interaction between 

“species” and “treatment” (Table 11), as well as that both these effects were 

highly significant and could be considered separately (see Figure 2). 

Consequently, perusal of Table 12 that lists the mean % Polar extractives 

associated with the tree species and Table 13 that depicts simultaneous pair-
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wise 95% confidence intervals associated with the species main effect, revealed 

that differences do exist between some tree species regarding the polar 

extractive content. Thus, as shown in Figure 2A, the concentrations of these 

polar compounds that include amino acids, phenols, simple sugars and starches 

(Martin & Aber, 1996) were significantly lower in A. mearnsii than in wood chips 

from all the other species. The polar compounds concentration in E. dunnii was 

significantly lower that of E. macarthurii (Tables 12, 13) although not reflected in 

median differences in Figure 2A.  

 

1
2

3
4

5

AMEA EDUN EGRAN EMAC

0
1

2
3

4
5

UNTREAT HWE HWEBP
 

Figure 2.  Notched box plots representation of differences in polar extractives.  (A) Main effect of 

tree species.  (B)  Main effect of treatment. 

 

Furthermore, when untreated wood chips were hot water washed, a significant 

increase in the polar extractives generally occurred in all the wood species 

(Tables 12, 14 and Figure 2B). The polar extractives, which after fungal 

cultivation may include degradation products of wood components and the water 

extractable fraction of fungal biomass, generally decreased statistically 

significantly upon fungal treatment (Tables 12, 14 and Figure 2B).  

 

3.4. Conclusions 

 

To investigate chemical alterations in the different tree species induced by the 

fungi while growing on the hot water washed wood chips, a series of biplots were 

A B
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constructed (Figures 3, 4 and 5).  A PCA biplot of the data revealed that despite 

the relative large variation observed within some treatments (A. mearnsii 

inoculated with the co-culture and hot water washed E. dunnii and E. grandis 

wood chips) the fungal co-culture altered the chemical composition of all the tree 

species (Figure 3). Notice that the biplot provides a detailed display of the 

differences in chemical composition. To investigate whether the P. sanguineus / 

A. flavipes co-culture impacted differently on the chemical composition of wood 

from different tree species a CVA biplot was constructed (Figure 4). The 

construction of a CVA biplot however, makes use of equality of the within classes 

covariance matrices.  Inspection of the box plots in Figure 1 as well as the PCA 

biplot in Figure 3 may cast a shadow of doubt on the truth of this assumption.  

Consequently, an AOD biplot that does not require this assumption was 

constructed (Figure 5).  From the resulting biplot it was obvious that the fungal 

co-culture impacted differently on the chemical components measured in wood 

chips from the various tree species. For example, despite the relative large 

variation observed within some treatments, such as A. mearnsii inoculated with 

the co-culture and hot water washed E. dunnii wood chips, it was clear that the 

co-culture notably increased the perceived Klason lignin content of the A. 

mearnsii wood chips, while such an obvious fungal induced increase was not 

observed for the E. dunnii chips. In the latter case the most prominent alteration 

was a decrease in the cellulose content of the wood chips during fungal growth. 

In contrast, growth of the fungal co-culture increased the relative cellulose 

content of the A. mearnsii chips.     

 

Our results indicated that the P. sanguineus / A. flavipes co-culture altered the 

chemical composition of each tree species in a different manner. This 

phenomenon may have implications in the ecology of lignocellulosic degradation 

in the natural environment. Since lignocellulosic degradation is important in the 

biopulping industry, our results also indicate that optimization of the biopulping 

process may depend both on the fungi used and the tree species involved.  
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Figure 3.  A PCA biplot showing the differences among the class means in the center of 

each group.  Solid symbols = Bio treated wood chips; Open symbols = Untreated wood 

chips.   
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Figure 4.  A CVA biplot displaying the differences between the culture combinations.  

Solid symbols = Bio treated wood chips; Open symbols = Untreated wood chips.   
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Figure 5.  An AOD biplot displaying the differences between the culture combinations.  

Solid symbols = Bio treated wood chips; Open symbols = Untreated wood chips.   
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Appendix A 

 

 

Table A Composition of benomyl–dichloran–streptomycin medium (BDS-

medium) used for the enumeration of hymenomycetous fungi present in the soil 

(Adapted from Worrall, 1991). 

Components per liter of distilled water 

Carbon source  

Malt extract (g) 15.00 

Anti-fungal agents 
 

Benomyl (mg) 2.00 

1Dichloran (mg) 2.00 

Phenol (ml) 0.05 

Anti bacterial agent 
 

Streptomycin sulfate (mg) 100.00 

Solidifying agent 
 

Agar (g) 15.00 
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