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Abstract

It is possible to model a wide range of portfolio management problems using stochas-
tic programming. This approach requires the generation of input scenarios and prob-
abilities, which represent the evolution of the return on investment, the stream of
liabilities and other random phenomena of the problem and respect the no-arbitrage
properties. The quality of the recommended capital allocation depends on the qual-
ity of the input scenarios and a validation of results is necessary. We propose scenario
generation techniques and for output analysis in the context of defined contribution
pension fund management. The application to the specific case of a Czech pension
fund indicates the components that influence the recommended investment decisions
and the fund’s results. The initial position of the pension fund is important because
of the accounting rules in the model and tracking both the market and purchasing
valuation of assets.

Key words: Defined contribution plan, ALM, scenario-based stochastic programs,
output analysis, case study
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1 ALM models for pension funds

There are many recent applications of ALM models with the main purpose—to support
decisions of long-term investors who want to achieve certain goals and to meet future
obligations. This concerns insurance companies, commercial banks, private investors,
see e.g. [23, 30, 31, 32].

This paper is a contribution to ALM models for pension funds, which is the theme of the
day for ageing populations of developed countries. There exist many types of pension
plans and they have to respect various country-specific regulations.

A defined benefit plan (DBP) is linked to employment and it provides participants with
a specified benefit during retirement. The retirement benefit is a fixed factor and benefit
formulas are used to calculate it. They correspond to a combination of a flat amount,
a flat percentage of earnings, a flat amount per year of service or a fixed percentage of
earnings per year of service. Moreover, the benefits may be indexed to hedge against
the inflation or may increase at a rate related with the increase of earnings of the fund.
The fund manager is supposed to guarantee the benefit payments over a very long pe-
riod of time, taking into account various country specific regulations concerning bene-
fits/contributions levels, taxation and investment restrictions. She has to face various
uncertainties such as the future life expectancy, inflation or return on investments. The
contributions to the plan necessary to produce these defined benefits and the indexation
policies are the variable factors to be decided.

We focus on defined contribution plans (DCP). Again, they may be linked to employment
or profession and are mostly related to provisions taken out by individuals. Contribu-
tions accumulate on individual accounts of participants who participate in the profit
sharing. At an agreed age, the pensions benefits are paid out as a lump sum or as a cash
flow payments which are based on the accumulated wealth on the individual account
of the participant and are calculated by actuarial techniques. According to the rules
of the pension plan various forms of a less favorable terminal settlement may be paid
to participants who want to leave the plan without being eligible for pension benefits.
By regulations, pension funds are supposed to manage the accumulated contributions
using investment policies which result in a stable growth of return. Besides of gen-
erating obligatory reserves, the profits are mostly shared among participants who are
the main risk bearers if the fund defaults or the rules are changed. The contributions
inflows and benefits outflows respect the pension plan rules, depend on demographic
factors, legislative settings (for example the state support) and on specific behavior of
individual participants. Besides of the dependence of benefits on the past pension plan
performance, cf. the profit sharing, these cash flows may be treated as independent of
important macroeconomic factors, such as returns on investments or inflation.

The performance of a pension fund may be analyzed by simulation, however, to support
managerial decisions under uncertainty in the discrete time setting we rely on stochastic
programming models. This approach is briefly summarized in the next Section; see also
discussions in [6, 22, 31] and various applications presented in [31, 32] and in recent
papers, e.g. [17, 18, 19, 21, 25].

An applicable ALM model for a Czech pension fund is developed in the third Section.
The peculiarity of the asset/liability management for Czech pension plans is the lack of

2



reliable historical asset return data. Moreover, the pension plans have not yet been fully
stabilized partly due to the fact that during their relatively short history, managers of
pension funds and participants of pension plans experienced several regulations changes.
This puts limitations on the choice of scenario generation methods, see Subsection 2.1.
Robustness of the results becomes a very important issue for the viability of the stochastic
programming approach to the pension fund management and it is analyzed with the goal
to detect the model inputs whose changes influence essentially the optimal investment
policy. Applicable validation techniques are discussed in Subsection 2.2 and the relevant
numerical results are given in Subsection 3.3.

2 Stochastic programs for pension funds

management

For pension plans, both the future assets returns and liability streams of contributions
and benefits are unknown. An application of stochastic programming means that un-
certainties are modeled as random and that a discrete time model with a finite planning
horizon is an acceptable choice. Another assumption which appears in theoretical formu-
lations of stochastic programming models reads: the probability distribution of random
factors is known and independent of decisions—a non realistic assumption in the context
of pension funds uncertainties. The models are then applied with discrete probability
distributions, carried by a finite number of atoms—scenarios; see [2, 15] for two-stage,
multiperiod and multistage formulations of scenario-based stochastic programs.

The advantage of scenario-based stochastic programming models is their flexibility (e.g.,
the possibility to include decisions about investments, liabilities, various goals and various
constraints, to reflect dynamic features) and their relative numerical tractability.

In financial applications of multistage stochastic programs, the generally accepted simpli-
fying convention is that the portfolio can be rebalanced only at the beginning of certain
periods (stages) to cover the goals. In the mean time, one applies a simplifying strategy,
e.g., buy-and-hold or fixed mix allocations of returns, which does not assume any trans-
actions except accumulating cash flows (coupons, dividends, etc.). Hence, to choose a
suitable time discretization, stages and the horizon, cf. [10], is a strategic decision which
should take into account the character of the problem in question, the existing informa-
tion and various additional conflicting factors such as the quality of the approximation
of the real decision process and the numerical tractability of the approach, which is also
influenced by the available hardware and software.

The main interest lies with the first-stage decisions which consist of all decisions that
have to be selected before the new information is revealed, just on the basis of the given
(prescribed, known, approximated) probability distribution; in the context of ALM,
the emphasis is on the initial asset allocation. The model should be solved repeat-
edly: after the first-stage decision is implemented and all parameters re-estimated taking
into account new information, one applies the model with the rebalanced portfolio and
with newly constructed scenarios (scenario trees) initiating from the actual values of the
variables—the rolling horizon approach.
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The objective function reflects the goals of the manager, e.g., to reach the best possible
gains for the next year and at the same time to guarantee a long term prosperity in
agreement with the regulations. The criterion is mostly related to the expected wealth
at the end of the planning horizon. The risk factor can be incorporated into constraints,
or it enters the objective function through a suitable utility function and penalty terms.
Also criteria and constraints nonlinear in probability distributions can be applied; an
example are models based on VaR.

The constraints follow the cash flow accounting rules and appear in the form of (time
and scenario dependent) mostly linear constraints on cash and inventory balance and
regulatory constraints. The guaranteed return constraint, cf. [6], the minimum fund-
ing requirement, cf. [4], or solvency requirements are often formulated as probabilistic
constraints on the target value of the wealth, the funding level or the level of the accu-
mulated wealth in relation to the total liabilities at the end of each period. Inclusion
of probabilistic constraints, however, represents an increased complexity for numerical
implementation of the model. For instance, in scenario-based models, binary variables
are used to rewrite these (nonconvex) probability constraints; cf. [7]. Another possibility
is to solve a sequence of suitably parametrized goal programming type models until the
probability constraint is fulfilled, cf. [6, 16], or to incorporate the expected penalty due
to various types of shortfalls into the objective function, e.g. [17, 31]. The last choice
appears in our model.

For scenario-based multistage stochastic programs the input is usually in the form of
a scenario tree. The nonanticipativity constraints on decisions may enter implicitly
or in an explicit way. In both cases decisions based on the same history (i.e., on an
identical part of several scenarios) are forced to be equal, as it is in the case of the first-
stage decisions of the two-stage stochastic programs. With the explicit inclusion of the
nonanticipativity constraints, the scenario-based multiperiod and multistage stochastic
program with linear constraints can be written as a large-scale deterministic program

max
X0∩C

{
∑

s

psu
s(xs) |Asxs = bs, s = 1, . . . , S}. (2.1)

Here X0 is a set of “hard” constraints, mostly simple constraints such as nonnegativity
conditions, C is defined by the nonanticipativity constraints and us is the performance
measure when scenario s occurs (with probability ps).

The implicit inclusion of nonanticipativity constraints leads to the arborescent or nodal
formulation of the stochastic program. Each node of the scenario tree corresponds to
the history of the random process up to a certain time t, a stage at which decisions may
be taken. The last decision point (stage) T corresponds to the chosen planning horizon
τ which, depending on the model formulation, may be set as T or as T + 1. Assuming
discrete-time data processes the nodes may be numbered as n = 1, . . . , N with index
n = 1 assigned to the root—the only node at stage t = 1. Nodes at stage t are indexed
as (t, n) or taken as elements of the set Nt of nodes at stage t. The (unique) predecessor
of node (t, n) at the stage t−1 is marked as n̂. Let D(n) be the set of descendants of the
node n ∈ Nt; the elements of D(n) are then the nodes from Nt+1 which can be reached
from the node n. The probability of reaching the node (t, n) is ptn. For planning horizon
τ nodes belonging to the set Nτ are called leaves and a scenario corresponds to a path
from the root to some n ∈ Nτ . Given scenario probabilities pτn a path probability can
be assigned to each node by a recursion.

4



At each node of the scenario tree (with exceptions of leaves) a decision xn is taken.
Constraints of (2.1) are rewritten as

W 1x1 = b1, x1 ∈ X1, T nxn̂ +W nxn = bn, xn ∈ Xn, n ∈ Nt, t = 2, . . . , T (2.2)

with matrices W n, T n and vectors bn resulting from the history preceding the node
n. The set Xn is defined by separate constraints on xn. In this nodal formulation the
objective function of (2.1) is

∑

n∈Nτ

pτnun(xn̂).

2.1 Scenario generation

To successfully apply stochastic programming models, one must design good input gen-
eration procedures, cf. [13], taking into account the existing information, software and
hardware possibilities, and to develop suitable approaches for validation of results.

2.1.1 Scenario tree for assets

The scenario tree for assets is constructed independently of the scenario tree for liabilities
due to the reasons discussed in Section 1. The selected procedure is related with the
choice of assets or asset classes represented in our study by corporate and government
bond indices and deposits. Moreover, due to the lack of historical data, the methods of
scenario tree generation for assets have to adapt to a relatively low level of information.
We apply the moment fitting method of [20] to create a scenario tree for returns of the
considered assets clases.

The procedure is based on goal programming ideas where weighted squares of distances
between the required values of moments of assets returns (e.g., mean, variance, skewness
and kurtosis of the marginal probability distributions and both the in- and inter-stage
correlations) and moments computed for the approximating discrete probability distribu-
tion are minimized. The proposed structure of the scenario tree, the required moments
values and weights are the necessary input for the procedure, the output consists of
optimally selected scenarios and probabilities.

Under Markov property of the assets returns, for example for the vector autoregressive
processes (VAR) of the first order, the matching of moments can be run over collections
of nodes in separate stages only:

Assume that the time discretization is chosen in agreement with the definition of stages
and that the multidimensional time series distribution of returns rit for assets i = 1, . . . , I
and t = 1, . . . , T , can be described by the VAR process

yt = µ+A1yt−1 + et, t = 1, . . . , T, (2.3)

with yit = ln(1 + rit), i = 1, . . . , I, t = 1, . . . , T.

Historical estimates are applied for matrix A1, for the second and higher order moments
of the asset returns (including correlations), whereas for the first order moments, expert
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values may be accepted. The idea is that experts tend to take into account both the
future expectations and the nonstationary behavior of the historical interest rates (caused
partly by a specific policy of the Central Bank during the past currency crises). This
makes the expert values more relevant then the historical averages.

An additional advantage of this scenario tree generation method is the possibility to test
no-arbitrage property along the tree. Now we come to the final shape of the nonlinear
optimization model for fitting the moments.

Let n̂ ∈ Nt be a node of the scenario tree at a given stage t and n, n ∈ D(n̂) its
successor. The stage t is kept fixed and we omit now indices indicating the time period
in question. The required model parameters σi,j , i, j = 1, . . . , I, sm, km,m = 1, . . . , I,
are (respectively) elements of the covariance matrix Σ of assets returns, their skewness
and kurtosis (only for stages where more than 7 successors are considered), θlo

i , θ
up
i are

bid and ask price of the asset i whose average price P0i = 1, i = 1, . . . , I, and e−r

denotes the one-period discount factor for the riskless asset. The weights consist of wp—
the weight for the no-arbitrage term, wc,i,j—the weight for covariance for assets i, j,
ws, wk—weights for skewness and kurtosis. For each node a different random vector of
starting values ui is used and it is transformed to en̂,n,i using Choleski decomposition of
Σ.

The model variables are (real) en̂,n,i disturbances, (positive) pn̂,n risk neutral arc prob-
abilities and pn̂ the minimum of risk neutral arc probabilities over successors of node
n̂.

Assuming that the average price of assets P0i = 1, ∀i, the final condition for non-existence
of arbitrage (cf. [24], Theorem 2) can be written as follows:

θlo
i ≤ e−r ∗

∑

n∈D(n̂)

pn̂,n ∗ exp([µ+A1yt−1]i + en̂,n,i) ≤ θup
i , ∀n̂, i = 1, . . . , I, (2.4)

with probabilities that have to fulfill conditions

∑

n∈D(n̂)

pn̂,n = 1, pn̂ ≤ pn̂,n,∀n ∈ D(n̂). (2.5)

In the goal programming objective function, deviations from the required moments values
are penalized and positive risk neutral probabilities are rewarded at the same time. For
uniform real probabilities we minimize at the considered stage t the function

∑

n̂∈Nt

(

−wp ∗ pn̂ +
∑

i

(
∑

n∈D(n̂)

en̂,n,i/|D(n̂)|)
2+ (2.6)

∑

i,j

wc,i,j

(

∑

n∈D(n̂)

en̂,n,i ∗ en̂,n,j/(|D(n̂)| − 1)− σi,j

)2
+

ws

∑

i

(

(|D(n̂)| − 1)(1/2)
∑

n∈D(n̂)

e3n̂,n,i/(
∑

n∈D(n̂)

e2n̂,n,i)
(3/2) − si

)2
+

wk

∑

i

(

(|D(n̂)| − 1)
∑

n∈D(n̂)

e4n̂,n,i/(
∑

n∈D(n̂)

e2n̂,n,i)
2 − ki

)2
)
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with respect to disturbances en̂,n,i, probabilities pn̂,n and pn̂ for all i, n ∈ D(n̂) and
n̂ ∈ Nt subject to (2.4) and (2.5). For numerical experiments and further caveats see
[27].

2.1.2 Liability tree

The liability side of the ALM model of the defined contribution pension plan is driven by
other factors, such as demographic data, legislative and plan regulations (retirement age,
minimal required insured time). The economic factors essential for DBP, e.g. [3, 7], play
a minor part in liabilities of DCP and the relatively low contributions of participants of
Czech pension plans allow to neglect them when modeling liabilities in our study. Hence,
the liability tree will be generated independently of the evolution of various economic
factors.

A possibility is to simulate the behavior of each participant, described by a small number
of attributes, such as age, sex, time spent in pension plan, quarterly contribution and type
of pension. This provides a large number of observed instances of independent, equally
distributed trajectories related with individual contracts. They are too many and do
not form a scenario tree. Moreover, for our case study, just a sample of the individual
contracts was available. It was used to estimate the corresponding two dimensional
probability density of age and contribution level which serves as the basis for generation
of a scenario tree of a desirable structure.

The marginal supports of the nonparametric estimate of the two dimensional probability
density are discretized and the lattice points of the resulting two dimensional grid are
interpreted as representative participants each of which passes through a finite number
of states and corresponds to a certain number of individual contracts. The next step
consists of

• detailed computations of flows of contributions, benefits and profit sharing settlement
for representative participants;

• application of actuarial techniques and some heuristics to get transition probabilities
(non-homogeneous Markov chain);

• simulation of paths—individual scenarios.

In spite of a crude approximation, aggregation and discretization technique, this sim-
ulation based approach described in [26] is understandable and enables to incorporate
most of the details of the considered pension plan and legislative settings. The total
net income Ft is obtained from simulated contributions and benefits of participants and
the total profit sharing settlement λt is the sum of proportional fixed valorizations of
the average annual levels of the individual accounts at stage t. The scenario tree of
a given structure for (Ft, λt) is then constructed using a suitable method, such as the
conditional sampling [5] applied in this study. The scenario tree is further reduced using
the technique of [14] and the reduced liability tree is combined with the tree for assets.
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2.2 Methods of output analysis

A natural question is does the low level of information, the aggregation, simplifications
and shocks cause essential errors? To answer it, robustness and sensitivity analysis is
necessary in the context of the applied ALM model. The short history does not allow us
to apply historical backtesting. It is possible to compare results obtained with changed
parameters, e.g., with alternative expert values of the first moments in the moment
fitting technique, or to analyze the performance of the obtained investment decisions
under out-of-sample or stress scenarios, etc. As indicated in this Subsection, such direct
computational approaches may be complemented by error bounds; for general ideas see
Chapter II.5 in [15] or [9]. We discuss the worst-case analysis with respect to liabilities
and delineate the possible use of the contamination technique in stress testing and in
analyzing the influence of including out-of-sample scenarios.

2.2.1 Worst-case analysis

Applicability of the method depends on specific assumptions concerning the structure
of the problem and on the probability distribution. In the context of the ALM model
for pension funds with an already fixed scenario tree for assets returns, using only the
expected liabilities instead of random ones provides a (tight) upper bound on the fund
performance; see [9] or [15], Chapter II.7, i.e., investment decisions based on the expected
liabilities correspond to the most optimistic case. The question is if the uncertainty on
the liability side of the problem can be neglected. A partial answer comes from the Value
of Stochastic Solution (VSS), cf. [2], which quantifies the effect of using a nondegener-
ated probability distribution carried by multiple scenarios instead of the expected value
scenario only. It is affected by the structure of the solved stochastic program, e.g., by
the chosen planning horizon and by the scenario tree representing uncertainty, and it
does not provide a generally valid answer.

2.2.2 Contamination technique and stress testing

Assume that the stochastic programming model for ALM such as (2.1) has been solved
for a fixed set of scenarios ωs, s = 1, . . . , S, and that the influence of including other
out-of-sample or stress scenarios should be considered. One could rewrite the program
for the extended set of scenarios (and also constraints) and solve it. Another way is via
the contamination technique, cf. [8, 9]. Rewrite the scenario-based stochastic program
in the general form

max
x∈X

∑

s

psu
s(x) (2.7)

with a fixed set X of scenario-independent (first-stage) feasible solutions and with per-
formance measures u dependent on scenarios.

Denote by P the probability distribution concentrated in ωs, s = 1, . . . , S with proba-
bilities ps > 0,

∑

s ps = 1, by ϕ(P ) the optimal value of the ALM model and assume
that the set of optimal solutions of (2.7) is nonempty and bounded; let x∗(P ) be one of
optimal solutions. Inclusion of additional scenarios means to consider another discrete
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probability distribution, say Q, carried by the out-of-sample or stress scenarios indexed
by σ = 1, . . . , S′, with probabilities qσ > 0,

∑

σ qσ = 1 and to construct the contaminated
distribution

Pµ = (1− µ)P + µQ (2.8)

with a parameter 0 ≤ µ ≤ 1. The contaminated probability distribution is carried by the
pooled sample of the S + S′ scenarios that occur with probabilities (1 − µ)p1, . . . , (1 −
µ)pS , µq1, . . . , µqS′ . It is possible to prove that the optimal value for the pooled sample
ϕ(Pµ) is convex in µ and under mild assumptions, one gets a lower bound on its derivative
at µ = 0 as the difference between the value of the objective function

∑

σ qσuσ(x∗(P ))
for the out-of-sample or stress scenarios evaluated at the optimal solution of the initial
problem (2.7) and the initial optimal value. The bounds for the optimal value ϕ(Pµ) of
the problem based on the pooled sample follow from convexity:

(1− µ)ϕ(P ) + µ
∑

σ

qσuσ(x∗(P )) ≤ ϕ(Pµ) ≤ (1− µ)ϕ(P ) + µϕ(Q) (2.9)

for all µ ∈ [0, 1]. If
∑

σ

qσuσ(x∗(P )) ≥ ϕ(Q)− ε

then x∗(P ) is an ε-optimal solution of

max
x∈X

∑

σ

qσuσ(x) (2.10)

and the difference of the lower and upper bound in (2.9) is less or equal µε. This quantifies
the robustness of the results with respect to the out-of-sample or stress scenarios.

The additional numerical effort consists of

• Solving the problem (2.10) for the probability distribution Q carried by the out-
of-sample, stress scenarios. The optimal decision is x∗(Q).

In some papers stress testing is cut down to this procedure, i.e. to obtaining the
optimal value ϕ(Q) and comparing it with ϕ(P ). Such comparison, however, may
be a cause of misleading conclusions: Assume, for example, that ϕ(Q) = ϕ(P ).
With exception of the constant contaminated optimal value function ϕ(Pµ) =
ϕ(P )∀µ ∈ [0, 1], the convexity arguments imply that there exist values of µ for
which ϕ(Pµ) < ϕ(P ).

• Evaluation and averaging the S′ function values uσ(x∗(P )) for the new out-of-
sample or stress scenarios at the already obtained optimal solution.

This appears under the heading stress testing as well: one evaluates only the
average performance of the obtained optimal solutions under the stress scenarios.

Similarly, one may view Pµ in (2.8) as the probability distribution Q contaminated by
P (provided that the set of optimal solution of (2.10) is nonempty and bounded). The
upper bound in (2.9) remains the same, the lower bound changes to

µϕ(Q) + (1− µ)
∑

s

psu
s(x∗(Q)) ≤ ϕ(Pµ). (2.11)
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A joint exploitation of (2.9) and (2.11) provides a tighter lower bound valid again for all
µ ∈ [0, 1] :

max{µϕ(Q)+(1−µ)
∑

s

psu
s(x∗(Q)), (1−µ)ϕ(P )+µ

∑

σ

qσuσ(x∗(P ))} ≤ ϕ(Pµ). (2.12)

These results may be exploited to quantify the changes of the obtained results when new,
extremal circumstances are to be taken into account. This is a true robustness result.

Contamination bounds (2.9), (2.11), (2.12) are valid for all 0 ≤ µ ≤ 1. The weight µ
may be interpreted as the degree of confidence in experts’ view. Small values of µ are
related to stability analysis, specific values of µ may provide equiprobable scenarios of
the pooled sample.

The contamination technique can be useful not only in postoptimality analysis (inclusion
of out-of-sample scenarios, emphasizing the importance of a scenario by increasing its
probability) and stress testing but also in various stability studies, e.g., with respect
to the assigned probabilities ps. It is valid also for multistage problems and extends to
integer stochastic programs. Technical details can be found in [8]; for an application see
[11, 12], Chapter II.6 of [15] and Subsection 3.3.1.

3 Case study: ALM for a Czech pension fund

We now introduce a simple multistage stochastic programming model for asset-liability
management of pension funds. Its formulation heavily depends on the legislative frame-
work, on accounting methods and on current developments in the Czech Republic as
described in the following subsection. At first, we give a more detailed description of
the problem within the current state and legislative settings of supplementary pension
insurance. We proceed then to model formulation. Finally, we present selected numerical
results arising under diverse assumptions about economic and socio-demographic condi-
tions, for various initial positions of the pension fund and for different risk attitudes of its
manager. Using miscellaneous output analysis results we discuss stability and sensitivity
properties of the model.

3.1 The problem and the input data

There are three important factors driving and restricting our modeling approach: the
role of the supplementary pension insurance and legislative settings, the available data
and the existing computer resources.

The legislative framework for supplementary pension insurance was given by [28] and
has been in existence since 1994. Pension funds in the Czech Republic are private
shareholder companies supervisored by the Ministry of Finance and strictly regulated in
terms of their investments. Accumulated funds of pension funds may only be invested in
government bonds, treasury bills, bonds issued by the Czech National Bank and other
banks, mortgage certificates, corporate bonds and shares and participation certificates
of unit trusts which are traded on the main and secondary market of the Prague Stock

10



Exchange, and bonds issued by OECD member states or by central banks of OECD
member states. There are also limited possibilities to invest in real estate. The break-
downs of portfolios of pension funds (consolidated) show that more then 60% is invested
in bonds, 25% in money deposits and treasury bills and less than 7% in shares and par-
ticipation certificates, see for example [1]. Only defined contribution pension plans are
allowed, except for the disability pension, where a defined benefit scheme appears, but
its frequency is quite low.

Employers are allowed to contribute to pension funds for their employees and they enjoy
tax deductions up to 3% of the gross wages. Similarly, employees do not have to tax
contributions on pension insurance paid by the employer up to 5% of the gross wage.
Both contributions are exempted from the base for the compulsory state social insurance
(this saves 35% of each Koruna paid as contribution to the pension insurance instead
of paying it as part of the gross wage). In addition, state contributions are added to
contributions paid by participant. She/he is eligible for further tax deductions under
additional circumstances. Tax deductions and state additional contributions settings are
most advantageous for contributions up to roughly 12% of the average gross wage. Still,
as a consequence of the tax regulations, the average contribution remains around 5% of
the average gross wage only (year 2002).

Evidently, the state supplementary pension insurance is intended as a supplementary
pillar and as such it is taken by the participants. Namely, accumulated assets per capita
are just a little bit over 200 dollars (using the exchange rate of July 2002)-far behind the
level in EU countries. In all pension funds, the number of participants receiving pension
is less than 1% of all participants in the insurance portfolio and this is due to the short
existence of the supplementary pension insurance and due to the prevailing requirement
of participants to get their funds in the form of a lump sum compensation. More than
78% of participants are older than 40 years (year 1999).

The market saturation has reached a level comparable with developed countries and
a harsh competition among pension funds has occured. Lower operating costs, multi-
national sound background and other financial services such as banking and mutual
funds are the features which help the manager of the pension fund to become successful.
Consolidation from the original 44 to 12 pension funds took place (year 2002) and it
is expected to continue. The number of participants in the largest pension funds has
reached more than 500, 000.

Attractiveness of the supplementary pension insurance is boosted by profits scored on
accounts of participants, which for the years 2001 - 2002 ranged from 0 to 1 percent over
inflation. Considering state contributions, this gives a nearly 9% valorization of accounts
of participants for the same period. This is the key reason of the almost complete market
saturation.

The model formulation, the choice of an appropriate method for generating scenarios and
also the model validation techniques are affected by the available data. These constitute
(in period 31.1.98-31.12.02) of monthly returns on indices of government bonds, high-
rated corporate bonds and interest rates on deposits of sector of financial institutions.
Three bond indices (total return weighted indices with the maturity of each instrument
in the index longer than 1 year) are considered:
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• corporate bond “blue chips”, acronym B1,

• government bonds with weighted time to maturity equal 3 years (represents strat-
egy in which the portfolio weights are adjusted in a prescribed specific way to
preserve the required weighted term to maturity), acronym B2,

• government bonds with weighted term to maturity more than 3 years, acronym
B3.

All securities appearing in indices are of rating A or higher. Hence, regarding the overall
precision of the input data, the credit risk is taken as negligible.

Longer time series are not yet available which makes the historical backtesting impossible.
In particular for government bonds, incurring of the state debt began in 1996 and as a
liquid market instrument these established after 1997 only. Interest rates on deposits for
financial institutions were taken as the base for returns on deposits in banks, no inflation
adjusted interest rates are available. We did not have access to any privately constructed
and computed indices of bond portfolios in the Czech Republic, Hungary or Poland.

The last restrictive assumption was made about computer resources. We aimed at im-
plementing the model on PC running under Win 2000 1.2GHz AMD Duron, 750 MB
memory with GAMS interface software accessing IBM OSL solvers.

Even though facing such a restrictive situation typical for transition countries with under-
developed, thin financial markets and structures, the model should describe and quantify
the most important uncertainties, in our case, randomness of asset prices and random
cash flows due to contributions and benefits. It must also consider serious restrictions
the manager faces: to respect the initial conditions on portfolio composition, to maintain
liquidity to be able to meet demands on cash flows at given points in the future, and to
consider the current accounting practices concerning additions to and release of financial
provisions due to temporary fluctuation of asset prices and legislative settings for calcu-
lation of the accounting profit. For these reasons, both the past purchase prices and the
market ones have to be distinguished and incorporated into the model. By recognizing
the accounting standards our model differs from other stochastic programming ALM
model formulations.

For numerically manageable stochastic programs the number of future decision points
(i.e., of the stages) is limited to prevent an exponential growth of the event tree. Never-
theless, at given points in the future the results should support decisions how much and
where to invest (investment classes, or portfolios), and to recommend an asset allocation
under various assumptions about future development in a reasonable amount of time.
The resulting size of the scenario tree depends on the time discretization. We work with
the planning horizon of 3 years (i.e., with T = 3 and τ = 4). A shorter horizon is
not appropriate for asset allocation, which is a strategic decision. On the other hand,
Czech pension funds are in a situation, where development of the population of insured
is hard to predict and market shares of individual funds have not stabilized yet. Finally,
the available data does not allow an extrapolation over a longer horizon. The decisions
about portfolio rebalancing are taken in the time points when shareholders agree on the
profit sharing, i.e., every end of the year.
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To generate the scenario tree for assets over a planning horizon of several years, the
method introduced by [20] was adapted, see Subsection 2.1.1, with one distinction: Be-
cause of the high nonstationarity of the available data, the VAR model (2.3) could not be
fitted so the scenario tree for assets was constructed under the simplifying assumption
of the interstage independence. Using monthly data, the moments of the probability
distribution were recalculated to the yearly time step.

When modeling liabilities we dealt with quarterly contributions/benefits of participants
and state contributions which is in agreement with the legislative settings. Later, these
are aggregated to correspond with the yearly steps of rebalancing decisions.

Before proceeding to the model description we give the scheme of the whole machinery
of ALM model inputs processing.

 

Core model for 

asset allocation

Tree building 

software 

Scenario 

Reduction 

Model for asset 

scenarios 

Estimated  

characteristics of

asset classes 

Simulation of 

participants and 

newly incoming 

Data for assets Data about 

participants and 

newly incoming 

Output analysis

Figure 1: Structure of the Model

The whole procedure starts out to process the data inputs for the model. The left leg
of Figure 1 is based on historical returns of the asset classes and other variables needed
to describe the asset price dynamics. We proceed with estimation of the parameters of
the probability distribution of assets returns. Following experts’ judgements, different
market situations may be considered. The estimated parameters enter the scenario gen-
eration procedure described in Subsection 2.1.1. The second leg of Figure 1 describes the
development of the portfolio of the insured. The simulation-based approach delineated
in Subsection 2.1.2 is applied.

When both the trees for scenarios of asset returns and scenarios of cash flows of contribu-
tions and benefits are completed the final scenario tree for the model is constructed. The
model is solved and the output data proceed to the output analysis block. The whole
machinery starts from the beginning unless outputs are satisfactory or all required al-
ternatives have been analyzed.
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The tasks are implemented using various software products trading the simplicity of
implementation for its speed and automation, so efficiency is quite low. There are several
time consuming steps of the procedure. The most demanding one is generation of the
scenario tree for liabilities which lasts several hours, the next is generation of the scenario
tree for assets which lasts approximately 90 minutes. The delivery of the model and its
parameters to GAMS and the solution time needed to find an optimal solution of the
ALM problem by OSL takes another 90 minutes.

3.2 The Model

Our stochastic programming model for asset liability management for Czech pension
funds can be classified as a scenario-based stochastic program with linear constraints.
Some features related to accounting practices might require integer variables. Still, we
relax the integrality requirements and present here a simplified version of reality to keep
the model numerically tractable. The objective is to maximize the expected terminal
wealth minus the expected total penalization of shortfalls over stages. The penalty func-
tion is downside quadratic and accounts for not reaching the required (predetermined)
valorizations. The model records a detailed information about the initial buying price
of the assets classes, their market price is tracked as well. We have chosen this approach
to be able to model some requirements on financial provisions and to be able to distin-
guish between accounting profit and cash flow, which is crucial for pension fund manager
working under Czech legislative settings.

We will keep the notation introduced in Section 2. The nodal form (2.2) is used when
describing the constrains but we prefer the form (2.1) when delivering the model to the
GAMS solver. First, model parameters, coefficients and variables will be listed. After
that, we explain the model constrains and its objective function in detail.

MODEL DICTIONARY
model parameters:

r risk free rate, used for capitalization of profits in the objective function,

α the coefficient for addition to financial provisions,

W1 the wealth (in market value) of the pension fund at the beginning of the period
(1, 2),

βi the coefficients for transaction costs, expressed as percentages of value sold or bought,
i = 2, . . . , I,

γ the weight given to the penalty term in the objective.

For period (t, t+ 1), n ∈ Nt+1,

dt+1 the discount factor, dt+1 = (1 + r)t with r the one period risk free rate,

r1,t+1,n the rate of return on deposits,
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ri,t̂,t+1,n the rate of return on bond index i bought at the beginning of period (t̂, t̂+ 1),
held at the beginning of the period (t+ 1, t+ 2),

Ft+1,n the aggregated cash flows from the participants,

λt+1,n the sum of proportional fixed valorizations of the average annual levels of the
individual accounts,

pt+1,n the probability of scenario leading to node n;

decision variables:

(nonnegative) n ∈ Nt+1, i = 2, . . . , I,

Xh
i,t̂,t+1,n

the holdings of bond index i bought at the beginning of period (t̂, t̂+ 1), held

at the beginning of the period (t+ 1, t+ 2), after rebalancing, valued in purchase
prices average (money stake),

Xs
i,t̂,t+1,n

the amount of bond index i bought at the beginning of period (t̂, t̂+1)), sold at

the beginning of the period (t+1, t+2), valued in purchase prices average (money
stake),

Xb
i,t+1,n the amount of bond index i bought at the beginning of period (t + 1, t + 2),
valued in purchase prices average (money stake);

other variables:

(nonnegative) at the beginning of the period (t+ 1, t+ 2), n ∈ Nt+1,

X1,t+1,n deposits,

Yt+1,n financial provisions,

(real) for period (t, t+ 1), n ∈ Nt+1,

Ct+1,n additions/release to financial provisions,

πt+1,n accounting profit/loss.

Asset Inventory Equation. The asset inventory equation differs for the first period
after buying the asset i ∈ {2, . . . , I} and for the next periods. No cash flows from these
assets (bond indices) arise.

Xh
i,h,t−1,t,n = Xb

i,t−1,n̂ − Xs
i,t−1,t,n, n ∈ Nt, t = 1, . . . , T, (3.1)

Xh
i,h,t̂,t,n

= Xh
i,t̂,t−1,n̂

− Xs
i,t̂,t,n

, t̂ = 0, . . . , t − 2, n ∈ Nt, t = 2, . . . , T.

The inventory equation for the deposit account, i = 1, will be specified in the cash
balance equation (3.4).

Additions to Financial Provisions and Financial Provisions Accumulation.

Additions to provisions are often demanded by an auditor to assure that today’s profit
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shared among participants of the pension plan does not reduce the opportunity to attain
similar profits in the following periods. This reasoning is enforced only if the current
portfolio might suffer losses due to the price decline on the market. The mentioned
feature is modeled by the requirement on including a part of the experienced capital
losses in the computation of the accounting profit, similarly as in practice. This is
implemented by additions to provisions for the riskier assets i ∈ {2, . . . , I}.

Yt+1,n ≥ −α
(

I
∑

i=2

(
t−1
∑

t̂=0

ri,t̂,t+1,nXh
i,t̂,t,n̂

+ ri,t,t+1,nXb
i,t,n̂)

)

, (3.2)

Ct+1,n = Yt+1,n − Yt,n̂, t = 1, . . . , T, n ∈ Nt+1.

Equation (3.2) specifies additions or release of financial provisions in case of realized
capital losses for the current period. If necessary, financial provisions are added and
they might be also released, but still kept on the minimal required level given by α.

Profit and Loss Accounting. Accounting profit/loss calculation involves proceeds
from sales of assets minus the purchase price of assets sold (the first term in (3.3)), minus
transaction costs expressed as the percentage of proceeds and expenses (the second term
in (3.3)), minus additions to financial provisions (or plus release of provisions as Ct+1,n

might be positive or negative), plus the return on the deposit account—the last term in
(3.3). The return on the deposit account may be expressed in a more detailed way, see
(3.4).

πt+1,n =
I

∑

i=2

t−1
∑

t̂=0

ri,t̂,t,n̂Xs
i,t̂,t,n̂

−
I

∑

i=2

βi

(

t−1
∑

t̂=0

(1 + ri,t̂,t,n̂)X
s
i,t̂,t,n̂

+Xb
i,t,n̂

)

(3.3)

−Ct+1,n +
r1,t+1,n
1 + r1,t+1,n

(X1,t+1,n − Ft+1,n), t = 1, . . . , T, n ∈ Nt+1.

Taxes are not included as pension funds enjoy a special tax regulation which makes
taxation negligible.
Cash Balance Equation. The cash balance equation specifies that all the money on
the deposit account at the beginning of the period plus cash inflow (asset selling, interest
on deposit account) minus cash outflow (asset buying, transaction costs) plus cash flow
related to liabilities (contributions and benefits) must equal the amount of money on the
deposit account at the end of the period.

X1,t+1,n =
(

X1,t,n̂ +

I
∑

i=2

t−1
∑

t̂=0

(1 + ri,t̂,t,n̂)X
s
i,t̂,t,n̂

−
I

∑

i=2

Xb
i,t,n̂ (3.4)

−
I

∑

i=2

βi(

t−1
∑

t̂=0

(1 + ri,t̂,t,n̂)X
s
i,t̂,t,n̂

+Xb
i,t,n̂)

)

(1 + r1,t+1,n) + Ft+1,n,

t = 1, . . . , T, n ∈ Nt+1.

Penalization of lower than promised Accounting Profit. The fixed valoriza-
tion of the accumulated wealth is used when simulating scenarios for liabilities, see Sub-
section 2.1.2. This helps to avoid the dependency of the input probability distribution
on decision variables. An unfavorable situation arises if λt+1,n − πt+1,n, the difference
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between the sum of the proportional fixed valorizations of the average annual levels of
the individual accounts and the computed accounting profit, is positive. We rewrite it
as the difference of two positive slack variables Mpr,−

t+1,n, Mpr,+
t+1,n :

λt+1,n − πt+1,n =Mpr,−
t+1,n − Mpr,+

t+1,n, t = 1, . . . , T, n ∈ Nt+1. (3.5)

Positive values of Mpr,−
t+1,n, rescaled to be commensurable with the main term (wealth

at the planning horizon) in the objective function, are penalized using the downside
quadratic penalty function which is subsequently approximated by a piece-wise linear
function in a standard way: Given a partition δj , j = 0, . . . , J , with δ0 = 0

Mpr,−
t+1,n/r =

J
∑

j=1

Mj,t+1,n, t = 1, . . . , T, n ∈ Nt+1, (3.6)

where
Mj,t+1,n ≤ δj − δj−1, j = 1, . . . , J.

Objective of the ALM Model. The objective reflects the goals of the pension fund
manager. On the one hand she is forced to reach the highest gains for the next year
so the annual rate of return on funds of the participants is the highest possible, on
the other hand she cannot afford to sell out assets promising outstanding returns in
the future. Moreover she should control prospective capital losses recorded up to the
planning horizon τ = T + 1 otherwise she will not meet the standards set via λt+1,n

and she will be exposed to additions to financial provisions. She must also maintain the
liquidity of the pension fund. From the long term perspective the core problem is the
growth of the value of funds.

These ideas naturally lead to maximization of the expected wealth at the planning hori-
zon τ = T +1 discounted to the beginning of the planning horizon minus the discounted
expected penalty for the shortfalls (λt+1,n − πt+1,n)

+.

dT+1 ∗
∑

n∈NT+1

pT+1,n

(

Xh
1,T+1,n+

I
∑

i=2

(

T−1
∑

t̂=0

(1+ ri,t̂,T+1,n)X
h
i,t̂,T,n̂

+(1+ ri,T,T+1,n)X
b
i,T,n̂

)

)

(3.7)

−γ ∗
T

∑

t=1

dt+1

∑

n∈Nt+1

pt+1,n

J
∑

j=1

ηj ∗ Mj,t+1,n.

Here, ηj , j = 1, . . . , J, are the slopes in the piecewise linear approximation of the down-
side quadratic penalty function valid on the interval [δj−1, δj ], j = 1, . . . , J. The param-
eter γ reflects the degree of the risk aversion of the fund manager and for purposes of
the output analysis it is rescaled as

γ =
a

W1
(3.8)

with a related to the manager’s risk aversion.

Validity of the asset accumulation and other equations was checked via balance sheets
and income statements constructed in each node of the scenario tree.
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3.3 Selected numerical results and output analysis

Using outputs of a model without any further validation may lead to serious problems
as the obtained optimal solution may perform very poorly under a different input spec-
ification. The aim of this Subsection is to evaluate the model behavior under various
assumptions about economic and demographic scenarios and to test its sensitivity on
selected input parameters, such as the weight of the penalty term and the initial balance
sheet.

In the first part of the numerical study, Subsection 3.3.1, we provide the contamination
bounds for the optimal value of the objective function when additional, out-of-sample or
stress scenarios are included. Another, frequently used method for validation of results
is the historical backtesting based on historical time series. It was impossible to apply
it as the historical time series are still too short and nonstationary.

Our model for defined contribution plan was built under specific assumptions discussed
in Subsection 3.1 and it reflects the legislative regulations and accounting rules used in
the Czech Republic. Namely, an adequate inclusion of creation and release of provisions
requires a detailed tracking of assets prices, remembering for each asset both its histor-
ical cost and the current market price. Moreover, distinction between cash flows and
accounting categories requires introduction of Ft and λt.

Such a detailed treatment of assets gives us a chance to inspect changes of the optimal
portfolio for different variants of the initial balance sheet. All these variants have the
same asset weights in the initial portfolio composition when using market values, but
different asset weights when using historical costs. These variants will also differ in the
level of provisions. The goal is to show that provisions creation or release is a very
influential factor which cannot be omitted; see Subsection 3.3.2.

In the third part of this numerical study we try to answer the question to what extent
is the optimal portfolio and the objective value influenced by incorporating random
liabilities and by changes in scenarios for liabilities. The analysis based on the Value of
Stochastic Solution (VSS, cf. [2]) does not provide a full answer to the first question,
as it is based only on comparison of results for five liabilities scenarios obtained via the
scenario reduction algorithm with results for the expected value scenario. It was not
tested for a higher number of scenarios for liabilities as it would increase too much the
demands on the available computer resources.

The second question concerns sensitivity of the optimal portfolio composition to changes
in behavior of participants. As a stress situation, decline of newly incoming and higher
propensity towards the lump sum compensation will be considered.

The available data were described in Subsection 3.1. Here we briefly summarize that
these are monthly data (monthly returns), which were annualized before estimating cor-
relations and other statistical parameters of returns. These time series were divided into
periods where stationarity was assumed. This was done using experts’ views about data
and events which might have disrupted stationarity and using graphs about development
of the indices in question. As mentioned in 3.1, we were not able to fit the VAR model
to these time series because of their shortness and a kind of a “trending” tendency, pos-
sibly caused by the aftermath of the monetary crisis in 1997. In 1999–2001 the interest
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rates displayed a decreasing tendency as the Czech National Bank was lowering the key
interest rate (similarly as most Central Banks world wide). Mean values for the planning
horizon τ (recall that τ covers three one year periods) were set roughly in correspondence
with returns experienced in the the year 2002.

Before proceeding to the output analysis we describe the selected variants, introduce
their acronyms and list the input data that will be used later on.

VARIANTS AND ACRONYMS

R rally of the market; statistical parameters of assets returns (mean values, covari-
ances, skewnesses, kurtosises) estimated from “historical” data and the scenario tree
of the structure (20, 8, 5) (here, 8 stands for 8 successors of each node in the first
period, etc.) is constructed;

S slump of the market; statistical parameters as covariances, skewnesses, kurtosises
estimated again from the corresponding “historical” data and the scenario tree is
constructed to have the structure (10, 8, 8). The mean values for asset returns were
set to 40% of mean values for variant R;

Dep, B1, B2, B3 denotes deposits and indices described in Subsection 3.1,

CL1, CL2, CL3 variants assume equal capital losses on the value of portfolio in the
initial balance sheet but different levels of provisions. The initial market values of
the portfolio assets wb are equal and are the same as in variant NL;

NL no capital loss is assumed for any asset in the initial balance sheet.

The initial conditions on asset proportions and their valuation are summarized in the
balance sheet; the variant NL is given below.

Dep 8.72 AR 0.01

B1 MV 6.47 G 22.65

B1 HC 6.47 RE 1.06

B2 MV 6.47 Y 0.00

B2 HC 6.47

B3 MV 2.06

B3 HC 2.06

Total 23.73 Total 23.73

Table 1: Balance sheet at the beginning of the planning horizon, variant NL

The symbols used in the balance sheet:

MV, HC market and historical cost (purchase price) valuation,

AR asset revaluation,

RE retained profits,

G other capital funds (accounting item for funds contributed by participants of the
pension plan),
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Y financial provisions.

In the variant NL, the market and historical values are equal and no capital loss is
considered.

The model uses Czech Koruna for currency, rescaled to 1e08 units. Statistical inputs to
the asset scenario generating model (2.6) are summarized in Tables 2 and 3 for variants
R and S, respectively.

mean variance skewness kurtosis correlations

Dep B1 B2 B3

Dep 0.042 2.23e-6 -0.06 1.85 1

B1 0.074 6.85e-4 -0.45 3.06 0.057 1

B2 0.079 5.70e-4 -0.09 2.08 0.053 0.901 1

B3 0.102 1.71e-3 -0.14 2.20 -0.056 0.883 0.944 1

Table 2: Parameters of asset return distribution for variant R

mean variance skewness kurtosis correlations

Dep B1 B2 B3

Dep 0.017 2.05e-6 0.95 3.30 1

B1 0.030 8.84e-4 -0.42 2.16 -0.132 1

B2 0.031 7.89e-4 0.33 1.87 -0.232 0.949 1

B3 0.041 2.20e-3 0.48 1.85 -0.182 0.906 0.953 1

Table 3: Parameters of asset return distribution for variant S

The downside quadratic penalty function is approximated by J = 5 linear segments
whose parameters are

δ1 δ2 δ3 δ4 δ5

0.5 1 2 4 ∞

η1 η2 η3 η4 η5

0.5 1.5 3 6 12

Table 4: Parameters of the approximated penalty function

Table 5 describes the reduced scenario tree for liabilities obtained by the procedure
explained in Subsection 2.1.2 which is used in computations unless stated otherwise, and
the expected value “tree” consisting of one scenario only.
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Scenario Period Probability

F

1 2 3

1 2.283e8 3.484e8 1.273e8 0.189

2 2.291e8 2.728e8 1.242e8 0.182

3 2.291e8 2.728e8 6.494e7 0.170

4 2.003e8 2.963e8 8.381e7 0.193

5 2.153e8 3.362e8 9.007e7 0.266

λ

1 7.182e7 9.326e7 1.025e8

2 7.174e7 9.093e7 9.981e7

3 7.174e7 9.093e7 9.788e7

4 7.084e7 9.047e7 9.811e7

5 7.128e7 9.230e7 1.003e8

EF

1 2.197e8 3.085e8 9.784e7 1

σ(F )/EF

0.051 0.102 0.235

Eλ

1 7.146e7 9.164e7 9.981e7 1

σ(λ)/Eλ

0.005 0.011 0.016

Table 5: Scenario tree for liabilities, after reduction

The model formulation involves further parameters that are fixed for all variants: The
risk free interest rate r = 3 as assumed in actuarial computations for pension plans,
the coefficient α in (3.2) equals 0.1, coefficients for transaction costs βi = 0.01∀i and
the initial market value of the portfolio W1 = 23.73. These parameters can be easily
calibrated as they have a clear economic interpretation. A bit unclear is setting of the
parameter γ, which assigns the weight to the penalty term in the objective function
(3.7). Its value describes the manager’s attitude towards the situation when, under
given scenario tree for stochastic parameters, the decisions do not provide at least the
required fixed valorizations of the personal accounts of the participants. In our case,
fixed valorizations 3.25, 3.5, 3.5% p.a. are assumed for the three year planning horizon
respectively.

To set a value of γ for our numerical experiments we inspect first the change of the
optimal portfolio in variant R/NL with the standard setting of liability scenarios (see
Table 4) for different choices of a in (3.8). The results (expected values of the portfolio
composition) are in the Table 6.
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Dep B1 B2 B3 Dep B1 B2 B3 Dep B1 B2 B3

0.04 0 0 25 75 0 0 0 100 0 0 0 100

0.4 64 2 26 8 38 0 0 62 10 0 0 90

1 78 0 14 8 57 0 0 43 17 0 0 83

2 84 0 8 8 66 0 0 34 23 0 0 77

4 90 0 1 9 74 0 0 26 31 0 0 69

40 97 0 0 3 86 0 0 14 45 0 0 55

end of first period (%) end of second period (%) end of third period (%)
a

Table 6: Portfolio composition over periods

The acceptable parameter values are a = 0.4, a = 1, a = 2 and a = 4 which do not
lead to corner solutions. In our numerical experiments, we use the value a = 4 which
corresponds to a moderately conservative investment style typical for many pension
funds, cf. [31], and a = 0.4 representing the low propensity to risk aversion of the fund
manager.

3.3.1 Contamination technique

We now evaluate the impact of including additional “out-of-sample” scenarios on the op-
timal value of the objective function (3.7), using the contamination technique explained
in Subsection 2.2.2. We assume that variant R is the base variant (probability distri-
bution P ) and variant S is the variant representing “out-of-sample” or stress scenarios
(probability distribution Q). For both variants, the initial conditions on asset propor-
tions and their valuation are equal, see the balance sheet in Table 1, and the scenario
tree for liabilities is fixed according to Table 5.

Separately for each variant, the optimal portfolio composition for the first period and
the expected development of the wealth of the pension fund over the subsequent periods
is given below.

a Market Portfolio Median of wealth of PF

(after rebalancing, market values %) (% of initial wealth),  end of period

Dep B1 B2 B3 1 2 3

R 62 2 27 9 115 136 154

S 37 27 27 9 112 127 133

R 90 0 1 9 114 133 148

S 37 27 27 9 112 127 133

Portfolio (initial, market values %) Total Sum

37 27 27 9 100 23.73

0.4

4

Table 7: Portfolio composition

Regardless of the value of a, it is optimal under variant S to keep the same portfolio
weights as in the initial balance sheet Table 1. Inspecting the expected portfolio com-
position in later stages shows that a gradual shift toward cash, up to ninety percent of
the expected weight in the last period is optimal. On the contrary, under variant R,
where assets are assumed to have a higher expected value, it is optimal to sell B1, B2
and keep B3—the asset with the highest expected return. Considering the high positive
correlation of B1, B2, B3 this behavior might be expected. In later periods the expected
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optimal portfolio weights shift towards a deeper position in B3. The magnitude of the
shift depends on the value of a.

Figure 2 demonstrates the contamination bounds obtained according to (2.12) for a = 0.4
and a = 4, value µ = 1 corresponds to variant S. For a = 0.4, the bounds for the optimal
value of (3.7) for the pooled sample R&S with weights µ and 1 − µ, respectively, are
very narrow over the whole interval [0, 1]. The wish to have equiprobable scenarios of
the pooled sample means to use µ = 5/9. The contamination bounds provide an interval
in which the optimal value ϕ(Pµ) for the pooled sample is contained, i.e. [−7.55,−2.5]
for a = 4. The directional derivative of the optimal value function at µ = 0+ both for
a = 0.4 and a = 4 is negative, hence, as expected, the optimal value does not increase
when including the stress scenarios S regardless of the weight 1− µ, µ ∈ [0, 1].

a = 0.4
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Figure 2: Objective value bounds for the pooled sample of scenarios R&S

The fund manager is interested in robustness of the attained expected terminal wealth,
see the first term in the objective function (3.7). For the optimal investment policy
X∗(P ) obtained by solving (3.1)–(3.7) with a = 4, the expected discounted terminal
wealth, WT+1(X

∗(P ), P ) = 32.12. equals 32.12. If the stress variant S occurs instead of
R, it changes to WT+1(X

∗(P ), Q) = 28.66 For the pooled sample R&S

WT+1(X
∗(P ), Pµ) = (1− µ)WT+1(X

∗(P ), P ) + µWT+1(X
∗(P ), Q),

is a linear function of µ. Hence, the expected terminal wealth for the pooled R&S sample
with the contamination weight µ = 5/9 equals 30.2.
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3.3.2 Dependence of the optimal portfolio on the initial balance sheet

The level of provisions versus the historical costs of assets and market values of assets are
categories tied by accounting practices. For example: the selling of asset at the beginning
of the first period in which the market price is lower than the historical price means a
decrease of the profit (increase of the loss) and at the same time an increase in the profit
(or decrease of the loss) due to release of provisions established to cover this loss. If
the provisions were not set in previous periods on a sufficiently high level (provisions
are agreed on with an auditor, forecasting of the price development is subject to an
instantaneous change) then selling of the asset will influence accounting profit, hence the
penalization in our model and the optimal solution as well.

This indicates that the optimal portfolio depends not only on the asset proportions when
assets are valued in market prices but also on historical costs of the assets and on the level
of provisions. We inspect this dependence using balance sheets having equal proportions
of assets valued in market prices but different historical costs. The balance sheets are in
Tables 8–10; compare with Table 1.

Dep 8.72 AR -2.93

B1 MV 6.47 G 22.65

B1 HC 6.47 RE 3.40

B2 MV 6.47 Y 0.60

B2 HC 6.47

B3 MV 2.06

B3 HC 5.00

Total 23.73 Total 23.73

Table 8: Balance sheet variant CL1

Dep 8.72 AR -2.93

B1 MV 6.47 G 22.65

B1 HC 6.47 RE 3.85

B2 MV 6.47 Y 0.15

B2 HC 6.47

B3 MV 2.06

B3 HC 5.00

Total 23.73 Total 23.73

Table 9: Balance sheet, variant CL2

Dep 8.72 AR -2.93

B1 MV 6.47 G 22.65

B1 HC 6.47 RE 3.71

B2 MV 6.47 Y 0.29

B2 HC 6.47

B3 MV 2.06

B3 HC 5.00

Total 23.73 Total 23.73

Table 10: Balance sheet, variant CL3

The only difference among these balance sheets is in the level of provisions. Reminding
the meaning of the parameter α in (3.2) we can compare these variants using the ratio
ρ := Y

|AR| . We have ρ = 0.2 for CL1, ρ = 0.05 for CL2 and ρ = 0.1 for CL3. Table 11
summarizes the results.
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a Balsheet Market Portfolio Median of wealth of PF

(after rebalancing, market values %) (% of initial wealth),  end of period

Dep B1 B2 B3 1 2 3

CL1 R 22 28 27 23 116 140 159

S 31 27 27 15 112 127 134

CL2 R 61 3 27 9 115 136 154

S 32 27 27 14 112 127 134

CL3 R 48 16 27 9 115 138 156

S 32 27 27 14 112 127 134

NL R 62 2 27 9 115 136 154

S 37 27 27 9 112 127 133

CL1 R 33 27 27 13 116 139 158

S 34 27 27 12 112 127 134

CL2 R 91 0 0 9 114 132 146

S 35 27 27 11 112 127 134

CL3 R 78 0 13 9 114 134 149

S 35 27 27 11 112 127 134

NL R 90 0 1 9 114 133 148

S 37 27 27 9 112 127 133

Portfolio (initial, market values %) Total Sum

37 27 27 9 100 23.73

4

0.4

Table 11: Portfolios at the beginning of the first stage after rebalancing

Table 11 shows that the optimal portfolios for the first period of the model are different
even though the initial portfolio weights calculated using market values are identical. It
means that the historical costs of portfolio assets and the initial level of provisions do
matter. The higher the initial level of provisions (higher ρ) the higher are the weights
in the optimal portfolio for B1, B2, B3. Particularly the weight of B3, the asset with
the highest volatility, increases with an increase of ρ. Hence, provisions are an important
factor that influences the optimal portfolio composition.

3.3.3 Dependence of the optimal portfolio on liabilities

We now investigate the role of stochastic liabilities in the model with an already fixed
scenario tree for assets. We start by computing VSS with respect to liabilities and
showing different optimal portfolio compositions under variants R and S. Here VSS
is computed as (RP − EEV )/RP ∗ 100, where RP is the optimal objective value of
the problem with stochastic liabilities, EEV is the objective value of the problem with
stochastic liabilities evaluated at the optimal solution of the problem based solely on the
expected value scenario for liabilities.
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a Variant VSS (%) Liabilities Portfolio 

(after rebalancing, market values %)

Dep B1 B2 B3

R 4.26936E-05 EV 62 2 27 9

Stoch 62 2 27 9

S 0 EV 37 27 27 9

Stoch 37 27 27 9

R 0.000357221 EV 90 0 1 9

Stoch 90 0 1 9

S 0 EV 37 27 27 9

Stoch 37 27 27 9

Portfolio (initial, market values %)

37 27 27 9

0.4

4

Table 12: VSS with respect to liabilities, all variants assuming NL

We have gained very little when allowing for stochastic liabilities, which we attribute to
the low level and low variability of contributions, see Tables 5 and 13. Low level and
low variability of contributions also yields low variability of λ which does not cause then
extra penalties in the objective. The optimal objective value and the decision variables
for the first period remain almost unchanged when shifting towards the expected value
scenario. This is advantageous from the point of the view of numerical computations
and will allow to solve problems with a considerably higher number of scenarios for
assets. Moreover working with the expected values of cash flows on the liabilities side is
often used in practice. Our result supports this simplified procedure, which in general
leads to over-optimistic conclusions about the fund performance; cf. Subsection 2.2.1.
It was obtained under rather restrictive assumptions: the accepted independence of the
stochastic factors in the assets and liabilities tree, reduction of the number of scenarios
for stochastic liabilities to 5 scenarios obtained by the scenario reduction algorithm and
the planning horizon covering only three years (three stages).

We now check how sensitive are our results with respect to changes in the behavior
of participants, i.e., under different assumptions about newly incoming and a changed
propensity to the lump sum settlement. As an example, assume no newly incoming dur-
ing the whole planning horizon, the propensity to the lump sum settlement increased by
twenty percent and the propensity to a terminal settlement quadrupled. These assump-
tions are incorporated into the simulation model and the scenario generation continues
as in 2.1.2. Table 13 gives scenarios of liabilities for this “no incoming” variant.
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Scenario Period Probability

F

1 2 3

1 -2.165e7 4.312e7 -1.674e8 0.109

2 -8.004e7 4.615e7 -1.047e8 0.160

3 -8.004e7 -2.205e7 -1.388e8 0.273

4 -1.167e8 5.409e7 -1.982e8 0.102

5 -7.568e7 3.547e7 -1.500e8 0.355

λ

1 6.459e7 7.535e7 7.405e7

2 6.281e7 7.357e7 7.411e7

3 6.281e7 7.140e7 7.061e7

4 6.175e7 7.267e7 6.989e7

5 6.297e7 7.338e7 7.247e7

EF

1 -7.583e7 2.418e7 -1.465e8 1

σ(F )/EF

0.294 1.197 0.170

Eλ

1 6.295e7 7.301e7 7.214e7 1

σ(λ)/Eλ

0.011 0.016 0.021

Table 13: Scenario tree for liabilities, after reduction, variant “no incoming”

Again we compare the results for different cases.

a Variant Liabilities Portfolio 

(after rebalancing, market values %)

Dep B1 B2 B3

R normal 62 2 27 9

noincoming 58 6 27 9

S normal 37 27 27 9

noincoming 37 27 27 9

R normal 90 0 1 9

noincoming 79 0 12 9

S normal 37 27 27 9

noincoming 60 27 4 9

Portfolio (initial, market values %)

37 27 27 9

0.4

4

Table 14: Optimal portfolios at the beginning of the first period

Table 14 shows that the optimal solution of the ALM problem changes as a consequence of
different specifications of inputs for the liabilities tree. A separation of asset management
and liabilities management will not be optimal in our case. There is a little justification
for working with stochastic liabilities; see Table 12.
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3.3.4 Suggestions for future research

The model—a scenario-based multistage stochastic program with random recourse and
linear constraints—does not fully capture the complexity of the real problem. For ex-
ample

• specific taxation rules for pension funds could be described by auxiliary 0-1 (logic)
variables;

• profit sharing can be calculated only after audit; hence, in the reality, there are random
flows whose probability distribution depends on decision variables; as a simplification fixed
valorization of accumulated wealth was used similarly as in [29];

•more complex risk considerations and multiple criteria could be applied, integer decision
variables would reflect better the trading customs, accounting standards, etc.;

• inclusion of other permitted asset classes would require to model their return scenarios,
taking into account their correlation with returns of the bond indices;

• it will be useful to extend the techniques designed for validation of results to cover a
sensitivity analysis with respect to the moment values used in the moment fitting method
described in 2.1.1 or to the fixed values of valorizations, to analyze the impact of the
chosen branching scheme and the stress testing on the rebalancing strategy, etc.;

• a theoretically justified stability analysis of the optimal solutions for the ALM problem
is highly needed.

4 Summary and conclusions

We developed an ALM model for defined contribution pension plans. The model dis-
tinguishes between cash flows and the accounting profit and it models quantities which
are highly relevant for the fund manager. Both the market value and historical costs
are tracked so that sensitivity of the optimal solution on the initial portfolio composi-
tion can be assessed. Portfolios with the same weights at the beginning of the planning
horizon lead to different optimal solutions of the ALM problem when a different level of
provisions is admitted.

Scenario generation procedures were selected regarding differences in the available data
on assets returns and on liability flows and extended to take care for no-arbitrage re-
quirements.

We analyzed the stability of the optimal value and of the optimal asset allocation with
respect to changes in the portfolio of insured and in the assumed development of the
market. The optimal solutions in our implementation of the ALM problem were insensi-
tive to stochasticity embedded in the liability tree. Hence, it is possible to use only the
expected value scenario for liabilities instead of the reduced scenario tree. Contamina-
tion bounds were applied to quantify the influence of including out-of-sample or stress
scenarios on the optimal value.
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It is not possible to separate the asset management and liabilities management problems.
Changes in the parameters of the liabilities distribution, even a changed expected value,
cause significant changes in the optimal solution, i.e., in the optimal portfolio composition
of the ALM problem.
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[14] Dupačová, J., Gröwe-Kuska, N., Römisch, W. (2003), “Scenario reduction in stochastic
programming: An approach using probability metrics”, Math. Progr. A 95, 493–511.
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tional Conference Mathematical Methods in Economics 2003, Czech Univ. of Aggriculture,
Prague, pp. 214–218.

[28] “State-contributory Supplementary Pension Insurance”, Act No.42/1994 with its later
amendments, Collection of laws, Prague (in Czech).

[29] Winklevoss, H. E. (1982), “Plasm: Pension liability and asset simulation model”, The
Journal of Finance 37, 585–594.

[30] Zenios, S. A., Ziemba, W. T. (eds.) (2004), Handbook of ALM, North-Holland, to appear.

[31] Ziemba, W. T. (2004), The Stochastic Programming Approach to Asset, Liability and
Wealth Management, AIMR, Charlotteville, Virginia, to appear.

[32] Ziemba, W. T., Mulvey, J. (eds.) (1998), World Wide Asset and Liability Modeling, Cam-

bridge Univ. Press.

31




