Asset Prices in An Exchange Economy

Robert Lucas

Zhe Li

SUFE

Question

- Risk-free assets and risky assets
- bank deposit, government debt

$$
R_{t+1}
$$

- stock

$$
\text { pay } p_{t}, \text { return } p_{t+1}+d_{t+1}
$$

- How those risky assets are priced?

Objective

Theoretical examination of stochastic behavior of equilibrium asset prices

- Returns of an asset is stochastic
- Existence of equilibrium asset prices
- Behavior of equilibrium asset prices

Model Environment

- Identical consumers
- A single consumption good
- A number of different productive units
- Nature determines output - no input
- pure exchange
- An assest is a claim to all or part of the output of one of these units
- Shock
- productivity in each unit fluctuates stochastically through time

Consumption and Utility

- Representative consumer:

$$
E\left\{\sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}\right)\right\}
$$

c_{t} stochastic process representing consumption of a single good

- n distinct productive units, output is perishable

$$
0 \leq c_{t} \leq \sum_{i=1}^{n} y_{i t}
$$

Output

- Production is entirely "exogenous": no labor or capital inputs
- Output y_{t} follows a Markov process
- transition funciton

$$
F\left(y^{\prime}, y\right)=\operatorname{Pr}\left\{y_{t+1} \leq y^{\prime} \mid y_{t}=y\right\}
$$

Asset holdings

- Ownership in this productive units is determined each period in a competitive stock market
- Each unit has outstanding one perfectly divisible equity share
- A share entitles its owner as of the beginning of t to all of the unit's output in period t
- Shares are traded, after payment of real dividends, at a competitively determined price vector $p_{t}=\left(p_{1 t}, \ldots p_{n t}\right)$
- Let $z_{t}=\left(z_{1 t}, \ldots, z_{n t}\right)$ denote a consumer's beginning-of-period share holdings

Quantities of consumption and asset holdings

- All output will be consumed $\left(c_{t}=\sum_{i=0}^{n} y_{i t}\right)$
- All shares will be held $\left(z_{t}=(1, \ldots, 1)=\underline{1}\right)$

States and price function

- Physical state of the economy:
- The current output vector y_{t} summarizes all relevant information on current physical state
- Knowledge of the transition function $F\left(y^{\prime}, y\right)$
- Equilibrium should be expressible as some fixed function $p(\cdot)$ of the state of the economy, or $p_{t}=p\left(y_{t}\right)$
- the $i^{t h}$ coordinate $p_{i}\left(y_{t}\right)$ is the price of a share of unit i when the economy is in the state y_{t}.
- Knowledge of the transition function $F\left(y^{\prime}, y\right)$ and this function $p(y)$ will suffice to determine the stochastic character of the price process $\left\{p_{t}\right\}$

Policy funcitons

- Decision rules $c_{t}=c\left(z_{t}, y_{t}, p_{t}\right)$ and $z_{t+1}=z\left(z_{t}, y_{t}, p_{t}\right)$
- A consumer's current consumption and portfolio decisions, c_{t} and z_{t+1}, depend on his beginning of period portfolio, z_{t}, the prices he faces, p_{t}, and the relevant information he possesses on current and future states of the economy, y_{t}

Definition of equilibrium

Definition

An equilibrium is a continuous function $p(y): E^{n+} \rightarrow E^{n+}$ and a continuous, bounded function $v(z, y): E^{n+} \times E^{n+} \rightarrow R^{+}$such that (i)

$$
v(z, y)=\max _{c, x}\left\{U(c)+\beta \int v\left(x, y^{\prime}\right) d F\left(y^{\prime}, y\right)\right\}
$$

subject to

$$
c+p(y) \cdot x \leq y \cdot z+p(y) \cdot z, c \geq 0,0 \leq x \leq \bar{z}
$$

where \bar{z} is a vector with components exceeding one;
(ii) for each $y, v(\underline{1}, y)$ is attained by $c=\sum_{i} y_{i}$ and $x=\underline{1}$.

Definition of equilibrium

- Condition (i) says that, given the behavior of prices, a consumer allocates his resources $y \cdot z+p(y) \cdot z$ optimally among current consumption c and end-of-period share holdings x
- Condition (ii) requires that these consumption and portfolio decisions be market clearing

Lucas's Tree

- Every one is endowed with a tree that can produce fruit

Lucas's Tree

- Every one is endowed with a tree that can produce fruit
- An asset entitles the ownership to the tree the claim to the fruit

Lucas's Tree

- Every one is endowed with a tree that can produce fruit
- An asset entitles the ownership to the tree the claim to the fruit
- Output of fruit is subject to uncertainty

Lucas's Tree

- Every one is endowed with a tree that can produce fruit
- An asset entitles the ownership to the tree the claim to the fruit
- Output of fruit is subject to uncertainty
- Our interest:

The movement of the asset prices

Construction of the equilibrium - propositions

Proposition 1: For each continuous price function $p(\cdot)$ there is a unique, bounded, continuous, nonnegative function $v(z, y: p)$ satisfying (i). For each $y, v(z, y: p)$ is an increasing, concave function of z.

Proposition 2 (Envelope theorem)

Proposition 2: If $v(z, y ; p)$ is attained at (c, x) with $c>0$, then v is differentiable with respect to z at (z, y) and

$$
\frac{\partial v(z, y ; p)}{\partial z_{i}}=U^{\prime}(c)\left[y_{i}+p_{i}(y)\right], \quad i=1, \ldots, n
$$

Solution of the price function

- First order condition

$$
\begin{gathered}
U^{\prime}(c) p_{i}(y)=\beta \int \frac{\partial v\left(x, y^{\prime}\right)}{\partial x_{i}} d F\left(y^{\prime}, y\right) \\
c+p(y) x=y z+p(y) z
\end{gathered}
$$

provided $c, x>0$

Solution of the price function

- First order condition

$$
\begin{gathered}
U^{\prime}(c) p_{i}(y)=\beta \int \frac{\partial v\left(x, y^{\prime}\right)}{\partial x_{i}} d F\left(y^{\prime}, y\right) \\
c+p(y) x=y z+p(y) z
\end{gathered}
$$

provided $c, x>0$

- If next period's optimum consumption $c l$ is also positive, Proposition 2 implies

$$
\frac{\partial v\left(x, y^{\prime}\right)}{\partial x_{i}}=U^{\prime}\left(c^{\prime}\right)\left[y_{i}^{\prime}+p_{i}\left(y^{\prime}\right)\right]
$$

Solution of the price function

- Now in equilibrium $z=x=\underline{1}, c=\sum_{j} y_{j}$, and $c^{\prime}=\sum_{j} y_{j}^{\prime}$

Solution of the price function

- Now in equilibrium $z=x=\underline{1}, c=\sum_{j} y_{j}$, and $c^{\prime}=\sum_{j} y_{j}^{\prime}$

$$
U^{\prime}\left(\sum_{j} y_{j}\right) p_{i}(y)=\beta \int U^{\prime}\left(\sum_{j} y_{j}^{\prime}\right)\left(y_{i}^{\prime}+p_{i}\left(y^{\prime}\right)\right) d F\left(y^{\prime}, y\right)
$$

for $i=1, \ldots, n$

Solution of the price function

- Now in equilibrium $z=x=\underline{1}, c=\sum_{j} y_{j}$, and $c^{\prime}=\sum_{j} y_{j}^{\prime}$

$$
U^{\prime}\left(\sum_{j} y_{j}\right) p_{i}(y)=\beta \int U^{\prime}\left(\sum_{j} y_{j}^{\prime}\right)\left(y_{i}^{\prime}+p_{i}\left(y^{\prime}\right)\right) d F\left(y^{\prime}, y\right)
$$

for $i=1, \ldots, n$

- One may think this equation, loosely, as equating the marginal rate of substitution of current for future consumption to the market rate of transformation, as given in the market rate of return on security i

Solution of the price function

- Now in equilibrium $z=x=\underline{1}, c=\sum_{j} y_{j}$, and $c^{\prime}=\sum_{j} y_{j}^{\prime}$

$$
U^{\prime}\left(\sum_{j} y_{j}\right) p_{i}(y)=\beta \int U^{\prime}\left(\sum_{j} y_{j}^{\prime}\right)\left(y_{i}^{\prime}+p_{i}\left(y^{\prime}\right)\right) d F\left(y^{\prime}, y\right)
$$

for $i=1, \ldots, n$

- One may think this equation, loosely, as equating the marginal rate of substitution of current for future consumption to the market rate of transformation, as given in the market rate of return on security i
- Mathematically, it is a stochastic Euler equation

Solution of the price function

- Define

$$
\begin{gathered}
g_{i}(y)=\beta \int U^{\prime}\left(\sum_{j} y_{j}^{\prime}\right) y_{i}^{\prime} d F\left(y^{\prime}, y\right) \\
f_{i}(y)=U^{\prime}\left(\sum_{j} y_{j}\right) p_{i}(y)
\end{gathered}
$$

We have n independent functional equations

$$
f_{i}(y)=g_{i}(y)+\beta \int f_{i}\left(y^{\prime}\right) d F\left(y^{\prime}, y\right)
$$

Solution of the price function

- If

$$
f(y)=g_{i}(y)+\beta \int f\left(y^{\prime}\right) d F\left(y^{\prime}, y\right)
$$

have solutions $\left(f_{1}(y), \ldots, f_{n}(y)\right)$

Solution of the price function

- If

$$
f(y)=g_{i}(y)+\beta \int f\left(y^{\prime}\right) d F\left(y^{\prime}, y\right)
$$

have solutions $\left(f_{1}(y), \ldots, f_{n}(y)\right)$

- the price functions

$$
p_{i}(y)=\frac{f_{i}(y)}{U^{\prime}\left(\sum_{j} y_{j}\right)}
$$

will solve $\left(^{*}\right)$, and $p(y)=\left(p_{1}(y), \ldots, p_{n}(y)\right)$ will be the equilibrium price function

Solution by contraction mapping

- If f is any continuous, bounded, nonnegative function on E^{n+}, the function $T_{i} f: E^{n+} \rightarrow R^{+}$given by

$$
\left(T_{i} f\right)(y)=g_{i}(y)+\beta \int f\left(y^{\prime}\right) d F\left(y^{\prime}, y\right)
$$

is well-defined and continuous in y

Solution by contraction mapping

- If f is any continuous, bounded, nonnegative function on E^{n+}, the function $T_{i} f: E^{n+} \rightarrow R^{+}$given by

$$
\left(T_{i} f\right)(y)=g_{i}(y)+\beta \int f\left(y^{\prime}\right) d F\left(y^{\prime}, y\right)
$$

is well-defined and continuous in y

- Since U is concave and bounded (by B, say) we have for any c :

$$
0=U(0) \leq U(c)+U^{\prime}(c)(-c) \leq B-c U^{\prime}(c)
$$

So that $c U^{\prime}(c)<B$ for all c.

Solution by contraction mapping

- $c U^{\prime}(c)<B$, it follows that the functions $g_{i}(y)$ are bounded,

$$
g_{i}(y)=\beta \int U^{\prime}\left(\sum_{j} y_{j}^{\prime}\right) y_{i}^{\prime} d F\left(y^{\prime}, y\right)
$$

since they are nonnegative and their sum is bounded by βB

Solution by contraction mapping

- $c U^{\prime}(c)<B$, it follows that the functions $g_{i}(y)$ are bounded,

$$
g_{i}(y)=\beta \int U^{\prime}\left(\sum_{j} y_{j}^{\prime}\right) y_{i}^{\prime} d F\left(y^{\prime}, y\right)
$$

since they are nonnegative and their sum is bounded by βB

- Evidently, solutions to $T_{i} f=f$ are solutions to $f(y)=g_{i}(y)+\beta \int f\left(y^{\prime}\right) d F\left(y^{\prime}, y\right)$

Characterize the price function - one asset

- The crucial issues are the information content of the current state y (that is, the way $F\left(y^{\prime}, y\right)$ varies with y) and the degree of "risk aversion" (the curvature of U)

Characterize the price function - one asset

- The crucial issues are the information content of the current state y (that is, the way $F\left(y^{\prime}, y\right)$ varies with y) and the degree of "risk aversion" (the curvature of U)
- Suppose, as first case, that $\left\{y_{t}\right\}$ is a sequence of independent random variables: $F\left(y^{\prime}, y\right)=\phi\left(y^{\prime}\right)$

Characterize the price function - one asset

- The crucial issues are the information content of the current state y (that is, the way $F\left(y^{\prime}, y\right)$ varies with y) and the degree of "risk aversion" (the curvature of U)
- Suppose, as first case, that $\left\{y_{t}\right\}$ is a sequence of independent random variables: $F\left(y^{\prime}, y\right)=\phi\left(y^{\prime}\right)$
- Then $g(y)$ is the constant

$$
\bar{g}=\beta \int y^{\prime} U^{\prime}\left(y^{\prime}\right) d \phi\left(y^{\prime}\right)=\beta E\left[y U^{\prime}(y)\right]
$$

Characterize the price function - one asset

- Calculating f from

$$
\begin{gathered}
(T f)(y)=\bar{g}+\beta \int f\left(y^{\prime}\right) d \phi\left(y^{\prime}\right) \\
\left(T^{2} f\right)(y)=\bar{g}+\beta\left[\bar{g}+\beta \int f\left(y^{\prime}\right) d \phi\left(y^{\prime}\right)\right]
\end{gathered}
$$

Characterize the price function - one asset

- Calculating f from

$$
\begin{gathered}
(T f)(y)=\bar{g}+\beta \int f\left(y^{\prime}\right) d \phi\left(y^{\prime}\right) \\
\left(T^{2} f\right)(y)=\bar{g}+\beta\left[\bar{g}+\beta \int f\left(y^{\prime}\right) d \phi\left(y^{\prime}\right)\right]
\end{gathered}
$$

- We get

$$
f(y)=\frac{\bar{g}}{1-\beta}, f^{\prime}(y)=0
$$

Characterize the price function - one asset

- Differentiating

$$
p(y)=\frac{f(y)}{U^{\prime}(y)}
$$

gives

$$
p^{\prime}(y)=-\frac{\beta E\left[y U^{\prime}(y)\right] U^{\prime \prime}(y)}{(1-\beta)\left[U^{\prime}(y)\right]^{2}}=p(y) \frac{-U^{\prime \prime}(y)}{U^{\prime}(y)}>0
$$

Characterize the price function - one asset

- Rearranging

$$
\frac{y p^{\prime}(y)}{p(y)}=\frac{-y U^{\prime \prime}(y)}{U^{\prime}(y)}
$$

Characterize the price function - one asset

- Rearranging

$$
\frac{y p^{\prime}(y)}{p(y)}=\frac{-y U^{\prime \prime}(y)}{U^{\prime}(y)}
$$

- This is the elasticity of price with respect to income is equal to the Arrow-Pratt measure of relative risk aversion

Characterize the price function - one asset

- Rearranging

$$
\frac{y p^{\prime}(y)}{p(y)}=\frac{-y U^{\prime \prime}(y)}{U^{\prime}(y)}
$$

- This is the elasticity of price with respect to income is equal to the Arrow-Pratt measure of relative risk aversion
- In a period of high transitory income, then, agents attempt to distribute part of the windfall over future periods (marginal utility decreases), via securities purchases. This attempt is frustrated (since storage is precluded) by an increase in asset prices

Autocorrelated production disturbances

- Restrict the stochastic difference equation governing y_{t} to have its root between zero and one

$$
y_{t+1}=\rho y_{t}+\varepsilon_{t+1} \quad \rho \in(0,1)
$$

Autocorrelated production disturbances

- Restrict the stochastic difference equation governing y_{t} to have its root between zero and one

$$
y_{t+1}=\rho y_{t}+\varepsilon_{t+1} \quad \rho \in(0,1)
$$

- Assume that F is differentiable, and that its derivatives F_{1} and F_{2} satisfy

$$
0<-F_{2}<F_{1}
$$

Autocorrelated production disturbances

- Restrict the stochastic difference equation governing y_{t} to have its root between zero and one

$$
y_{t+1}=\rho y_{t}+\varepsilon_{t+1} \quad \rho \in(0,1)
$$

- Assume that F is differentiable, and that its derivatives F_{1} and F_{2} satisfy

$$
0<-F_{2}<F_{1}
$$

- CDF $F\left(y^{\prime}, y\right)=\operatorname{Pr}\left\{y_{t+1} \leq y^{\prime} \mid y_{t}=y\right\}$ $F_{1}>0$
$F_{2}<0$: the higher the y_{t}, the more likely the higher y_{t+1}

Autocorrelated production disturbances

- Restrict the stochastic difference equation governing y_{t} to have its root between zero and one

$$
y_{t+1}=\rho y_{t}+\varepsilon_{t+1} \quad \rho \in(0,1)
$$

- Assume that F is differentiable, and that its derivatives F_{1} and F_{2} satisfy

$$
0<-F_{2}<F_{1}
$$

- CDF $F\left(y^{\prime}, y\right)=\operatorname{Pr}\left\{y_{t+1} \leq y^{\prime} \mid y_{t}=y\right\}$ $F_{1}>0$
$F_{2}<0$: the higher the y_{t}, the more likely the higher y_{t+1}
- Use the change of variable $u=F\left(y^{\prime}, y\right)$, and invert to get $y^{\prime}=G(u, y), G_{2}=\partial y^{\prime} / \partial y$
By substitution we take into account that y affects $y \prime$, $u=F(G(u, y), y)$, completely differentiation gives

$$
F_{1} G_{2}+F_{2}=0, \quad G_{2}=-F_{2} / F_{1}
$$

Lemma 1

Lemma

Let F satisfy $0<-F_{2}<F_{1}$, and let $h(y)$ have a derivative bounded between 0 and $h_{M}^{\prime}>0$. Then

$$
0 \leq \frac{d}{d y} \int h\left(y^{\prime}\right) d F\left(y^{\prime}, y\right) \leq h_{M}^{\prime}
$$

Proof.

$\frac{d}{d y} \int_{0}^{1} h\left(y^{\prime}\right) d F\left(y^{\prime}, y\right)=\frac{d}{d y} \int_{0}^{1} h(G(u, y)) d u=\int_{0}^{1} h^{\prime}(G) G_{2}(u, y) d u$, the result follows.

Bounds using lemma 1

$$
g^{\prime}(y)=\beta \frac{d}{d y} \int U^{\prime}\left(y^{\prime}\right) y^{\prime} d F\left(y^{\prime}, y\right)
$$

- the derivative of $U^{\prime}(y) y$

$$
\text { - } U^{\prime \prime}(y) y+U^{\prime}(y)=U^{\prime}\left(1-\left(\frac{-y U^{\prime \prime}(y)}{U^{\prime}(y)}\right)\right)
$$

take 0 and \bar{a} as lower and upper bounds on $U^{\prime \prime}(y) y+U^{\prime}(y)$, then apply Lemma 1

$$
0 \leq g^{\prime}(y) \leq \beta \bar{a}
$$

Bound - 0

- Let $f(y)$ be the solution to $f(y)=g(y)+\beta \int f\left(y^{\prime}\right) d F\left(y^{\prime}, y\right)$

$$
f^{\prime}(y)=g^{\prime}(y)+\beta \int f^{\prime}\left(y^{\prime}\right) G_{2}(u, y) d F\left(y^{\prime}, y\right)
$$

substitute

$$
\begin{aligned}
& f^{\prime}\left(y^{\prime}\right)=g^{\prime}\left(y^{\prime}\right)+\beta \frac{d}{d y^{\prime}} \int f\left(y^{\prime \prime}\right) d F\left(y^{\prime \prime}, y^{\prime}\right) \\
f^{\prime}\left(y^{\prime}\right)= & g^{\prime}\left(y^{\prime}\right)+\beta \int g^{\prime}\left(y^{\prime}\right) G_{2}(u, y) d F\left(y^{\prime}, y\right) \\
& +\beta^{2} \int\left[\frac{d}{d y^{\prime}} \int f\left(y^{\prime \prime}\right) d F\left(y^{\prime \prime}, y^{\prime}\right)\right] G_{2}(u, y) d F\left(y^{\prime}, y\right) \\
\geq & 0
\end{aligned}
$$

Upper bound

$$
\begin{aligned}
f^{\prime}(y) & =g^{\prime}(y)+\beta \frac{d}{d y} \int f\left(y^{\prime}\right) d F\left(y^{\prime}, y\right) \\
& =g^{\prime}(y)+\beta \int f^{\prime}\left(y^{\prime}\right) G_{2}(u, y) d F\left(y^{\prime}, y\right) \\
& \leq g^{\prime}(y)+\beta \int f^{\prime}\left(y^{\prime}\right) d F\left(y^{\prime}, y\right) \quad \text { given } G_{2}=\frac{-F_{2}}{F_{1}}<1 \\
& \leq g^{\prime}(y)+\beta \int\left[g^{\prime}\left(y^{\prime}\right)+\beta \frac{d}{d y^{\prime}} \int f\left(y^{\prime \prime}\right) d F\left(y^{\prime \prime}, y^{\prime}\right)\right] d F\left(y^{\prime}, y\right) \\
& \leq g^{\prime}(y)+\beta \int g^{\prime}\left(y^{\prime}\right) d F\left(y^{\prime}, y\right) \\
& +\beta^{2} \iint g^{\prime}\left(y^{\prime \prime}\right) d F\left(y^{\prime \prime}, y^{\prime}\right) d F\left(y^{\prime}, y\right)+\ldots \\
& \leq \frac{\beta \bar{a}+\beta \bar{a}+\beta^{2} \bar{a}+\ldots}{1-\beta} \\
&
\end{aligned}
$$

The elasticity of the equilibrium price function

$$
\begin{aligned}
p(y) & =\frac{f(y)}{U^{\prime}(y)} \\
p^{\prime}(y) & =\frac{U^{\prime}(y) f^{\prime}(y)-f(y) U^{\prime \prime}(y)}{\left[U^{\prime}(y)\right]^{2}}
\end{aligned}
$$

The elasticity of the equilibrium price function

$$
\begin{aligned}
p(y) & =\frac{f(y)}{U^{\prime}(y)} \\
p^{\prime}(y) & =\frac{U^{\prime}(y) f^{\prime}(y)-f(y) U^{\prime \prime}(y)}{\left[U^{\prime}(y)\right]^{2}}
\end{aligned}
$$

$$
\frac{y p^{\prime}(y)}{p(y)}=\frac{y f^{\prime}(y)}{f(y)}-\frac{y U^{\prime \prime}(y)}{U^{\prime}(y)}
$$

income effect (+)
"information effect"

$$
\text { sign of } f^{\prime}(y)
$$

$f(y)$ information about future dividends

The elasticity of the equilibrium price function

$$
\frac{y p^{\prime}(y)}{p(y)}=\frac{y f^{\prime}(y)}{f(y)}-\frac{y U^{\prime \prime}(y)}{U^{\prime}(y)}
$$

- Depends on our knowledge of the curvature of U It shows how to translate such knowledge into knowledge about asset prices

The elasticity of the equilibrium price function

$$
\frac{y p^{\prime}(y)}{p(y)}=\frac{y f^{\prime}(y)}{f(y)}-\frac{y U^{\prime \prime}(y)}{U^{\prime}(y)}
$$

- Depends on our knowledge of the curvature of U It shows how to translate such knowledge into knowledge about asset prices
- $f^{\prime}(y)>0$, so that the information effect is positive Thus, new optimistic information on future dividends leads to increased asset prices

