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Merton [1971, 1993], Milevsky [1998], and be applied to transform a set of simulated sam-
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We consider an intermediate setting between the ad Our numerical experiments are conducted using a

hoc approach and stochastic programming. This setting set of sample paths for liabilities and asset returns for a pen-

was first proposed by Hibiki [1999, 2000] for portfolio sion fund in The Netherlands. This set of sample paths

optimization problems. Here we extend this approach to was generated at ORTEC Consultants, B. Y, using its

ALM problems and combine it with a risk management simulation-based decision support system for asset/liabil-

technique using conditional value at risk (CVaR) con- ity management for pension funds.

straints (see Rockafellar and Uryasev [2000, 2001]). Opti- The research is designed as a feasibility study to test

mization is performed using a set of sample paths, thereby new optimization techniques with CVaR risk constraints

eliminating the need to construct a scenario tree. in a dynamic setting. Practical recommendations on invest-

To allow for a broader decision space than that tra- ment decisions are beyond its scope.

ditionally used, we allow different decisions to be made for We have shown that the technique is stable ~nd

different bundles of sample paths, where sample paths are robust, allowing for the solution of large-scale problems

bundled together according to some criteria. Then the same with a long investment horizon. It can be implemented

optimal decisions are made for bundles (or groups) of sam- relatively easily in a realistic investment environment.

pIe paths that exhibit similar performance characteristics.

Sample paths are bundled to avoid solutions that can THE PENSION FUND PROBLEM

be anticipated (as in the scenario tree approach), and at

the same time to dramatically limit the number of decision Basic Framework

variables.! The dimension of the problem thus increases
linearly with the number of bundles and the number of We consider a pension fund that conducts activities

time periods. This is an improvement over exponential as follows: 1) collection of premiums from the sponsor

growth of problem size under the stochastic programming and/ or the active employees; 2) investment of available

approach. funds; and 3) payment of pensions to retired employees. The

The proposed approach can be viewed as a fund uses an asset management strategy (a set ofinvestment

simplification of stochastic programming that imposes the rules) so that, at each decision moment, the total value of

same decisions for many scenarios. This simplification makes all assets exceeds the liabilities of the fund (which is actu-

the models easier to solve, and in a way is more intuitive. ally a measure of the fund's future stream of liabilities) with

The idea of using a decision variable independently high certainty, and at the same time tries to minimize the

of scenarios is not new in financial modeling. Financial contribution rate by the sponsor and active employees of

models based on string (linear) scenario trees instead of the fund. The problem consists of setting, at each decision

event trees have been suggested by Hiller and Eckstein moment, a suitable contribution rate and a suitable invest-

[1993] and Zenios [1993]. Our advance is that we consider ment strategy for the funds available to the pension fund.2

decisions on bundles of sample paths. We denote the time horizon by T, and denote the
We show that, with such a structure and suitable risk set of decision moments by t = 0, ..., T. At each time t a

measures, it is possible to formulate and solve the problem decision is made on the value of contributions to the fund

using linear programming techniques. We use the fact and on portfolio allocations, both based on the state of the

that incorporating CVaR constraints does not destroy the pension fund at that particular time. We simplify the nota-

linear structure of a model (see Rockafellar and Uryasev tion for the moment by suppressing randomness:

[2000,2001] ). This quality is an important advantage of
CVaR as a risk measure in optimization settings, but there At = value of all assets owned by the fund at time t (ran-

are several other reasons to use CVaR as a risk measure. dom variable);
CVaR is a subadditive measure of risk (see Pflug Wt = wages earned by active members at time t (ran-

[2000] and Rockafellar and Uryasev [2000', 2001]) That dom variable);
is, diversification of a portfolio reduces CVaR. Moreover, Y t = contribution rate, i.e., premium paid by the spon-

CVaR is a coherent measure of risk in the sense of Artzner sor and/or active employee as a fraction of (a

et al. [1999]. The coherency of CVaR was first proved suitable part of) their wages at time t (decision

by Pflug [2000]; see also Acerbi, Nordio, and Sirtori variable);3
[2001], Acerbi and Tasche [2001], and Rockafellar and .et = payments made by the fund to retirees at time t

Uryasev [2001]. (random variable);
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x = money invested in asset n at time t (decision Values of If' > 1 often are used to add some extra
n,t

variable); safety margin to the constraint. For example, a value of If'
r = return on investment in asset n at period t = 1.2 would give an extra margin of 20% of the value of
n,t

(random variable); and liabilities. In principle, one could imagine that the constraint
Lt = liabilities (i.e., a measure of the stream of future (y) should be satisfied with probability 1.0, but it will often

liabilities) of the fund at time t (random variable). be impossible, or at the very least be expensive, to ensure

that the liability constraints are met for all possible future

In addition, let h(Yl' ..., yy) denote a measure of the outcomes. Therefore, this constraint is relaxed, and we

costs of the pension fund. This could be the average of would like to find a solution with a sufficiently high prob-

contribution rates, or the present value of all contribu- ability of meeting the liability constraints while keeping

tions YtWt, Furthermore, we assume that h(Yl' ..., Yy) is costs at a reasonable level.

linear in Y t and non-decreasing in Y r At each decision

moment, the balance equation holds: Conditional Value at Risk

N When Equation (4) is violated, we say that we have

L Xn,t = At + WtYt - it t = 0, . . . , T - 1 (1) a loss, or that the pension fund is undeifunded. As a measure
n=O of this loss, we use the difference between the right-hand

side and left-hand side in (4):4

which equates the sum of all investments, 1:~ = oXn,t'
to assets, At' plus contributions, Wty t' minus liabilities, N
ft. The sum 1:~=Oxn,t-l invested at time t-l results f1f;(x;r,L) = 'ljJL - L(l +rn)xn (5)

in the value of all assets at time t: n=O

N Hence, (4) could be replaced with:

At = L Xn,t-l(l + rn,t).
n=O f1f;(x;r,L) ~ 0 with high certainty. (6)

At each time period t = 1, ..., 1; we want with high

certainty to satisfy the liability constraints: Let P be the joint probability measure of the vec-

tor (1; L), and denote by <I>'I'(~; x) the cumulative proba-

N bility distribution of the loss, given x:

At = L Xn,t-l (1 + r n,t) ~ Lt with high certainty.

n=O (2) <I>1f;(x, () = Pr(f1f;(x; r, L) :::; ()

We consider the problem of minimizing costs of the = r P(dr, dL)
fund: J f.p(XjT,L)~'

minimize h(Yl, . . . , Yr) (3) which by definition is the probability that the lossfl/f(x; 1; L)

does not exceed a threshold value ~. Now, if a is a confi-

subject to 1) balance and 2) liability constraints. dence level that (6) is not violated, the inequality in (6) can

The ratio of assets to liabilities, AtiLt' is usually be expressed as follows:

referred to as thefunding ratio of the pension fund. A tar- (, (x) < 0 (7)
get funding ratio of If' can easily be incorporated by a,1f;-

replacing constraint (2) by where

N (a,1f;(X) = min{(ER:<I>1f;(x,()~a}.

At = L Xn,t-l(l + Tn,J ?: 1f;Lt with high certainty. (4)
n=O The value' \I'(X) is called the a-value at risk (a-

a'T
VaR) and constraint (7) means that the loss in at least
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100a% of outcomes must be below or equal to 0 (note For i = 1, ..., I, let us denote by ri, Li, a sample of

that, in general, this threshold level may be chosen to be realizations of (1; L) from the probability distribution

different from 0). VaR is a widely used risk measure, but function P. As is shown by Rockafellar and Uryasev

it has several notable drawbacks, including: [2000, 2001], constraint (8) can be replaced by the sys-

tem of linear constraints
1. It does not take into account losses exceeding VaR.

2. It may provide an inconsistent picture for various I
confidence levels.5 ( + 1 :}:= zi ~ W (9)

3. It is not sub additive, i.e., diversification of the port- 1(1 - a) i=l

folio may increase the risk.

4. It is non-convex, which results in computationally N

difficult, for risk management. :}:=(l + r~)xn - ( ~ zi (10)

n=O
These disadvantages are not shared by the closely

related conditional value at risk (CVaR), which is the i > 0 £4 . = 1 I
weighted average of VaR and the losses exceeding VaR. z - or 1, , . . . ,

Denote the conditional expectation of all losses strictly
exceeding VaR by <Pa",,(x)+ (where it is supposed that where Zi, i = 1, ..., I, are dummy variables. If constraint

there are losses strictly exceeding VaR). CVaR is then (9) is active at an optimal solution, the corresponding opti-

defined as follows: mal value of" ifit is unique will be equal to VaR. If there

are many optimal values of ", then VaR is the left end-

</>
( ) = -\ ( ( ) + (1 - -\) </> ( )+ point of the optimal interval. The left-hand side of

a,1/J x a,1/J x a,1/J x . inequality (9) will be equal to CVaR.

That is, it is a weighted average of VaR and the condi- Objective Function and Optimization Problem

tional expectation of losses strictly exceeding VaR, where

the weight equals The asset/liability model is defined by the balance

constraints (1) and the risk constraints (9) and (10) that

are imposed at each time t. The risk constraints are
-\ = (1- a)-l «l>1/J(x, (a,1/J(x)) - a) E [0,1]. imposed for groups of sample paths.

The objective function of the model is defined as the

expected present value of the contributions to the pen-
Note that, when the distribution of the losses has sion fund, i.e., we want to minimize the total cost of fund-

continuous density, A = 0, and we have <Pa",,(x)+ = <Pa",,(x). ing the pension fund, subject to balance and safety

This is in general not the case when the distribution is dis- constraints. The problem is solved using formal opti-

crete (or is approximated by a discrete distribution using mization algorithms.

sampling of scenarios). CVaR is convex, which makes it We develop a more elaborate version of this model

possible to construct efficient algorithms for controlling as well, where we define approaches for modeling of uncer-

CVaR. tainties and the structure of solution rules. A formal descrip-

It is easy to see that CVaR always exceeds or equals tion of the problem formulation is included in the appendix.

VaR (i.e., CVaR ~ VaR). Therefore, we could replace (7)

by the CVaR constraint MODELING OF UNDERLYING STOCHASTIC

VARIABLES AND DECISION RULES
</>a,1/J(x) ~ W (8)

The text describes in a non-quantitative way our
for some w. With w = 0, we have a risk constraint that approach for modeling uncertainties and decision rules.

dominates (i.e., is stronger than) the a-VaR constraint (7). A formal description of the mathematical model is in

Using a negative w would tighten the constraint further, the appendix.

while a positive w would relax it.
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)f There are several ways to model dynamics and path, we have full knowledge of the future until time T.

n uncertainty. The most popular approach is to use simu- The simplest way to avoid anticipativity is to make one

:v lation and to generate many sample paths (scenarios) that single decision at each time t for all paths. This means that

;- represent possible future states of the system. The finan- the values of the decision variables are independent for all

cial industry mostly uses the simulation approach, where path realizations at a given time. This is the basis of cur-

decision rules are specified for choosing the contribution rent sample path-based approaches.

rate and investment strategy. Then, the parameters of the We relax this approach, without introducing antici-
I) decision rules are adjusted, using trial and error, to pro- pativity, by making the same decision at some time for all

vide a satisfactory solution to the problem. sample paths in a particular bundle of sample paths. We allow,

The most typical decision rule is the "fixed-mix however, for the presence of multiple bundles of sample

strategy." This rule leads to non-convex optimization paths at each time. This approach is inspired by ideas devel-
) problems, so only a few researchers apply optimization oped for portfolio optimization by Hibiki [1999, 2000].

techniques to this problem; see, e.g., Mulvey et al. [1995]. We consider two models that will lead to linear

Alternatively, the set of sample paths can be con- optimization problems: the fixed-value and fixed-quantity

verted into a scenario tree. Such a conversion lets us use models. In the fixed-value model, the dollar value of the

the well-developed stochastic optimization theory to positions held in each of the assets will be the same for

i make optimal decisions (for a description of the basic all scenarios in a given bundle. In the fixed-quantity
t i stochastic programming technology, see Ermoliev and model, the number of shares of each asset will be the same

Wets [1988], Prekopa [1995], and Birge and Louveaux for all scenarios in a given bundle. Hibiki [1999, 2000]

~ [1997]). For multistage models, conversion of the set of refers to the fixed-quantity case as "fixed-amount"; we
I sample paths to a scenario tree can lead to significant have renamed this case to avoid confusion, because amount

~ methodological and computational difficulties. The sce- can refer to both quantity (of shares) and a dollar amount.
; nario tree increases very rapidly in size for multistage Like Hibiki [1999, 2000] in the case of portfolio allo-

problems, easily exceeding the capacities of even the most cation problems, we find that the fixed-quantity model

advanced computational resources. This forces multistage leads to solutions for the ALM problem for pension funds

models to limit the number of scenarios, which in turn that are superior to the solutions produced by the fixed-

severely limits the possibility of reflecting the rich ran- value model. We thus present the mathematical model for

domness of the actual dynamic stochastic processes. the fixed-quantity case, and discuss its performance in sev-

Neither of these solutions is very satisfying. We use eral settings. For the fixed-value case, we limit ourselves

an alternative approach laid out by Hibiki [1999, 2000] to a discussion of the numerical results.

for portfolio allocation problems. This setup uses The fixed-quantity approach can be implemented

simulation sample paths, yet leads to linear models and a in various frameworks. Using a stochastic programming

rich decision space, unlike other sample path-based approach, Consiglio, Cocco, and Zenios [2001] consider

approaches that lead to non-convex multi extremal the fixed-quantity models for the insurance industry.

problems (like the constant proportion rule). We combine

this approach with CVaR risk management techniques. Structure of Decision Rules:

We consider aT-period model where time ranges Grouping of Sample Paths
from t = 0, ..., T, and decisions are taken at times t = 0,

..., T -1. Randomness in the model is expressed by I sam- To avoid anticipativity of solutions, the same deci-
pIe paths spanning the entire horizon from t = 0 until t sions are made simultaneously for many sample paths. For

= T. Each path reflects a sequence of possible outcomes reasons of comparison, we examine the extreme case

for all random parameters in the model. The collection where the same decisions are made for all sample paths at

of equally probable sample paths gives a discrete approx- a given time; i.e., at each time there is only a single bun-

imation of the probability measure of the random vari- dle of sample paths.

abIes (t; ~ L, f). Such an approach may lead to very conservative
Ideally, one would like to make different decisions solutions. After a high observed return on investments, we

, for every path at every time t = 1, ..., T -1, but this would would need to contribute more than necessary to cover

! lead to undesirable anticipativity in the model. This is liabilities, since the same contributions would also have
! caused by the fact that, once we start following a specific to cover the liabilities for the case of low returns.

. ,
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For a more flexible control strategy, we group sam- This approach could be employed in an iterative

pIe paths into different bundles at each time, and make the fashion-namely, by using the optimal strategy for a given

same decision for all paths in each node. At time t, we grouping to reestimate the funding ratios, which can then
group the paths in Kt groups, or bundles, for t = 1, ..., T in turn be used to regroup the sample paths. Application

- 1. Paths that are in two different groups at time t can of this method is beyond the scope of this study, and is

pass through the same group at either earlier or later left for future research. Our numerical experiments show

times (or both). Also, paths that pass through one node that this method for grouping according to the funding

at time t do not necessarily pass through the same node ratio leads to reasonable results.

at any other time. Exhibit 1 illustrates this setup.

There is a lot of flexibility in grouping the paths. Fixed-Quantity Model

Besides having to decide how many groups to have at each
time, we should also decide how to allocate paths to these Under the fixed-quantity rule, a position in an asset

groups. The idea is to group paths into bundles that require is represented by the number of shares (i.e., the quantity).

similar decisions. Since the funding ratio is a single quan- The model considers I different sample paths (realizations)
tity that characterizes the health of the pension fund, this for times t = 0, ..., T. At the beginning of each time period

seems a reasonable measure to use for grouping. A high t = 0, ..., T- 1, an investment decision is made, and at

funding ratio may allow one to invest in risky instruments the end of every time period this investment must cover

or to demand a lower contribution from the fund's spon- the value of future liabilities in the <x-CVaR sense.

sor and active members. A low funding ratio may mean that Payments are made to retirees, and a contribution to the

the fund is in danger of violating its liability constraints. This fund is made.

means that an increased contribution rate probably is needed. In this model, we fix the number of shares in each

It seems intuitive that scenarios with similar fund- instrument for all paths in a single group (bundle) at each

ing ratios call for similar optimal decisions, and can there- moment. In this case, the total value of all shares to be pur-

fore be grouped together. Unfortunately, the funding chased might not be equal to the total available wealth,

ratio is a result of a particular strategy, and cannot there- i.e., there is a balancing problem.

fore be computed a priori. We have chosen to first solve For example, consider two different paths, say, j and

the problem using only a single bundle at each time j, belonging to the same group at time t. In both paths,

period. Further, we use the obtained solution to calcu- the portfolio should be adjusted to hold the same num-

late the funding ratio (for each path at each time), and ber of shares in two assets, for instance, in asset 1 and asset

group paths in bundles. 2. The total value of these shares may be different in

both paths because each path has its own history of asset

returns up to time t.
E X H I BIT 1 This clearly is not a problem, but the total value of

Grouping of Paths into Bundles at Each Time t the shares to be purchased may not coincide with the total

amount available for investment in one or both paths. We

have chosen to address this by allowing the difference to

be made up by additional (positive or negative) investments

1 in cash.

Hibiki [1999] chooses the cash position as the

path-dependent variable. The idea of using cash as a path-
Path 2 dependent variable has been considered by Hiller and

Path 3 Eckstein [1993] for bonds and Zenios [1993] for mort-

. gage cash flows. Here, we include two different cash posi-.. "
...'.. ! , tions in the model. Strategic investments in cash, as one

.. r
..'0. ! 0 ,- of the asset categories, are made using a number of

~ s?ares t~at is constant for all.paths in a single group at a

smgle tIme. We also have mclude a path-dependent

: : ! :', ,Time. deviation from this fixed quantity, to account for excess

For each bundle the same decision is taken. or shortage wealth.
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The path-dependent variable can take E X H I BIT 2
positive or negative values. This is consistent Average Monetary Proportions of Instruments

with other ALM models. In Kouwenberg
[2001], for example, the borrowing of cash is 100%

Data and Computational ~ o;..~ ~..~ ~ .~...;...~ ~;o

Resources TIm.

One decision is made for all sample paths at each time (the same number of shares for all sample

The data set of sample paths was gen- paths at each time). The monetary portfolio composition differs between paths.

erated at ORTEC Consultants, B.V:, for a

pension fund in The Netherlands. It includes

5,000 sample paths for a time horizon of lOA full list of variables is in Exhibit A in the appendix.

years. Each sample path consists of returns for 12 finan- We implement the model using the CPLEX callable

cial assets, wages for the active members, payments to library. All computations are made on an ffiM Power 3 node

be made each year, and future liabilities. with two processors and 512MB of RAM (CPLEX uses one

The asset categories are: 1) cash Netherlands, 2) processor, up to 256MB of RAM). The computation time

commercial paper (CP) Netherlands, 3) CP U.S., 4) CP for the problem with 1= 5,000 (number of scenarios), N

Japan,S) CP U.K., 6) bonds emerging markets, 7) equity = 3 (number of instruments excluding cash), and T = 1{)

Europe, 8) equity U.S., 9) equity Japan, 10) equity U.K., (number of periods) is about three hours.

11) equity emerging markets, and 12) private equity. To To limit the computation time, we use a subset of

simplify interpretation of the results, we have mostly lim- 2,000 scenarios. Although in our numerical example we

ited ourselves to a subset of four asset categories: cash mostly considered N = 3, the model can handle quite a high

Netherlands, CP Netherlands, equity Europe, and equity number of assets, as the number of constraints, the num-

emerging markets. The objective is to provide a qualita- ber of variables, and the computation time remain relatively

tive assessment of our model and approach, and the sim- constant as long as N « I.

plified portfolio makes it easier to grasp the basic

characteristics of the modeling approach. One Decision at Each Moment

Some of the model parameters are: 1) a target
funding ratio of 1JI = 1.2; see Equation (5) and Equation First, we consider that the contribution rate and

(A-4) in the appendix; 2) a confidence level in CVaR portfolio allocation (number of shares) are the same for
constraint a = 0.95; see Equation (8) and Equation (A- all sample paths at each time t = 1, ..., T - 1. The con-

S) in the appendix; 3) an upper bound in the CVaR con- tribution rate and (strategic) portfolio allocation thus

straints set to Wt = 0, for all moments and all nodes; see depend on time, but do not depend on the sample paths.

Equation (8) and Equation (A-5) in the appendix. This Although the number of shares invested in each instru-

means that we limit the expected value of the worst 5% ment does not depend on the particular sample path that

underperformances to be 20% over the future value of occurs, the actual monetary portfolio composition may

the liabilities (i.e., the outcome of L). All monetary val- differ for various paths because of different prices of the

ues are scaled so that Ao = 1; see balance Equations (1) instruments along different paths, and because of the

and (A-2).
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E x H I BIT 3 (from 5% to 14%; the maximum value of equi-
.. ties is 16%).

Evolution of Three Risk Measures . ..
d.

h 0 D .. t E h M t It is mterestIng to compare the ynam-

wit ne ecrsion a ac omen .. .

ics of portfolio allocatIon with the dynamlcs

60% of risk levels. Since the bound on CVaR is set

E :::::~-4:::.w~~::::::::~ at zero (w = 0, 'Vt), VaR should be negative IV 0 t

~ ':': 40% (CVaR is always greater than or equal to VaR).
C)

:§ .5 In addition, Exhibit 3 shows that VaR (the
~ ~ 20% -9-E(und), variable ~ in the model) moves away from zero

; -8 00% -+-VeR over time, while the number of underfundings

.;:..:5
~_.~-~-:_~...,~~~. 5 6 78 9 ""'Probofund (or probability of underfunding) stays fairly

§ '0 .20% constant. At the same time, the expected value
-,0
w e of the underfundin

gs increases.6-no'i -40% Exhibit 4 illustrates that the differences

>

-60% in funding ratios between the different paths

Time increase over time. It compares the distribution

, , ., of the funding ratio at different times. In year
VaR reduces with time, ProbabIlity of underfundmg stays approxImately constant. 1 (. ft . d) h di . b tI ' f,. . . i.e. a er one perlO , t e Stri u on 0

Expected value of the underfundmgs Increases With tIme, ,

funding ratios is concentrated around 1.3.

Almost 90% are found in the interval 1.20 to
Ex H I BIT 4 1.25; the lowest value is 1.18, and the highest

Distribution of Funding Ratio at Different Times 1.42. By year 5, the average funding ratio is just below

with Fixed Allocations 1.4, but the lowest value found is 1.13, and the highest is

1.69. This pattern continues, and in year 9 we actually

observe sample paths where the funding ratio is below 1

(0.3% of the 2,000 paths). So, while the average funding>- 07

g T . 1 ratio increases over time, the Probability that very bad casesGI 00 - lme
~ will .

110" 0$ occur mcreases as we .
..t 04 - . Time 5 In a sensitivity analysis of the model with respect to

.~ 03 . . ..Time 9 the funding ratio parameter 1/', we vary the parameter from
~ 02 1.0 to 1.4. Exhibit 5 shows the effect of changing 1/' on the

~ 01 contribution rate. The contribution rates for different 1/'

seem to be very similar. As expected, a higher value of the~ Funding Ratio funding ratio parameter 1/' leads to higher contribution

rates. Calculations show that parameter 1/' can be effectively
Variance ofjiJnding ratio incre~es with time, CVaR ~onstrai,nt limits left used to ad.ust the wealth of the fund.
tail of distribution, which remains at 1/1 = 1,2 for all tIme penods, 9

Grouping of Sample Paths

additional investment in cash to compensate for different The strategy does not depend on the realized sam-

wealth levels within a given group of s~~ple paths. . pIe path, although the actual decisions do change with

Exhibit 2 illustrates the compOSitIon of a tyPiCal time. To obtain strategies that adapt to particular situations

portfolio (average monetary proportions) as a fun~tion of faced by a fund as measured by the funding ratio, we group

time. On average, more than 84% of the strategic po~t- sample paths in eight groups at each time.

folio funds is allocated to bonds (CP Nether~a~ds), wh.ile Grouping significantly improves the performance of

the remaining funds are allocated to eqUitIes (~qUity the algorithm. For the fixed quantity model with group-

Europe, and equity emerging markets). The allocatIon to ing, we reduce costs by about 50% from the cost with one

strategic cash (cash Netherlands) is close to zero. There decision at each time; see Exhibit 6. The second set ofbars

is a tendenCy to increase the allocation in equities over time in this graph corresponds to the fixed-quantity model
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without grouping, and the third set represents the fixed- E X H I BIT 5 .I

quantity model with grouping. Three cost values are Contribution Rate for Different Values of 1fI :
11

presented in Exhibit 6: net present value of contributions

to the fund, average premium, and contribution rate as a
0," I

fraction of wages. !

The first set of bars in Exhibit 6 represents the 0,
fixed-value model. This model is very similar to the fixed-

quantity model, but instead of fixing the number of shares, ~
~ 0,15

we fix the monetary values invested in each instrument. E
c

Because the fixed-value model significandy underperforms 8
'5 01

the fixed-quantity model, we omit the model details, but J
we include data on this model for the purposes of 0

comparison in Exhibits 6, 7, and 9.

The dynamics of the contribution rates for the

different models are presented in Exhibit 7. Again, we note
that the fixed-value model considerably underperforms the TIme

fixed-quantity model. The contribution rate in the fixed-
quantity model with grouping is lower than the E X H I BIT 6
contribution rate in the fixed-quantity model without Comparison of Cost

grouping. In the case of grouping, the contribution rate
is calculated as the weighted average of the contribution 500000 ' ,,;; o~

rates over the eight groups at each time. The contribution 450000 c=JNPV(1000NL)
3050

rate of the model with grouping exhibits some oscillations 400000 ~Averagepremium(I000NL)

that may, be suppressed using additional constraints, 350000 0300

disallowing significant changes in the contribution rate at 300000 0.250 ~

each time. ~ ~
2 250000 0200 0

The contribution rate for various groups in the ~ .§
fixed-quantity model with grouping is presented in Exhibit 200000 0150 ~

8. The contribution rate differs for each group of paths. 15(XXX) 0100

The solid line curve is the weighted average of 100000

contribution rates over eight groups. The vertical lines 50000 0050

display the range of contribution rates for each time 0 0000

. d Th . h h h. h fi d. .. Fixed.alue Fixed quantity Fixed quantity
perl0. e group WIt t e Ig est un mg ratIo IS no grouping no groupiog with grouping

represented by diamonds and the group with the next-

to-the-highest funding ratio by squares. The two highest

funding groups exhibit the highest changes in the Wi al h . . .al ..r 1. r
h h.. . .. e so compare t e Imtl porI-to 10S lor t e tree

contrIbutIon rate. WhIle the oscillatIons can be reduced d. J:r d 1 A . E h.b.
9 h. . . . . luerent mo e s. s you can see m x 1 It , t ere are

by modifying the feasIble set of contrIbutIon rates, the r diJ:r h h .. 'al ..r Ii Th. . . lew uerences among t e tree Imtl porI-tO os. e
oscillatIons may not be a severe drawback of this model £_- d . d 1 . h .

h th hi h. ... uxe -quantIty mo e WIt groupmg as e g est expo-
(If kept under control). Clearly, It WIll be undesIrable to . . . . .

ak dr . all .1,J:r d . . b . . ds sure to equItIes (hIghest percentage of rIsky mstruments).
m e amatIc y wuerent eclslons etween tlme perlO ..

.. .. The fixed-value model wIthout groupmg has the lowest
(contrIbutIon rate oscillatmg from -0.2 to 0.3), but the .. Th C"{T_n . k 1 1r h h. .. . . exposure to equItIes. e Viil'- rlS eve lor t e tree
oscillatIons do proVIde a cheaper solutIon than the solutIon d 1 . h h Thi ill h .

hf h fix d . d 1 . h . mo e s IS t e same, owever. s ustrates t at, WIt a
0 tee -quantIty mo e WIt out groupmg.. . .

U all . . d . h d .. . 0 dynamIc control strategy that responds to the sItuatIon of
su y, one IS mtereste m t e eClSl0n at tIme. . .

Th . . b h ld l .k 1 b the fund, rIsk can be accounted for m a more cost-effec-
IS IS ecause t e program wou most 1 eye .

. 1 d . lli h . r hi . uld tlve manner.
Imp emente m a ro ng orlzon las on, I.e., one wo

rerun the program at each time period to obtain a new

optimal initial decision.
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E x H I BIT 7 A model for finding optimal
c o f C t o b t . R t contribution rates and portfolio allo-

ompanson 0 on n u Ion a es

cations takes into account the fund-

0.5 ing situation of the fund. Using the

CVaR risk measure, the model can

0,. be solved with linear programming

techniques.

Our approach adds flexibility to

the decisions while using only a sam-

i pIe path representation of uncertain-

: ties, allowing us to avoid the explosion

i of the problem dimension required
.. by a stochastic programming approach.

The flexibility comes from grouping

at each time a set of sample paths that

correspond to similar characteristics

of the pension fund, and from restrict-

-O~ ing decisions to vary among different
Tim.

Contribution rate in the case of grouping calculated as the weighted average of the contribution rates groups of sampl~ paths. .

over the eight groups at each time. We obtam truly dynamIc

decisions at moderate computational

expense, while allowing for extensive

uncertainty through the use of paths. In fact, from a com-

E X H I BIT 8 putational point of view, the problem size and solution

C trib t o R t f D O ff t G times are on the same order of magnitude, with or with-
on u Ion a es or I eren roups .

out groupmg.
~ . Our main focus is the so-called fixed-quantity

O,A . , model, where for each group of sample paths we optimize

0,3 the number of shares invested in each asset category. We

.! 02 compare our grouping strategy to a strategy that makes
~ '

~ the same decision, regardless of the state of the fund and

~ 0,1 a so-called fixed-value model without grouping, where

~ 0 instead of the number of shares, we optimize the mone-

~ 1 tary value invested in each asset category.

8 -0,1 Our experiments indicate that dynamic decision-

.o,z making through the use of paths results in much lower

.03 costs to the fund than the alternative without grouping.
, me Clearly, how one groups the sample paths affects the

solution. For instance, the solutions obtained show an

oscillating behavior over time, which could be a

CONCLUSIONS consequence of the particular grouping method.

Future research should address the issue of grouping

We have explored a new approach to modeling the sample paths, perhaps by applying the algorithm in an

asset/liability management problems for pension funds. We iterative fashion. We also should analyze end-of-study

combine CVaR risk management with a new framework effects by associating a value with the state of the pension

of optimal decisions using sample paths. We have for- fund at the end of the horizon, as well as the effect of

mulated and solved several multiple-period optimization choosing different objectives, such as incorporating a mea-

models. Our findings can be summarized as follows. sure of the rate of return on the investment portfolio.
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EXHIBIT 9 i
Initial Portfolio for Three Models

100~

~~
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7D%

..
.= m
~ quity EM

,g quity EU
'E !i!% d NL
e
Co ash
~ 40%
..

3)%

~

10~

o~

Fixed quantity Fixed quantity Fixed value
Mth grouping no grouping no grouping

Fixed-quantity model with grouping has the highest exposure to equities, about 13%. All portfolios have more than 90% of investments in bonds.

A P PEN D I X 1= number of paths;
M th t o I M d I N = number of assets;

a ema lca 0 e T = number of time intervals;

! This appendix fonnally presents the fixed-quantity model Y = discount facto~ for contrib~tions in the future;

with CVaR constraints. We consider the model with grouping Wt = CVaR constraInt level at tIme t;

of sample paths. A special case of this model is a model without a; = confidence level in CVaR;

grouping, i.e., the same decision is taken for all paths at each time. k(i, t) = function returning the node (i.e., group number)

through which, at time t passes the i-th sample path;
Notation Kt = set of all nodes at time t;

~k = set of paths i that pass node k at time t;

Parameters (typical parameter values are included in tlow = lower bound on cash positions;

Exhibit A): v = upper bound on the relative position of an asset in

the portfolio (0 ~ v ~ 1);
I Ao = total initial value of all assets; ~low = lower bound on the position of instrument n at time
j n,t

W 0 = total initial amount of wages; t;

10 = initial payments made by the fund; ~uP = upper bound on the position of instrument n at time
n,tp 0 = initial market price of asset n (scaled to 1 for all t.

n. '
assets); y = lower bound on contribution rate; and

Po = scale factor that translates the initial cash position y = upper bound on contribution rate.

into monetary value (set to 1, for simplicity);

II' = lower bound for funding ratio; typical value for'll is Random data:

around 1 or higher; p~ t = market price of asset n for period t - 1 to t in path i;

II' end = lo,,:er bound for funding ratio at the last time P: = equivalent of a market price for cash at time tin

Ipenod; path i. This is a conversion factor that converts the
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cash position variables C;o and f into a monetary value; N
Li = liability measure that should be met or exceeded by .I'Li - ~ pi ck(i,t-1) - Pi~i - ;-k(i,t-1) < (A-4)t 'I' t L.,., n,t"0,t-1 t t-1..t -

the total value of all assets in the fund at time t in n=O

path i;
1: = payments of the fund at time t in path i; and z:, Vi,t = 1,...,T

W: = total wages at time t in path i.

Decision variables:
(f + 1 k L z; .$: (A-5)

y~ = contribution rate at time t in node k; (1- a)IVi-11 iEVt~l

~ t = total quantity (i.e., number of shares) of asset n (n = t - 1 T k E Kn, Wi, - ,..." t-1
0, ..., N) at time t in node k;

fo = additional amount of cash owned at time 0;

f: = amount of cash owned at time t in path i;

~ = dummy variable that approximates <x-VaR in the p!rflr-1 + qi ?; 0, Vi (A-6)

optimal solution at time t for the decision made at

node k; N
z: = dummy variables associated with the <x-CVaR con- L p~,Tf.~~:11) + pfrTlr-1 + Bi ?; 'l/JendL!r, Vi (A- 7)

straint at time t and in path i; n=O

qi = amount of money borrowed at time T - 1 in path i;

and
B' = size ofunderfundings at time Tin path i. WI L p;Tf ?; 0, k E Kt, t = 1,..., T -1 (A-8)

I t iEVtk

Formulation of the Optimization Problem
1 N

First, we formulate the problem. Then, we comment each -Pn,of.n,o $: L Pm,of.m,o, Vn (A-9)
v

expression. m=O

1 I T-1 Wi k(i,t) 'N
minimize WOYO + - ~ ~ tYt + (A-l) .!pi ck(i,t) < ~ Pi ck(i,t) (A-10 )I ~ L.,., (1 + ,)t V n,t..n,t - L.,., m,t..m,t

0=1 t=1 m=O

Vi, Vn,t= 1,...,T-11 I qi 1 I Bi

>"1 [?= (1+-;:;;)T + >"2[?= (1 + ,)T
0=1 0=1

clow < ck < cup
..n,t - ..n,t - ..n,t t=O,...,T-l. (A-ll)

subject to 1./
k Kvn, E t

N

L Pn,of.n,o + Po,OTo = Ao -10 + WOYO (A-2) 0 .$: z:, Vi, t = 1, ..., T (A-12)

n=O

0 .$: TO (A-13)

N
~ i (ck(i,t) - ck(i,t-1») + i ( i - i ) (A-3)L.,., Pn,t ..n,t ..n,t-1 Pt T t T t-1

n=O low < i 1./' t 1 T 1T - Tt, vl, = ,..., -, (A-14)

Wi k(i,t) Zi t 1 T 1 1./.= tYt - t, = ,..., - ,vl
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relative position in each asset can be limited to v(O ~ v ~ 1) of

0 ~ qi, 'v'i (A-1S) the total portfolio value with the constraints (A-9) and (A-l0).
The value v = 1 implies that we have no bounds on the

relative positions. The absolute positions are handled by the

0 < ni 'v'i (A-16) constraint (A-ll).- , Constraints on Cash Positions. Similar to the other assets,

the size of the cash position could also be limited. In particular,

Yo is free we do not allow any borrowing at time 0 [constraint (A13)],
(A-17) since borrowing should only be used to compensate for the dif-

ferences among the sample paths in the same group. Imposing

a lower bound on cash positions could reflect the impact of reg-
~ ~ yf ~ Y t = 1,..., T - .1 (A-18) ulations [constraint (A-4)]. We allow borrowing in all paths,

. k but limit the expected value of the cash positions to be no less
'v'z, E Kt than zero [constraint (A-8)]. This means that on average we do

not borrow.

(f is free, t = 1,.. ., T, k E Kt (A-19) Constraints on Contribution Rate. We also place limits

on the rates of contributions from wages of active members;

, see, (A-18). The upper bound is denoted by y, and the lower
! Objective. The objective function (A-i) consists offour bound is denoted by I.

i terms. The first term equals the initial contribution, and the

second term equals the expected present value of the contri- ENDNOTES

butions to the pension fund. The third term is the expected pres-

:' ent value of the loans at the end of the investment horizon. This The authors are grateful to OR TEC Consultants, B. V .,
l term is included to ensure that all borrowed money is repaid for providing a data set of sample paths for a pension fund used

:' at the end of the investment horizon. in this study.
i The final term is the expected present value of the 1 A sample path completely describes future events; the
! underfundings at time T, i.e., the model penalizes cases where optimal solution for a particular sample path should not

we have less wealth than the required leve11flend4 . This term "anticipate" (use information about) future events.

is included to prevent end-of-horizon effects.

Investment Balance. Constraints (A-2) and (A-3) are

balance equations constraining the amount of money available E X H I BIT A
at the end of a period, plus additional contributions and minus Typical Parameter Values

payments, to be equal to the money available at the beginning

of the next period. Parameter Value

CVaR Constraints on Wealth. We have one CVaR con- # of paths 'I 2000

straint for each node, and accordingly one auxiliary variable ~; # of asset categories (except cash) N 3

for each node k at each time t. If the CVaR constraint is active, I gth f . t t h . -,
T 10en 0 illves men orlzon

the optimal value of the variable 'Ik will be equal to (X-VaR for
lid I I 0 95con ence eve a .

the appropriate node! In each node k and at each time t, the value ,.c.
. . lower bound on funding ratio !/I 1.2

of the investments must meet the requIred level 1fI~1 In an
-CVaR (A 4) d (A 5) Th di . al d lower bound on funding ratio at horizon !/I.nd 1.3<X sense; see - ,an -. e con non expecte
al fl di h V R 1 1 t'k . . d b h present value discount factor 'Y 0.15v ue 0 osses excee ng tea eve"l IS constralne y t e

CVaR bound WI in (A-5). penalty coefficient for loans at hori~on Al 1

Terminal Loans. At the end of the investment horizon penalty coefficient for underfunding at horizon A2 .}

(i.e., when t = T), all borrowed money must be repaid. CVaR constraint level WI, 'it 0

Constraint (A-6) ensures that qi represents the value of the lower bound on cash positions rlow 0
borrowed cash position at time t = T. upper bound on the relative position in an asset v 0.2 !

End-oj-Horizon Effects. Bi in (A- 7) measures a shortage lower bound on position in an asset f.~":f ' 'in, 'it 1)

of wealth in path i at time T when the wealth is below the upper bound on position in an asset f.:~ , 'in, 'it 00
required leve11flenhi. The value Bi is included in the objective lower bound on contribution rate . y -0.2

function to prevent undesirable end-of-horizon effects. upper bound on contribution rate W 0.3

Constraints on Positions. The model allows for
b f d IK I '"' t 8numeronoes t,v

constraining both the absolute and relative position sizes. The
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-,,"r~-c - 2We consider the defined-benefit pension scheme. Censor, Y., and S.A. Zenios. "Parallel Optimization." In

3A decision variable can be a constant or a stochastic Numerical Mathematics and Scientific Computation. New York:

function, depending upon the underlying stochastic variables. Oxford University Press, 1997.

4The notation suppresses the dependence of the variables
on time for simplicity, but the function and most of the Consiglio, A., F. Cocco, and S.A. Zenios. "The Value oflnte-

variables in fact depend on t. grative Risk Management for Insurance Products with Guar-

5For example, for one confidence level, an equity may antees." The journal of Risk Finance, Spring 2001, pp. 1-11.

be a dominant contributor to portfolio risk, and for another con-
fidence level, the dominant contributor may be a bond (an inter- Dert, C. "Asset Liability Management for Pension Funds: A

est rate or credit risk). Multistage Chance Constrained Programming Approach."

6Recall that underfunding means that the value of the Ph.D. Thesis. Erasmus University, Rotterdam, The

fund is lower than IIItimes the liabilities. Ifill> 1, this can still Netherlands, 1995.

mean that we are not truly underfunded, but only that we are
not meeting our target funding ratio. -. "A Dynamic Model for Asset Liability Management for

7(X-VaR equals the smallest optimal value if the solution Defined Benefit Pension Funds." In W. T Ziemba and, J.M.

'7 is not unique. Mulvey, eds., Worldwide Asset and Liability Modeling. Cambridge:

Cambridge University Press, 1998.
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