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Abstract— This paper proposes a Gamma-based state space 
model to predict engineering asset life when multiple degradation 
indicators are involved and the failure threshold on these 
indicators are uncertain. Monte Carlo-based parameter 
estimation and model inference algorithms are developed to deal 
with the proposed Gamma-based state space model. A case study 
using real data from industry is conducted to compare the 
performance of the proposed model with the commonly used 
proportional hazard model (PHM). The result shows that the 
Gamma-based state space model is more appropriate to deal with 
the situation when the failure data is insufficient. 
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I.  INTRODUCTION 
Predicting the failures of engineering assets is important in 

modern industry. An unexpected failure of a critical 
engineering asset can cause the breakdown of a whole plant. 
Therefore, a lot of research has been conducted to predict asset 
failures through failure history and degradation indicators. 
However, three issues make asset failures difficult to predict in 
practice. The first issue is the stochastic property of 
degradation indicator development processes. To deal with this 
issue, a flexible mathematic model should be developed to fit 
to these stochastic curves. The second issue is the uncertain 
failure thresholds on degradation indicators. When a failure 
happens, the same degradation indicator of different subjects 
may have different values. This issue is also called “gray 
boundary” in some literature [1]. The last issue is the fusion of 
multiple indicators collected during asset degradation 
processes. 

The three issues have been partially addressed by existing 
research. The proportional hazard model (PHM), which was 
originally proposed in biomedical research, can model the 
uncertain relationships between multiple indicators and time 
dependent failure rate. However, the PHM has the assumption 
of time independent covariates effects [2]. Furthermore, when 
using the PHM to deal with time dependent covariates, an 
integral is involved. To make the integral of the covariates 

tractable, the time dependent covariates are often assumed to 
follow some deterministic functions of time [1], or some 
special stochastic process(es), e.g., discrete state assumption 
[3]. Another model to deal with multiple degradation indicators 
and uncertain failure thresholds is the logistic regression 
model. The logistic regression model has the ability to model 
the uncertain relationship between the failure probability and 
the values of multiple degradation indicators. However, the 
logistic regression model only considers the covariate values at 
the failure time or at the last inspection. Therefore, the logistic 
regression model cannot obtain as good a result as the PHM 
[1]. 

Compared with the approaches above, the state space 
model is a more flexible and mathematical tractable method to 
handle multiple stochastic degradation indicators and uncertain 
failure thresholds. In the state space model, the dynamic 
characteristics of a system are modelled by a time dependent 
system process, and the system states are supposed to be 
partially revealed by observations. In degradation modelling, 
the system development process denotes the underlying 
degradation process of an asset, while the observations 
represent degradation indicators. Wang develops a state space 
model to predict the remaining useful life (RUL) of bearings 
using the RMS of vibration signals [4]. However, the state 
space model developed by Wang assumes that the vibration 
RMS values of all the bearings at the same residual life follow 
an identical distribution. Therefore, Wang’s model does not 
consider the heterogeneous longitude health degradation 
processes of different subjects. Makis and Jiang develop a state 
space model based on a discrete state continuous time Markov 
process [5]. The discrete state requires discretising the 
continuous degradation process which needs expert knowledge 
and may introduce additional errors. Whitmore, Crowder and 
Lawless propose a bivariate Wiener process [6]. However, in 
the bivariate Wiener process, only the covariates obtained at 
failure times or censoring times are considered. 

This research extends the existing research on the state 
space model for asset life prediction by proposing a Gamma-
based state space model. Monte Carlo-based parameter 
estimation and model inference algorithms are developed to 



handle the non-Gaussian property. Finally, a case study using 
vibration data from bearings on high pressure liquefied nature 
gas pumps is conducted to compare the performance of the 
proposed Gamma-based state space model and the PHM. 

II. MODEL DEVELOPMENT 
The proposed Gamma-based state space degradation model 

consists of two components. One is the system equation 
modelling the underlying degradation process; the other is the 
observation equation describing the relationship between the 
underlying degradation process and the degradation indicators. 
The system equation is given by (1), where the scalar 
variable ( )tΛ  denotes the underlying health state of an asset at 
time t . The increments of ( )tΛ  follow a Gamma distribution. 
Further, ξ is the scale parameter of the Gamma distribution. 
The shape parameter (i.e., ta Δ⋅ ) of the Gamma distribution is 
assumed to be proportional to the length of the time interval. 
The initial health state of the asset is assumed to be brand new, 
i.e., ( ) 00 =Λ t . A larger value of ( )tΛ  indicates a worse health 
state. A failure is supposed to happen when the underlying 
degradation process, ( )tΛ , hits a failure threshold fΛ . The 
observation equation is given by (2), where the degradation 
indicator vector, ( )tX

r
, is assumed to follow a multivariate 

normal distribution, where Σ
r

is the covariance matrix.  

 ( ) ( ) ( )ξ,~ taGattt Δ⋅Λ−Δ+Λ  (1) 

 ( ) ( )( )ΣΛ⋅
rrr

,~ tcNtX  (2) 
 

In this research, the Gamma process is adopted as the 
underlying degradation process. The reasons are as follows: 
Firstly, the Gamma process is continuous in time and state. 
Therefore, irregular inspection intervals can be handled 
naturally, and discretisation of the health state can be avoided. 
Secondly, compared with another commonly used continuous 
stochastic process, the Wiener process, the increments of the 
Gamma process are positive (they increase monotonically). 
This monotonic property can avoid constructing a conditional 
probability function to ensure the underlying degradation 
process dose not drift to a failure threshold between two 
normal states. The monotonic increasing property is also 
consistent with irreversible degradation processes (e.g., wear, 
corrosion, crack growth) of most engineering assets.  

To make the formulations involved in parameter estimation 
more concise, only one sequence of indicators is considered in 
the parameter estimation algorithm in the present paper. The 
formulations can be extended to multiple data sequences 
without any theoretical difficulties. Denote the inspection times 
as niti ,,2,1; L= , where n  is the number of inspections. The 
values of the underlying degradation health state and the 
degradation indicator vector at the i  th inspection are denoted 
as iλ and ix

r
 respectively. The failure time and the failure 

threshold on the underlying degradation process are denoted as 
fT  and fΛ . The degradation indicators at fT  are not required 

by the Gamma-based state space model. Note that fΛ is 
assumed equal to 1 because, for different values of fΛ , the 
same life time distribution can be obtained by changing the 
scale parameterξ . 

III. PARAMETER ESTIMATION 
This research uses the Expectation-Maximisation (EM) 

algorithm to estimate the parameters of the Gamma-based state 
space model. The Monte Carlo-based particle smoother is used 
in the E step of the EM algorithm to deal with the non-
Gaussian underlying degradation process. 

The application of the EM algorithm can be divided into 
four steps. The first step is the estimation of initial parameters. 
The second step, namely the E step, is to estimate the 
expectation of the complete likelihood function. After that, a 
new set of parameters is obtained by maximising the expected 
complete likelihood function. This step is called the M step. 
The final step is to check the convergence of EM loops. If the 
convergence condition is satisfied, the parameters acquired 
during the M step are regarded as the final result. Otherwise, 
another iteration of EM loop begins using the parameters 
acquired in the M step as the initial parameters. The four steps 
are detailed as follows. 

In this research, the initial parameters used by the first EM 
iteration are largely obtained based on human experience 
according to failure times and degradation indicators. A more 
objective initial parameter selection method is to be 
investigated in the future research. 

 
The E step is to obtain the expectation of the complete 

likelihood function given by (3), where { }ξθ a=1 , 
{ }Σ=

rr
c2θ . According to the Gamma Bridge theory [7], the 

underlying degradation process changes from the original 
Gamma process to a new stochastic process given by (5) after 
the failure time is considered. The Monte Carlo-based particle 
smoothing algorithm is adopted to deal with the state space 
model based on the new stochastic process. This paper adopts 
the particle smoother using the backwards simulation method 
proposed by Simon, Arnaud et al [8]. The detail of 
implementing the particle smoothing is not discussed in this 
research. After the particle smoothing, fN sequences of 

samples are generated, i.e., fN
ns
:1
:1 , where fN  is the number of 

particles used in the particle smoothing. The expectation of 
functions of the underlying degradation state nkk K,2,1; =λ , 

can be approximated using the smoothing particles fN
ns
:1
:1 , as in 

(4). 

 ( )( ) ( )( ) ( )( )nnnnn xfEfExfE :12:11:1:1:1 ,loglog,log λθθλθλ
rr

+=  (3) 

 ( )( ) ( ) nksgTxgE
fN

i

i
kfnk ,,2,1,

1
:1 K
r

=≈ ∑
=

λ  (4) 



The two components of (3) can be written as (6) and (7) 
respectively, where 1−−= iiiv λλ , ;1−−= iii atatu  

1,,3,2 += ni K , fn Λ=+1λ and fn Tt =+1 , where m is the size of 
the degradation indicator vector. To calculate (6) and (7), the 
three components (i.e., ( )iE λ , ( )2

iE λ , and ( )( )ivE log ) should 
be approximated using the smoothing particles fN

ns
:1
:1  according 

to (4). 

After the expected complete likelihood function is obtained, 
the M step is carried out. During the M step, (6) and (7) are 
optimized separately. The optimization algorithms are 
straightforward, and are not discussed here. 

Compared with the EM algorithm based on an analytic 
method, the EM algorithm using the particle smoother does not 
converge smoothly. The parameter estimates fluctuate in a 
certain range after some EM iterations. After increasing the 
number of particles, the estimates fluctuate in a smaller range. 
In this research, the EM iteration is regarded as having 
converged when the maximum and minimum values of â , ξ̂ , 

and ĉ
r

 are not in the results of the recent five EM loops. The 
EM algorithm is carried out in two stages. Firstly, 1000 
particles are used. After the EM iteration converges, 2000 
particles are adopted to obtain a better estimation result. 

IV. LIFETIME PREDICTION 
The survival function in (8), inferred from the Gamma-

based state space model, consists of two components. The first 
component is the probability density function (PDF) of the 
current underlying degradation state cλ  given the degradation 
indicators up to current inspections, and the fact that the failure 
has not happened yet, i.e., ( )fccc xf Λ<λλ ,:1

r
, where c denotes 

the current inspection index. Then ( )fccc xf Λ<λλ ,:1

r
 can be 

approximated by the particle filtering results fN
cf

:1 . For details 
of the implementation process of the particle filter, readers can 
refer to [9]. The second component is the survival function 
given the current degradation state, i.e., ( )cfTt λ≥Pr . In this 
paper, the development of the underlying degradation process 
is the Gamma process. Therefore, ( )cfTt λ≥Pr  can be acquired 
as (9). After substituting (9) into (8), and using the result of the 
particle filter, the survival function is obtained as (10). After 
differentiating (10), the PDF of the lifetime conditional on the 
degradation observations up to the current time can be obtained 
as (11). 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) nitTattatttBeTttf ifiiifiiffii ,,2,;, 1111 K=−−Λ−ΛΛ−Λ=Λ=ΛΛΛ −−−−  (5) 

 ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )∑∏
+

=
−

+

=
+ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−−+Γ−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛=
1

2
1

1

2
11:1

1log1loglog,;loglog
n

i
iiiiii

n

i
iin EEvEuuuuvgamEfE λλ

ξ
ξξθλ  (6) 

 ( )( ) ( ) ( ) ( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ ′⋅−⋅⋅−−−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ ⋅−= ∑∏
=

−

=

n

i
iiiim

n

i
iinn cxcxEtrnncxNExfE

1

1
2

1
:12:1 2

1ln
22

,0;log,log λλ
π

λλθ
rrrrrrr

ΣΣΣ  (7) 

 ( ) ( ) ( ) cfccccffccf
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0

:1:1 ,Pr,Pr  (8) 
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V. CASE STUDY 
Liquefied natural gas (LNG) pumps are critical equipment 

in the LNG industry. An unexpected breakdown of an LNG 
pump can reduce the amount of LNG at the receiving terminal 
and cause performance dropdown of the whole plant. The 
structure of an LNG pump is shown in Fig 1. The LNG pump 

is enclosed within a suction vessel and mounted with a vessel 
top plate. Three ball bearings are installed to support the entire 
dynamic load of the integrated shaft of a pump and a motor. 
For each bearing, three accelerometers are installed on housing 
near the bearing assembly in horizontal, vertical and axial 
directions respectively. 



 
Figure 1.  Pump schematic 

The degradation processes of 
two bearings installed on 
different LNG pumps were 
recorded. During the degradation 
processes vibration signals were 
measured at inspections with 
irregular intervals. At the 
beginning and the last stages of 
lifetime, vibration signals were 
measured more frequently; while 
at the middle stage of lifetime, 
the intervals between inspections 
were relatively longer. The 
vibration signals were all 
measured in the horizontal 
direction. The characteristics of 
the vibration signals are listed in 
TABLE I. . 

Bearing failures often generate shock pulses whose energy 
locates at a relatively high frequency band. Therefore, vibration 
signals, after high pass filtering (HPF), are often more sensitive 
to defects at an early stage. For raw vibration signals, the 
kurtosis and the crest factor which reveals the number of 
extreme deviations can also indicate early defects. After 
investigating the different features of the vibration data, three 
features were used as degradation indicators: the crest factor of 
the raw vibration signals, the crest factor of the vibration 
signals after HPF at 2500 Hz, and the entropy of the vibration 
signals after HPF at 3000 Hz.  

TABLE I.  THE VIBRATION DATA FEATURES 

Machine 
No 

Life Time 
(Hrs) Failure Mode Sample 

Number 
Sampling 
Frequency 

P301C 4,698 Outer raceway 
spalling 120 12,800 Hz 

P301D 3,511 Inner raceway 
flaking 136 12,800 Hz 

 

Using the selected degradation indicators of the bearing 
installed on P301D, the Gamma-based state space model was 
trained by the Monte Carlo-based EM algorithm developed in 
Section III. The convergence processes of the parameter 

estimates are shown in Fig 2. The final training results are 

0.0113ˆ =a , 0.0253ˆ =ξ , ( )′= 2.40580.61691.6663ĉ
r

, 

( )⎜
⎝
⎛ ′=Σ 1.71-1.43-5.38

r̂
 ( )′1.11-5.351.43-  

( ) 21072.511.1-1.71- −×⎟
⎠
⎞′ . According to the training 

results, the RUL of the bearing from P301C was estimated 
using the algorithms proposed in Section IV. The prediction 
results at different inspections and the corresponding 95% 
confidence intervals are illustrated in Fig 3.  

Fig 3 shows that, at the beginning, the prediction error was 
very large. This was caused by the differences between the 
lifetimes of the training dataset and the test dataset. At the 
beginning of the lifetime, only few condition monitoring 
observations were collected. The RULs were largely predicted 
based on the lifetime of the training dataset which was much 
shorter than that of the test dataset. Consequently, the predicted 
RULs were shorter than the actual values. When a longer 
indicator history was considered, the quicker degradation 
progress of the bearing from P301C was detected. As a result, 
the prediction error decreased. Especially at the last stage of the 
life, the prediction results were very close to the real values. 
Fig 3 also illustrates that most of the actual RULs fell in the 
95% confidence intervals, even at the beginning of the life. The 
estimated RULs of the bearing from P301 at different operation 
hours are listed in TABLE II. . 

 

TABLE II.  THE ESTIMATED RUL OF THE BEARING FROM P301 AT 
DIFFERENT OPERATION HOURS 

Operation 
Hours 
(Hrs) 

1076 1546 2072 2565 3032 3522 4035 4356 

Estimated 
RUL (Hrs) 2572 2326 2251 2019 1246 1113 885 453 

Actual 
RUL (Hrs) 3622 3152 2626 2133 1666 1176 663 342 

 
The same data were also treated using the PHM algorithm 

developed in [1]. The vibration collected from the bearing 
installed in P301D was again used as the training dataset. The 
parameters of the PHM model given by (12) were estimated as: 

 
Figure 3.  The RUL prediction results of P301C 

 
Figure 2.  The convergence process of the parameters 



91265ˆ .=γ , 4.5430ˆ =η , ( )7285102819ˆ ...β =′ . Using 
these parameters, the RULs of the bearing from P301D and 
P301C were estimated as Fig 4 and Fig 5. Fig 4 shows that, the 
PHM even cannot give reasonable prediction results for the 
original training dataset until the last stage of the life. For the 
test dataset, even at the late stage, the predicted RULs still have 
significant errors. 

 ( )( ) ( ) ( )( )tZttZt βηηγλ γ ′= − exp1  (12) 

 
The RUL prediction results verify that the proposed 

Gamma-based state space model can achieve a more accurate 
prediction result than the commonly used PHM in this case 
study. The reasons are as follows. Firstly, the PHM model 
requires substantial failure history. In this case study, however, 
only one failure event is available. In this situation, the PHM 
will have a large prediction error when the lifetime of the test 
data is considerably different from that of the training data. In 
Fig 5, the RUL sharply decreases to zero after 3511 hour, 
which is the failure time of the training data. In contrast, the 
Gamma-based state space model uses the increments of the 
underlying degradation process instead of only the failure time. 
Therefore, the degradation processes of indicators and the 
failure times are combined more efficiently. Secondly, the 
RUL estimation using the PHM is based on the prediction of 
degradation indicators. This paper uses the nonlinear model 
fitting method as [1] which may suffer significant error when a 
degradation process is highly stochastic. Using more 
sophisticated prediction methods such as stochastic process 
fitting may get better results. However, the integral of the 
predicted hazard process may become intractable. In addition, 
the problem which is caused by insufficient failure history 
cannot be solved even the degradation indicators are predicted 
appropriately. 

VI. CONCLUSIONS 
This paper has developed a Gamma-based state space 

degradation model to predict the RUL of engineering assets. 
The information from the stochastic degradation processes of 
multiple degradation indicators and uncertain failure thresholds 
has been combined by the Gamma-based state space model. 
Furthermore, Monte Carlo-based parameter estimation and 

RUL prediction algorithms have also been developed to deal 
with the Gamma-based state space model. In addition, a case 
study using the vibration data of bearings from LNG pumps 
has been conducted. The results of the case study demonstrate 
that the proposed Gamma-based state space model has a better 
performance than the commonly used PHM when the failure 
history is insufficient. Therefore, the proposed Gamma-based 
state space model is expected to be more appropriate to real 
industry where event data can often be sparse. 
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Figure 4.  RUL prediction results of P301D using the PHM 

 
Figure 5.  RUL prediction results of P301C using the PHM 



 


