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Abstract

We evaluate whether several equity factor models are consistent with the Merton’s Intertem-

poral CAPM (Merton (1973), ICAPM) by using a large cross-section of portfolio returns.

The state variables associated with (alternative) profitability factors help to forecast the

equity premium in a way that is consistent with the ICAPM. Additionally, several state vari-

ables (particularly, those associated with investment factors) forecast a significant decline in

stock volatility, being consistent with the corresponding factor risk prices. Moreover, there

is strong evidence of predictability for future economic activity, especially from investment

and profitability factors. Overall, the four-factor model of Hou, Xue, and Zhang (2014a)

presents the best convergence with the ICAPM. The predictive ability of most equity state

variables does not seem to be subsumed by traditional ICAPM state variables.

Keywords: Asset pricing models; Equity risk factors; Intertemporal CAPM; Predictabil-

ity of stock returns; Cross-section of stock returns; stock market anomalies
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1 Introduction

Explaining the cross-sectional dispersion in average stock returns has been one of the major

goals in the asset pricing literature. This task has been increasingly challengeable in recent

years given the emergence of new market anomalies, which correspond to new patterns in

cross-sectional risk premia unexplained by the baseline CAPM from Sharpe (1964) and Lint-

ner (1965) (see, for example, Hou, Xue, and Zhang (2014a)). These include, for example,

a number of investment-based and profitability-based anomalies. The investment anomaly

can be broadly classified as a pattern in which stocks of firms that invest more exhibit lower

average returns than the stocks of firms that invest less (Titman, Wei, and Xie (2004), An-

derson and Garcia-Feijoo (2006), Cooper, Gulen, and Schill (2008), Fama and French (2008),

Lyandres, Sun, and Zhang (2008), and Xing (2008)). The profitability-based cross-sectional

pattern in stock returns indicates that more profitable firms earn higher average returns

than less profitable firms (Ball and Brown (1968), Bernard and Thomas (1990), Haugen and

Baker (1996), Fama and French (2006), Jegadeesh and Livnat (2006), Balakrishnan, Bartov,

and Faurel (2010), and Novy-Marx (2013)).

The traditional workhorses in the empirical asset pricing literature (e.g., the three-factor

model from Fama and French (1993, 1996)) have difficulties in explaining the new market

anomalies (see, for example, Fama and French (2014a) and Hou, Xue, and Zhang (2014a,

2014b)). In response to this evidence, in recent years, we have seen the emergence of new

multifactor models containing (different versions of) investment and profitability factors (e.g.,

Novy-Marx (2013), Fama and French (2014a), and Hou, Xue, and Zhang (2014a)) seeking

to explain the new anomalies and the extended cross-section of stock returns. Yet, although

these models perform relatively well in explaining the new patterns in cross-sectional risk

premia, there is still some controversy about the theoretical background of such models. For

example, Fama and French (2014a) motivate their five-factor model based on the present-

value model from Miller and Modigliani (1961). Yet, Hou, Xue, and Zhang (2014b) raise

several concerns about this link.
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In this paper, we extend the work conducted in Maio and Santa-Clara (2012) by assessing

whether equity factor models (in which all the factors are excess stock returns) are consistent

with the Merton’s Intertemporal CAPM framework (Merton (1973), ICAPM). We analyse six

multifactor models, with special emphasis given to the recent four-factor models proposed

by Novy-Marx (2013) and Hou, Xue, and Zhang (2014a) and the five-factor model from

Fama and French (2014a). Maio and Santa-Clara (2012) identify general sign restrictions on

the factor (other than the market) risk prices, which are estimated from the cross-section of

stock returns, that a given multifactor model has to satisfy in order to be consistent with the

ICAPM. Specifically, if a state variable forecasts a decline in future aggregate returns, the

risk price associated with the corresponding risk factor in the asset pricing equation should

also be negative. On the other hand, when future investment opportunities are measured by

the second moment of aggregate returns, we have an opposite relation between the sign of the

factor risk price and predictive slope in the time-series regressions. Hence, if a state variable

forecasts a decline in future aggregate stock volatility, the risk price associated with the

corresponding factor should be positive. Maio and Santa-Clara (2012) test these predictions

and conclude that several of the multifactor models proposed in the empirical asset pricing

literature are not consistent with the ICAPM.1

Our results for the cross-sectional tests confirm that the new models of Novy-Marx (2013),

Fama and French (2014a), and Hou, Xue, and Zhang (2014a) have a good explanatory power

for the large cross-section of portfolio returns, in line with the evidence presented in Fama

and French (2014b) and Hou, Xue, and Zhang (2014a, 2014b). On the other hand, the

factor models of Fama and French (1993) and Pástor and Stambaugh (2003) fail to explain

cross-sectional risk premia. Most factor risk price estimates are positive and statistically

significant. Among the most notable exceptions are the risk price for HML within the FF5

model and the liquidity risk price, with both estimates being significantly negative.

1Lutzenberger (2014) extends the analysis in Maio and Santa-Clara (2012) for the European stock market.
In related work, Boons (2014) evaluates the consistency with the ICAPM, when investment opportunities
are measured by broad economic activity.
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Following Maio and Santa-Clara (2012), we construct state variables associated with each

factor that correspond to the past 60-month cumulative sum on the factors. The results

for forecasting regressions corresponding to the excess market return at multiple horizons

indicate that the state variables associated with the profitability factors employed in Novy-

Marx (2013), Fama and French (2014a), and Hou, Xue, and Zhang (2014a) help to forecast

the equity premium. Moreover, the positive predictive slopes are consistent with the positive

risk prices for the corresponding factors. When it comes to forecasting stock market volatility,

several state variables forecast a significant decline in stock volatility, consistent with the

corresponding factor risk price estimates. This includes the state variables associated with

the value factor employed in Novy-Marx (2013), the size and investment factors from Hou,

Xue, and Zhang (2014a), and the investment factor used in Fama and French (2014a).

The slopes associated with the standard HML factor are also significantly negative, thus

ensuring consistency with the positive risk price estimates within the factor models of Fama

and French (1993), Carhart (1997), and Pástor and Stambaugh (2003). Yet, such consistency

does not apply to the five-factor model from Fama and French (2014a) given the associated

negative risk price estimate for HML. Overall, the four-factor model of Hou, Xue, and Zhang

(2014a) presents the best convergence with the ICAPM, when investment opportunities are

measure by both the expected aggregate return and market volatility.

We also evaluate if the equity state variables forecast future aggregate economic activity.

The motivation for this exercise hinges on the Roll’s critique (Roll (1977)), and the fact that

the stock index is an imperfect proxy for aggregate wealth. Overall, the evidence of pre-

dictability for future economic activity is stronger than for the future market return, across

most equity state variables. Specifically, the state variables associated with the liquidity

factor, the momentum factor of Carhart (1997), and the investment and profitability factors

of Hou, Xue, and Zhang (2014a) are valid forecasters of future economic activity. This fore-

casting behavior is consistent with the corresponding risk price estimates in the asset pricing

equations. Surprisingly, the state variables corresponding with the profitability factors from
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Novy-Marx (2013) and Fama and French (2014a) do not help to forecast business conditions,

or do so in a way that is inconsistent with the ICAPM. These results suggest that despite

the fact that the different versions of the investment and profitability factors employed in

Novy-Marx (2013), Fama and French (2014a), and Hou, Xue, and Zhang (2014a) are highly

correlated, they still differ significantly in terms of asset pricing implications, which is also

consistent with the evidence found in Hou, Xue, and Zhang (2014b).

We also assess if the forecasting ability of the equity state variables for future investment

opportunities is linked to other state variables that are typically used in the empirical ICAPM

literature, like the term spread, default spread, dividend yield, or T-bill rate. The results

from multiple forecasting regressions suggest that the predictive ability of most equity state

variables, including the different investment and profitability variables, does not seem to be

subsumed by the traditional ICAPM state variables. The exceptions are the state variables

associated with the HML and liquidity factors, partially in line with the previous evidence

found in Hahn and Lee (2006) and Petkova (2006).

The paper proceeds as follows. Section 2 contains the cross-sectional tests of the different

multifactor models. Section 3 shows the results for the forecasting regressions associated with

the equity premium and stock volatility, and evaluates the consistency of the factor models

with the ICAPM. Section 4 presents the results for forecasting regressions for economic

activity, and Section 5 evaluates whether the forecasting ability of the equity state variables

is subsumed by traditional ICAPM variables. Finally, Section 6 concludes.

2 Cross-sectional tests and factor risk premia

In this section, we estimate the different multifactor models by using a large cross-section of

equity portfolio returns.
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2.1 Models

We evaluate the consistency of several multifactor models with the Merton’s ICAPM (Merton

(1973)). Common to these models is the fact that all the factors represent excess stock returns

or the returns on tradable equity portfolios.

The first two models analyzed are the three-factor model from Fama and French (1993,

1996, FF3 henceforth),

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γSMB Cov(Ri,t+1 −Rf,t+1, SMBt+1)

+γHML Cov(Ri,t+1 −Rf,t+1, HMLt+1), (1)

and the four-factor model from Carhart (1997) (C4),

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γSMB Cov(Ri,t+1 −Rf,t+1, SMBt+1)

+γHML Cov(Ri,t+1 −Rf,t+1, HMLt+1) + γUMD Cov(Ri,t+1 −Rf,t+1, UMDt+1). (2)

For some time, these models have been the workhorses in the empirical asset pricing liter-

ature. In the above equations, RM , SMB, HML, and UMD represent the market, size,

value, and momentum factors, respectively. Ri and Rf denote the return on an arbitrary

risky asset i and the risk-free rate, respectively. Maio and Santa-Clara (2012) analyze the

consistency of these two models with the ICAPM, yet, the cross-sectional tests conducted

in that paper rely only on 25 portfolios sorted on both size and book-to-market and 25

size-momentum portfolios. In this paper, we estimate these two models and assess their con-

sistency with the ICAPM by using a more comprehensive cross-section of equity portfolios,

in line with the recent developments in the asset pricing literature (e.g., Fama and French

(2014a) and Hou, Xue, and Zhang (2014a)).

The third model considered is the four-factor model employed by Pástor and Stambaugh
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(2003) (PS4),

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γSMB Cov(Ri,t+1 −Rf,t+1, SMBt+1)

+γHML Cov(Ri,t+1 −Rf,t+1, HMLt+1) + γLIQ Cov(Ri,t+1 −Rf,t+1, LIQt+1), (3)

where LIQ denotes the stock liquidity factor. Maio and Santa-Clara (2012) also analyze a

version of this model that includes the non-traded liquidity factor, yet, we use the tradable

liquidity factor, in line with the focus of the current paper.

The next three models contain different versions of corporate investment and profitability

factors. The fourth model is the four-factor model from Novy-Marx (2013) (NM4),

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γHML∗ Cov(Ri,t+1 −Rf,t+1, HML∗
t+1)

+γUMD∗ Cov(Ri,t+1 −Rf,t+1, UMD∗
t+1) + γPMU∗ Cov(Ri,t+1 −Rf,t+1, PMU∗

t+1), (4)

where HML∗, UMD∗, and PMU∗ denote the industry-adjusted value, momentum, and

profitability factors, respectively.

Hou, Xue, and Zhang (2014a, 2014b) propose the following four-factor model (HXZ4),

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γME Cov(Ri,t+1 −Rf,t+1,MEt+1)

+γIA Cov(Ri,t+1 −Rf,t+1, IAt+1) + γROE Cov(Ri,t+1 −Rf,t+1, ROEt+1), (5)

where ME, IA, and ROE represent their size, investment, and profitability factors, respec-

tively.

Finally, we evaluate the five-factor model proposed by Fama and French (2014a, 2014b,
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FF5),

E(Ri,t+1 −Rf,t+1) = γ Cov(Ri,t+1 −Rf,t+1, RMt+1) + γSMB Cov(Ri,t+1 −Rf,t+1, SMBt+1)

+γHML Cov(Ri,t+1 −Rf,t+1, HMLt+1) + γRMW Cov(Ri,t+1 −Rf,t+1, RMWt+1)

+γCMA Cov(Ri,t+1 −Rf,t+1, CMAt+1), (6)

where RMW and CMA stand for their profitability and investment factors, respectively.

As a reference point, we also estimate the baseline CAPM from Sharpe (1964) and Lintner

(1965).

2.2 Data

The data on RM , SMB, HML, UMD, RMW , and CMA are obtained from Kenneth

French’s data library. LIQ is retrieved from Robert Stambaugh’s webpage, while ME,

IA, and ROE were provided by Lu Zhang. The data on the industry-adjusted factors

(HML∗, UMD∗, and PMU∗) are obtained from Robert Novy-Marx’s webpage. The sample

used in this study is from 1972:01 to 2012:12, where the ending date is constrained by the

availability of the Novy-Marx’s industry-adjusted factors. The starting date is restricted by

the availability of data on the portfolios sorted on investment-to-assets and return on equity.

The descriptive statistics for the equity factors are displayed in Table 1 (Panel A). UMD

shows the highest mean (0.71% per month), followed by UMD∗ and ROE, both with means

around 0.60% per month. The factor with the lowest average is SMB (0.19% per month),

followed by PMU∗, ME, and RMW , all with means around 0.30% per month. The factors

that exhibit the highest volatility are the market equity premium and the standard momen-

tum factor, with standard deviations around or above 4.5% per month. The least volatile

factors are HML∗ and PMU∗, followed by the investment factors (IA and CMA), all with

standard deviations below 2.0% per month. Most factors exhibit low serial correlation,

as shown by the first-order autoregressive coefficients below 20% in nearly all cases. The
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industry-adjusted value factor shows the highest autocorrelation (0.24), followed by PMU∗

and RMW (each with an autocorrelation of 0.18).

The pairwise correlations of the equity factors are presented in Table 2 (Panel A). Sev-

eral factors are by construction (almost) mechanically correlated. This includes SMB and

ME, HML and HML∗, UMD and UMD∗, and IA and CMA, all pairs with correlations

above 0.80. The three profitability factors (PMU∗, ROE, and RMW ) are also positively

correlated, although the correlations have smaller magnitudes than in the other cases (below

0.70).

Among the other relevant correlations, HML is positively correlated with both invest-

ment factors (correlations around 0.70), and the same pattern holds for HML∗, albeit with

a slightly smaller magnitude. On the other hand, ROE is positively correlated with both

UMD and UMD∗ (correlations around 0.50). Yet, both PMU∗ and RMW do not show

a similar pattern, thus suggesting that there exists relevant differences among the three

alternative profitability factors.

2.3 Factor risk premia

We estimate the models presented above by using a relatively large cross-section of equity

portfolio returns. The testing portfolios are deciles sorted on size, book-to-market, momen-

tum, investment-to-assets, return on equity, operating profitability, and asset growth, for a

total of 70 portfolios. All the portfolio return data are obtained from Kenneth French’s web-

site, except the investment-to-assets and return on equity deciles, which were obtained from

Lu Zhang. To compute excess portfolio returns, we use the one-month T-bill rate, available

from French’s webpage. This choice of testing portfolios is natural since they generate a

large spread in average returns. Moreover, these portfolios are (almost) mechanically related

with the factors associated with the different models outlined above. Thus, we expect ex

ante that most models will perform well in pricing this large cross-section of stock returns.

Moreover, these portfolios are related with some of the major patterns in cross-sectional
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returns or anomalies that are not explained by the baseline CAPM (hence the designation of

“market anomalies”). These include the value anomaly, which represents the evidence that

value stocks (stocks with high book-to-market ratios, (BM)) outperform growth stocks (low

BM) (e.g. Rosenberg, Reid, and Lanstein (1985) and Fama and French (1992)). Return

momentum refers to the evidence showing that stocks with high prior short-term returns

outperform stocks with low prior returns (Jegadeesh and Titman (1993) and Fama and

French (1996)). The investment anomaly can be broadly classified as a pattern in which

stocks of firms that invest more exhibit lower average returns than the stocks of firms that

invest less (Titman, Wei, and Xie (2004), Cooper, Gulen, and Schill (2008), Fama and

French (2008), and Lyandres, Sun, and Zhang (2008)). The profitability-based cross-sectional

pattern in stock returns indicates that more profitable firms earn higher average returns than

less profitable firms (Haugen and Baker (1996), Jegadeesh and Livnat (2006), Balakrishnan,

Bartov, and Faurel (2010), and Novy-Marx (2013)).

We estimate the multifactor models above by first-stage GMM (Hansen (1982) and

Cochrane (2005)). This method uses equally-weighted moments (identity matrix as the

GMM weighting matrix), which is equivalent to an OLS cross-sectional regression of average

excess returns on factor covariances. Under this procedure, we do not need to have previous

estimates of the individual portfolio covariances since these are implied in the GMM moment

conditions.

The GMM system has 70 + K moment conditions, where the first 70 sample moments

correspond to the pricing errors associated with the 70 testing portfolio returns, and K is the

number of factors in each model. To illustrate, in the case of the HXZ4 model the moment
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conditions are as follows:

gT (b) ≡ 1

T

T−1∑
t=0



(Ri,t+1 −Rf,t+1) − γ(Ri,t+1 −Rf,t+1) (RMt+1 − µM)

−γME(Ri,t+1 −Rf,t+1) (MEt+1 − µME)

−γIA(Ri,t+1 −Rf,t+1) (IAt+1 − µIA)

−γROE(Ri,t+1 −Rf,t+1) (ROEt+1 − µROE)

RMt+1 − µM

MEt+1 − µME

IAt+1 − µIA

ROEt+1 − µROE

= 0.

i = 1, ..., 70, (7)

In the system presented above, the last four moment conditions enable us to estimate

the factor means. Hence, the estimated risk prices correct for the estimation error in the

factor means, as in Cochrane (2005) (Chapter 13), Maio and Santa-Clara (2012), and Lioui

and Maio (2014). There are N −K overidentifying conditions (N +K moments and 2 ×K

parameters to estimate). Full details on the GMM estimation procedure are presented in

Maio and Santa-Clara (2012).

We do not include an intercept in the pricing equations for the 70 assets, since we want to

impose the economic restrictions associated with each factor model. If the model is correctly

specified, the intercept in the cross-sectional regression should be equal to zero. This means

that assets with zero betas with respect to all the factors should have a zero risk premium

relative to the risk-free rate.2

By defining the first 70 residuals from the GMM system above as the pricing errors

associated with the 70 test assets, α̂i, i = 1, ..., 70, a goodness-of-fit measure (to evaluate

the explanatory power of a given model for cross-sectional risk premia) is the cross-sectional

2Another reason for not including the intercept in the cross-sectional regressions is that often the market
betas for equity portfolios are very close to one, creating a multicollinearity problem (see, for example,
Jagannathan and Wang (2007)).
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OLS coefficient of determination,

R2
OLS = 1 − VarN(α̂i)

VarN(Ri −Rf )
,

where VarN(·) represents the cross-sectional variance. R2
OLS measures the proportion of the

cross-sectional variance of average excess returns explained by the factors associated with a

specific model.

The results for the cross-sectional tests are presented in Table 3. We can see that most

risk price estimates are positive and statistically significant. The most notable exception

is the risk price for HML within the FF5 model, which is negative and significant at the

5% level. Moreover, γLIQ is also estimated negatively with large significance (1% level).

On the other hand, the risk price estimates associated with SMB within the FF3, C4, and

PS4 models are also negative, but there is no statistical significance. The estimates for

the market risk price vary between 2.37 (CAPM) and 5.88 (NM4). Thus, these estimates

represent plausible values for the risk aversion coefficient of the average investor.

In terms of explanatory power, we have the usual result that the baseline CAPM cannot

explain the cross-section of portfolio returns, as indicated by the negative R2 estimate (-41%).

This means that the CAPM performs worse than a model that predicts constant expected

returns in the cross-section of equity portfolios. Both FF3 and PS4 do not outperform

significantly the CAPM as these models also produce negative explanatory ratios. This

result is consistent with the evidence in Maio (2014) and Hou, Xue, and Zhang (2014a, 2014b)

that these two models perform poorly when it comes to price momentum and profitability

related portfolios. On the other hand, both C4 and FF5 have a good explanatory power for

the cross-section of 70 equity portfolios, with R2 estimates of 64% and 54%, respectively.

Nevertheless, the best performing models are NM4 and HXZ4, both with explanatory ratios

above 70%.

Following Maio and Santa-Clara (2012), for a given multifactor model to be consistent
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with the ICAPM, the factor (other than the market) risk prices should obey sign restrictions

in relation to the slopes from predictive time-series regressions containing the corresponding

state variables. Specifically, if a state variable forecasts a decline in future aggregate returns,

the risk price associated with the corresponding risk factor in the asset pricing equation

should also be negative. The intuition is as follows: if asset i forecasts a decline in expected

market returns (because it is positively correlated with a state variable that is negatively

correlated with the future aggregate return) it pays well when the future market return is

lower in average. Hence, such an asset provides a hedge against adverse changes in future

market returns for a risk-averse investor, and thus it should earn a negative risk premium.

A negative risk premium implies a negative risk price for the “hedging” factor given the

assumption of a positive covariance with the innovation in the state variable.3 Given the

results discussed above, for the multifactor models to be compatible with the ICAPM, most

state variables associated with the equity factors should forecast an increase in future market

returns. The exceptions are the state variables associated with the liquidity factor and HML

(this last one, only in the context of the FF5 model). On the other hand, given that the

SMB risk price is not significant within the FF3, C4, and PS4 models, the size factor should

not be a significant predictor of the equity premium if we want to achieve consistency with

the ICAPM.

When future investment opportunities are measured by the second moment of aggregate

returns, we have an opposite relation between the sign of the factor risk price and predictive

slope in the time-series regressions. Specifically, if a state variable forecasts a decline in fu-

ture aggregate stock volatility, the risk price associated with the corresponding factor should

be positive. The intuition is as follows. If asset i forecasts a decline in future stock volatility,

it delivers high returns when the future aggregate volatility is also low. Since a multiperiod

risk-averse investor dislikes volatility (because it represents higher uncertainty in his future

3This argument is also consistent with Campbell’s version of the ICAPM (Campbell (1993, 1996)) for
a risk-aversion parameter above one, since in this model the factor risk prices are functions of the VAR
predictive slopes associated with the state variables (see also Maio (2013b)).

12



wealth), such an asset does not provide a hedge for changes in future investment opportuni-

ties. Therefore, this asset should earn a positive risk premium, which implies a positive risk

price. In the context of the results above, it follows that most state variables should forecast

a decline in stock volatility. Again, the exceptions hold for the state variables associated

with LIQ and HML (this one within FF5). Moreover, the state variable associated with

SMB should not help to forecast market volatility in order for FF3, C4, and PS4 models to

be compatible with the ICAPM.

3 Equity risk factors and future investment opportu-

nities

In this section, we analyze the forecasting ability of the state variables associated with the

equity factors for future market returns and stock volatility. Moreover, we assess whether the

predictive slopes are consistent with the factor risk price estimates presented in the previous

section.

3.1 State variables

We start by defining the state variables associated with the equity factors. Following Maio

and Santa-Clara (2012), the state variables correspond to the cumulative sums on the factors.

For example, in the case of IA, the cumulative sum is obtained as

CIAt =
t∑

s=t−59

IAs,

and similarly for the remaining factors. As in Maio and Santa-Clara (2012), we use the

cumulative sum over the last 60 months since the total cumulative sum is in several cases

close to non-stationary (auto-regressive coefficients around one). The first-difference in the

state variables correspond approximately to the original factors. Thus, this definition tries
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to resemble the empirical ICAPM literature in which the risk factors correspond to auto-

regressive (or VAR) innovations (or in alternative, the first-difference) in the associated state

variables (see, for example, Hahn and Lee (2006), Petkova (2006), Campbell and Vuolteenaho

(2004), and Maio (2013a)).

The descriptive statistics for the state variables are displayed in Table 1 (Panel B). We

can see that all the state variables are quite persistent as shown by the autocorrelation

coefficients close to one. This characteristic is shared by most predictors employed in the

return predictability literature (e.g., dividend yield, term spread, or the default spread). The

momentum state variable (CUMD) has the higher mean (above 40%), while CSMB is the

least pervasive state variable with a mean of 15%, consistent with the results for the original

factors.

The pairwise correlations among the state variables are presented in Table 2 (Panel B).

Similarly to the evidence for the original factors, both CHML and CHML∗ are strongly

positively correlated with the investment state variables (CIA and CCMA). On the other

hand, CROE also shows a large positive correlation with both momentum state variables

(CUMD and CUMD∗). Figure 1 displays the time-series for the different equity state

variables. We can see that most state variables exhibit substantial variation across the

business cycle. We also observe a significant declining trend since the early 2000’s for all

state variables, which is especially evident in the case of the value and momentum state

variables.

3.2 Forecasting the equity premium

We employ long-horizon predictive regressions to evaluate the forecasting power of the state

variables for future market returns (e.g., Keim and Stambaugh (1986), Campbell (1987),

Fama and French (1988, 1989)),

rt+1,t+q = aq + bqzt + ut+1,t+q, (8)
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where rt+1,t+q ≡ rt+1 + ...+rt+q is the continuously compounded excess return over q periods

into the future (from t + 1 to t + q). We use the log on the CRSP value-weighted market

return in excess of the log one-month T-bill rate as the proxy for r. The sign of the slope

coefficient, bq, indicates whether a given state variable (z) forecasts positive or negative

changes in future expected aggregate stock returns. We use forecasting horizons of 1, 3,

12, 24, 36, 48, and 60 months ahead. The original sample is 1976:12 to 2012:12, where the

starting date is constrained by the lags used in the construction of the state variables. To

evaluate the statistical significance of the regression coefficients, we use Newey and West

(1987) asymptotic t-ratios with q lags, which enables us to correct for the serial correlation

in the residuals caused by the overlapping returns.

The results for the univariate predictive regressions are presented in Table 4. We can

see that CPMU∗ forecasts an increase in the future excess market return and this effect

is statistically significant at intermediate horizons (q = 12, 24). A similar predictability

pattern holds for CRMW , given that the respective slopes are positive and significant at

the 12- and 24-month horizons. The univariate forecasting power associated with CRMW

is marginally higher in comparison to CPMU∗ as indicated by the adjusted R2 estimates

around 9% (compared to 6% for CPMU∗).

The other profitability state variable, CROE, is also positively correlated with the fu-

ture market return, but this effect is more relevant at longer horizons as indicated by the

significant coefficients at forecasting horizons beyond 24 months. The strongest forecasting

power from CROE occurs at the 60-month horizon with an R2 of 18% and a slope that is

significant at the 1% level. At the 24-month horizon, the coefficient for CROE is marginally

significant (10% level), but the explanatory ratio is higher than in the regression for CRMW

(11% versus 9%). Thus, the three profitability factors provide valuable information about

future market returns. Moreover, the positive slopes for these state variables are consistent

with the positive risk price estimates associated with PMU∗, ROE, and RMW , documented

in the last section.
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None of the remaining equity state variables are significant predictors of the equity pre-

mium at the 5% level. In the case of CLIQ, the slopes are negative and marginally significant

(10% level) at long horizons, while the explanatory ratios are around 13%. These negative

coefficients are, thus, consistent with the negative risk price estimate for the liquidity factor

indicated above.

To assess the marginal forecasting power of each state variable within the respective

multifactor model, we also conduct the following multivariate regressions:

rt+1,t+q = aq + bqCSMBt + cqCHMLt + ut+1,t+q, (9)

rt+1,t+q = aq + bqCSMBt + cqCHMLt + dqCUMDt + ut+1,t+q, (10)

rt+1,t+q = aq + bqCSMBt + cqCHMLt + dqCLIQt + ut+1,t+q, (11)

rt+1,t+q = aq + bqCHML∗
t + cqCUMD∗

t + dqCPMU∗
t + ut+1,t+q, (12)

rt+1,t+q = aq + bqCMEt + cqCIAt + dqCROEt + ut+1,t+q, (13)

rt+1,t+q = aq + bqCSMBt + cqCHMLt + dqCRMWt + eqCCMAt + ut+1,t+q. (14)

The results for the multivariate regressions are presented in Table 5. To save space we

only report results at the one-, 12-, and 60-month forecasting horizons. We can see that,

conditional on both CHML∗ and CPMU∗, CUMD∗ predicts a decline in the equity pre-

mium at the one-month horizon. Thus, this estimate is inconsistent with the positive risk

price associated with UMD∗. At the 12-month horizon, it turns out that CPMU∗ has sig-

nificant marginal forecasting power for the market return, conditional on both CHML∗ and

CUMD∗. A similar pattern holds for CRMW conditional on CSMB, CHML, and CCMA.

These results are thus consistent with the single regressions associated with CPMU∗ and

CRMW at the 12-month horizon. The forecasting power of the multiple regression asso-

ciated with the FF5 model is marginally higher than that of the regression for NM4, as

indicated by the R2 of 10% (versus 8%).

At the 60-month horizon, the slope for CROE is highly significant (1% level), confirming
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that the forecasting power of this profitability factor is robust to the presence of CME and

CIA. This result is also in line with the univariate regression for CROE at the 60-month

horizon. At the longest horizon, the strongest amount of predictability is associated with the

HZX4 model (R2 of 18%) followed by the PS4 model (R2 of 13%). Yet, the slope associated

with CLIQ is only marginally significant.

3.3 Forecasting stock market volatility

In this subsection, we assess whether the equity state variables forecast future stock market

volatility. The proxy for the variance of the market return is the realized stock variance

(SV AR), which is obtained from Amit Goyal’s webpage. Following Maio and Santa-Clara

(2012) and Paye (2012), we run predictive regressions of the type,

svart+1,t+q = aq + bqzt + ut+1,t+q, (15)

where svart+1,t+q ≡ svart+1 + ... + svart+q and svart+1 ≡ ln(SV ARt+1) is the log of the

realized market volatility.

The results for the univariate predictive regressions associated with stock market volatil-

ity are presented in Table 6. There is stronger evidence of predictability for future stock

volatility than for the market return across most state variables, as indicated by the number

of significant slopes. CSMB is negatively correlated with future stock volatility at short

horizons (one and three months ahead). Thus, these estimates are consistent with the pos-

itive risk price for SMB within the FF5 model. A similar pattern holds for the other size

state variable, CME, which is also compatible with the positive risk price associated with

ME within the HXZ4 model. However, there is no consistency with the insignificant risk

price estimates for SMB within the FF3, C4, and PS4 models.

The slopes associated with CHML and CHML∗ are negative and statistically significant

at horizons up to 12 months. The explanatory ratios are around 6%, thus indicating a larger
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forecasting power than the size factors. These estimates are thus inconsistent with the

negative risk price estimate for HML within the FF5 model. However, we have consistency

with the positive risk price estimates obtained in the FF3, C4, and PS4 models.

CLIQ forecasts an increase in future market volatility and the respective slopes are

significant at short horizons (one and three months ahead). Hence, these coefficients go in

line with the negative risk price estimate for the liquidity factor. In contrast to the results for

the predictive regressions associated with the equity premium, none of the three profitability

factors is a significant predictor of stock volatility.

On the other hand, both investment factors are valid forecasters of market volatility.

The slopes associated with both CIA and CCMA are negative and statistically significant

at most forecasting horizons. The exception is the longest horizon (60 months ahead) in

which case none of the investment slopes is significant at the 5% level. We can also see that

CIA outperforms CCMA as the former factor produces higher R2 estimates at all horizons.

The largest forecasting power is achieved at the 24- and 36-month horizons with explanatory

ratios around 22% for CIA, compared to estimates of 14% for CCMA. These negative

slopes are compatible with the positive risk price estimates for IA and CMA within the

HXZ4 and FF5 models, respectively.

Similarly to the market return, we conduct the following multiple regressions to assess

the marginal forecasting ability for future market volatility:

svart+1,t+q = aq + bqCSMBt + cqCHMLt + ut+1,t+q, (16)

svart+1,t+q = aq + bqCSMBt + cqCHMLt + dqCUMDt + ut+1,t+q, (17)

svart+1,t+q = aq + bqCSMBt + cqCHMLt + dqCLIQt + ut+1,t+q, (18)

svart+1,t+q = aq + bqCHML∗
t + cqCUMD∗

t + dqCPMU∗
t + ut+1,t+q, (19)

svart+1,t+q = aq + bqCMEt + cqCIAt + dqCROEt + ut+1,t+q, (20)

svart+1,t+q = aq + bqCSMBt + cqCHMLt + dqCRMWt + eqCCMAt + ut+1,t+q. (21)
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The results for the multiple regressions are displayed in Table 7. The slopes associated

with both CHML and CHML∗ within the FF3, C4, PS4, and NM4 models are significantly

negative at the one- and 12-month horizons, in line with the results from the corresponding

univariate regressions. However, CHML within the FF5 model is not significant at such

forecasting horizons. At q = 60, CHML helps to forecast an increase in stock market

volatility, conditional on the other state variables of the FF5 model. Thus, this positive

slope is consistent with the negative risk price for HML within the five-factor model.

The coefficient associated with CSMB is significant at the one-month horizon in the

regression associated with PS4, in line with the single regression. Yet, in the regressions

associated with FF3, C4, and FF5 the slopes for the size state variable are not significant

at any horizon (there is marginal significance in the regressions for FF3 and C4 at q = 1).

CLIQ is positively correlated with future stock volatility and the respective coefficients are

significant at q = 1 and q = 12, in line with the single regressions for the liquidity state

variable.

In contrast with the univariate regressions, CUMD∗ forecasts a significant decline in

SV AR at the 60-month horizon, which is compatible with the positive risk price estimate

for UMD∗. As in the single regressions, CIA is negatively correlated with future stock

volatility at the one- and 12-month horizons. On the other hand, the negative slopes for

CCMA are only significant at the longest horizon. Moreover, conditional on both CIA and

CROE the coefficients for CME are not significant at any forecasting horizon. Thus, the

consistency criteria for the size factor within the HXZ4 model is not met in relation to the

multiple regression.

Table 8 summarizes the results concerning the consistency between the risk price esti-

mates and the corresponding slopes from the single predictive regressions. We define a given

risk factor as being consistent with the ICAPM if the associated state variable forecasts one

among the equity premium or stock volatility with the right sign (in relation to the respec-

tive risk price) and this estimate is statistically significant. If we restrict ourselves to the
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models that deliver a positive explanatory ratio for the large cross-section of stock returns,

the HXZ4 model presents the best convergence with the ICAPM. The slopes associated with

CME and CIA in the regressions for market volatility are consistent with the respective

risk price estimates, while the coefficient for CRMW in the regressions for the market return

are in line with the corresponding risk price. In the case of C4, there is no consistency in the

slopes associated with CUMD for both r and svar, and the same happens with CUMD∗

within the NM4 model. Regarding the FF5 model, the consistency criteria is not met by

CHML.

Both FF3 and PS4 are also compatible with the ICAPM. Yet, this comes as little aid as

these models are useless to explain the extended cross-section of portfolio returns as shown

in the last section. For most individual risk factors we observe consistency of the risk price

estimates with the corresponding slopes for either the equity premium or market volatility.

The exceptions are the two momentum factors and the value factor in the FF5 model, as

referred before.

The summary of the consistency criteria based on the multiple forecasting regressions is

presented in Table 9, which is identical to Table 8. The most salient fact is that the HXZ4

model does not meet anymore the consistency in sign across all three factors. The reason is

that the size state variable CME is not a valid predictor of either the equity premium or svar

in the context of the multiple regressions. Nevertheless, as in the case of single regressions,

the different versions of the investment and profitability factors are all consistent with the

ICAPM. On the other hand, we do not consider the momentum factor associated with NM4

as satisfying the ICAPM criteria. The reason hinges on the fact that CUMD∗ predicts svar

with the correct sign, but is also correlated with future market returns with the wrong sign,

and both slopes are statistically significant.
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4 Equity risk factors and future economic activity

In this section, we investigate whether the equity state variables forecast future economic

activity. The motivation for this exercise relies on the Roll’s critique (Roll (1977)). Since the

stock index is an imperfect proxy for aggregate wealth, changes in the future return on the

unobservable wealth portfolio might be related with future economic activity. Specifically,

several forms of non-financial wealth, like labor income, houses, or small businesses, are

related with the business cycle, and hence, economic activity. Thus, analysing whether

the state variables predict economic activity represents an alternative to the analysis of

the predictability of the market return. This implies that, for a given state variable to be

consistent with the ICAPM, the respective slope should have the same sign as the risk price

for the associated factor. In related work, Boons (2014) evaluates the consistency of a typical

ICAPM specification (including the term spread, default spread, and dividend yield) with

the ICAPM, where investment opportunities are measured by economic activity.

As proxies for economic activity, we use the log growth in the industrial production index

(IPG) and the Chicago FED National Activity Index (CFED). The data on both indexes

are obtained from the St. Louis FED database (FRED). To assess the forecasting role of

each state variable for economic activity, we run the following univariate regressions,

yt+1,t+q = aq + bqzt + ut+1,t+q, (22)

where y ≡ IPG,CFED and yt+1,t+q ≡ yt+1 + ...+ yt+q denotes the forward cumulative sum

in either IPG or CFED.

The results for the single predictive regressions associated with industrial production

growth are presented in Table 10. We can see that both momentum state variables forecast a

significant rise in industrial production growth at long horizons (48 and 60 months). However,

CUMD∗ is negatively correlated with IPG at the one-month horizon (t-ratio around −2).

Hence, while the slopes for CUMD are consistent with the positive risk price for UMD, in
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the case of the other momentum factor we have an ambiguous relation since the predictive

slopes have opposite signs at short and long horizons. The liquidity state variable forecasts a

decline in output at long horizons, which is compatible with the negative risk price associated

with LIQ. On the other hand, the significant negative slope for CHML∗ at the 60-month

horizon is at odds with the positive risk price estimate for the Novy-Marx’s value factor.

Consistent with the results for the market return regressions, CROE predicts a significant

increase in IPG for horizons beyond 12 months. Yet, unlike the case of the equity premium

prediction, the other two profitability factors (CPMU∗ and CRMW ) do not contain fore-

casting ability for industrial production growth as the associated coefficients are insignificant

at all forecasting horizons. In contrast to the results for the market return, CIA is positively

correlated with future output at short horizons, which goes in line with the positive risk

price for IA. This result is in line with the evidence in Cooper and Priestley (2011) showing

that alternative investment factors help to forecast industrial production at short horizons.

It turns out that the investment and profitability state variables associated with the HXZ4

model complement each other: while CIA helps to forecast output at short horizons, CROE

has significant forecasting power at intermediate and long horizons. In comparison, we can-

not find a similar pattern for the other investment state variable, CCMA. Actually, this

variable forecasts a decline in IPG (significant at the 5% level) at the 60-month horizon,

which goes gainst the positive risk price for CMA.

When we compare with the forecasting regressions associated with the equity premium,

there is stronger evidence of predictability for future output from the equity state variables

across most state variables. This can be confirmed by the greater number of significant

coefficients and also by the higher R2 estimates across most state variables and forecasting

horizons. The greatest degree of predictability is associated with CROE at long horizons,

as indicated by the R2 estimates around 40%, which represent more than twice the fit of the

corresponding predictive regression for r at the 60-month horizon.

The results for the forecasting regressions associated with CFED are presented in Table
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11. Among the most salient differences relative to the regressions for IPG, we can see that

CHML is a significant predictor of the economic index at short and middle horizons (q < 36).

Hence, the positive slopes are consistent with the positive estimates for γHML within FF3,

C4, and PS4, but incompatible with the negative estimated risk price in the FF5 model.

The coefficients associated with CHML∗ are also significantly positive for horizons up to

24 months. However, this state variable also forecasts a significant decline in CFED at the

60-month horizon, making ambiguous the overall assessment of its predictive role.

Both CUMD and CUMD∗ are significantly positively correlated with future economic

activity, and thus, there is consistency with the corresponding positive risk price estimates.

On the other hand, the predictive power from CIA is stronger than in the case of industrial

production as the positive slopes are significant at all horizons less than 48 months. The

largest forecasting power is achieved at the 12- an 24-month horizons with R2 around 27%.

Similarly, there is strong evidence of predictability associated with CCMA, in contrast with

the evidence for IPG, as indicated by the significant positive slopes until q = 24. However,

at the 60-month horizon the relation between CCMA and future economic activity turns

significantly negative, making the overall assessment ambiguous.

The summary of the consistency criteria based on the forecasting regressions for eco-

nomic activity is presented in Table 12. We can see that several factors (UMD, LIQ, IA,

and ROE) meet the consistency in sign with the respective slopes in the predictive regres-

sions for both economic indicators. On the other hand, it turns out that several factors

(HML within FF5, HML∗, PMU∗, CME, RMW , and CMA) do not satisfy the sign

restriction (or this assessment is ambiguous) for neither economic activity indicator. In

particular, when we compare with the results obtained for the equity premium regressions,

it follows that both PMU∗ and RMW cease to be consistent with the ICAPM if invest-

ment opportunities are measured by future business conditions. On the other hand, UMD,

UMD∗, LIQ, and CIA are compatible with the ICAPM, in contrast to the findings based

on the predictive slopes associated with the market return. When we combine the results
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for the forecasting regressions for economic activity and stock volatility (the two dimensions

of investment opportunities), it follows that four models (FF3, C4, PS4, and HXZ4) satisfy

the sign restriction for at least one among economic activity proxy and svar. However, both

FF3 and PS4 have no explanatory power for the cross-section of stock returns as already

referred. When we take all dimensions of the investment opportunity set together (market

return, stock volatility, and economic activity) our results suggest that the HXZ4 model

offers the best overall consistency with the ICAPM.

5 Relation with ICAPM state variables

In this section, we investigate if the forecasting ability of the equity state variables for future

investment opportunities is linked to other state variables that are typically used in the

empirical ICAPM literature. The motivation for this exercise comes from previous evidence

that the SMB and HML factors are linked to traditional ICAPM state variables like the

term or default spreads (e.g., Hahn and Lee (2006) and Petkova (2006)). Thus, we want to

assess if the equity state variables remain significant predictors of either the equity premium

or market volatility after controlling for these other predictors.

The control variables employed are the term spread (TERM), default spread (DEF ),

log market dividend yield (dp), one-month T-bill rate (TB), and value spread (vs). Several

ICAPM applications have used innovations in these state variables as risk factors to price

cross-sectional risk premia (e.g., Campbell and Vuolteenaho (2004), Hahn and Lee (2006),

Petkova (2006), Maio (2013b), among others). TERM represents the yield spread between

the ten-year and the one-year Treasury bonds, and DEF is the yield spread between BAA

and AAA corporate bonds from Moody’s. The bond yield data are available from the St.

Louis Fed Web page. TB stands for the one-month T-bill rate, available from Kenneth

French’s website. dp is computed as the log ratio of annual dividends to the level of the S&P

500 index. pe denotes the log price-earnings ratio associated with the same index, where
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the earnings measure is based on a 10-year moving average of annual earnings. The data

on the price, dividends, and earnings are retrieved from Robert Shiller’s website. Following

Campbell and Vuolteenaho (2004), vs represents the difference in the log book-to-market

ratios of small-value and small-growth portfolios, where the book-to-market data are from

French’s data library.

To accomplish our goal, we run the following multiple forecasting regressions for both

the equity premium,

rt+1,t+q = aq + bqzt + cqTERMt + dqDEFt + eqdpt + fqTBt + gqvst + hqpet + ut+1,t+q, (23)

and market volatility:

svart+1,t+q = aq +bqzt +cqTERMt +dqDEFt +eqdpt +fqTBt +gqvst +hqpet +ut+1,t+q. (24)

The results for the forecasting regressions associated with the market return and stock

volatility are displayed in Tables 13 and 14, respectively. In the case of the equity premium

prediction, we can see that the forecasting ability of all three profitability state variables is

robust to the presence of the alternative predictors. Actually, this forecasting power increases

for both CPMU∗ and CRMW as the respective coefficients are statistically significant at

more horizons. Moreover, both momentum state variables are now significantly positively

correlated with future market returns at long horizons, in contrast to the evidence based on

the corresponding single regressions. Therefore, the inclusion of the control variables clarifies

the forecasting role of the momentum variables for the equity premium.

In the case of the stock volatility regressions we have a somewhat different picture than the

equity premium prediction. The forecasting power from CSMB, CME, CIA, and CCMA

is maintained, or even reinforced, when we control by the alternative state variables. On

the other hand, in the case of both momentum state variables, we observe a significant

negative correlation with future svar at intermediate and long horizons, in contrast with
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the results for the corresponding univariate regressions. A similar pattern holds for both

CPMU∗ and CRMW , both of which forecast a significant decline in future stock volatility

at several horizons (all horizons in the case of CPMU∗), in contrast with the evidence based

on the single regressions. On the other hand, the slopes for CROE are not significant at

any forecasting horizon, as in the univariate case.

Regarding both value state variables and CLIQ, the respective slopes are also not signif-

icant at any horizon, which is at odds with the results from the single regressions. Therefore,

these results suggest that the forecasting ability of the value and liquidity factors for market

volatility is subsumed by the alternative predictors. In contrast, the predictive ability of the

other state variables, including the different investment and profitability variables, does not

seem to be subsumed by the traditional ICAPM state variables.

6 Conclusion

We evaluate whether equity factor models (in which all the factors are excess stock returns)

are consistent with the Merton’s Intertemporal CAPM framework (Merton (1973), ICAPM).

We analyse six multifactor models, with especial emphasis given to the recent four-factor

models proposed by Novy-Marx (2013) and Hou, Xue, and Zhang (2014a) and the five-

factor model of Fama and French (2014a). Our results for the cross-sectional tests confirm

that the new models of Novy-Marx (2013), Fama and French (2014a), and Hou, Xue, and

Zhang (2014a) have a good explanatory power for the large cross-section of portfolio returns,

whereas the factor models of Fama and French (1993) and Pástor and Stambaugh (2003)

fail to explain cross-sectional risk premia. Most factor risk price estimates are positive and

statistically significant, the exceptions being the risk price estimate for HML within the

FF5 model and the liquidity risk price.

Following Maio and Santa-Clara (2012), we construct state variables associated with

each factor that correspond to the past 60-month cumulative sum on the factors. The
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results for forecasting regressions corresponding to the excess market return at multiple

horizons indicate that the state variables associated with the profitability factors employed

in Novy-Marx (2013), Fama and French (2014a), and Hou, Xue, and Zhang (2014a) help

to forecast the equity premium. Moreover, the positive predictive slopes are consistent

with the positive risk prices for the corresponding factors. When it comes to forecast stock

market volatility, several state variables forecast a significant decline in stock volatility, and

thus, are consistent with the corresponding factor risk price estimates. This includes the

state variables associated with the value factor employed in Novy-Marx (2013), the size and

investment factors of Hou, Xue, and Zhang (2014a), and the investment factor used in Fama

and French (2014a). Overall, the four-factor model of Hou, Xue, and Zhang (2014a) presents

the best convergence with the ICAPM, when investment opportunities are measure by both

the expected aggregate return and market volatility.

Furthermore, we evaluate if the equity state variables forecast future aggregate economic

activity. Overall, the evidence of predictability for future economic activity is stronger than

for the future market return, across most equity state variables. Specifically, the state vari-

ables associated with the liquidity factor, the momentum factor of Carhart (1997), and the

investment and profitability factors of Hou, Xue, and Zhang (2014a) are valid forecasters of

future economic activity. Moreover, this forecasting behavior is consistent with the corre-

sponding risk price estimates in the asset pricing equations. Surprisingly, the state variables

corresponding with the profitability factors of Novy-Marx (2013) and Fama and French

(2014a) do not help to forecast business conditions, or do so in a way that is inconsistent

with the ICAPM. These results suggest that despite the fact that the different versions of

the investment and profitability factors employed in Novy-Marx (2013), Fama and French

(2014a), and Hou, Xue, and Zhang (2014a) are highly correlated, they still differ significantly

in terms of asset pricing implications.

We also assess if the forecasting ability of the equity state variables for future investment

opportunities is linked to other state variables that are typically used in the empirical ICAPM
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literature. The results suggest that the predictive ability of most equity state variables,

including the different investment and profitability variables, does not seem to be subsumed

by the traditional ICAPM state variables. The exceptions are the state variables associated

with the HML and liquidity factors.
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Table 1: Descriptive statistics for equity factors
This table reports descriptive statistics for the equity factors from alternative factor models. RM ,

SMB, HML, UMD, and LIQ denote the market, size, value, momentum, and liquidity factors, re-

spectively. HML∗, UMD∗, and PMU∗ represent the value, momentum, and profitability factors from

Novy-Marx. ME, IA, and ROE denote the Hou-Xue-Zhang size, investment, and profitability fac-

tors, respectively. RMW and CMA denote the Fama-French profitability and investment factors, re-

spectively. Panel B shows the descriptive statistics for the state variables associated with the eq-

uity factors. The sample is 1972:01–2012:12. φ designates the first-order autocorrelation coefficient.

Mean (%) Stdev. (%) Min. (%) Max. (%) φ
Panel A

RM 0.48 4.64 −23.24 16.10 0.08
SMB 0.19 3.16 −16.39 22.02 0.01
HML 0.40 3.04 −12.68 13.83 0.15
UMD 0.71 4.51 −34.72 18.39 0.07
LIQ 0.47 3.59 −10.14 21.01 0.09
HML∗ 0.43 1.49 −5.02 6.56 0.24
UMD∗ 0.62 2.89 −23.38 12.18 0.10
PMU∗ 0.27 1.18 −4.62 6.79 0.18
ME 0.30 3.17 −14.45 22.41 0.03
IA 0.45 1.89 −7.13 9.41 0.07
ROE 0.58 2.64 −13.85 10.39 0.10
RMW 0.30 2.27 −17.60 12.24 0.18
CMA 0.38 1.98 −6.76 8.93 0.13

Panel B
CSMB 15.01 29.23 −44.08 78.84 0.99
CHML 23.30 23.69 −42.12 93.44 0.98
CUMD 44.57 29.98 −31.29 108.31 0.99
CLIQ 30.50 28.65 −21.07 87.64 0.99
CHML∗ 26.32 14.32 −11.84 59.07 0.99
CUMD∗ 38.83 19.49 −18.51 82.65 0.99
CPMU∗ 18.67 11.78 −13.69 46.01 0.98
CME 20.48 31.20 −41.86 89.21 0.99
CIA 25.62 15.45 −13.40 61.01 0.98
CROE 38.07 16.60 −6.79 62.95 0.98
CRMW 19.99 16.67 −24.07 78.32 0.98
CCMA 21.60 18.11 −11.35 77.39 0.99
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Table 4: Single predictive regressions: equity premium
This table reports the results associated with single long-horizon predictive regressions for the excess stock

market return, at horizons of 1, 3, 12, 24, 36, 48, and 60 months ahead. The forecasting variables are

state variables associated with alternative equity factors. CSMB, CHML, CRMW , and CCMA denote

the Fama-French size, value, profitability, and investment factors, respectively. CUMD and CLIQ refer to

the momentum and liquidity factors. CHML∗, CUMD∗, and CPMU∗ represent respectively the value,

momentum, and profitability factors from Novy-Marx. CME, CIA, and CROE denote the Hou-Xue-

Zhang size, investment, and profitability factors, respectively. The original sample is 1976:12–2012:12, and

q observations are lost in each of the respective q-horizon regressions. For each regression, in line 1 are

reported the slope estimates whereas line 2 presents Newey-West t-ratios (in parentheses) computed with q

lags. T-ratios marked with * and ** denote statistical significance at the 5% and 1% levels, respectively. R2

denotes the adjusted coefficient of determination.
q = 1 q = 3 q = 12 q = 24 q = 36 q = 48 q = 60

CSMB −0.00 −0.01 −0.10 0.02 0.01 0.01 −0.04
(−0.15) (−0.39) (−0.16) (0.25) (0.06) (0.07) (−0.17)

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CHML 0.00 0.01 0.08 0.12 0.12 −0.09 −0.19
(0.07) (0.28) (1.03) (0.70) (0.41) (−0.25) (−0.54)

R2 0.00 0.00 0.01 0.02 0.01 0.01 0.02

CUMD −0.01 −0.03 −0.04 0.01 0.16 0.31 0.25
(−1.37) (−1.33) (−0.47) (0.06) (0.76) (1.38) (1.21)

R2 0.00 0.01 0.01 0.00 0.02 0.06 0.03

CLIQ −0.00 −0.01 −0.03 −0.07 −0.20 −0.33 −0.36
(−0.59) (−0.60) (−0.38) (−0.58) (−1.29) (−1.90) (−1.90)

R2 0.00 0.00 0.00 0.01 0.05 0.12 0.13

CHML∗ 0.01 0.02 0.12 0.21 0.18 −0.16 −0.47
(0.37) (0.50) (0.86) (0.74) (0.39) (−0.25) (−0.73)

R2 0.00 0.00 0.01 0.01 0.01 0.00 0.04

CUMD∗ −0.02 −0.05 −0.08 −0.01 0.17 0.50 0.51
(−1.55) (−1.55) (−0.58) (−0.04) (0.45) (1.21) (1.35)

R2 0.01 0.01 0.01 0.00 0.01 0.05 0.04

CPMU∗ 0.03 0.08 0.33 0.43 0.31 0.07 −0.01
(1.44) (1.89) (2.11∗) (2.19∗) (1.23) (0.19) (−0.03)

R2 0.00 0.01 0.06 0.06 0.02 0.00 0.00

CME −0.00 −0.01 −0.02 0.01 0.00 −0.03 −0.11
(−0.42) (−0.72) (−0.36) (0.17) (0.01) (−0.17) (−0.48)

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.01

CIA 0.01 0.05 0.21 0.31 0.30 0.16 −0.08
(0.81) (1.00) (1.23) (1.16) (0.93) (0.38) (−0.14)

R2 0.00 0.01 0.04 0.04 0.03 0.01 0.00

CROE 0.00 0.02 0.21 0.47 0.64 0.67 0.88
(0.22) (0.61) (1.47) (1.91) (2.45∗) (2.39∗) (2.96∗∗)

R2 0.00 0.00 0.04 0.11 0.13 0.12 0.18

CRMW 0.01 0.05 0.28 0.38 0.23 0.01 0.05
(1.09) (1.81) (2.18∗) (2.06∗) (1.31) (0.03) (0.25)

R2 0.00 0.01 0.08 0.09 0.02 0.00 0.00

CCMA 0.01 0.02 0.08 0.14 0.12 −0.10 −0.34
(0.40) (0.53) (0.71) (0.85) (0.49) (−0.26) (−0.79)

R2 0.00 0.00 0.01 0.01 0.01 0.00 0.04
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Table 6: Single predictive regressions: stock market volatility
This table reports the results associated with single long-horizon predictive regressions for the stock market

variance, at horizons of 1, 3, 12, 24, 36, 48, and 60 months ahead. The forecasting variables are state variables

associated with alternative equity factors. CSMB, CHML, CRMW , and CCMA denote the Fama-French

size, value, profitability, and investment factors, respectively. CUMD and CLIQ refer to the momentum

and liquidity factors. CHML∗, CUMD∗, and CPMU∗ represent respectively the value, momentum, and

profitability factors from Novy-Marx. CME, CIA, and CROE denote the Hou-Xue-Zhang size, investment,

and profitability factors, respectively. The original sample is 1976:12–2012:12, and q observations are lost in

each of the respective q-horizon regressions. For each regression, in line 1 are reported the slope estimates

whereas line 2 presents Newey-West t-ratios (in parentheses) computed with q lags. T-ratios marked with

* and ** denote statistical significance at the 5% and 1% levels, respectively. R2 denotes the adjusted

coefficient of determination.
q = 1 q = 3 q = 12 q = 24 q = 36 q = 48 q = 60

CSMB −0.43 −1.17 −4.02 −5.48 −3.37 1.94 11.50
(−3.10∗∗) (−2.37∗) (−1.37) (−0.70) (−0.25) (0.10) (0.49)

R2 0.02 0.02 0.02 0.01 0.00 0.00 0.02

CHML −0.88 −2.55 −8.33 −10.35 −4.76 8.18 16.04
(−5.19∗∗) (−4.36∗∗) (−2.41∗) (−0.97) (−0.25) (0.31) (0.58)

R2 0.06 0.07 0.06 0.03 0.00 0.01 0.02

CUMD 0.09 0.18 −1.68 −7.33 −15.19 −21.85 −15.29
(0.50) (0.27) (−0.46) (−0.78) (−1.03) (−1.10) (−0.63)

R2 0.00 0.00 0.00 0.02 0.04 0.05 0.02

CLIQ 0.61 1.83 7.37 14.20 21.32 27.51 28.98
(3.26∗∗) (2.47∗) (1.60) (1.37) (1.42) (1.47) (1.46)

R2 0.04 0.05 0.08 0.09 0.12 0.14 0.13

CHML∗ −1.33 −3.97 −15.38 −24.78 −22.28 −4.44 15.88
(−3.76∗∗) (−3.14∗∗) (−2.42∗) (−1.41) (−0.74) (−0.11) (0.36)

R2 0.05 0.06 0.07 0.05 0.02 0.00 0.01

CUMD∗ 0.22 0.51 −2.53 −13.57 −32.68 −58.05 −57.68
(0.77) (0.48) (−0.44) (−0.86) (−1.23) (−1.70) (−1.86)

R2 0.00 0.00 0.00 0.03 0.06 0.11 0.09

CPMU∗ 0.44 0.76 −4.64 −15.41 −18.62 −11.30 7.31
(1.06) (0.47) (−0.47) (−0.74) (−0.71) (−0.40) (0.27)

R2 0.00 0.00 0.01 0.02 0.02 0.00 0.00

CME −0.41 −1.14 −3.89 −5.58 −4.04 1.48 10.96
(−3.23∗∗) (−2.49∗) (−1.42) (−0.76) (−0.32) (0.08) (0.51)

R2 0.02 0.02 0.03 0.02 0.01 0.00 0.02

CIA −1.67 −5.18 −21.23 −42.02 −56.01 −58.21 −40.13
(−4.41∗∗) (−3.71∗∗) (−3.23∗∗) (−3.52∗∗) (−3.54∗∗) (−2.43∗) (−1.30)

R2 0.09 0.12 0.18 0.22 0.21 0.13 0.04

CROE 0.14 0.10 −4.23 −14.43 −25.79 −31.62 −32.28
(0.44) (0.09) (−0.60) (−0.78) (−0.90) (−0.93) (−0.88)

R2 0.00 0.00 0.01 0.03 0.04 0.04 0.04

CRMW 0.45 0.89 −2.90 −12.17 −16.76 −14.43 −10.09
(1.46) (0.77) (−0.42) (−0.79) (−0.92) (−0.76) (−0.49)

R2 0.01 0.00 0.00 0.02 0.02 0.01 0.01

CCMA −0.97 −3.07 −13.28 −27.53 −37.05 −34.94 −20.07
(−3.12∗∗) (−2.63∗∗) (−2.25∗) (−2.56∗) (−2.56∗) (−1.66) (−0.77)

R2 0.04 0.06 0.10 0.14 0.14 0.08 0.02
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Table 10: Single predictive regressions: industrial production growth
This table reports the results associated with single long-horizon predictive regressions for the growth in

industrial production, at horizons of 1, 3, 12, 24, 36, 48, and 60 months ahead. The forecasting variables are

state variables associated with alternative equity factors. CSMB, CHML, CRMW , and CCMA denote

the Fama-French size, value, profitability, and investment factors, respectively. CUMD and CLIQ refer to

the momentum and liquidity factors. CHML∗, CUMD∗, and CPMU∗ represent respectively the value,

momentum, and profitability factors from Novy-Marx. CME, CIA, and CROE denote the Hou-Xue-

Zhang size, investment, and profitability factors, respectively. The original sample is 1976:12–2012:12, and

q observations are lost in each of the respective q-horizon regressions. For each regression, in line 1 are

reported the slope estimates whereas line 2 presents Newey-West t-ratios (in parentheses) computed with q

lags. T-ratios marked with * and ** denote statistical significance at the 5% and 1% levels, respectively. R2

denotes the adjusted coefficient of determination.
q = 1 q = 3 q = 12 q = 24 q = 36 q = 48 q = 60

CSMB −0.00 −0.00 −0.02 −0.03 −0.04 −0.06 −0.08
(−0.33) (−0.48) (−0.88) (−0.99) (−0.95) (−1.12) (−1.17)

R2 0.00 0.00 0.01 0.02 0.03 0.05 0.08

CHML 0.00 0.00 0.01 0.02 −0.05 −0.13 −0.18
(0.70) (0.72) (0.75) (0.44) (−0.81) (−1.43) (−1.94)

R2 0.00 0.00 0.01 0.00 0.02 0.11 0.21

CUMD −0.00 −0.00 0.01 0.05 0.11 0.18 0.16
(−1.24) (−1.10) (0.30) (0.82) (1.67) (2.50∗) (2.25∗)

R2 0.00 0.00 0.00 0.04 0.11 0.22 0.14

CLIQ −0.00 −0.01 −0.02 −0.05 −0.09 −0.15 −0.18
(−1.50) (−1.50) (−1.21) (−1.06) (−1.49) (−2.33∗) (−2.74∗∗)

R2 0.01 0.01 0.03 0.04 0.11 0.27 0.33

CHML∗ 0.00 0.01 0.03 0.05 −0.05 −0.19 −0.35
(1.39) (1.36) (1.04) (0.81) (−0.56) (−1.36) (−2.03∗)

R2 0.00 0.01 0.01 0.01 0.01 0.07 0.21

CUMD∗ −0.00 −0.01 −0.00 0.06 0.17 0.34 0.31
(−2.02∗) (−1.93) (−0.02) (0.66) (1.42) (2.26∗) (2.11∗)

R2 0.01 0.01 0.00 0.02 0.10 0.23 0.16

CPMU∗ 0.00 0.00 0.07 0.15 0.17 0.12 0.08
(0.14) (0.37) (1.33) (1.76) (1.87) (0.82) (0.42)

R2 0.00 0.00 0.04 0.08 0.07 0.03 0.01

CME −0.00 −0.00 −0.02 −0.03 −0.05 −0.07 −0.10
(−0.46) (−0.60) (−0.98) (−1.04) (−1.12) (−1.44) (−1.59)

R2 0.00 0.00 0.01 0.02 0.04 0.08 0.13

CIA 0.01 0.02 0.08 0.11 0.07 0.00 −0.17
(2.16∗) (1.96∗) (1.59) (1.50) (1.14) (0.01) (−1.17)

R2 0.02 0.05 0.08 0.07 0.02 0.00 0.05

CROE −0.00 −0.00 0.05 0.18 0.31 0.37 0.42
(−0.36) (−0.08) (1.20) (2.04∗) (3.73∗∗) (4.83∗∗) (5.11∗∗)

R2 0.00 0.00 0.04 0.19 0.35 0.38 0.42

CRMW −0.00 −0.00 0.04 0.11 0.11 0.05 0.04
(−0.46) (−0.19) (1.08) (1.55) (1.82) (0.49) (0.31)

R2 0.00 0.00 0.03 0.08 0.06 0.01 0.00

CCMA 0.00 0.01 0.04 0.04 −0.01 −0.10 −0.24
(1.59) (1.47) (1.17) (0.81) (−0.25) (−1.22) (−2.30∗)

R2 0.01 0.02 0.03 0.01 0.00 0.04 0.20
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Table 11: Single predictive regressions: Chicago FED Index
This table reports the results associated with single long-horizon predictive regressions for the Chicago FED

National Activity Index, at horizons of 1, 3, 12, 24, 36, 48, and 60 months ahead. The forecasting variables

are state variables associated with alternative equity factors. CSMB, CHML, CRMW , and CCMA

denote the Fama-French size, value, profitability, and investment factors, respectively. CUMD and CLIQ

refer to the momentum and liquidity factors. CHML∗, CUMD∗, and CPMU∗ represent respectively the

value, momentum, and profitability factors from Novy-Marx. CME, CIA, and CROE denote the Hou-

Xue-Zhang size, investment, and profitability factors, respectively. The original sample is 1976:12–2012:12,

and q observations are lost in each of the respective q-horizon regressions. For each regression, in line 1 are

reported the slope estimates whereas line 2 presents Newey-West t-ratios (in parentheses) computed with q

lags. T-ratios marked with * and ** denote statistical significance at the 5% and 1% levels, respectively. R2

denotes the adjusted coefficient of determination.
q = 1 q = 3 q = 12 q = 24 q = 36 q = 48 q = 60

CSMB 0.08 0.11 −0.70 −1.50 −1.59 −3.74 −6.47
(0.36) (0.13) (−0.17) (−0.20) (−0.16) (−0.30) (−0.41)

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.01

CHML 0.83 2.48 9.35 12.85 1.92 −16.87 −33.12
(4.64∗∗) (3.98∗∗) (2.81∗∗) (2.06∗) (0.18) (−0.99) (−1.79)

R2 0.04 0.06 0.07 0.05 0.00 0.04 0.16

CUMD 0.02 0.10 3.37 13.80 31.72 51.13 50.34
(0.12) (0.19) (0.88) (1.30) (2.35∗) (3.10∗∗) (3.03∗∗)

R2 0.00 0.00 0.01 0.08 0.21 0.37 0.33

CLIQ −0.21 −0.67 −2.91 −5.52 −12.71 −24.56 −31.90
(−1.12) (−0.97) (−0.71) (−0.58) (−0.92) (−1.53) (−2.05∗)

R2 0.00 0.01 0.01 0.01 0.05 0.15 0.23

CHML∗ 1.59 4.81 18.54 28.69 12.92 −23.12 −67.91
(4.53∗∗) (3.67∗∗) (2.75∗∗) (2.39∗) (0.70) (−0.85) (−2.11∗)

R2 0.06 0.08 0.09 0.07 0.01 0.02 0.19

CUMD∗ −0.09 −0.23 3.15 18.58 48.85 86.35 83.47
(−0.49) (−0.36) (0.60) (1.14) (2.01∗) (2.64∗∗) (2.66∗∗)

R2 0.00 0.00 0.00 0.05 0.17 0.32 0.28

CPMU∗ −0.44 −0.86 5.75 19.10 22.99 9.98 −8.85
(−0.83) (−0.43) (0.49) (0.91) (1.15) (0.42) (−0.27)

R2 0.00 0.00 0.01 0.03 0.03 0.00 0.00

CME 0.08 0.14 −0.43 −1.08 −2.16 −6.02 −10.48
(0.43) (0.20) (−0.12) (−0.16) (−0.25) (−0.57) (−0.75)

R2 0.00 0.00 0.00 0.00 0.00 0.01 0.03

CIA 2.24 6.92 27.59 45.80 46.72 31.84 −13.33
(5.29∗∗) (4.25∗∗) (3.30∗∗) (3.34∗∗) (3.49∗∗) (1.32) (−0.50)

R2 0.13 0.19 0.26 0.27 0.17 0.05 0.01

CROE 0.10 0.54 9.55 35.21 65.72 80.59 90.10
(0.37) (0.54) (1.26) (1.93) (3.05∗∗) (3.65∗∗) (4.23∗∗)

R2 0.00 0.00 0.03 0.16 0.34 0.38 0.45

CRMW −0.41 −0.92 3.89 15.96 17.91 4.87 −6.38
(−1.18) (−0.70) (0.46) (0.95) (1.15) (0.30) (−0.31)

R2 0.01 0.00 0.01 0.04 0.03 0.00 0.00

CCMA 1.40 4.29 16.43 24.29 18.82 −0.95 −36.33
(4.31∗∗) (3.45∗∗) (2.56∗) (2.45∗) (1.67) (−0.06) (−2.02∗)

R2 0.07 0.10 0.13 0.11 0.04 0.00 0.11
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Table 13: Predictive regressions for equity premium: controls
This table reports the results associated with long-horizon predictive regressions for the excess stock market

return, at horizons of 1, 3, 12, 24, 36, 48, and 60 months ahead. The forecasting variables are state

variables associated with alternative equity factors. CSMB, CHML, CRMW , and CCMA denote the

Fama-French size, value, profitability, and investment factors, respectively. CUMD and CLIQ refer to

the momentum and liquidity factors. CHML∗, CUMD∗, and CPMU∗ represent respectively the value,

momentum, and profitability factors from Novy-Marx. CME, CIA, and CROE denote the Hou-Xue-Zhang

size, investment, and profitability factors, respectively. Each regression contains the following predictors as

controls: term spread (TERM), default spread (DEF ), log dividend yield (dp), one-month T-bill rate (TB),

value spread (vs), and smoothed log price-to-earnings ratio (pe). The original sample is 1976:12–2012:12,

and q observations are lost in each of the respective q-horizon regressions. For each regression, in line 1 are

reported the slope estimates whereas line 2 presents Newey-West t-ratios (in parentheses) computed with q

lags. T-ratios marked with * and ** denote statistical significance at the 5% and 1% levels, respectively. R2

denotes the adjusted coefficient of determination.
q = 1 q = 3 q = 12 q = 24 q = 36 q = 48 q = 60

CSMB 0.00 −0.01 0.03 0.16 0.18 0.22 0.12
(0.16) (−0.30) (0.36) (1.46) (1.20) (1.24) (0.60)

R2 −0.00 0.02 0.15 0.30 0.44 0.51 0.56

CHML −0.01 −0.03 −0.04 0.06 0.17 −0.12 −0.10
(−0.62) (−0.78) (−0.48) (0.39) (0.82) (−0.43) (−0.70)

R2 −0.00 0.02 0.15 0.28 0.42 0.49 0.55

CUMD −0.01 −0.01 0.02 0.10 0.31 0.39 0.25
(−0.74) (−0.59) (0.23) (0.75) (2.21∗) (2.39∗) (1.55)

R2 −0.00 0.02 0.15 0.29 0.47 0.54 0.57

CLIQ −0.00 −0.01 −0.04 0.02 −0.20 −0.09 0.29
(−0.11) (−0.21) (−0.32) (0.11) (−1.18) (−0.79) (1.56)

R2 −0.00 0.02 0.15 0.28 0.43 0.49 0.57

CHML∗ 0.01 0.02 0.04 0.25 0.50 0.23 0.05
(0.38) (0.36) (0.26) (0.86) (1.39) (0.52) (0.16)

R2 −0.00 0.02 0.15 0.29 0.44 0.49 0.55

CUMD∗ −0.01 −0.03 −0.01 0.09 0.32 0.60 0.68
(−0.98) (−0.89) (−0.07) (0.43) (1.57) (2.68∗∗) (2.25∗)

R2 0.00 0.02 0.15 0.28 0.44 0.52 0.59

CPMU∗ 0.07 0.23 0.84 1.18 1.06 0.84 1.15
(2.83∗∗) (3.70∗∗) (3.15∗∗) (5.74∗∗) (3.54∗∗) (2.01∗) (3.26∗∗)

R2 0.01 0.07 0.31 0.47 0.53 0.55 0.64

CME −0.00 −0.02 0.01 0.16 0.21 0.18 0.06
(−0.33) (−0.79) (0.18) (1.58) (1.46) (1.07) (0.39)

R2 −0.00 0.00 0.15 0.30 0.45 0.50 0.55

CIA 0.02 0.08 0.23 0.27 0.23 −0.06 −0.29
(1.10) (1.39) (1.00) (1.07) (1.27) (−0.36) (−0.96)

R2 0.00 0.03 0.17 0.30 0.43 0.49 0.56

CROE 0.01 0.06 0.35 0.63 0.61 0.27 0.44
(0.62) (1.32) (1.76) (2.61∗∗) (2.80∗∗) (0.99) (1.42)

R2 −0.00 0.03 0.20 0.38 0.49 0.50 0.58

CRMW 0.02 0.09 0.40 0.56 0.35 0.15 0.36
(1.63) (2.67∗∗) (2.47∗) (3.24∗∗) (2.21∗) (0.68) (1.86)

R2 0.00 0.04 0.26 0.40 0.46 0.49 0.58

CCMA 0.01 0.03 0.07 0.14 0.22 −0.05 −0.21
(0.48) (0.62) (0.44) (0.74) (1.24) (−0.22) (−0.74)

R2 −0.00 0.02 0.15 0.28 0.43 0.49 0.56
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Table 14: Predictive regressions for stock market volatility: controls
This table reports the results associated with long-horizon predictive regressions for the stock market vari-

ance, at horizons of 1, 3, 12, 24, 36, 48, and 60 months ahead. The forecasting variables are state variables

associated with alternative equity factors. CSMB, CHML, CRMW , and CCMA denote the Fama-French

size, value, profitability, and investment factors, respectively. CUMD and CLIQ refer to the momentum

and liquidity factors. CHML∗, CUMD∗, and CPMU∗ represent respectively the value, momentum, and

profitability factors from Novy-Marx. CME, CIA, and CROE denote the Hou-Xue-Zhang size, investment,

and profitability factors, respectively. Each regression contains the following predictors as controls: term

spread (TERM), default spread (DEF ), log dividend yield (dp), one-month T-bill rate (TB), value spread

(vs), and smoothed log price-to-earnings ratio (pe). The original sample is 1976:12–2012:12, and q observa-

tions are lost in each of the respective q-horizon regressions. For each regression, in line 1 are reported the

slope estimates whereas line 2 presents Newey-West t-ratios (in parentheses) computed with q lags. T-ratios

marked with * and ** denote statistical significance at the 5% and 1% levels, respectively. R2 denotes the

adjusted coefficient of determination.
q = 1 q = 3 q = 12 q = 24 q = 36 q = 48 q = 60

CSMB −1.13 −3.07 −11.83 −20.55 −17.56 −3.81 19.26
(−5.85∗∗) (−4.85∗∗) (−3.61∗∗) (−3.00∗∗) (−1.80) (−0.33) (1.56)

R2 0.35 0.41 0.49 0.58 0.61 0.63 0.62

CHML −0.20 −0.47 −3.02 −4.30 7.67 22.16 17.72
(−0.66) (−0.42) (−0.66) (−0.31) (0.42) (1.46) (1.15)

R2 0.28 0.35 0.40 0.49 0.57 0.64 0.60

CUMD 0.07 −0.11 −4.56 −13.27 −18.69 −7.82 11.39
(0.36) (−0.17) (−1.98∗) (−3.17∗∗) (−3.08∗∗) (−0.69) (0.75)

R2 0.28 0.35 0.42 0.54 0.61 0.63 0.60

CLIQ 0.10 0.33 2.25 6.89 18.22 15.91 1.18
(0.36) (0.34) (0.46) (0.74) (1.61) (1.14) (0.08)

R2 0.28 0.35 0.40 0.50 0.59 0.64 0.59

CHML∗ −0.09 −0.55 −8.58 −26.03 −35.21 −38.90 −45.34
(−0.19) (−0.34) (−1.19) (−1.13) (−1.05) (−1.33) (−1.54)

R2 0.28 0.35 0.41 0.51 0.59 0.64 0.61

CUMD∗ 0.31 0.34 −6.93 −23.45 −41.04 −50.23 −38.19
(1.06) (0.33) (−1.76) (−3.01∗∗) (−6.89∗∗) (−3.95∗∗) (−2.30∗)

R2 0.29 0.35 0.41 0.55 0.64 0.66 0.61

CPMU∗ −1.08 −4.86 −32.91 −66.57 −80.92 −77.57 −56.04
(−2.08∗) (−2.62∗∗) (−2.95∗∗) (−3.02∗∗) (−3.62∗∗) (−3.69∗∗) (−2.15∗)

R2 0.29 0.38 0.52 0.65 0.70 0.71 0.63

CME −0.94 −2.53 −10.64 −20.52 −20.32 −7.39 13.92
(−5.19∗∗) (−4.22∗∗) (−3.74∗∗) (−3.22∗∗) (−2.12∗) (−0.66) (1.21)

R2 0.33 0.40 0.48 0.59 0.62 0.63 0.61

CIA −0.38 −1.89 −13.75 −37.69 −59.53 −67.68 −69.84
(−0.91) (−1.25) (−1.70) (−2.55∗) (−4.05∗∗) (−4.45∗∗) (−2.63∗∗)

R2 0.29 0.36 0.44 0.59 0.68 0.71 0.64

CROE 0.91 1.65 −1.98 −9.22 −9.25 6.71 20.11
(2.37∗) (1.26) (−0.26) (−0.61) (−0.52) (0.39) (0.97)

R2 0.30 0.35 0.40 0.50 0.57 0.63 0.60

CRMW −0.19 −1.28 −11.78 −26.69 −34.44 −35.99 −36.52
(−0.66) (−1.33) (−1.94) (−2.06∗) (−2.92∗∗) (−4.62∗∗) (−3.11∗∗)

R2 0.28 0.35 0.44 0.57 0.64 0.68 0.64

CCMA −0.22 −1.17 −10.71 −32.44 −58.63 −78.02 −88.05
(−0.66) (−0.99) (−1.76) (−2.73∗∗) (−4.70∗∗) (−7.67∗∗) (−5.11∗∗)

R2 0.28 0.35 0.43 0.59 0.72 0.77 0.73
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Panel A (CLIQ) Panel B (CSMB, CME)

Panel C (CHML, CHML∗) Panel D (CUMD, CUMD∗)

Panel E (CPMU∗, CROE, CRMW ) Panel F (CIA, CCMA)

Figure 1: Equity state variables
This figure plots the time-series for the state variables associated with alternative equity factors. CSMB, CHML, CRMW ,

and CCMA denote the Fama-French size, value, profitability, and investment factors, respectively. CUMD and CLIQ re-

fer to the momentum and liquidity factors. CHML∗, CUMD∗, and CPMU∗ represent respectively the value, momen-

tum, and profitability factors from Novy-Marx. CME, CIA, and CROE denote the Hou-Xue-Zhang size, investment, and

profitability factors, respectively. The sample is 1976:12–2012:12. The vertical lines indicate the NBER recession periods.48


	Introduction
	Cross-sectional tests and factor risk premia
	Models
	Data
	Factor risk premia

	Equity risk factors and future investment opportunities
	State variables
	Forecasting the equity premium
	Forecasting stock market volatility

	Equity risk factors and future economic activity
	Relation with ICAPM state variables
	Conclusion

