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Abstract

In this paper, we study asset prices in a dynamic, continuous-time, general-equilibrium endowment
economy where agents have “catching up with the Joneses” utility functions and differ with respect
to their beliefs (because of differences in priors) and their preference parameters for time discount,
risk aversion, and sensitivity to habit. A key contribution of our paper is to demonstrate how
one can obtain a closed-form solution to the consumption-sharing rule for agents who have both
heterogeneous priors and heterogeneous preferences without restricting the risk aversion of the
two agents to special values. We solve in closed form also for the the state price density, the
riskless interest rate and market price of risk; the stock price, equity risk premium, and volatility
of stock returns; the term structure of interest rates; and the conditions necessary to obtain a
stationary equilibrium in which both agents survive in the long run. The methodology we develop
is sufficiently general that, as long as markets are complete, it can be applied to models set in discrete
or continuous time, to endowment processes that are in the exponential affine jump-diffusion class,
and, to settings with arbitrary updating of beliefs.
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1 Introduction and Motivation

Two key characteristics of economic agents are their beliefs and preferences. Our objective in

this paper is to study the effect of heterogeneity in both of these characteristics on the choices of

individual agents and the resulting asset prices. The agents we study have different beliefs about

the growth rate of the aggregate endowment process and “catching up with the Joneses” utility

functions with different parameters for time discount, risk aversion, and sensitivity to the historical

standard of living. We show how to solve in closed form for optimal policies and asset prices of the

stock and bond in a general equilibrium stochastic dynamic exchange economy with heterogeneous

agents.1 This allows us to identify the strengths and limitations of the model with heterogeneity

in both preferences and beliefs.

The importance of studying models with heterogeneous agents rather than a representative

agent has been recognized by both policymakers and academics. For instance, the April 15, 2010

issue of the Economist describing the Soros-sponsored conference on “The Economic Crisis and the

Crisis in Economics” says that, “The conference rehearsed many familiar complaints, bashing . . .

the use of representative agents (a kind of economic Everyman, whose behavior mimics the macroe-

conomy in microcosm).” Hansen (2010) in his talk at this conference lists one of the challenges for

macroeconomic models to be “Building in explicit heterogeneity in beliefs, preferences . . ..” Stiglitz

(2010) in his presentation at the same conference also criticizes the representative agent model and

highlights the importance of heterogeneous agents as a key modeling challenge. Sargent (2008), in

his presidential address to the American Economic Association, discusses extensively the implica-

tions of the common beliefs assumption for policy, and Hansen (2007, p. 27) in his Ely lecture says:

“While introducing heterogeneity among investors will complicate model solution, it has intriguing

possibilities. . . . There is much more to be done.” Empirical work by Beber, Buraschi, and Breedon

(2009), Berrada and Hugonnier (2011), Buraschi and Jiltsov (2006), Buraschi, Trojani, and Vedolin

(2009, 2010), and Ziegler (2007) also suggests the importance of allowing for heterogeneous beliefs

and preferences in models of asset pricing.

1In particular, we obtain the following quantities in closed form: the equilibrium consumption allocation across
agents and its dynamics over time; the state price density and its dynamics, which are characterized in terms of the
riskless interest rate and the market price of risk; the stock price, the equity risk premium, and the volatility of stock
returns; and, the term structure of interest rates and the term premium.
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A key contribution of our paper is to demonstrate how one can obtain a closed-form solution

to the consumption-sharing rule for agents who have both heterogeneous priors and heterogeneous

preferences without restricting the risk aversion of the two agents to special values.2 In the case

of two agents, the consumption-sharing rule is a non-linear algebraic equation, which reduces to a

polynomial of degree η if the ratio of the risk aversion of one agent to that of the other is a natural

number. If η equals two, three or four, then this polynomial equation can of course be solved

in closed-form. We show how to construct a closed-form solution for all real values of η using a

theorem due to Lagrange, and we solve in closed form not just for the interest rate and market

price of risk, but also for the stock price, equity premium, volatility of stock market returns, and

the term structure of interest rates when agents have heterogeneous preferences and beliefs. Thus,

the model we analyze nests the models that consider an exchange economy with agents who have

expected utility with different degrees of risk aversion, such as Wang (1996), Bhamra and Uppal

(2009), and Weinbaum (2012), models with “catching up with the Joneses” utility functions, as in

Chan and Kogan (2002) and Xiouros and Zapatero (2010), and they nest also the results in models

where agents have expected utility with heterogeneous beliefs, for instance, Basak (2005) and Yan

(2008).

The methodology we develop is sufficiently general that, as long as markets are complete, it can

be used to identify the sharing rule in asset-pricing models set in discrete or continuous time; for

endowment processes that are in the exponential affine jump-diffusion class; and, to settings with

an arbitrary rule for updating of beliefs, including Bayesian learning. We consider the “catching

up with the Joneses” utility function that has external habit but in contrast to Chan and Kogan

(2002) and Xiouros and Zapatero (2010), we allow the sensitivity to the historical standard of living

to be agent-specific. Our specification nests isoelastic and logarithmic utility functions, and is

straightforward to apply to other time-additive utility functions, such as exponential and quadratic

utility. Given the ubiquity of nonlinear sharing rules in solutions to problems in economics, finance

and decision theory (see Peluso and Trannoy (2007) for examples of such problems), the approach

we develop can be applied also to other problems, which previously would have called for numerical

methods.

2Our work can be viewed as complementary to that of Calin, Chen, Cosimano, and Himonas (2005), who provide
an analytic representation (that is, a convergent power series) for the price-dividend function of one state variable
in an economy with a single representative agent whose utility function displays habit formation, and to Garlappi
and Skoulakis (2011), who show how to exploit Taylor series expansions to solve portfolio choice problems in partial
equilibrium.
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The paper that is closest to our work is Cvitanić, Jouini, Malamud, and Napp (2012), which

also studies asset prices in an economy where agents have expected utility and differ with respect

to both beliefs and their preference parameters. Their paper provides bounds on asset prices and

characterizes prices in the limit when only one agent survives. However, it does not provide closed-

form solutions for these quantities. In fact, Cvitanić and Malamud (2009b, p. 3) write that:

“when risk aversion is heterogeneous, SDF [stochastic discount factor] is the solution

to highly non-linear equation (1) [in their paper], and no explicit solution is possible,

except for some very special values of risk aversion; see, for example, Wang (1996).”

In contrast to Cvitanić, Jouini, Malamud, and Napp (2012), we provide a closed-form solution for

the stochastic discount factor without restricting the risk aversion of the two agents to special values

and also allowing for learning. In particular, we show how the stochastic discount factor can be

expressed as a weighted average of stochastic discount factors from a set of underlying single-agent

economies.3 Muraviev (2012) extends the analysis in Cvitanić, Jouini, Malamud, and Napp (2012)

to the case with learning and where agents have “catching up with the Joneses” utility functions

considered in Chan and Kogan (2002) but where the sensitivity to the historical standard of living

is agent specific, while Borovička (2012) extends the analysis to the case of recursive preferences.

Most of the other papers in the existing literature with heterogeneous agents allow for either

differences in beliefs or differences in preferences. We first discuss the literature that considers het-

erogeneity in beliefs and then the literature that considers differences in preferences. Essentially,

there are two ways to generate heterogeneity in beliefs. In the first approach, agents receive dif-

ferent information. This is the classical approach, adopted in the early noisy-rational-expectations

literature with asymmetric information.4 In this class of models, one group of (informed) agents

receives private signals and then there is a second group of agents (noise-traders), which trades

for exogenous reasons and thereby prevents the price from fully revealing the private information

of the informed agents. The second approach for generating heterogeneity, which is the one we

adopt, is to have agents who “agree to disagree” about some aspect of the underlying economy, and

in this class of models it is assumed that agents do not learn from each other’s behavior. Morris

3We should point out that, in contrast to our analysis, which is for the case of two agents, the limit analysis of
Cvitanić, Jouini, Malamud, and Napp (2012) considers an economy with more than two agents and derives interesting
implications for the term structure of interest rates.

4See, for instance, Grossman and Stiglitz (1980), Hellwig (1980), Wang (1993), and Shefrin and Statman (1994)).
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(1995) provides a good philosophical discussion of this modeling approach.5 Excellent reviews of

this literature are provided in Basak (2005) and Jouini and Napp (2007).

We now discuss the literature on the effect of heterogeneous preferences on asset prices. The

effect of different time-discount factors on the efficient allocation of consumption is studied in

Gollier and Zeckhauser (2005). The effect of heterogeneity in risk aversion on asset prices is

examined in several papers, most of which assume that investors have expected utility. For example,

Dumas (1989) studies the riskfree rate and the risk premium in a production economy; Wang

(1996) examines the term structure in an exchange economy; Basak and Cuoco (1998) and Kogan,

Makarov, and Uppal (2007) analyze the effect of constraints on borrowing and short-sales on the

equity risk premium in an exchange economy; Bhamra and Uppal (2009) and Tran (2009) examine

the volatility of stock market returns; Benninga and Mayshar (2000) and Weinbaum (2009) study

option prices; Longstaff and Wang (2009) investigate the relation between open interest in the

bond market and stock market returns; Cvitanić and Malamud (2009a,b,c) consider equilibrium

with multiple heterogeneous traders who maximize utility of only terminal wealth; and, Garleânu

and Panageas (2008) study the effect of heterogeneous preferences in an overlapping-generations

model that leads to a stationary equilibrium. In contrast to these papers that assume investors have

expected utility, Chan and Kogan (2002) and Xiouros and Zapatero (2010) study asset prices in

an economy where agents have “catching-up-with-the-Joneses” preferences, where habit formation

ensures that the model is stationary. And, finally there are papers that work with Epstein and Zin

(1989) recursive preferences that allow for a distinction between risk aversion and the elasticity of

intertemporal substitution. For example, Guvenen (2009), studies asset pricing in a model with

heterogeneity in elasticity of intertemporal substitution, Isaenko (2008) studies the term structure

in a model where agents differ in both their risk aversion and elasticity of intertemporal substitution,

and Gomes and Michaelides (2008) study portfolio decisions of households and asset prices in a

model where agents are heterogeneous not just in terms of preferences but are also exposed to

uninsurable income shocks in the presence of borrowing constraints.

5Examples of papers using such models of incomplete information include Basak (2000), Beber, Buraschi, and
Breedon (2009), Berrada (2006), Borovička (2012), Buraschi and Jiltsov (2006), Buraschi, Trojani, and Vedolin
(2009, 2010), Cecchetti, Lam, and Mark (2000), David (2008), David and Veronesi (2002), Duffie, Garleânu, and
Pedersen (2002), Dumas, Kurshev, and Uppal (2009), Gallmeyer (2000), Gallmeyer and Hollifield (2008), Kogan,
Ross, Wang, and Westerfield (2006), Scheinkman and Xiong (2003), Veronesi (1999), Xiong and Yan (2010), Yan
(2008), and Zapatero (1998). Yan (2008) also studies a model where agents have both heterogeneous beliefs and
preferences, but he solves for asset prices in terms of exogenous variables only for the case where both agents have
the same risk aversion, which is a natural number (see his Proposition 3).
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When there are multiple agents who differ in their risk aversion, there is no paper in the litera-

ture that provides a complete characterization of equilibrium that is exact and entirely analytical.

For example, for the case of expected utility, Wang (1996) provides closed form expressions for

only particular parameter values; Kogan and Uppal (2001) characterize the equilibrium in produc-

tion and exchange economies approximately using perturbation analysis in the neighborhood of log

utility; Bhamra and Uppal (2009) and Tran (2009) study stock-market-return volatility, but solve

numerically for volatility; Dumas (1989) solves numerically for the interest rate in a production

economy; for the case of “catching-up-with-the-Joneses” preferences, Chan and Kogan (2002) rely

on numerical solutions, and the working-paper version of Chan and Kogan (2002) provides ap-

proximate analytic results in the neighborhood of log utility using perturbation analysis. Xiouros

and Zapatero (2010) provide an expression for the value function of the central planner assuming

a Gamma distribution for the risk tolerances of the investors, but asset prices are obtained using

numerical methods. The models in Guvenen (2009), Isaenko (2008), and Gomes and Michaelides

(2008) are also solved using numerical methods.

The rest of the paper is arranged as follows. In Section 2, we describe our model of an exchange

economy with heterogeneous agents. The equilibrium consumption-sharing rule, derived by solving

the problem of a “central planner,” is given in Section 3 along with the state price density. Section 4

gives the dynamics of the state price density, which are defined in terms of the risk-free rate and

the market price of risk. Asset prices, including the stock price, the volatility of stock market

returns, and the equity and term premium are given in Section 5. In Section 6, we show how to

price financial assets when the logarithm of aggregate endowment and agents’ beliefs follow general

affine processes, instead of the geometric Brownian motion assumed for the endowment process

and the exponential martingale process assumed for beliefs in the previous section. We conclude

in Section 7. Our main results are highlighted in propositions, results for special cases are given in

corollaries,6 and detailed proofs for all the results, including a statement of Lagrange’s Theorem,

are provided in Appendix A.

6There are three special cases that we consider: one, where investors have identical beliefs but different preferences
(risk aversion, rate of time preference, and sensitivity to habit); two, where investors differ in beliefs but have identical
risk aversion; and three, where the investors differ in beliefs but have identical risk aversion and this risk aversion is
a natural number.
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2 The Model

In this section, we describe the features of the economy we are considering. We consider a

continuous-time, pure-exchange, Arrow-Debreu (complete markets) economy with an infinite time

horizon. There is a single non-storable consumption good that serves as the numeraire and is

modeled as an exogenously specified stochastic endowment process, Yt that is defined on a filtered

probability space (Ω,F , {Ft},P).

There are a large number of investors in the economy. These investors are of two types, which

we denote by k ∈ {1, 2}. We adopt the convention of subscripting by k the quantities related to

agents of type k, where k ∈ {1, 2}. In order to be concise, instead of referring to these investors as

“agents of type 1 and 2,” we simply call them Agent 1 and Agent 2.

The utility function of Agent k is denoted by Uk and the beliefs of Agent k are denoted by the

probability measure Pk. Our model differs from the standard representative-agent Lucas (1978)

model along two dimensions: first, preferences of the two agents are heterogeneous; second, the

two agents may not have the correct beliefs about the aggregate endowment process, and the

beliefs of one agent may differ from those of the other. The sharing rule of the investor and the

equilibrium state price density do not depend on the particular processes chosen for the dynamics

of endowments and beliefs. For instance, the endowment process could be a geometric brownian

motion that is typically assumed, but it could also be a much more complicated process that is not

necessarily continuous or even affine. Similarly, while it is possible to assume that beliefs are not

updated at all, one could also assume Bayesian updating or some form of non-Bayesian updating.

The only assumption we need for the results regarding static quantities such as the sharing rule and

the state price density is that financial markets are dynamically complete. Therefore, we specify

the processes for endowments and beliefs only in Section 4, where we study the dynamics of the

consumption share, state price density, and asset returns.

2.1 Preferences of the Two Agents

The consumption of Agent k at instant u is denoted by Ck,u and the instantaneous utility from

consumption is given by the following power function that depends on consumption relative to

6



habit, Hk,u:

Uk(Ck,u, Hk,u) ≡ e−βku 1

1− γk

(
Ck,u
Hk,u

)1−γk
, (1)

where βk is the constant subjective discount rate (that is, the rate of time preference), and γk is

the degree of relative risk aversion.7 Without loss of generality, we assume that Agent 1’s relative

risk aversion is less than that of Agent 2: γ1 < γ2.

The quantity Hk,u in (1) can be interpreted as Agent k’s sensitivity to the historical standard

of living (external habit), as modeled in Muraviev (2012), which generalizes the specification in

Chan and Kogan (2002) to allow for agent-specific habit. Under the approach in Muraviev,

Hk,u = Xhk
u = ehkxu , for hk > 0,

and xu ≡ logXu. One can then define xt as the weighted geometric average of past realizations of

the logarithm of the aggregate endowment process:

xt = x0e
−λxt + λx

∫ t

0
e−λx(t−u)yu du, (2)

where yu ≡ log Yu, and Yu denotes the aggregate endowment at time u. So, while Xu represents

the general index for the standard of living, the scalar hk determines the sensitivity of Agent k to

this index; if hk = 1 for all k, this reduces to the specification in Chan and Kogan (2002), and if

hk = 0 one gets the standard isoelastic utility function without habit.

We define the distance between the logarithm of the aggregate endowment and its weighted

geometric average as

ωt ≡ yt − xt. (3)

Observe that (2) implies that dxt = λx(yt − xt)dt, and so the evolution of ω is given by

dωt = λx

(
λ−1
x Et

[
dyt
dt

]
− ωt

)
dt+ dyt − Et[dyt], (4)

which makes it clear that ω exhibits mean reversion for any specification of the aggregate endow-

ment.

7See Chan and Kogan (2002) for a discussion of this specification for the utility function, and why it is still
appropriate to interpret γ as the coefficient of relative risk aversion. For other papers in the literature that study the
effect of habit on asset prices in representative-agent models, see Abel (1990, 1999) and Constantinides (1990).
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Chan and Kogan (2002) explain that γk represents the relative risk aversion of Agent k. We

explain below that if we parameterize hk as in (5) below

hk ≡
γk − 1

ψk

γk − 1
, (5)

then we can interpret 1
ψk

as the sensitivity of the risk-free rate to the growth rate of aggregate

consumption in the steady state when Agent k is the sole agent in the economy without risk.8

2.2 The Optimization Problem of Each Agent

Given her beliefs, represented by the probability measure Pk, the expected lifetime utility of Agent k

at time t from consuming Ck,u is given by

Vk,t = Ekt

[∫ ∞
t

e−βk(u−t) 1

1− γk

(
Ck,u
Hk,u

)1−γk
du

]
, (6)

where Ekt denotes the time-t conditional expectation operator with respect to the probability mea-

sure Pk.

The problem of Agent k is to maximize lifetime utility, given by Vk,0 in (6), subject to a static

budget constraint, which restricts the present value of all future consumption to be no more than

the initial wealth of each agent, denoted by Wk,0:9

Ek0

[∫ ∞
0

πk,t
πk,0

Ck,t dt

]
≤Wk,0, (7)

8We start by considering the marginal utility (MU) of consumption at date t for Agent k, which is given by

MUk,t = e−βk tHk,t
γk−1C

−γk
k,t .

When Agent k is the sole agent in the economy, Ck = Y , and so her marginal utility can be written as:

MUk,t = e−βk te
−
(
γk− 1

ψk

)
ωte
− 1
ψk

yt .

Thus, the instantaneous interest rate in the deterministic version of the economy is rt = − lnMUt = βk +(
γk − 1

ψk

)
dωt
dt

+ 1
ψk

dyt
dt
. From (4), we can see that in the deterministic version of the economy, ω possesses a steady

state. At the steady state, dωt
dt

= 0, so
∂ rt| dωt

dt
=0

∂
(
dyt
dt

) =
1

ψk
.

One might be tempted to think of ψk as the elasticity of intertemporal substitution, but this interpretation would be
accurate only in a model with internal habit.

9The budget constraint for Agent k in (7) is written in terms of the state prices perceived by this agent; one could
write an equivalent expression in terms of the state prices (and expectation) of the central planner.
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in which πk,t is the marginal utility of investor k at date u under the probability measure Pk:

πk,t ≡
∂U(Ck,t)

∂Ck,t
= e−βkt

(
1

Hk,t

)1−γk
C−γkk,t = e−βk t e

(
γk− 1

ψk

)
(yt−ωt)−γk lnCk,t . (8)

2.3 The Equilibrium

The notion of equilibrium that we use is an extension of equilibrium in the single-agent model of

Lucas (1978): both agents optimize their expected lifetime utility and all markets clear. Given our

assumption that preferences are time separable and financial markets are complete, the dynamic

consumption-portfolio choice problem simplifies to a static problem that requires one to choose the

optimal allocation of consumption between the two investors for each date and state. If agents

have identical beliefs, then one can solve for the equilibrium consumption policies by maximizing

the social-welfare function of a “central-planner,” which is a weighted average of the utility func-

tions of individual agents, subject to the resource constraint that aggregate consumption is equal

to aggregate endowment (dividends). In contrast to the case of identical beliefs, if agents have

heterogeneous beliefs, Basak (2005) shows that the weights used to construct the central planner’s

utility function are stochastic. The central planner’s utility function in this case is given by

sup
C1+C2≤Y

2∑
k=1

λk,t Uk(Ck,t), (9)

where

λk,t = λk,0 ξk,t,

and ξk,t is the Radon-Nikodym derivative dPk/dP, which relates Agent k’s subjective beliefs to the

true physical probability measure.10

3 Consumption Share, State Price Density and Asset Prices

Our main contribution is to derive a closed-form, convergent, series solutions for the sharing rule

in Proposition 1 below, and to show in Proposition 2 how to construct the state-price density in

the heterogeneous-agent economy in two simple steps. In the first step, one needs to obtain only

10If the state space for aggregate dividends were discrete, then ξk,t would be the ratio of the probability that
Agent k assigns to a particular state, relative to the true probability of that state.
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the state price density for an economy where there is just one type of agent; this is obtained by

computing the marginal utility of consumption for a single agent. In the second step, one needs

to combine the state-price densities from the two single-agent economies to obtain the state price

density in the heterogeneous-agent economy; we provide the formula for doing this. These results

are derived without making specific assumptions about the process for aggregate endowment and

how the beliefs of the two agents are updated.

Once we have obtained the state-price density for the heterogeneous-agent economy, the price

for any asset can be obtained by integrating the product of the asset’s payoff and the state-price

density and taking expectations of that integral; we state this result in Proposition 3, and we

demonstrate it for particular processes for endowments and beliefs in Section 5 and for general

affine processes in Section 6.

3.1 The Equilibrium Consumption-Sharing Rule

The consumption-sharing rule, which shows how aggregate consumption is allocated between the

two agents in equilibrium, is given by the first-order condition for optimal consumption for the

central planner’s problem in (9):

(λ1,0 ξ1,t) e
−β1t

(
1

H1,t

)1−γ1
C−γ11,t = (λ2,0 ξ2,t) e

−β2t
(

1

H2,t

)1−γ2
C−γ22,t . (10)

In order to solve explicitly for the equilibrium allocations, we write Agent k’s consumption

share as νk,t ≡
Ck,t
Yt

, where 0 ≤ νk ≤ 1, and ν1 + ν2 = 1. Then Equation (10) can be written as:

λ1,0ξ1,t e
−β1t

(
1

H1,t

)1−γ1
Y −γ1t ν−γ11,t = λ2,0ξ2,t e

−β2t
(

1

H1,t

)1−γ1
Y −γ2t ν−γ22,t ,

which can be rewritten as

πt = π̂1,tν
−γ1
1,t = π̂2,tν

−γ2
2,t , (11)

where π is the equilibrium state-price density, and

π̂k,t = λk,0 ξk,t e
−βkt

(
1

Hk,t

)1−γk
Y −γkt = λk,0 ξk,t e

−βkte
−
(
γk− 1

ψk

)
ωt− 1

ψk
yt (12)
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is the state-price density under the physical probability measure P when Agent k is the sole agent

in the economy. Thus, the consumption-sharing rule in (11) can be expressed as

νη2,tAt = ν1,t, (13)

where At =

(
π̂1,t

π̂2,t

) 1
γ1

,

and η = γ2/γ1.

When η ∈ {1, 2, 3, 4}, the expression in (13) can be written as a polynomial of degree 4 or less,

thus allowing us to solve for the equilibrium consumption allocation in terms of radicals, using

standard results from polynomial theory, as pointed out in Wang (1996). Because polynomials of

order 5 and above do not admit closed-form solutions in terms of radicals, it would be appear that

going beyond the results in Wang (1996) by solving for the consumption-sharing rule in closed-form

when η is a natural number greater than or equal to 5 is not possible. However, when η is a natural

number greater than or equal to 5, the consumption shares can be obtained in closed-form by using

hypergeometric functions. 11 We go further still by showing that when η is any real number, it is

possible to derive closed-form, convergent, series solutions for the sharing rule. The series solutions

are derived using a theorem of Lagrange (see Appendix A), which to the best of our knowledge has

not been used before in finance or economics. However, Lagrange’s Theorem does not provide the

radius of convergence for the series, which is essential if we want to use these series to study the

behavior of the consumption shares. We show, in the proof of Proposition 1, how to identify the

radius of convergence: depending on whether
π̂1,t
π̂2,t

< R or
π̂1,t
π̂2,t

> R, we get a different convergent

series solution for the sharing rule and the solutions corresponding to these two regions are given

in (14).

Proposition 1 (Equilibrium share of consumption) Agent 2’s equilibrium share of the aggre-

gate endowment, ν2,t =
C2,t

Yt
, is given by

ν2,t =


∑∞

n=1
(−)n+1

n

(
π̂2,t
π̂1,t

) n
γ2
(n γ1

γ2
n−1

)
,
π̂1,t
π̂2,t

> R,

1−
∑∞

n=1
(−)n+1

n

(
π̂1,t
π̂2,t

) n
γ1
(n γ2

γ1
n−1

)
,
π̂1,t
π̂2,t

< R,

(14)

11See Abadir (1999) for an introduction to hypergeometric functions. Because the derivation of the sharing rule
for the general case where η is any real number is given in the appendix, the derivation showing how the sharing rule
can be expressed in terms of hypergeometric functions when η is a natural number greater than or equal to 5 is not
included.
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where

R =
γγ21

γγ22

(
γ2

γ1
− 1

)γ2−γ1
=

(
(η − 1)η−1

ηη

)γ1
,

and, for z ∈ C and k ∈ N,
(
z
k

)
= Πk

j=1
z−k+j
j is the generalized binomial coefficient.

From the implicit expression for ν2,t in (13) or the explicit expression in (14), we see also that

the consumption shares of the two agents will depend on the ratio of the state-price densities in

the single-agent economies:

π̂1,t

π̂2,t
=
λ1,0

λ2,0
e(β2−β1)t ξ1,t

ξ2,t

H1−γ2
2,t

H1−γ1
1,t

Y γ2−γ1
t , (15)

which from (15) depends on the differences in initial endowments λk,0, subjective discount rates

βk, beliefs ξk,t, sensitivities to the historical standard of living Hk,t, and risk aversions γk.

3.2 Equilibrium State Price Density

We now give the level of the equilibrium state-price density using convergent series. Equation (16)

in the proposition below shows that the equilibrium state-price density can be expressed as a linear

combination of state-price densities of single-agent economies, that is, π̂k,t, k ∈ {1, 2}, defined in

(12), where the individual terms π̂k,t depend solely on exogenous variables.

Proposition 2 (Equilibrium state-price density) The equilibrium state-price density is given

by

πt =


∑∞

n=0 a
π
n,1 π̂

1− n
γ2

1,t π̂
n
γ2
2,t ,

π̂1,t
π̂2,t

> R,∑∞
n=0 a

π
n,2 π̂

n
γ1
1,t , π̂

1− n
γ1

2,t ,
π̂1,t
π̂2,t

< R,

(16)

where aπn,1 = aπn,2 = 1 for n = 0, and

aπn,1 = γ1
(−1)n+1

n

(
nγ1γ2 − γ1 − 1

n− 1

)
, n ∈ N, (17)

aπn,2 = γ2
(−1)n+1

n

(
nγ2γ1 − γ2 − 1

n− 1

)
, n ∈ N. (18)

To understand the above proposition, note that π̂1,t and π̂2,t are the state-price densities for the

two single-agent economies. Then, π̂
1− n

γ2
1,t π̂

n
γ2
2,t is the state-price density of an underlying economy,
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constructed as the Hölder mean of the state price densities from two single-agent economies.12

Finally, the equilibrium state-price density in (16) is a linear combination of the state-price densities

of the underlying economies.

The expression for the equilibrium state-density in (16) can be simplified if agents have the

same risk aversion, γ1 = γ2 = γ, and a further simplification is possible if γ is a natural number.

These simpler expressions are given in the corollary below.

Corollary 1 (Equilibrium state price density with identical risk aversion) Suppose agents

have identical risk aversion, that is, γ1 = γ2 = γ, but different beliefs. Then the equilibrium state-

price density is given by

πt =


∑∞

n=0 a
π
n π̂

1−n
γ

1,t π̂
n
γ

2,t, π̂2,t < π̂1,t,∑∞
n=0 a

π
n π̂

n
γ

1,t π̂
1−n

γ

2,t , π̂2,t > π̂1,t,

(19)

where, denoting by N0 the set of natural numbers that includes 0,

aπn =

(
γ

n

)
, n ∈ N0. (20)

If relative risk aversion, γ, is a natural number, then the equilibrium state-price density can be

further simplified to a finite sum:

πt =

γ∑
n=0

aπnπ̂
1−n

γ

1,t π̂
n
γ

2,t (21)

=

(
π̂

1
γ

1,t + π̂
1
γ

2,t

)γ
. (22)

Thus, the expression for the equilibrium state-price density in (22) is a power mean (with exponent

1
γ ) of the individual agent state-price densities. It follows from well known properties of the power

mean that the state-price density in Equation (22) is increasing in relative risk aversion, γ. The

intuition for this is that more risk averse agents will be more willing to pay for a unit of consumption

in a given state. If γ = 1, the power mean reduces to the arithmetic mean; if γ →∞ it reduces to

the geometric mean; and, if γ → 0, it reduces to the maximum of the individual-agent state-price

densities.
12If p is a non-zero real number, the Hölder mean of a and b with weights w and 1 − w, and exponent p is:

(w ap + (1− w) bp)
1
p , and when p→ 0, the Hölder mean reduces to awb1−w.
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The special case considered in Corollary 1 where γ1 = γ2 = γ, with γ being a natural number,

is similar to the model studied in Dumas, Kurshev, and Uppal (2009, Equation (35)), where they

obtain a similar expression for the state price density. Because γ needs to be a natural number,

this special case does not allow one to study the case of risk aversion smaller than one. Our

Proposition 2, in contrast, allows for different risk aversion parameters for the two agents and does

not restrict their values to be natural numbers.

3.3 Price-Dividend Ratio for Dividend Strips and Equity

In this section, we first identify the price of a dividend strip, which is a claim that pays a single

cashflow of Yu at a particular time u.13 We denote the date-t price of this dividend strip by V Y
t,u,

where

V Y
t,u = Ytv

Y
t,u,

where the price-dividend ratio of the dividend strip is

vYt,u = Et

[
πu
πt

Yu
Yt

]
. (23)

We can then obtain the price of equity by integrating the price of dividend strips over time. To

see this, let P Yt denote the price of the single share of the risky asset (stock), which is a claim on

the aggregate dividend, Yt. The stock price is given by

P Yt = Ytp
Y
t ,

where the price-dividend ratio for equity pYt is:

pYt = Et

∫ ∞
t

πu
πt

Yu
Yt
du =

∫ ∞
t

vYt,udu. (24)

We derive a representation for the price-dividend ratio of the dividend strip, vYt,u, by using the

state-price density in Proposition 2. Because the state-price density is one of two linear combina-

tions of state-price densities from a set of underlying economies, depending on whether
π̂1,u
π̂2,u

≷ R,

the price-dividend ratio of the dividend strip, vYt,u, is a sum of two weighted averages. The first

13In the appendix, we show how to value more general cashflow payments.
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is a weighted average of price-dividend ratios from a set of underlying economies conditional on

π̂1,u
π̂2,u

> R, and the second is a weighted average of price-dividend ratios from a set of underlying

economies conditional on
π̂1,u
π̂2,u

< R.

Proposition 3 (Price of dividend strip) The time-t price of the dividend strip, which pays the

cash flow Yu at date u > t, is given by V Y
t,u = vYt,uYt, where

vYt,u =
∞∑
n=0

ωn,1,tφ
Y
n,1,t,u +

∞∑
n=0

ωn,2,tφ
Y
n,2,t,u, (25)

where the weights ωn,1,t, n ∈ N0, and ωn,2,t, n ∈ N0, are given by

ωn,1,t = aπn,1(νγ11,t)
1− n

γ2 (νγ22,t)
n
γ2 , n ∈ N0 (26)

ωn,2,t = aπn,2(νγ11,t)
n
γ1 (νγ22,t)

1− n
γ1 , n ∈ N0, (27)

and each set of weights sums to one:

∞∑
n=0

ωn,1,t =
∞∑
n=0

ωn,2,t = 1, (28)

and φYn,1,t,u (φYn,2,t,u) is the price-dividend ratio for the “spanning asset” which pays the cashflow Yu

at date u, provided
π̂1,u
π̂2,u

> R
(
π̂1,u
π̂2,u

< R
)

,

φYn,1,t,u = Et

 π̂1− n
γ2

1,u π̂
n
γ2
2,u

π̂
1− n

γ2
1,t π̂

n
γ2
2,t

Yu
Yt

1{ π̂1,u
π̂2,u

>R

}
 , n ∈ N0, (29)

φYn,2,t,u = Et

 π̂ n
γ1
1,uπ̂

1− n
γ1

2,u

π̂
n
γ1
1,t π̂

1− n
γ1

2,t

Yu
Yt

1{ π̂1,u
π̂2,u

<R

}
 , n ∈ N0. (30)

The above proposition is useful because we see from (25) that we have reduced the problem of

finding the value of dividend strips for the heterogeneous-agent economy to the problem of finding

the value of the assets φYn,1,t,u and φYn,2,t,u in the underlying economies, with state-price densities

π̂
1− n

γ2
1,t π̂

n
γ2
2,t and π̂

n
γ1
1,t π̂

1− n
γ1

2,t , respectively. In other words, from (25) we can see that the value of a

dividend strip is spanned by the asset values, φYn,1,t,u and φYn,2,t,u, leading us to call them “spanning
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assets”. Furthermore, by virtue of (24), we can see that the same spanning assets can be used to

value equity; that is the price-dividend ratio for equity is:

pYt =
∞∑
n=0

ωn,1,t

∫ ∞
t

φYn,1,t,udu+
∞∑
n=0

ωn,2,t

∫ ∞
t

φYn,2,t,udu.

The power of this result rests on the fact that computing price-dividend ratios directly using (23) or

(24) involves solving a valuation problem with an endogenous state variable ν1,t, whereas computing

price-dividend ratios indirectly via Proposition 3 eliminates the endogenous state variable because

the values of the spanning assets are determined in the underlying economies where the state-price

density is the Hölder mean of the state-price density of homogeneous-agent economies.

We now consider two special cases: the first where the two agents have the same risk aversion,

γ1 = γ2 = γ, and the second, where the two agents have the same risk aversion and γ is a natural

number.

Corollary 2 (Price of dividend strip with identical risk aversion) When risk aversions are

identical, γ1 = γ2 = γ, then

vYt,u =

∞∑
n=0

ωn,1,tφ
Y
n,1,t,u +

∞∑
n=0

ωn,2,tφ
Y
n,2,t,u,

where

ωn,1,t =

(
γ

n

)
(νγ1,t)

1−n
γ (νγ2,t)

n
γ , n ∈ N0 (31)

ωn,2,t =

(
γ

n

)
(νγ1,t)

n
γ (νγ2,t)

1−n
γ , n ∈ N0, (32)

and each set of weights sums to one:
∑∞

n=0 ωn,1,t =
∑∞

n=0 ωn,2,t = 1.

If in addition to risk aversions being identical, γ1 = γ2 = γ, we also have that γ ∈ N, then the

above expressions simplify further to:

vYt =

γ∑
n=0

ωn,t v
Y
n,t,u, (33)

where

vYn,t,u = Et

 π̂1−n
γ

1,u π̂
n
γ

2,u

π̂
1−n

γ

1,t π̂
n
γ

2,t

Yu
Yt

 , n ∈ N0 andn ≤ γ,
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ωn,t =

(
γ
n

)(
ν

1−n
γ

1,t ν
n
γ

2,t

)γ
, (34)

and
∑γ

0 ωn,t = 1.

From (33), we see that the price-dividend ratio of the dividend strip in the economy with

heterogenous beliefs is a weighted sum of the price-dividend ratios of the dividend strips in 1 + γ

underlying economies, where in the n’th such economy, the state-price density, π̂
1−n

γ

1,t π̂
n
γ

2,t, is the

Hölder mean of the state-price densities in the single-agent economies. The special case considered

in Corollary 2 is similar to the model studied by Yan (2008, Proposition 3), where he obtains

closed-form results for only the case in which the risk aversion parameter γ is identical across

agents and γ is a natural number, which then excludes the case of risk aversion smaller than one.

Our Proposition 3, in contrast, allows for different risk aversion parameters for the two agents and

does not restrict their values to be natural numbers.

Below, in Proposition 8 of Section 5, we derive explicit expressions for φYn,1,t,u and φYn,2,t,u by

making particular assumptions for the dynamics of the aggregate endowment process and beliefs.

In Section 6, we show how to characterize φYn,1,t,u and φYn,2,t,u for affine processes.

4 Dynamics of the Consumption Share and State Price Density

So far in our analysis, we have not specified particular processes for aggregate dividends and beliefs.

However, to characterize the dynamics of the consumption share, the state price density, and asset

prices, we need to specify the dynamics for aggregate dividends and beliefs of the two agents, which

we do in Section 4.1. Then, in Section 4.3 we derive the implications of heterogeneity for the

dynamics of the sharing rule and the dynamics of the state price density.

4.1 The Processes for Aggregate Endowment and Beliefs of the Two Agents

The true evolution of the aggregate endowment, Y , is assumed to be:

dYt
Yt

= µY dt+ σY dZt, Y0 > 0, (35)

in which µY and σY are constants and Z is a one-dimensional Brownian motion.
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Agent k believes that the expected growth rate of the endowment process takes the constant

value, µY,k, as in Yan (2008), Borovička (2012), and Fedyk, Heyerdahl-Larsen, and Walden (2012).

Therefore, defining the quantity σξ,k ≡
µY,k−µY

σY
, Agent k’s beliefs can be represented by an expo-

nential martingale

ξk,t = e−
1
2
σ2
ξ,kt+σξ,kZt , (36)

which can be written as:14

dξk,t
ξk,t

= σξ,k dZt. (37)

Hence, by Girsanov’s Theorem, Agent k believes that the process for aggregate endowments is

dYt
Yt

= µY,k dt+ σY dZk,t,

where Zk,t = Zt−σξ,kt is a standard Brownian motion under Pk, which represents Agent k’s beliefs.

Hence, we see that the expected growth rate of the aggregate endowment under Pk is µY,k.
15

We quantify the level of disagreement between the two agents via the process, ξt, where ξt ≡
ξ2,t
ξ1,t

= e−
1
2

(σ2
ξ,2−σ

2
ξ,1)t+(σξ,2−σξ,1)Zt , and its dynamics are

dξt
ξt

= µξdt+ σξdZt,

where µξ ≡ −σξ,1(σξ,2 − σξ,1),

σξ ≡ (σξ,2 − σξ,1) =
µY,2 − µY,1

σY
.

4.2 Definitions of Aggregate Preference Parameters and Beliefs

In this section, we define the aggregate preferences in the economy and also aggregate beliefs, which

will then be used in the expressions for the dynamics of the sharing rule and the dynamics of the

state price density.

Definition 1 (Aggregate risk aversion) The aggregate relative risk aversion, Rt, in the econ-

omy is defined as the consumption-share-weighted harmonic mean of individual agents’ relative risk

14The exponential martingale, ξk,t, defines the probability measure Pk on (Ω,F), via Pk(eT ) = Et[1eT ξk,T ], ∀t, T ∈
[0,∞), t ≤ T, where eT is an event which occurs at time T and Pk(eT ) is the probability of its occurrence based on
information known at time t.

15Note that the probability measures P1, P2 and P are all equivalent; that is, they agree on which events are
impossible.
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aversions:

Rt =

(
ν1,t

1

γ1
+ ν2,t

1

γ2

)−1

. (38)

Equivalently, the aggregate risk tolerance in the economy, 1/Rt, is the consumption-share-weighted

arithmetic mean of individual agents’ risk tolerances, 1/γk.

Defining wk to be the consumption-share weighted relative risk tolerances of investor k:

wk =

1
γk
νk,t

1
γ1
ν1,t + 1

γ2
ν2,t

, and w1 + w2 = 1, (39)

we can then define the aggregate rate of time preference, aggregate prudence, and aggregate beliefs

as follows.

Definition 2 (Aggregate rate of time preference) The aggregate rate of time preference in

the economy, βt, is given by the weighted arithmetic mean of individual agents’ rates of time

preference, where the weights are the consumption-share weighted relative risk tolerances of the two

investors given in Equation (39):

βt = w1,t β1 + w2,t β2.

Definition 3 (Aggregate prudence) The quantity Pt is the aggregate prudence in the econ-

omy:16

Pt = (1 + γ1)

(
Rt

γ1

)2

ν1,t + (1 + γ2)

(
Rt

γ2

)2

ν2,t.

Definition 4 (Aggregate belief) The aggregate belief, µY,t, is given by the weighted arithmetic

mean of the beliefs of individual agents,

µY,t = w1,t µY,1 + w2,t µY,2,

where the weights are the consumption-share weighted relative risk tolerances of the two investors,

as defined in Equation (39).

16Note that aggregate prudence may be larger than the prudence of either agent; that is, aggregate prudence is not
necessarily bounded between the prudence of the individual agents. Consequently, the interest rate in the two-agent
economy, which depends on aggregate prudence as shown in Equation (48), may not be bounded between the interest
rates in the economies with only one of the two agents, as observed in Wang (1996).
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4.3 Dynamics of the Consumption-Sharing Rule

We are now ready to describe the evolution of the consumption-sharing rule.

Proposition 4 (Dynamics of the sharing rule) The true evolution of the sharing rule is given

by:

dν1,t

ν1,t
= µν1,tdt+ σν1,tdZt,

where

σν1,t =
ν2,tRt

γ1γ2

[
µY,1 − µY,2

σY
+ (γ2 − γ1)σY

]
, (40)

µν1,t = ν2,t
Rt

γ1γ2

{
β2 − β1 +

(
µY,1+µY,2

2 − µY
σY

)(
µY,2 − µY,1

σY

)
(41)

+

(
1

ψ2
− 1

ψ1

)(
µY −

1

2
σ2
Y

)
+

[(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)]
λx(ω̄ − ωt) (42)

+
1

2

γ2w
2
2,t − γ1w

2
1,t

γ1γ2

[(
µY,1 − µY,2

σY

)2

+ 2(µY,1 − µY,2)(γ2 − γ1) + (γ2 − γ1)2σ2
Y

]}
. (43)

From (40), we see that the volatility of the sharing rule, σν1,t , is driven by differences in risk

aversion and differences in beliefs, but not differences in subjective discount rates or habit, which

have only a deterministic effect and so appear only in the expression for the drift of the sharing rule,

µν1,t . The expression for σν1,t in (40) shows that, if agents have identical beliefs, then an increase

in heterogeneity in risk aversion leads to an increase in the volatility of the consumption share of

Agent 1 because of an increase in consumption risk sharing. Similarly, if agents have identical risk

aversions (γ1 = γ2), then an increase in heterogeneity in beliefs leads to an increase in the volatility

of the consumption share of Agent 1.17

However, when both risk aversion and beliefs are heterogeneous, then the effect of an increase in

the heterogeneity in either one of these factors on the volatility of the consumption share depends

on whether it reinforces or counteracts the effect of the other factor. From (40) we observe that

σν1,t > 0 if and only if

γ2 − γ1 >
µY,2 − µY,1

σ2
Y

; (44)

17In the case where agents have different risk aversion but the same beliefs, σν1,t is always positive.
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that is, if the more risk averse agent is not too optimistic relative to the less risk averse agent.

If this condition is satisfied, then we see from the definition of aggregate risk aversion in (38)

that Rt will be countercyclical, because when the aggregate endowment has a positive shock, the

weight on the risk aversion of Agent 1 increases, and so the aggregate risk aversion in the economy

decreases. Therefore, the heterogeneity in risk aversion and beliefs can generate countercyclical

aggregate risk aversion endogenously. Moreover, if Agent 2, who has the higher risk aversion,

is also the more pessimistic agent, then the heterogeneity in beliefs reinforces the effect arising

from heterogeneity in risk aversion. This countercyclical behavior of aggregate risk aversion has

previously been recognized in the multiagent models of Chan and Kogan (2002) and Xiouros and

Zapatero (2010), where agents have heterogeneous risk aversions but homogeneous beliefs, and this

feature appears in the single-agent model of Campbell and Cochrane (1999) as a consequence of

the assumption of habit-formation.

Equation (41) shows how µν1,t depends on differences in subjective discount rates and differences

in beliefs. The impact of differences in ψk is given in (42). We also see how µν1,t is affected by the

volatility of aggregate endowment growth, σY , and the differences in beliefs, both of which appear

in (43).18

4.4 Dynamics of State-Price Density: Risk-Free Rate and Market Price of Risk

In this section, we determine the dynamics of the state-price density, and hence, the equilibrium

riskfree rate and market price of risk.

The central planner’s state-price density, πt, is given by

πt = π̂k,tν
−γk
k,t = ξk,t πk,t, k ∈ {1, 2}, (45)

where π̂k is the state-price density in a homogeneous-agent economy where all agents are of type

k and is defined in (12), while πk is the state-price density of Agent k in the heterogeneous-agent

economy, and is defined in (8).19

18The discussion above illustrates the benefit of having the closed-form results in Propositions 1 and 4. Because
we have explicit expressions for the sharing rule and its dynamics, we can understand exactly how these are affected
by the parameters for preferences, beliefs, and the endowment process.

19Because financial markets are effectively complete, marginal utilities of consumption are equal across agents for
each state, and therefore the first order condition for consumption in (10) ensures that the expression in (45) is the
same for k ∈ {1, 2}.
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From standard results in asset pricing (see Duffie (2001, Section 6.D, p. 106)), the evolution of

the central planner’s state-price density πt is:

dπt
πt

= −rtdt− θt dZt, (46)

and the evolution of Agent k’s state-price density, πk,t, is:

dπk,t
πk,t

= −rtdt− θk,t dZk,t, (47)

where, if Bt denote the price of a locally risk-free bond in zero net supply, then, the riskfree return

rt is given by dBt
Bt

= rt dt.

Note from (47) that each agent has her own market price of risk, θk; however, because the

instantaneously riskfree bond is a traded security, the two agents must agree on its price, and

hence, on the interest rate.

4.4.1 The Riskless Interest Rate

The following proposition gives the expression for the riskfree rate.

Proposition 5 (Locally riskfree interest rate) The locally riskfree rate is given by:

rt = βt + Rt

2∑
k=1

wk,tµY,k −
1

2
RtPtσ

2
Y −

(
Rt −

2∑
k=1

1

ψk
wk,t

)
λxωt (48)

+
1

2
w1,tw2,t

(
1− Rt

γ1γ2

)
σ2
ξ − w1,tw2,tRt

(
1

γ1
− 1

γ2

)
(µY,1 − µY,2), (49)

where ωt is defined in (3), ω̄k =
µY,k− 1

2
σ2
Y

λx
is the long-run mean of ωt ≡ yt − xt under the beliefs of

Agent k, that is, under the probability measure Pk, and the weights wk are defined in (39).

The corollary below gives the riskfree rate for some special cases.

Corollary 3 (Locally riskfree interest rate – special cases) If agents have identical and cor-

rect beliefs, then the locally riskfree rate is given by

rt = βt + RtµY −
1

2
RtPtσ

2
Y −

(
Rt −

2∑
k=1

wk,t
ψk

)
λxωt. (50)
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On the other hand, if γ1 = γ2 = γ and ψ1 = ψ2 = ψ, but agents have different beliefs and rates

of time preference, then the locally riskfree rate is given by

rt =
2∑

k=1

νk,tβk + γ
2∑

k=1

νk,tµY,k −
1

2
γ(1 + γ)σ2

Y −
(
γ − 1

ψ

)
λxωt +

1

2
ν1,tν2,t

(
1− 1

γ

)
σ2
ξ . (51)

To interpret the expression for the interest rate, recall that in a standard Lucas (1978) economy

where all agents have correct and identical beliefs, and identical preferences that are given by a

power function, the expression for the interest rate is

r̂k = βk + γk µY −
1

2
γk(1 + γk)σ

2
Y . (52)

From Equation (52), we see that the interest is positively related to the rate of impatience, βk;

positively related to the growth rate of aggregate endowment, µY , scaled by risk aversion γk; and

the third term arises because of precautionary savings in the face of aggregate endowment risk,

which leads to a drop in the interest rate, where the magnitude of the drop depends on (1 + γk),

the relative prudence of agents, and on risk aversion, γk.

When investors are identical but their preferences exhibit habit and their beliefs µY,k are allowed

to deviate from the true growth rate µY , then the interest rate is given by

r̂k,t = βk + γµY,k −
1

2
γk(1 + γk)σ

2
Y −

(
γk −

1

ψk

)
λxωt. (53)

Comparing (53) with (52) we see that the first term, βk, is the same in both expressions; in the

second term, the belief of each agent about the growth rate of aggregate endowments, µY,k, replaces

the true growth rate, µY ; the third term, which reflects the effect of the precautionary savings, is

the same; and, the fourth term is new, and it reflects the effect of habit.

Equation (50) of the corollary shows that if only risk aversions are heterogeneous but beliefs

are homogeneous and correct, then the riskfree rate has the same form as in (53) for a single-agent

economy, but with the aggregate quantities βt, Rt, and aggregate prudence, Pt, replacing their

single-agent counterparts; note, however, that because the weights used to construct these aggregate

measures vary over time, the aggregate measures will be time-varying rather than constant.

On the other hand, if only beliefs are heterogeneous but preferences are homogeneous, then

we see from the last term in (51) that if γ < 1 the differences in beliefs will decrease the interest
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rate, or equivalently, increase the price of the instantaneously riskless bond. This effect is similar

to the premium (“bubble”) in asset prices that has been studied in Harrison and Kreps (1978) and

Scheinkman and Xiong (2003) for the case of risk neutrality (γ = 0) in the presence of shortsale

constraints; over here, we get a similar effect for agents who are risk averse without needing to

constrain shortsales. However, if γ > 1 then the price of the bond decreases with heterogeneity in

beliefs, an observation made also in Dumas, Kurshev, and Uppal (2009).

When agents have both heterogeneous beliefs and preferences, the risk-free rate is given in lines

(48) and (49). The first three terms on line (48) correspond to the three terms in (50), and are

related to the subjective time preference of the two agents, the growth rate of aggregate endowment,

and the demand for precautionary savings. The last term on line (48) arises because of habit. The

two terms on line (49) arise because of differences in beliefs. The first term in (49) increases the

risk-free rate when the aggregate risk aversion is less than the square of the geometric mean of

risk aversion; that is, Rt < γ1γ2, which is true if and only if γ1 > 1.20 It follows that if γ1 > 1

(γ1 < 1), then heterogeneity in beliefs increases (decreases) the risk-free rate. The second term

arises because of differences in both risk aversion and in beliefs; that is,
(

1
γ1
− 1

γ2

)
(µY,1 − µY,2).

When the less risk averse agent is also the more optimistic agent, that is, µY,1 > µY,2, this term

decreases the risk-free rate.

One of the limitations of the representative-agent general-equilibrium model of asset pricing is

that, when risk aversion is increased in order to improve the match of the equity risk premium in

the model to that in the data, the riskfree interest rate in the model becomes too high relative to

the data; this is the “riskfree rate puzzle” identified in Weil (1989). From the discussion above, we

see that both heterogeneity in beliefs and preferences have the potential to reduce the interest rate

relative to a homogeneous agent economy.

4.4.2 The Market Price of Risk

From (46), we see that the volatility of the central planner’s state price density is given by the

market price of risk, θt, while from (47) we see that the volatility of the state price density for each

individual agent is given by the perceived market price of risk, θk,t. The following proposition gives

the expressions for these market prices of risk.

20Note that since Rt ≤ γ2, Rt < γ1γ2 if and only if γ1 > 1.

24



Proposition 6 (Market price of risk) The market price of risk of the central planner, θt, is:

θt = Rt σY +
µY − µY,t

σY
, (54)

and the market price of risk perceived by Agent k is:

θk,t = Rt σY +
µY,k − µY,t

σY
, k ∈ {1, 2}. (55)

The corollary below gives the market prices of risk for the central planner and the two agents

for the special cases where agents have identical preferences or identical beliefs.

Corollary 4 (Market price of risk – special cases) If agents have identical and correct be-

liefs, then the central planner’s market price of risk, θt, and the market price of risk perceived by

Agent k, θk,t are given by:

θt = θk,t = RtσY , k ∈ {1, 2}. (56)

On the other hand, if agents have identical relative risk aversion, γ1 = γ2 = γ, but different

beliefs, rates of time preference, and ψk, then the central planner’s equilibrium market price of risk

is

θt = γ σY +
µY − µY,t

σY
,

and the market price of risk perceived by Agents k is

θk,t = γσY +
µY,k − µY,t

σY
. (57)

To understand the expressions for the market price of risk in the above corollary and proposition,

note that in an economy where all agents have correct and identical beliefs, and identical risk

aversion, γ1 = γ2 = γ, the market price of risk is θ = γ σY . When only preferences are different

across agents, then γ is replaced by the average risk aversion in the economy, Rt, and the market

price of risk is given by (56), with both agents agreeing with this market price of risk. On the

other hand, if preferences are identical but beliefs are heterogeneous, then we see that agents do

not agree on the market price of risk. From (57) we see that if Agent 2 is pessimistic relative

to Agent 1, µY,1 > µY,2, then the market price of risk perceived by Agent 1 will be increased.

The magnitude of this increase depends on the consumption-share of Agent 2, ν2,t, because this
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determines Agent 2’s influence on equilibrium stock market returns. For the general case in (55)

where both beliefs and risk aversions are different, we see that the increase in the market price of

risk perceived by Agent 1 will depend on the consumption share of Agent 2, ν2,t, and the agent’s

risk tolerance, 1/γ2, relative to aggregate risk tolerance in the economy, 1/Rt, because these are

the two factors that determine the size of the position Agent 2 takes in the stock market. Finally,

from the expression in (54) for the general case where there is heterogeneity in both preferences

and beliefs, we see that the market price of risk for the central planner will increase if average

beliefs are pessimistic; that is, µY > µY,t. The intuition for this is that, if agents are pessimistic

on average, then the compensation for bearing risk must be relatively higher than what it needs to

be in an economy where agents have the correct average beliefs.

Note also that the market price of risk is countercyclical in the data and in the model of

Campbell and Cochrane (1999). This will be true also in our model if Rt is countercyclical, which

requires that the more risk averse agent not be too optimistic relative to the less risk averse agent—

the exact condition is given in Equation (44).

4.5 Survival of the Two Agents

In this section, we derive the conditions under which both agents survive in the long run. We

say that the economy is stationary if both agents survive. To formalize the concept of survival,

we introduce the concept of almost-sure (a.s.) survival with respect to a particular probability

measure, as in Kogan, Ross, Wang, and Westerfield (2006) and Yan (2008).

Definition 5 Agent k survives P-a.s. if

lim
t→∞

νk,t > 0, P-a.s.

Note that if an agent’s consumption share is strictly above zero with a probability of less than one,

under P say, then she does not survive P–almost surely. Furthermore, the probability measure is

important, because an agent may believe she survives almost surely (with respect to the probability

measure representing her beliefs), when in fact, she almost surely does not survive under the true

probability measure P.21

21Agent k survives Pj-a.s. if limt→∞ νk,t > 0, Pj-a.s.
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The following proposition provides a condition for almost sure survival under P, extending

the results in Yan (2008) along two dimensions: introducing preferences with external habit and

allowing for heterogeneity in relative risk aversion and habit.

Definition 6 (Survival index) Agent k has a survival index Ik, defined by

Ik = βk +
1

2

(
µY,k − µY

σY

)2

+
1

ψk

(
µY −

1

2
σ2
Y

)
, k ∈ {1, 2}. (58)

It is important to note that relative risk aversion does not affect the survival index in any way.

This is because of the effect of habit, as explained in Chan and Kogan (2002).

Proposition 7 (Condition for almost-sure stationarity) The economy is almost surely sta-

tionary under P if and only if the following two conditions are satisfied:

Condition 1: I1 = I2;

Condition 2: µY,1 −
1

ψ1
σ2
Y = µY,2 −

1

ψ2
σ2
Y .

5 Asset Prices

In this section, we derive the stock price, the equity risk premium, the volatility of stock market

returns, and the term structure of interest rates for the particular aggregate endowment process and

beliefs specified in Equations (35) and (36), and then examine how these quantities are influenced

by heterogeneity in beliefs, rates of time preference, habit, and risk aversion. In Section 6, we extend

these pricing results to the case where the logarithm of aggregate endowment and agents’ beliefs

follow general affine processes, as opposed to the particular processes assumed in Equations (35)

and (36).

5.1 Valuation of Equity

Recall from Equation (25) in Proposition 3 that the date-t price of a dividend strip which pays out

Yu units of consumption at date u > t, denoted by V Y
t,u, can be obtained from the prices of the

spanning assets. For the aggregate endowment and beliefs, given in Equations (35) and (36), the

value of the spanning assets φYn,k,t,u can be expressed analytically. Denote the cumulative standard

normal distribution function by Φ(z) =
∫ z
−∞

e−
1
2x

2

√
2π

dx. We then have the following result.
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Proposition 8 (Value of spanning assets φY
n,1,t,u and φY

n,2,t,u) Given the aggregate endow-

ment process specified in Equation (35) and the beliefs process in (36), the values of φYn,1,t,u and

φYn,2,t,u that pay Yu at u whenever
π̂1,u
π̂2,u

> R and
π̂1,u
π̂2,u

< R, respectively, are:

φYn,1,t,T = vY,homt,u (k1, b1)e
a1

[
µ̂Yq,1(T−t)+ 1

2a1σ
2
q(T−t)+b1

1−e−λx(T−t)
λx

σqσY

]
Φ

(
BY1 (qt, ωt, T − t)− ρ√

2A1(qt, ωt, T − t)

)
, (59)

φYn,2,t,T = vY,homt,u (k2, b2)e
a2

[
µ̂Yq,2(T−t)+ 1

2a2σ
2
q(T−t)+b2

1−e−λx(T−t)
λx

σqσY

]
Φ

(
ρ−BY2 (qt, ωt, T − t)√

2A2(qt, ωt, T − t)

)
, (60)

where

vY,homt,u (kj , bj) = e−kj(T−t)+bj(ωt−ω̂
Y
j )[1−e−λx(T−t)]+ 1

2
b2j

1−e−2λx(T−t)
2λx

σ2
Y ,

k̂j = βj +
1

ψj
µY,j −

1

2

1

ψj

(
1 +

1

ψj

)
σ2
Y +

1

ψj
σ2
Y − µY,j , (61)

a1 = − n
γ2
, a2 =

n

γ1
,

b1 = −
[
n

γ2

(
γ2 −

1

ψ2

)
+

(
1− n

γ2

)(
γ1 −

1

ψ1

)]
, (62)

b2 = −
[(

1− n

γ2

)(
γ2 −

1

ψ2

)
+
n

γ1

(
γ1 −

1

ψ1

)]
,

ρ = lnR.

Ak(qt, ωt, T − t) =
1

2

[
σ2
q (T − t) + 2dω

1− e−λx(T−t)

λx
σqσY + d2

ω

1− e−2λx(T−t)

2λx
σ2
Y

]
,

BY
k (qt, ωt, T − t) = qt + µ̂Yk,q(T − t) + dω[e−λx(T−t)ωt + (1− e−λx(T−t))ω̂Yk ],

+ akσ
2
q (T − t) + (bk + akdω)

1− e−λx(T−t)

λx
σqσY + bkdω

1− e−2λx(T−t)

2λx
σ2
Y ,

µ̂Yk,q = µq +

((
1− 1

ψk

)
σY + σξ,k

)
σq,

ω̂Yk =
µY,k − 1

2σ
2
Y +

(
1− 1

ψk

)
σ2
Y

λx
.

To understand the intuition behind the prices of the spanning assets, it is useful to define the

yield of a spanning asset via:

yφ,Yn,j,T−t = − 1

T − t
lnφYn,j,t,T .
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Hence,

yφ,Yn,1,T−t = − 1

T − t
ln vY,homt,u (k1, b1)− a1

[
µ̂Yq,1 +

1

2
a1σ

2
q + b1

1− e−λx(T−t)

λx(T − t)
σqσY

]
(63)

− 1

T − t
ln Φ

(
BY

1 (qt, ωt, T − t)− ρ√
2A1(qt, ωt, T − t)

)
.

First note that the yield in a homogeneous agent economy where all agents are of Type 1 would be

− 1

T − t
ln vY,homt,u

(
k1,−

(
γ1 −

1

ψ1

))
.

We can then see that the first term in (63), − 1
T−t ln vY,homt,u (k1, b1), is the expression for the yield in a

homogeneous agent economy where all agents are of Type 1, with one change: the difference between

the relative risk aversion and the inverse of the sensitivity of the risk-free rate to consumption growth

in the homogeneous agent economy is replaced by its weighted average, that is, −b1, where b1 is

defined in (62). Given that the spanning asset is priced using the Hölder mean of the state-price

densities of single agent economies, with weights n
γ2

and 1− n
γ2

, it is natural that the same weights

appear in (62). The second term in (63) adjusts for the impact of heterogeneity on the distribution

of consumption. The final term stems from Φ

(
BY1 (qt,ωt,T−t)−ρ√

2A1(qt,ωt,T−t)

)
, the risk-adjusted probability of

the underlying cash flow for the spanning asset being paid. An analagous interpretation holds for

yφ,Yn,2,T−t.

5.2 Term Structure of Zero-Coupon Risky and Riskfree Claims

We now explore the term structure of zero-coupon risky and riskfree claims in the presence of

heterogeneity in beliefs and preferences. We start by defining the yield on a zero-coupon risky

claim, yYT−t:

yYT−t = − 1

T − t
ln
V Y
T−t
Yt

.

The following proposition gives this yield when the maturity of the claim is infinite, that is, the

“long-term” yield.

Proposition 9 (Long-term yield on risky and riskfree zero-coupon claims) The long-term

yield on the risky zero-coupon claim, yYT−t, which pays the random cash flow YT at time T is given
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by

lim
T→∞

yYT−t = min
k∈{1,2}

(
βk +

1

ψk
µY,k −

1

2

1

ψk

(
1 +

1

ψk

)
σ2
Y +

1

ψk
σ2
Y − µY,k

)
. (64)

The long-term yield on the riskfree zero-coupon discount bond, y1
T−t, as T →∞ is

lim
T→∞

y1
T−t = min

k∈{1,2}

(
βk +

1

ψk
µY,k −

1

2

1

ψk

(
1 +

1

ψk

)
σ2
Y

)
, (65)

and the limit of the term premium, the difference between y1
T−t and the short rate, rt, is:

lim
T→∞

y1
T−t − rt = min

k∈{1,2}

(
βk +

1

ψk
µY,k −

1

2

1

ψk

(
1 +

1

ψk

)
σ2
Y

)
− rt.

Observe that the term inside the min operator in (64) is equal to k̂k in Equation (61), which

is the long-term yield in a homogeneous agent economy where Agent k is the representative agent

(see also Equation (A31) in the appendix). The long-term yield consists of βk, the rate of impa-

tience; 1
ψk
µY,k, the growth rate of aggregate endowments scaled by the inverse of the elasticity of

intertemporal substitution parameter; −1
2

1
ψk

(
1 + 1

ψk

)
σ2
Y , the term that adjusts for precautionary

savings determined by the elasticity of intertemporal substitution parameter, and µY,k, the growth

rate of Y expected by investor k. Together, these terms give the “discount rate” used by Agent k

for valuing risky cashflows. One can interpret similarly the term inside the min operator in (65):

because this is the yield on a discount bond with a single terminal payoff that is riskless, compared

to the expression in (64), the terms that adjust for risk and for growth are missing.

Proposition 9 implies that the long-term yield will be set by whichever agent has the lower

discount rate, and not necessarily the agent who survives P-almost surely in the long run; see

Kogan, Ross, Wang, and Westerfield (2006). The intuition is that even though an agent may not

survive in the long-run in the almost-surely sense, she may still be the dominant agent in rare states

of the world, which are also high marginal utility states for this investor, and thus important for

asset prices.

Corollary 5 (Long-term yield when one agent has correct beliefs) Suppose that agents have

identical preferences (that is, β1 = β2 = β, γ1 = γ2 = γ, ψ1 = ψ2 = ψ), and Agent 1 has correct

beliefs (µY,1 = µY ), whereas Agent 2 has incorrect beliefs about the expected growth rate of the
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economy. The long-term yield, yYT−t, is set by Agent 2 if and only if (i) µY,2 < µY and ψ < 1, or

(ii) µY,2 > µY and ψ > 1.

5.3 The Equity Risk Premium and Volatility of Stock-Market Returns

The price of the stock, which can be interpreted as the market portfolio, and its cumulative return,

Rt, which consists of capital gains plus dividends, is described by the process:

dP Yt + Ytdt

P Yt
= dRt = µR,t dt+ σR,t dZt.

From Equation (24), we see that once we have the value of the spanning assets, one can obtain

the price of equity by integrating the value of these spanning assets with respect to their maturities.

The risk premium on equity, which pays Yt in perpetuity, is given by the standard asset pricing

equation:

Et

[
dP Yt + Ytdt

P Yt
− rtdt

]
= −Et

[
dπt
πt

dP Yt
P Yt

]
. (66)

Applying Ito’s Lemma to P Yt = Ytp
Y
t and using Equation (66) leads to the following proposition.

Proposition 10 (Volatility of stock market returns and equity risk premium) The volatil-

ity of stock market returns, σYR,t, is

σYR,t = σY +
1

pYt

(
∂pYt
∂ωt

σY +
∂pYt
∂ν1,t

ν1,tσν1,t

)
; (67)

the risk premium on equity is

µYR,t − rt = θt σ
Y
R,t =

(
Rt σY +

[
µY − µY,t

σY

])
σYR,t; (68)

and, Agent k’s perception of the risk premium is given by

µYR,k,t − rt =

(
Rt σY +

[
µY,k − µY,t

σY

])
σYR,t. (69)

In a model with a single representative investor, stock return volatility, σR,t is equal to fun-

damental volatility, σY . From (67) we see that in a model with heterogeneous investors, stock
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market return volatility is the sum of fundamental volatility, σY , and excess volatility, which is

given by the second term: 1
pYt

(
∂pYt
∂ωt

σY +
∂pYt
∂ν1,t

ν1,tσν1,t). This second term depends on fluctuations

in the price-dividend ratio. The excess-volatility term can be interpreted as the elasticity of the

price-dividend ratio with respect to habit multiplied by the volatility of habit, plus the elasticity of

the price-dividend ratio with respect to the consumption share multiplied by the volatility of the

consumption share. When demand for precautionary savings is not too large, the price-dividend

ratio is monotonic and countercyclical, and so excess volatility is positive, as in the data.

We now discuss the equity risk premium. From Proposition 10, we see that while agents agree

on conditional stock return volatility, they may disagree on the conditional risk premium; that

is, each agent will have her own perception of the equity risk premium, which is given by the

expression in Equation (69). The central planner’s view of the conditional risk premium, which is

given in Equation (68), is the product of the market price of risk, θt, and the volatility of stock

market returns, σYR,t. The risk premium will be high when: (i) in aggregate, agents are pessimistic,

µY,t < µY ; (ii) the aggregate risk aversion in the economy, Rt, is high; and (iii) stock return

volatility, σYR,t, is high. Quantitatively, the first and third channels are the most important for

generating a risk premium that is high relative to the risk premium in an economy where agents

are homogeneous.22

Heterogeneity in either risk aversion or beliefs leads to cyclicality in the price of risk and stock

market return volatility, which feeds into the risk premium, whereas heterogeneity in ψ or the rate

of of time preference has no such impact.

In the data, the price of risk, stock market return volatility and the conditional risk premium are

all countercyclical and this can be generated by either heterogeneity in risk aversion or heterogeneity

in beliefs.

6 General Affine Model

In this section, we show how to price financial assets when the logarithm of aggregate endowment

and agents’ beliefs follow general affine processes, instead of the particular processes assumed in

Equations (35) and (37).

22Note that if stock return volatility, σYR,t, is higher than fundamental volatility, σY , the risk premium can be
higher than in either of the two homogeneous agent economies.
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We start by recalling that an affine process Vt with some state space D ⊂ Rd is defined as a

Markov process whose conditional characteristic function is of the form, for any a ∈ Rd,

Et[e
ia·Vu ] = eχ1(t,u,z)+χ2(t,u,z)·Vt ,

for some coefficients χ1(t, u, z) and χ2(t, u, z). We also observe that if Vt is analytic affine, then

Et[e
ia·Vu ], where each component of a is in C, is a holomorphic function whose restriction to the

real numbers is real-valued. The class of analytic affine processes includes the class of affine jump

diffusions in Duffie, Pan, and Singleton (2000).

Suppose y = lnY is given by an analytic affine process with drift and diffusion driven by

analytic affine processes. It then follows from (12) that

π̂k,t = eςk,t ,

where ςk,t is an analytic affine process, given by

ςk,t = ln(λk,0ξk,t)− βkt−
(
γk −

1

ψk

)
ωt −

1

ψk
yt.

Consider a cashflow process, Xt = ext , where xt is analytic affine. The moment generating function

M(ς1,t, ς2,t, xt, a, b, c) = Et[e
aς1,T+bς2,T+cxT ]

can be evaluated explicitly, because ς1,T , ς2,T and xT are jointly affine. The following proposition

shows how one can obtain asset prices using the moment generating function, when the logarithm

of aggregate endowment and agents’ beliefs follow general analytic affine processes.

Proposition 11 (Values of φX
n,1,t,u and φX

n,2,t,u for general affine processes) If the logarithm

of aggregate endowment and agents’ beliefs follow general analytic affine processes, then the values

of φXn,1,t,u and φXn,2,t,u that pay Xu at u whenever
π̂1,u
π̂2,u

> R and
π̂1,u
π̂2,u

< R, respectively, are:

φn,1,t,u = e
−
[(

1− n
γ1

)
ς1,t+

n
γ2
ς2,t
]
−xt
[

1

π

∫ ∞
−∞

eiρz
1

z
Im

[
M
(
ς1,t, ς2,t, xt, u− t,

(
1− n

γ1

)
+ iz,

n

γ2
− iz, 1

)]
dz

+
1

2
M
(
ς1,t, ς2,t, xt, u− t, 1−

n

γ1
,
n

γ2
, 1

)]
, (70)

and

φn,2,t,u = e
−
[
n
γ1
ς1,t+

(
1− n

γ2

)
ς2,t
]
−xt
[
− 1

π

∫ ∞
−∞

eiρz
1

z
Im

[
M
(
ς1,t, ς2,t, xt, u− t,

n

γ1
+ iz, 1− n

γ2
− iz, 1

)]
dz
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+
1

2
M
(
ς1,t, ς2,t, xt, u− t,

n

γ1
, 1− n

γ2
, 1

)]
. (71)

7 Conclusion

In this paper, we study an endowment economy where there are two types of agents, each with

“catching up with the Joneses” utility. The two agents are heterogeneous with respect to their pref-

erence parameters for the subjective rate of time preference, relative risk aversion, and sensitivity

to habit, and also with respect to their beliefs.

Our main contribution is to solve in closed form for the equilibrium in this economy and to

identify the optimal consumption-sharing rule, without restricting the risk aversions of the two

agents to particular values. We use this closed-form solution to identify the state price density,

market price of risk, the locally risk free interest rate the stock price, the equity market risk

premium, the volatility of stock returns , and the term structure of interest rates. We also derive

explicitly the condition for the model to be stationary, in the sense that both types of agents survive

in the long run. We then analyze how heterogeneity in preferences and beliefs affects the properties

of asset returns.

We find that heterogeneity in beliefs about the growth rate of aggregate endowment and het-

erogeneity in preferences are capable of generating a market price of risk of that is substantially

higher than that in a homogeneous-agent economy. Moreover, heterogeneity in preferences and

beliefs increase stock-return volatility by as much as two to four times the fundamental volatility

of aggregate endowment. Consequently, the equity risk premium, which is the product of the mar-

ket price of risk and stock return volatility, is considerably higher in a model where both beliefs

and preferences are heterogeneous, and this is accompanied neither by an increase in the level

of the short-term riskless rate, nor an increase in its volatility. The aggregate risk aversion in the

heterogeneous-agent economy is countercyclical, and consequently, the model is consistent also with

several dynamic properties of asset prices; for example, when aggregate consumption falls, expected

stock returns, stock-return volatility, and the market price of risk rise, and price-dividend ratios

decline.
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The methodology we develop to identify the consumption-sharing rule for agents who have both

heterogeneous priors and heterogeneous preferences is sufficiently general that, as long as markets

are complete, it can be applied to models set in discrete or continuous time, to endowment processes

that are in the exponential affine jump-diffusion class, and, to settings with arbitrary updating of

beliefs.
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A Appendix: Lagrange’s Theorem and Proofs for Propositions
and Corollaries

We begin by stating a number of definitions and theorems from complex analysis that are used to

derive results in the paper. In particular, the insight from Lagrange that is central to the analysis

in the paper is given in Theorem A2.

Definition A1 If U is an open subset of C and f : U → C is a complex function on U , we say

that f is complex differentiable at a point z0 of U if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists. The limit here is taken over all sequences of complex numbers approaching z0, and for all

such sequences the difference quotient has to approach the same number f ′(z0).

Definition A2 If f is complex differentiable at every point z0 in U , we say that f is holomorphic

on U . We say that f is holomorphic at the point z0 if it is holomorphic on some neighborhood

of z0. We say that f is holomorphic on some non-open set A if it is holomorphic in an open set

containing A.

Definition A3 A function f is complex analytic on an open set D in the complex plane if for any

z0 in D one can write

f(z) =

∞∑
n=0

an(z − z0)n,

in which the coefficients a0, a1, ... are complex numbers and the series is convergent for z in a

neighborhood of z0.

Theorem A1 (Complex Analytic) A function f is complex analytic on an open set D in the

complex plane if and only if it is holomorphic in D.

We are now ready to state the theorem that allows us to find closed-form series expansions for

the sharing rule and complex analytic functions of the sharing rule.

Theorem A2 (Lagrange) Suppose the dependence between the variables w and z is implicitly

defined by an equation of the form

w = f(z),

where f is complex analytic in a neighborhood of 0 and f ′(0) 6= 0. Then for any function g which

is complex analytic in a neighborhood of 0,

g(z) = g(0) +
∞∑
n=1

wn

n!

[
dn−1

dxn−1
g′(x)[ϕ(x)n]

]
x=0

, (A1)

where ϕ(z) = z
f(z) .
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Note that the above theorem does not provide a radius of convergence for the series in Equa-

tion (A1). While the original proof of Theorem A2 due to Lagrange is not very straightforward, a

relatively easier proof can be obtained by using Cauchy’s Integral Formula.

A.1 Proof of Proposition 1: Consumption-sharing rule

Equation (13) is equivalent to

At(1− ν1,t)
η = ν1,t,

which implicitly defines ν1,t in terms of At. To solve explicitly for ν1,t, we apply Theorem A2,

expanding around the point ν1,t = 0, with

f(z) = z(1− z)−η, (A2)

ϕ(z) = (1− z)η, (A3)

g(z) = z,

after showing that f is complex analytic in some neighborhood of 0. We know from the binomial

series expansion that for z ∈ C, such that |z| < 1,

(1− z)−η =
∞∑
n=0

(
−η
k

)
(−)nzn,

where
(−η
k

)
= Πk

j=1
−η−k+j

j is the generalized binomial coefficient. Therefore, (1− z)−η is complex

analytic in the open ball {z ∈ C : |z| < 1}. Since z is complex analytic for all z ∈ C, it follows that

f as defined in (A2) is complex analytic in the open ball {z ∈ C : |z| < 1}. It therefore follows

from Theorem A2 that

ν1,t =
∞∑
n=1

Ant
n!

dn−1

dxn−1
[(1− x)ηn]x=0 .

Since

dn−1

dxn−1
[(1− x)nη] = (−)n−1ηn(ηn− 1)(ηn− 2) . . . (ηn− (n− 2))(1− x)ηn−(n−1),

it follows that

ν1,t = −
∞∑
n=1

(−At)n

n

(
ηn

n− 1

)
,

ν2,t = 1 +

∞∑
n=1

(−At)n

n

(
ηn

n− 1

)
. (A4)

We shall now determine the radius of convergence of the above series. From d’Alembert’s ratio

test, it follows that the above series converge absolutely for all A ∈ C s.t. |A| < R, where

R = lim
n→∞

n+ 1

n

∣∣∣∣∣
(
ηn
n−1

)(
η(n+1)
n

)∣∣∣∣∣ .
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We wish to evaluate the above limit for all η ∈ R such that η > 1. Hence,
(
ηn
n−1

)
and

(
η(n+1)
n

)
are

positive and real, and so

R = lim
n→∞

n+ 1

n

(
ηn
n−1

)(
η(n+1)
n

) .
We note that the generalized binomial coefficient,

(
z
k

)
= Πk

j=1
z−k+j
j , can be written as(

z

k

)
=

Γ(z + 1)

Γ(z − k + 1)Γ(k + 1)
, (A5)

where Γ(z) is the Gamma function, which for <(z) > 0 (where <(z) denotes the real part of z),

has the integral representation,

Γ(z) =

∫ ∞
0

tz−1e−tdt.

The Euler Beta function, B(x, y), defined by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt,

can be written in terms of the Gamma function as follows,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (A6)

Together with (A5), the above expression implies that the generalized binomial coefficient is given

by (
z

k

)
=

1

(z + 1)B(z − k + 1, k + 1)
. (A7)

Hence,

R = lim
n→∞

n+ 1

n

η(n+ 1) + 1

ηn+ 1

B((η − 1)(n+ 1), n+ 1)

B((η − 1)n, n)
.

To evaluate the above limit, we start by recalling Stirling’s series for the Gamma function

Γ(z) =
√

2πe−zzz−
1
2

(
1 +O

(
1

z

))
, (A8)

which together with (A6) implies that

R = lim
n→∞

n+ 1

n

η(n+ 1) + 1

ηn+ 1

((η−1)(n+1))(η−1)(n+1)− 1
2 (n+1)(n+1)− 1

2

((η−1)(n+1)+(n+1))((η−1)(n+1)+(n+1))− 1
2

((η−1)n)((η−1)n)− 1
2 nn−

1
2

(((η−1)n)+n)(((η−1)n)+n)− 1
2

.

Simplifying the above expression gives

R = lim
n→∞

n+ 1

n

η(n+ 1) + 1

ηn+ 1

(η − 1)η−1

ηη

√
n

n+ 1
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=
(η − 1)η−1

ηη
.

Since At is a geometric Brownian motion, it is positive and real. Hence, the right-hand side of

(A4) is absolutely convergent for At <
(η−1)η−1

ηη .

We now derive a series expansion for ν2,t in terms of At, which is absolutely convergent for

At >
(η−1)η−1

ηη . We start by rearranging (13) to obtain

ν2,t = A
−1/η
t (1− ν2,t)

1/η.

To find ν2,t, we apply Theorem A2, expanding around the point ν2,t = 0, with f , ϕ and g, defined

as below

f(z) = z(1− z)−1/η (A9)

ϕ(z) = (1− z)1/η (A10)

g(z) = z.

We can show that our newly defined f is complex analytic in the open ball, {z ∈ C : |z| < 1}, in

the same way as for (A2). Hence, Theorem A2 implies that

ν2,t =

∞∑
n=1

(A
−1/η
t )n

n!

dn−1

dxn−1

[
(1− x)n/η

]
x=0

.

Because

dn−1

dxn−1

[
(1− x)n/η

]
= (−)n−1n

η

(
n

η
− 1

)(
n

η
− 2

)
. . .

(
n

η
− (n− 2)

)
(1− x)

n
η
−(n−1)

,

it follows that

ν2,t = −
∞∑
n=1

(−A
− 1
η

t )n

n

( n
η

n− 1

)
=
∞∑
n=1

(−)n−1(A
− 1
η

t )n

n

( n
η

n− 1

)
.

By comparing the above expression with (A.1), we can see that (A.1) is absolutely convergent if

A
−1/η
t <

( 1
η
−1)

1
η−1

1
η

1
η

, that is, if At >
(η−1)η−1

ηη . To summarize, we have

ν2,t =

 −∑∞n=1

(
−A
− 1
η

t

)n
n

( n
η

n−1

)
, At > R,

1 +
∑∞

n=1
(−At)n

n

(
nη
n−1

)
, At < R,

where R is given in (A.1). Using (3.1) we can write the expressions for the sharing rule as (14).
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A.2 Proof of Proposition 2: State-price density

The equilibrium state price density is given by (45). To find a closed-form expression for the

equilibrium state-price density, we find series expansions for ν−γkk,t , k ∈ {1, 2}. To find a series

expansion for ν−γ22,t , note that

ν−γ22,t = (1− ν1,t)
−γ2 ,

and use Theorem A2 to expand around the point ν1,t = 0. To do this we define

g(z) = (1− z)−γ2 ,

which is complex analytic in the open ball {z ∈ C : |z| < 1}. Hence, with f and ϕ defined as in

(A2) and (A3), respectively, Theorem A2 implies that

g(ν1,t) = (1− ν1,t)
−γ2

= g(0) +
∞∑
n=1

Ant
n!

dn−1

dxn−1

[
g′(x)ϕ(x)n

]
x=0

= 1 +
∞∑
n=1

Ant
n!

dn−1

dxn−1

[
γ2(1− x)nη−γ2−1

]
x=0

.

Since,

dn−1

dxn−1
γ2(1− x)nη−γ2−1

= γ2(−)n−1 (nη − γ2 − 1) (nη − γ2 − 2) . . . (nη − γ2 − (n− 1)) (1− x)nη−γ2−(n−1),

it follows that

ν−γ22,t = 1− γ2

∞∑
n=1

(−At)n

n

(
nη − γ2 − 1

n− 1

)
. (A11)

D’Alembert’s ratio test implies that the above series converges absolutely for all A ∈ C such that

|A| < R, where

R = lim
n→∞

n+ 1

n

(
ηn−γ2−1
n−1

)(
η(n+1)−γ2−1

n

) .
Using (A7), we rewrite the above expression as

R = lim
n→∞

n+ 1

n

η(n+ 1)− γ2

ηn− γ2

B((η − 1)(n+ 1)− γ2 − 1, n+ 1)

B((η − 1)n− γ2 − 1, n)
.

Hence, using (A6) and (A8), we obtain

R = lim
n→∞

n+ 1

n

η(n+ 1)− γ2

ηn− γ2

[(η−1)(n+1)−(1+γ2)](η−1)(n+1)−(1+γ2)−1/2(n+1)n+1−1/2

[η(n+1)−(1+γ2)]η(n+1)−(1+γ2)−1/2

[(η−1)n−(1+γ2)](η−1)n−(1+γ2)−1/2nn−1/2

[ηn−(1+γ2)]ηn−(1+γ2)−1/2

.
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Simplifying the above expression gives

R =
(η − 1)(η−1)

ηη
.

Since At is a geometric Brownian motion, At is real and positive, and so the right-hand side of

(A11) is absolutely convergent if At <
(η−1)(η−1)

ηη = R. Hence,

ν−γ22,t = 1− γ2

∞∑
n=1

(−At)n

n

(
nη − γ2 − 1

n− 1

)
, At < R.

Using (12) and (15), we can rewrite the above expression as

ν−γ22,t =

∞∑
n=0

aπn,2

(
π̂1,t

π̂2,t

) n
γ1

,
π̂1,t

π̂2,t
<
γγ21

γγ22

(
γ2

γ1
− 1

)γ2−γ1
,

where aπn,2 is defined in (18). Therefore, the equilibrium state-price density is given by

πt =
∞∑
n=0

aπn,2π̂
n
γ1
1,t π̂

1− n
γ1

2,t ,
π̂1,t

π̂2,t
<
γγ21

γγ22

(
γ2

γ1
− 1

)γ2−γ1
. (A12)

To find an expression for the state-price density when At >
(η−1)(η−1)

ηη , we find a series expansion

for ν−γ11,t , which is absolutely convergent for At >
(η−1)(η−1)

ηη . Note that

ν−γ11,t = (1− ν2,t)
−γ1 ,

and use Theorem A2 to expand around the point ν2,t = 0. To do this, we define

g(z) = (1− z)−γ1 ,

which is complex analytic in the open ball {z ∈ C : |z| < 1}. Hence, with f and ϕ defined as in

(A9) and (A10), respectively, Theorem A2 implies that

g(ν2,t) = (1− ν2,t)
−γ1

= g(0) +

∞∑
n=1

(A
−1/η
t )n

n!

dn−1

dxn−1

[
g′(x)ϕ(x)n

]
x=0

= 1 +
∞∑
n=1

(A
−1/η
t )n

n!

dn−1

dxn−1

[
γ1(1− x)

n
η
−γ1−1

]
x=0

.

Because,

dn−1

dxn−1

[
γ1(1− x)

n
η
−γ1−1

]
=
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γ1(−)n−1

(
n

η
− γ1 − 1

)(
n

η
− γ1 − 2

)
. . .

(
n

η
− γ1 − (n− 1)

)
(1− x)

n
η
−γ1−(n−1)

,

it follows that

ν−γ11,t = 1− γ1

∞∑
n=1

(−A−1/η
t )n

n

( n
η − γ1 − 1

n− 1

)
. (A13)

By comparing the above expression with (A11), we can see that (A13) is absolutely convergent if

A
−1/η
t <

( 1
η
−1)

1
η−1

1
η

1
η

, i.e. if At >
(η−1)η−1

ηη = R. Thus,

ν−γ11,t = 1− γ1

∞∑
n=1

(−A−1/η
t )n

n

( n
η − γ1 − 1

n− 1

)
, At > R.

Using (12) and (15), we can rewrite the above expression as

ν−γ11,t =

∞∑
n=0

aπn,1

(
π̂2,t

π̂1,t

) n
γ2

,
π̂1,t

π̂2,t
>
γγ21

γγ22

(
γ2

γ1
− 1

)γ2−γ1
,

where aπn,1 is defined in (17). Therefore, the equilibrium state-price density is given by

πt =

∞∑
n=0

aπn,2π̂
n
γ1
1,t π̂

1− n
γ1

2,t ,
π̂1,t

π̂2,t
>
γγ21

γγ22

(
γ2

γ1
− 1

)γ2−γ1
. (A14)

The expressions in (16) follow from (A12) and (A14).

A.3 Proof of Corollary 1: State-price density under identical risk aversion

First we note that

lim
a→0

(
γ + a

γ
− 1

)a
= 1.

Therefore, setting γ1 = γ2 = γ implies that

γγ21

γγ22

(
γ2

γ1
− 1

)γ2−γ1
= 1.

Also note that after some tedious algebra, we can show that

γ

(
n− γ − 1

n

)
(−)n+1

n
=

(
γ

n

)
.

Therefore, when γ1 = γ2 = γ, (17) and (18) reduce to (20).

The expression in (22) is obtained from (19) by using Newton’s Binomial Theorem (for non-

integral powers). When γ is a natural number, the expression in (22) can be obtained also from

(21) by using the Binomial Theorem for integral powers, and one could obtain (22) also directly

from the first-order condition for consumption in (11).
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A.4 Proof of Proposition 3: Price of dividend strip

Rather than considering a dividend strip based where the aggregate endowment, Y , is the dividend,

we shall derive results for a more general dividend strip, which pays out Xu at date u, where the

evolution of X is given by

dXt

Xt
= µXdt+ σsysX dZt + σidXdZ

id
t ,

where Zidt is a standard Brownian motion under P, orthogonal to Zt, and

µY,k − µY
σY

=
µX,k − µX

σsysX

.

The date-t price of the dividend strip which pays out Xu at date u > t is denoted by V X
t,u, where

V X
t,u = vXt,uXt,

and

vXt,u = Et

∫ ∞
t

[
πu
πt

Xu

Xt
dt

]
. (A15)

We shall derive an expression for vXt,u, and then, to get the equations in the proposition giving the

price of a dividend strip where the endowment is the dividend, we will set µX = µY , σsysX = σY ,

and σidX = 0.

To derive a closed-form expression for the price-dividend ratio in (A15), we use (16) to write

the equilibrium state-price density as

πt =
∞∑
n=0

aπn,1π̂
1− n

γ2
1,t π̂

n
γ2
2,t 1

{
π̂1,t
π̂2,t

>R

} +
∞∑
n=0

aπn,2π̂
n
γ1
1,t π̂

1− n
γ1

2,t 1{ π̂1,t
π̂2,t

<R

}.

Since the event
{
π̂1,t
π̂2,t

= R
}

is of measure zero, it follows from (A15) that

vXt,u = (πtXt)
−1jt,u, (A16)

where

jt,u = Et

[ ∞∑
n=0

aπn,1π̂
1− n

γ2
1,t π̂

n
γ2
2,uXu1{ π̂1,u

π̂2,u
>R

} +
∞∑
n=0

aπn,2π̂
n
γ1
1,uπ̂

1− n
γ1

2,u Xu1{ π̂1,u
π̂2,u

<R

}
]
.

Since the two infinite series in the above expression stem from ν−γ22,t in (A11), and ν−γ11,t in (A13),

which are complex analytic for A ∈ C such that |A| < R, and |A| > R, respectively, we can

interchange the conditional expectation with the infinite sum to obtain

jt,u =

∞∑
n=0

aπn,1Et

[
π̂

1− n
γ2

1,u π̂
n
γ2
2,uXu1{ π̂1,u

π̂2,u
>R

}
]

+

∞∑
n=0

aπn,2Et

[
π̂
n
γ1
1,uπ̂

1− n
γ1

2,u Xu1{ π̂1,u
π̂2,u

<R

}
]
.
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We now rewrite the above expression as follows:

jt,u = πtXt

( ∞∑
n=0

ωn,1,tφ
X
n,1,t,u +

∞∑
n=0

ωn,2,tφ
X
n,2,t,u

)
, (A17)

where ωn,1,t and ωn,2,t are given by

ωn,1,t = aπn,1
π̂

1− n
γ2

1,t π̂
n
γ2
2,t

πt
, n ∈ N0, (A18)

ωn,2,t = aπn,2
π̂
n
γ1
1,t π̂

1− n
γ1

2,t

πt
, n ∈ N0, (A19)

and φXn,1,t,u and φXn,2,t,u are given by

φXn,1,t,u = Et

 π̂1− n
γ2

1,u π̂
n
γ2
2,u

π̂
1− n

γ2
1,t π̂

n
γ2
2,t

Xu

Xt
1{ π̂1,u

π̂2,u
>R

}
 , n ∈ N0,

φXn,2,t,u = Et

 π̂ n
γ1
1,uπ̂

1− n
γ1

2,u

π̂
n
γ1
1,t π̂

1− n
γ1

2,t

Xu

Xt
1{ π̂1,u

π̂2,u
<R

}
 , n ∈ N0.

We now set µX = µY , σsysX = σY , and σidX = 0, and so Equation (25) follows from (A16) and

(A17). We also note that (28) follows from (16), (A18), and (A19).

We now express the weights, ωn,1,t and ωn,2,t, in terms of the consumption shares, ν1,t and ν2,t.

Equation (11) implies that for all a ∈ R

πt = π̂a1,tν
−aγ1
1,t π̂1−a

2,t ν
−(1−a)γ2
2,t ,

which implies that

π̂a1,tπ̂
1−a
2,t = πtν

aγ1
1,t ν

(1−a)γ2
2,t .

Therefore, we can rewrite the weights, ωn,1,t and ωn,2,t, given in (A18) and (A19) as (26) and (27),

respectively.

A.5 Proof of Corollary 2: Price of dividend strip with identical risk aversion

Again, rather than considering dividend strips where the dividend is the aggregate endowment, we

shall derive results for a more general dividend process, X, where the evolution of X is given by

(A51). Then, to obtain the results in the proposition, we will set µX = µY , σsysX = σY , and σidX = 0.
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By setting γ1 = γ1 = γ, (26) and (27) reduce to (31) and (32), respectively, and (29) and (30)

reduce to

φXn,1,t,u = Et

 π̂1−n
γ

1,u π̂
n
γ

2,u

π̂
1−n

γ

1,t π̂
n
γ

2,t

Xu

Xt
1{ π̂1,u

π̂2,u
>R

}
 , n ∈ N0, (A20)

φXn,2,t,u = Et

 π̂ nγ1,uπ̂1−n
γ

2,u

π̂
n
γ

1,tπ̂
1−n

γ

2,t

Xu

Xt
1{ π̂1,u

π̂2,u
<R

}
 , n ∈ N0. (A21)

When γ ∈ N, (25) reduces to

vXt,u =

γ∑
n=0

ωn,1,tφ
X
n,1,t,u +

γ∑
n=0

ωn,2,tφ
X
n,2,t,u

=

γ∑
n=0

ωn,t
(
φXn,1,t,u + φXγ−n,2,t,u

)
,

where ωn,t is given in (34). It follows from (A20) and (A21) that

φXn,1,t + φXγ−n,2,t = Et

 π̂1−n
γ

1,u π̂
n
γ

2,u

π̂
1−n

γ

1,t π̂
n
γ

2,t

Xu

Xt

 , n ∈ N0 andn ≤ γ.

The n’th weight in the sum is given by the expression in (34); observe that the weights sum to

one, because
γ∑

n=0

(
γ
n

)(
ν

1−n
γ

1,t ν
n
γ

2,t

)γ
= (ν1,t + ν2,t)

γ = 1.

A.6 Proof of Proposition 4: Dynamics of the consumption-sharing rule

We can see the state variables of the economy by writing the consumption sharing rule as

e∆tν−γ11,t = ν−γ22,t , (A22)

where

∆t = ln
π̂1,t

π̂2,t
= qt + dω ωt,

and

qt = ln
λ1,0

λ2,0
+ µqt+ σqZt,

µq = (β2 − β1) +
1

2
(σ2
ξ,2 − σ2

ξ,1) +

(
1

ψ2
− 1

ψ1

)(
µY −

1

2
σ2
Y

)
,
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σq = σξ,1 − σξ,2 +

(
1

ψ2
− 1

ψ1

)
σY ,

dω =

(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)
.

Hence, the state variables of the economy are q and ω.

We observe from (15) that the evolution of the ratio
π̂1,t
π̂2,t

will have a deterministic component

and a stochastic component, where the stochastic component depends on the stochastic behavior

of aggregate endowment and the differences in beliefs.

From Ito’s Lemma

dν1,t =
∂ν1,t

∂∆t
d∆t +

1

2

∂2ν1,t

∂∆2
t

(d∆t)
2.

Differentiating (A22) implicitly with respect ∆t and solving for
∂ν1,t
∂∆t

gives

∂ν1,t

∂∆t
= Rt

ν1,tν2,t

γ1γ2
. (A23)

Differentiating (A23) with respect to ∆t gives

∂2ν1,t

∂∆2
t

=
∂

∂∆t

[
Rt
ν1,tν2,t

γ1γ2

]
=

1

γ1γ2

∂

∂∆t
[Rtν1,tν2,t]

=
1

γ1γ2

[
Rt

∂

∂∆t
[ν1,tν2,t] + ν1,tν2,t

∂Rt

∂∆t

]
.

We simplify the above expression by observing that

∂Rt

∂∆t
= −R2

t

(
1

γ1
− 1

γ2

)
∂ν1,t

∂∆t
.

and using (A23) to obtain

∂2ν1,t

∂∆2
t

= ν1,tν2,t

(
Rt

γ1γ2

)2 [
(ν2,t − ν1,t)− ν1,tν2,tRt

(
1

γ1
− 1

γ2

)]
.

Hence,

dν1,t =
∂ν1,t

∂∆t
d∆t +

1

2

∂2ν1,t

∂∆2
t

(d∆t)
2

= ν1,tν2,t
Rt

γ1γ2

{
µqdt+ σqdZt + dω[λx(ω − ωt)]dt+ dωσY dZt

+
1

2

Rt

γ1γ2

[
ν2,t − ν1,t − ν1,tν2,tRt

(
1

γ1
− 1

γ2

)]
(σq + dωσY )2dt

}
.
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Now observe that

σq + dωσY = σξ,1 − σξ,2 +

(
1

ψ2
− 1

ψ1

)
σY +

(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)
σY

= σξ,1 − σξ,2 + (γ2 − γ1)σY

Therefore

dν1,t = ν1,tν2,t
Rt

γ1γ2

{
µq + dω[λx(ω − ωt)]

+
1

2

Rt

γ1γ2

[
ν2,t − ν1,t − ν1,tν2,tRt

(
1

γ1
− 1

γ2

)]
[σξ,1 − σξ,2 + (γ2 − γ1)σY ]2

}
dt

+ ν1,tν2,t
Rt

γ1γ2
[σξ,1 − σξ,2 + (γ2 − γ1)σY ]dZt.

Now observe that

µq + dω[λx(ω − ωt)]

= (β2 − β1) +
1

2
(σ2
ξ,2 − σ2

ξ,1) +

(
1

ψ2
− 1

ψ1

)(
µY −

1

2
σ2
Y

)
[(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)](
µY −

1

2
σ2
Y

)
−
[(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)]
λxωt

= β2 − β1 +
1

2
(σ2
ξ,2 − σ2

ξ,1) + (γ2 − γ1)

(
µY −

1

2
σ2
Y

)
−
[(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)]
λxωt

and

Rt

γ1γ2

[
ν2,t − ν1,t − ν1,tν2,tRt

(
1

γ1
− 1

γ2

)]
=

(
Rtν2,t

γ2

)
1

γ1
−
(

Rtν1,t

γ1

)
1

γ2
− Rtν1,t

γ1

Rtν2,t

γ2

(
1

γ1
− 1

γ2

)

=
w2,t

γ1
− w1,t

γ2
− w1,tw2,t

(
1

γ1
− 1

γ2

)
=
w2

2,t

γ1
−
w2

1,t

γ2
=
γ2w

2
2,t − γ1w

2
1,t

γ1γ2
.

Hence,

dν1,t = ν1,tν2,t
Rt

γ1γ2
×{

(β2 − β1) +
1

2
(σ2
ξ,2 − σ2

ξ,1) + (γ2 − γ1)

(
µY −

1

2
σ2
Y

)
−
[(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)]
λxωt

+
1

2

γ2w
2
2,t − γ1w

2
1,t

γ1γ2

[
(σξ,1 − σξ,2) + (γ2 − γ1)σY

]2
}
dt

+ ν1,tν2,t
Rt

γ1γ2

[
(σξ,1 − σξ,2) + (γ2 − γ1)σY

]
dZt.
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= ν1,tν2,t
Rt

γ1γ2

{
(β2 − β1) +

1

2
(σ2
ξ,2 − σ2

ξ,1)

+

(
1

ψ2
− 1

ψ 1

)(
µY −

1

2
σ2
Y

)
+

[(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)]
λx(ω̄ − ωt)

+
1

2

γ2w
2
2,t − γ1w

2
1,t

γ1γ2

[
(σξ,1 − σξ,2) + (γ2 − γ1)σY

]2
}
dt

+ ν1,tν2,t
Rt

γ1γ2

[
(σξ,1 − σξ,2) + (γ2 − γ1)σY

]
dZt

= ν1,tν2,t
Rt

γ1γ2

{
β2 − β1 +

(
µY,1+µY,2

2 − µY
σY

)(
µY,2 − µY,1

σY

)

+

(
1

ψ2
− 1

ψ1

)(
µY −

1

2
σ2
Y

)
+

[(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)]
λx(ω̄ − ωt)

+
1

2

γ2w
2
2,t − γ1w

2
1,t

γ1γ2

[(
µY,1 − µY,2

σY

)2

+ 2(µY,1 − µY,2)(γ2 − γ1) + (γ2 − γ1)2σ2
Y

]}
dt

+ ν1,tν2,t
Rt

γ1γ2

[
µY,1 − µY,2

σY
+ (γ2 − γ1)σY

]
dZt.

A.7 Proof of Proposition 5: Riskfree rate

We know that the equilibrium state price density, π, is given by

πt = π̂1,tν
−γ1
1,t = π̂2,tν

−γ2
2,t .

Hence,

lnπt = ln π̂1,t − γ1 ln ν1,t.

In the homogeneous agent economy where all agents are of Type k, we derive the risk-free rate,

r̂k,t and the market price of risk, θ̂k,t. We starting from the well-known result that

dπ̂k,t
π̂k,t

= −r̂k,tdt− θ̂k,tdZt.

Given our assumptions for the aggregate endowment, we can apply Ito’s Lemma to the last expres-

sion in (12)

d ln π̂k,t = −1

2
σ2
ξ,kdt+ σξ,kdZt − βkdt−

(
γk −

1

ψk

)
dωt +

1

ψk
dyt

= −1

2
σ2
ξ,kdt− βkdt−

(
γk −

1

ψk

)
[λx(ω̄ − ω)dt+ σY dZt] +

1

ψk

[(
µY −

1

2
σ2
Y

)
dt+ σY dZt

]
.
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Therefore

θ̂k = −σξ,k +

(
γk −

1

ψ k

)
σY +

1

ψk
σY = γkσY +

µY − µY,k
σY

and

rk,t +
1

2
θ̂2
k,t = rk,t +

1

2
(γkσY − σξ,k) =

1

2
σ2
ξ,k + βk +

(
γk −

1

ψk

)
λx(ω̄ − ωt) +

1

ψk

(
µY −

1

2
σ2
Y

)
.

Hence,

r̂k,t +
1

2

(
σ2
ξ,k − 2γkσY σξ,k + γ2

kσ
2
ξ,k

)
=

1

2
σ2
ξ,k + βk +

(
γk −

1

ψk

)
λx(ω̄ − ωt) +

1

ψk

(
µY −

1

2
σ2
Y

)
r̂k,t − γk(µY,k − µY ) +

1

2
γ2
kσ

2
Y = βk +

(
γk −

1

ψk

)
λx(ω̄ − ωt) +

1

ψk

(
µY −

1

2
σ2
Y

)
,

and so

r̂k,t = βk +
1

ψk
µY,k + λx(ω̄k − ωt)

(
γk −

1

ψk

)
− 1

2

[
γk(1 + γk)−

(
γk −

1

ψk

)]
σ2
Y , (A24)

where

ω̄k =
µY,k − 1

2σ
2
Y

λx
.

Applying Ito’s Lemma to lnπt gives

d lnπt = d ln π̂1,t − γ1d ln ν1,t = −
(
r̂1,t +

1

2
θ̂2

1,t

)
dt− θ̂1,tdZt − γ1

[
(µν1,t −

1

2
σ2
ν1,t)dt+ σν1,tdZt

]
= −

[
r̂1,t +

1

2
θ̂2

1,t + γ1(µν1,t −
1

2
σ2
ν1,t)

]
dt− (θ̂1,t + γ1σν1,t)dZt.

Therefore

θt = θ̂1,t + γ1σν1,t

=
µY − µY,1

σY
+ γ1σY +

ν1,tRt

γ2

[
µY,1 − µY,2

σY
+ (γ2 − γ1)σY

]

=
µY −

[(
1− ν2,tRt

γ2

)
µY,1 +

ν2,tRt

γ2
µY,2

]
σY

+

[
γ1

(
1− ν2,tRt

γ2

)
+ γ2

ν2,tRt

γ2

]
σY

=
µY −

(
ν1,tRt

γ1
µY,1 +

ν2,tRt

γ2
µY,2

)
σY

+

(
γ1
ν1,tRt

γ1
+ γ2

ν2,tRt

γ2

)
σY

=
µY −

(
ν1,tRt

γ1
µY,1 +

ν2,tRt

γ2
µY,2

)
σY

+ RtσY

where we have used the fact that
ν1,tRt

γ1
= 1− ν2,tRt

γ2
.
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Therefore,

θt =
µY − µY,t

σY
+ RtσY , (A25)

where

µY,t =

2∑
k=1

wk,tµY,k

and

wk,t =
νk,t
γk

Rt, k ∈ {1, 2}.

Also,

rt +
1

2
θ2
t = r̂1,t + γ1

(
µν1,t −

1

2
σ2
ν1,t

)
+

1

2
θ̂2

1,t.

Therefore,

rt = r̂1,t + γ1

(
µν1,t −

1

2
σ2
ν1,t

)
+

1

2
θ̂2

1,t −
1

2
(θ̂2

1,t + 2γ1θ̂
2
1,tσν1,t + γ2

1σ
2
ν1,t)

rt = r1,t + γ1

(
µν1,t −

1

2
σν1,t

)
− γ1θ̂1σν1,t −

1

2
γ2

1σ
2
ν1,t.

Substituting (A24) and µν1,t, σν1,t from Proposition 4 into the above expression and simplifying

gives

rt = βt + RtµY,t −
1

2
RtPtσ

2
Y − λx ωt

[
Rt −

(
w1,t

ψ1
+
w2,t

ψ2

)]
+

1

2
w1,tw2,t

(
1− Rt

γ1γ2

)(
µY,1 − µY,2

σY

)2

− w1,tw2,tRt

(
1

γ1
− 1

γ2

)
(µY,1 − µY,2).

We can rewrite the above expression as (48).

A.8 Proof of Corollary 3: Riskfree rate with correct beliefs or with identical
risk aversions and habits

Equation (50) follows from (48) after setting µY,1 = µY,2 = µY , and simplifying. Equation (51)

follows from (48) after setting γ1 = γ2 = γ and ψ1 = ψ2 = ψ, and simplifying.

A.9 Proof of Proposition 6: Market price of risk

We have (54) from (A25). Given that the ξk,t is the exponential martingale defining the change of

probability measure from P to Pk, it follows from Girsanov’s Theorem that Agent k’s perception

of the market price of risk is

θk,t = θt + σξ,k.
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Hence,

θk,t = θt + σξ,k = RtσY +
µY − µY,t

σY
+
µY,k − µY

σY
= RtσY +

µY,k − µY,t
σY

.

Thus, we obtain (55).

A.10 Proof of Corollary 4: Market price of risk with correct beliefs or with
identical risk aversions

Equation (56) follows from (55) after setting µY,1 = µY,2 = µY , and simplifying. Equations (57)

follow from (55) after setting γ1 = γ2 = γ, and simplifying.

A.11 Proof of Proposition 7

Equation (13) can be rewritten as

νγ22,te
qt+dωωt = νγ11,t,

and so

νη2,te
qt+dωωt

γ1 = ν1,t (A26)

Now, recall the standard results that

lim
t→∞

eat+bZt =

{
∞, P− a.s., a > 0,
0, P− a.s., a < 0,

and

lim sup
t→∞

ebZt =∞,

lim inf
t→∞

ebZt = 0.

From the above results it follows that to ensure that limt→∞ e
at+bZt is strictly between zero and

infinity, we need to have both a and b equal to zero. It then follows from the expression in (A26)

that both agents will survive P-a.s., that is, the economy will be stationary almost surely under P,

if and only if µq = 0 and σq = 0. We can also see that µq > 0 then Agent 2 survives, but Agent 1

does not. We can therefore define survival indices as in (58).

A.12 Proof of Proposition 8

To prove Proposition 8, we first prove the following three lemmas.
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Lemma A1 (Partial differential equation for price of a dividend strip) Given the aggre-

gate endowment process specified in Equation (35) and the beliefs process in (36), the time-t price

of the dividend strip, which pays the cash flow Yu at date u > t, is given by V Y
t,u = vYt,uYt, where

0 =
∂vYt,u
∂t

+
∂vYt,u
∂ωt

λx(ω̄ − ωt) + ν1,tµν1,t
∂vYt,u
∂ν1,t

(A27)

+
1

2
σ2
Y

∂2vYt,u
∂ω2

t

+ σY ν1,tσν1,t
∂2vYt,u
∂ωt∂ν1,t

+
1

2
ν2

1,tσ
2
ν1,t

∂2vYt,u
∂ν2

1,t

+ (µY − θtσY )vYt,u + (σY − θt)

(
σY

∂vYt,u
∂ωt

+ ν1,tσν1,t
∂vYt,u
∂ν1,t

)
− rtvYt,u,

and

vYt,u|u=t = 1,

lim
ωt→∞

vYt,u =∞, lim
ωt→−∞

vYt,u = 0, if γk >
1

ψk
, k ∈ {1, 2},

vYt,u|νk,t=1 = e
−
(
r̂k+ 1

ψk
σ2
Y −µY,k

)
(u−t)

e
−
(
γk− 1

ψk

)[
(1−e−λx(u−t))(ω̂Yk −ωt)−

1
2

(
γk− 1

ψk

)
1−e−2λx(u−t)

2λx
σ2
Y

]
,

where

ω̂Yk =
µY,k +

(
1− 1

ψk

)
σ2
Y −

1
2σ

2
Y

λx
,

r̂k = βk +
1

ψk
µY,k −

1

2

1

ψk

(
1 +

1

ψk

)
σ2
Y .

Proof of Lemma A1

The fundamental asset pricing equation (see Cochrane (2001)) states that

Et[dV
Y
t,u − rV Y

t,udt] = −Et
[
dπt
πt
dV Y

t,u

]
. (A28)

Since V Y
t,u = Ytv

Y
t,u, where vYt,u is a function of time and the state variables ωt and ν1,t, i.e.

vYt,u = vYt,u(t, ωt, ν1,t), it follows from Ito’s Lemma that

dV Y
t,u

V Y
t,u

=
dvYt,u

vYt,u
+
dYt
Yt

+
dvYt,u

vYt,u

dYt
Yt

=
1

vYt,u

[
∂vYt,u
∂t

+
∂vYt,u
∂ωt

dωt +
∂vYt,u
∂ν1,t

dν1,t +
1

2

∂2vYt,u
∂ω2

t

(dωt)
2 +

∂2vYt,u
∂ωt∂ν1,t

dωtdν1,t +
1

2

∂2vYt,u
∂ω2

t

(dν1,t)
2

]
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+ µY dt+ σY dZt +
1

vYt,u

(
∂vYt,u
∂ωt

dωt +
∂vYt,u
∂ν1,t

dν1,t

)
dYt
Yt

.

Then

Et

[
dV Y

t,u

V Y
t,u

]

=
1

vYt,u

(
∂vYt,u
∂t

+
∂vYt,u
∂ωt

Et[dωt] +
∂vYt,u
∂ν1,t

Et[dν1,t] +
1

2

∂2vYt,u
∂ω2

t

(dωt)
2 +

∂2vYt,u
∂ωt∂ν1,t

dωtdν1,t +
1

2

∂2vYt,u
∂ν2

1,t

(dν1,t)
2

)

+ µY dt+
1

vYt,u

(
∂vYt,u
∂ωt

dωt +
∂vYt,u
∂ν1,t

dν1,t

)
dYt
Yt

=
1

vYt,u

(
∂vYt,u
∂t

+
∂vYt,u
∂ωt

λx(ω̄ − ωt) +
∂vYt,u
∂ν1,t

ν1,tµν1,t +
1

2

∂2vYt,u
∂ω2

t

σ2
Y +

∂2vYt,u
∂ωt∂ν1,t

σY ν1,tσν1,t +
1

2

∂2vYt,u
∂ν2

1,t

ν2
1,tσ

2
ν1,t

)

+ µY dt+
1

vYt,u

(
∂vYt,u
∂ωt

σY +
∂vYt,u
∂ν1,t

ν1,tσν1,t

)
σY ,

and

−Et

[
dV Y

t,u

V Y
t,u

dπt
πt

]
=

[
1

vYt,u

(
∂vYt,u
∂ωt

σY dZt +
∂vYt,u
∂ν1,t

ν1,tσν1,t

)
+ σY

]
θtdt.

Equation (A27) then follows from (A28).

When ωt →∞, current marginal utility tends to zero for Agent k, k ∈ {1, 2} (provided γk >
1
ψk

)

However, ω is mean reverting and so future marginal utility will be higher. Consequently, the

marginal rate of substitution is infinite and so the price-dividend ratio will be infinite. When ωt →
−∞, current marginal utility tends to ∞ for Agent k, k ∈ {1, 2}, (provided γk >

1
ψk

). However,

ω is mean reverting and so future marginal utility will be lower. Consequently, the marginal rate

of substitution is zero and so the price-dividend ratio will be zero. Hence, limωt→∞ v
Y
t,u = ∞ and

limωt→−∞ v
Y
t,u = 0.

When νk,t = 1, the economy is populated solely by agents of Type k. Hence

vXt,u = Et

[
π̂k,u
π̂k,t

Xu

Xt

]
= Et

[
ξk,u
ξk,t

e−βk(u−t)e

(
γk− 1

ψk

)
(ωu−ωt)− 1

ψk
(yu−yt)Xu

Xt

]
= e−βk(u−t)e

−
(
γk− 1

ψk

)
ωt+

1
ψk
yt−xtEt

[
ξk,u
ξk,t

e

(
γk− 1

ψk

)
ωu− 1

ψk
yu+xu

]
,

where x = lnX.
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We can show, after some algebra that

π̂k,u
π̂k,u

Xu

Xt
= e−kk(u−t)Mk,u

Mk,t
e
−
(
γk− 1

ψk

)
(ωu−ωt),

where

kk = βk +
1

ψk
µY,k −

1

2

1

ψk

(
1 +

1

ψk

)
σ2
Y +

1

ψk
σsysX σY − µX,k,

and Mk,t is the following exponential martingale under P:

dMk,t

Mk,t
= σidXdZ

id
t + (σsysX + σξ,k −

1

ψk
σY )dZt, Mk,t = 1. (A29)

We define the new probability measures P̂k on (Ω,F) via

P̂k(A) = E(1AMk,T ), A ∈ FT , k ∈ {1, 2}. (A30)

Hence,

vXt,u = Et

[
e−kk(u−t)Mk,u

Mk,t
e
−
(
γk− 1

ψk

)
(ωu−ωt)

]
= e−kk(u−t)Ekt

[
e
−
(
γk− 1

ψk

)
(ωu−ωt)

]
.

Define the moment generating function

Mk(ωt, u− t, a) = Ekt [eaωu ] .

Since ω is Gaussian, we have

Mk(ωt, u− t, a) = eaE
k
t [ωu]+ 1

2
a2 Varkt [ωu]

= ea[e−λx(u−t)ωt+(1−e−λx(u−t))ω̂Xk ]+ 1
2
a2

1−2λx(u−t)
2λx

σ2
Y ,

where

ω̂Xk =
µY,k +

(
σsysX − 1

ψk
σY

)
σY − 1

2σ
2
Y

λx
.

Hence,

vXt,u = e−kk(u−t)e

(
γk− 1

ψk

)
ωtMk

(
ωt, u− t,−

(
γk −

1

ψk

))

= e−kk(u−t)e

(
γk− 1

ψk

)
ωte
−
(
γk− 1

ψk

){
[e−λx(u−t)ωt+(1−e−λx(u−t))ω̂Xk ]− 1

2

(
γk− 1

ψk

)
1−e−2λx(u−t)

2λx
σ2
Y

}

= e−kk(u−t)e
−
(
γk− 1

ψk

)[
(1−e−λx(u−t))(ω̂Xk −ωt)−

1
2

(
γk− 1

ψk

)
1−e−2λx(u−t)

2λx
σ2
Y

]
.
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Therefore,

vYt,u = e−kk(u−t)e
−
(
γk− 1

ψk

)[
(1−e−λx(u−t))(ω̂Yk −ωt)−

1
2

(
γk− 1

ψk

)
1−e−2λx(u−t)

2λx
σ2
Y

]
,

where now

kk = βk +
1

ψk
µY,k −

1

2

1

ψk

(
1 +

1

ψk

)
σ2
Y +

1

ψk
σ2
Y − µY,k,

and

ω̂Yk =
µY,k +

(
1− 1

ψk

)
σ2
Y −

1
2σ

2
Y

λx
.

Observe that the long-term yield of the risky security with price vYt,u is given by

− lim
u→∞

1

u− t
ln vYt,u = βk +

1

ψk
µY,k −

1

2

1

ψk

(
1 +

1

ψk

)
σ2
Y +

1

ψk
σ2
Y − µY,k. (A31)

While we could solve (A27) numerically, an analytical approach would seem difficult, given the

relatively complicated non-linear dependence of µν1,t and σν1,t on ν1,t. Nevertheless, we can find

an analytical solution by using Proposition 3. This relies on finding only the value of the claims

φYn,1,t,u and φYn,2,t,u defined in Equations (29) and (30), which pay Yu at u whenever
π̂1,u
π̂2,u

> R and

π̂1,u
π̂2,u

< R, respectively. The proof uses the following Lemmas.

Lemma A2 (Values of φX
n,1,t and φX

n,2,t)

φXn,1,t = e−k1(T−t)e−a1qt−b1ωtÊ1
t

[
ea1qT+b1ωT 1{qT+dωωT>ρ}

]
φXn,2,t = e−k2(T−t)e−a2qt−b2ωtÊ2

t

[
ea2qT+b2ωT 1{qT+dωωT<ρ}

]
,

where

r̂1 = β1 +
1

ψ1
µY,1 −

1

2

1

ψ1

(
1 +

1

ψ1

)
σ2
Y

r̂2 = β2 +
1

ψ2
µY,2 −

1

2

1

ψ2

(
1 +

1

ψ2

)
σ2
Y

k̂1 = r̂1 +
1

ψ1
σsysX σY − µX,1 (A32)

k̂2 = r̂2 +
1

ψ2
σsysX σY − µX,2 (A33)

a1 = − n
γ2

(A34)

b1 = −
[
n

γ2

(
γ2 −

1

ψ2

)
+

(
1− n

γ2

)(
γ1 −

1

ψ1

)]
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a2 =
n

γ1

b2 = −
[(

1− n

γ2

)(
γ2 −

1

ψ2

)
+
n

γ1

(
γ1 −

1

ψ1

)]
(A35)

ρ = lnR, (A36)

and Êkt [·] is the date-t conditional expectation operator with respect to the probability measure P̂k

defined in (A30).

Proof of Lemma A2

Recall that

φXn,1,t,T = Et

 π̂1− n
γ2

1,T π̂
n
γ2
2,T

π̂
1− n

γ2
1,t π̂

n
γ2
2,t

XT

Xt
1{ π̂1,T

π̂2,T
>R

}
 , n ∈ N0, (A37)

φXn,2,t,T = Et

 π̂ n
γ1
1,T π̂

1− n
γ1

2,T

π̂
n
γ1
1,t π̂

1− n
γ1

2,t

XT

Xt
1{ π̂1,T

π̂2,T
<R

}
 , n ∈ N0. (A38)

Simplifying (A37) gives

φXn,1,t,T = Et

 π̂1− n
γ2

1,T π̂
n
γ2
2,T

π̂
1− n

γ2
1,t π̂

n
γ2
2,t

XT

Xt
1{ π̂1,T

π̂2,T
>R

}


= Et

[(
π̂1,T /π̂2,T

π̂1,t/π̂2,t

)− n
γ2 π̂1,T

π̂1,t

XT

Xt
1{

ln

(
π̂1,T
π̂2,T

)
>ρ

}
]
,

where ρ is defined in (A36). Simplifying (A38) gives

φXn,2,t,T = Et

 π̂ n
γ1
1,T π̂

1− n
γ1

2,T

π̂
n
γ1
1,t π̂

1− n
γ1

2,t

XT

Xt
1{ π̂1,T

π̂2,T
<R

}


= Et

[(
π̂1,T /π̂2,T

π̂1,t/π̂2,t

) n
γ1 π̂2,T

π̂2,t

XT

Xt
1{

ln

(
π̂1,T
π̂2,T

)
<ρ

}
]
.

Note that
π̂k,u
π̂k,u

Xu

Xt
= e−kk(u−t)Mk,u

Mk,t
e
−
(
γk− 1

ψk

)
(ωT−ωt),

where kk, k ∈ {1, 2} are defined in (A32) and (A33), and Mk,t, k ∈ {1, 2}, is defined in (A29).

Hence

φXn,1,t,T = Et

[(
π̂1,T /π̂2,T

π̂1,t/π̂2,t

)− n
γ2

e−k1(T−t)M1,T

M1,t
e
−
(
γ1− 1

ψ1

)
(ωT−ωt)1{qT+dωωT>ρ}

]

56



φXn,2,t,T = Et

[(
π̂1,T /π̂2,T

π̂1,t/π̂2,t

) n
γ1

e−k2(T−t)M2,T

M2,t
e
−
(
γ2− 1

ψ2

)
(ωT−ωt)1{qT+dωωT<ρ}

]
.

Therefore,

φXn,1,t = Ê1
t

[(
π̂1,T /π̂2,T

π̂1,t/π̂2,t

)− n
γ2

e−k1(T−t)e
−
(
γ1− 1

ψ1

)
(ωT−ωt)1{qT+dωωT>ρ}

]

= e−k1(T−t)e−a1qt−b1ωtÊ1
t

[
ea1qT+b1ωT 1{qT+dωωT>ρ}

]
,

and

φXn,2,t = Ê2
t

[(
π̂1,T /π̂2,T

π̂1,t/π̂2,t

) n
γ1

e−k2(T−t)e
−
(
γ2− 1

ψ2

)
(ωT−ωt)1{qT+dωωT<ρ}

]

= e−k2(T−t)e−a2qt−b2ωtÊ2
t

[
ea2qT+b2ωT 1{qT+dωωT<ρ}

]
,

where a1, b1, a2, and b2 are defined in (A34)-(A35).

We shall need some basic definitions for Fourier Transforms in order to prove Lemma A3.

Definition A4 For an integrable function f : R→ C, its Fourier Transform is given by

f̂(x) =

∫ ∞
−∞

eikxf(k)dk, ∀x ∈ R. (A39)

We shall use the notation

F [f(k), x] =

∫ ∞
−∞

eikxf(k)dk. (A40)

Under certain conditions (see, for example Friedlander and Joshi (1999)) f(k) can be reconstructed

from F [f(k), x] via the inverse Fourier transform

f(k) =
1

2π

∫ ∞
−∞

e−ikxf̂(x)dx,

for which we use the notation

F−1[f̂(x), k] =
1

2π

∫ ∞
−∞

e−ikxf̂(x)dx.

The following Lemma provides a closed form expression for the moment generating function of

the 2-dimensional affine process, (qt, ωt), under the probability measure P̂k.

Lemma A3 (Moment generating function)

Êkt

[
eakqT+bkωT 1{qT+dωωT>ρ}

]
=MX

k (qt, ωt, T − t, ak, bk)Φ

(
BX
k (qt, ωt, T − t)− ρ√
2Ak(qt, ωt, T − t)

)
, (A41)
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where the moment generating function, MX
k (qt, ωt, T − t, a, b), defined by

MX
k (qt, ωt, T − t, a, b) = Êkt [eaqT+bωT ], (A42)

is given by

MX
k (qt, ωt, T − t, a, b) = exp

{
a[qt + µ̂Xq,k(T − t)] + b[e−λx(T−t)ωt + (1− e−λx(T−t))ω̂Xk ] (A43)

+
1

2
a2σ2

q (T − t) + ab
1− e−λx(T−t)

λx
σqσY +

1

2
b2

1− e−2λx(T−t)

2λx
σ2
Y

}
,

and

Ak(qt, ωt, T − t) =
1

2

[
σ2
q (T − t) + 2dω

1− e−λx(T−t)

λx
σqσY + d2

ω

1− e−2λx(T−t)

2λx
σ2
Y

]
, (A44)

BX
k (qt, ωt, T − t) = qt + µ̂Xq,k(T − t) + dω[e−λx(T−t)ωt + (1− e−λx(T−t))ω̂Xk ] (A45)

+ akσ
2
q (T − t) + (bk + akdω)

1− e−λx(T−t)

λx
σqσY + bkdω

1− e−2λx(T−t)

2λx
σ2
Y ,

where

µq = (β2 − β1) +
1

2
(σ2
ξ,2 − σ2

ξ,1) +

(
1

ψ2
− 1

ψ1

)(
µY −

1

2
σ2
Y

)
,

σq = σξ,1 − σξ,2 +

(
1

ψ2
− 1

ψ1

)
σY ,

µ̂Xq,k = µq +

(
σsysX + σξ,k −

1

ψk
σY

)
σq

ω̂Xk =
µY,k − 1

2σ
2
Y +

(
σsysX − 1

ψk
σY

)
σY

λx
(A46)

dω =

(
γ2 −

1

ψ2

)
−
(
γ1 −

1

ψ1

)
.

Proof of Lemma A3

First we prove (A43). Because (qT , ωT ) is Gaussian, we have

MX
k (qt, ωt, T − t, a, b) = eÊ

k[aqT+bωT ]+ 1
2

V̂ar
k

t [aqT+bωT ],

where V̂ar
k

t is the time-t conditional variance operator under the probability measure P̂k. Note that

Êk[aqT + bωT ] = aÊk[qT ] + bÊk[ωT ]

= a[qt + µ̂Xq,k(T − t)] + b[e−λx(T−t)ωt + (1− e−λx(T−t))ω̂Xk ]
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and

1

2
V̂ar

k

t [aqT + bωT ] =
1

2
a2V̂ar

k

t [qT ] + ab Ĉov
k

t [qT , ωT ] +
1

2
b2V̂ar

k

t [ωT ]

=
1

2
a2σ2

q (T − t) + ab
1− e−λx(T−t)

λx
σqσY +

1

2
b2

1− e−2λx(T−t)

2λx
σ2
Y ,

where the long-run mean of ω under the probability measure P̂k is given by ω̂Xk , defined in (A46).

Hence,

MX
k (qt, ωt, T − t, a, b) = exp

{
a[qt + µ̂Xq,k(T − t)] + b[e−λx(T−t)ωt + (1− e−λx(T−t))ω̂Xk ]

+
1

2
a2σ2

q (T − t) + ab
1− e−λx(T−t)

λx
σqσY +

1

2
b2

1− e−2λx(T−t)

2λx
σ2
Y

}

Our proof of (A41) relies on using Fourier transforms (see Heston (1993) and Duffie, Pan, and

Singleton (2000)). Taking the Fourier transform of Êkt
[
eakqT+bkωT 1{qT+dωωT>ρ}

]
gives (see (A39)

and (A40) for relevant definitions)

F
[
Êkt

[
eakqT+bkωT 1{qT+dωωT>ρ}

]
, x
]

= Êkt

[
eakqT+bkωTF [1{qT+dωωT>ρ}, x]

]
= Êkt

[
eakqT+bkωTF [θ(qT + dωωT − ρ), x]

]
,

where θ(z) is the Heaviside step function, defined by

θ(z) =


0, z < 0
1
2 , z = 0
1, z > 0.

Using the standard result that

F [θ(qT + dωωT − ρ), x] =
eix(qT+dωωT )

ix
+ πδ(x),

where δ(z) is the Dirac-delta function. It follows that

F
[
Êkt

[
eakqT+bkωT 1{qT+dωωT>ρ}

]
, x
]

= Êkt

[
eakqT+bkωT

(
eix(qT+dωωT )

ix
+ πδ(x)

)]

=
MX

k (qt, ωt, T − t, ak + ix, bk + ixdω)

ix

+ πδ(x)MX
k (qt, ωt, T − t, ak, bk),

where MX
k (qt, ωt, T − t, a, b) is defined in (A42). Taking the inverse Fourier transform, we obtain

Êkt

[
eakqT+bkωT 1{qT+dωωT>ρ}

]
= F−1

[
MX

k (qt, ωt, T − t, ak + ix, bk + ixdω)

ix
, ρ

]
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+ πF−1 [δ(x), ρ]MX
k (qt, ωt, T − t, ak, bk)

=
1

2π

∫ ∞
−∞

e−iρx
MX

k (qt, ωt, T − t, ak + ix, bk + ixdω)

ix
dx

+ πMX
k (qt, ωt, T − t, ak, bk)

1

2π

∫ ∞
−∞

e−iρxδ(x)dx

=
1

2π

∫ ∞
−∞

e−iρx
MX

k (qt, ωt, T − t, ak + ix, bk + ixdω)

ix
dx

+
1

2
MX

k (qt, ωt, T − t, ak, bk), (A47)

where we have used the standard result that∫ ∞
−∞

e−iρxδ(x)dx = 1.

We now show that∫ ∞
−∞

e−iρx
MX

k (qt, ωt, T − t, ak + ix, bk + ixdω)

ix
dx

= 2MX
k (qt, ωt, T − t, ak, bk)

∫ ∞
0

e−Ak(qt,ωt,T−t)x2 sin[(BX
k (qt, ωt, T − t)− ρ)x]

x
dx, (A48)

where Ak(qt, ωt, T − t) and BX
k (qt, ωt, T − t) are defined in (A44) and (A45), respectively. We start

by observing that

MX
k (qt, ωt, T − t, ak + ix, bk + ixdω) =MX

k (qt, ωt, T − t, ak, bk)e−Ak(qt,ωt,T−t)x2+iBXk (qt,ωt,T−t)x.

Hence,∫ ∞
−∞

e−iρx
MX

k (qt, ωt, T − t, ak + ix, bk + ixdω)

ix
dx

=MX
k (qt, ωt, T − t, ak, bk)

∫ ∞
−∞

e−Ak(qt,ωt,T−t)x2 e
i(BXk (qt,ωt,T−t)−ρ)x

ix
dx

=MX
k (qt, ωt, T − t, ak, bk) (A49)

×
∫ ∞
−∞

e−Ak(qt,ωt,T−t)x2 cos[(BX
k (qt, ωt, T − t)− ρ)x] + i sin[(BX

k (qt, ωt, T − t)− ρ)x]

ix
dx.

Since e−Ak(qt,ωt,T−t)x2 cos[(BXk (qt,ωt,T−t)−ρ)x]
x and e−Ak(qt,ωt,T−t)x2 sin[(BXk (qt,ωt,T−t)−ρ)x]

x are odd and

even functions of x, respectively, it follows that∫ ∞
−∞

e−Ak(qt,ωt,T−t)x2 cos[(BX
k (qt, ωt, T − t)− ρ)x] + i sin[(BX

k (qt, ωt, T − t)− ρ)x]

ix
dx

= 2

∫ ∞
0

e−Ak(qt,ωt,T−t)x2 sin[(BX
k (qt, ωt, T − t)− ρ)x]

x
dx.
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Hence, (A48) follows from (A49).

Together with Equation (A48), (A47) implies that

Êkt

[
eakqT+bkωT 1{qT+dωωT>ρ}

]
=

1

π

∫ ∞
0

e−Ak(qt,ωt,T−t)x2 sin[(BX
k (qt, ωt, T − t)− ρ)x]

x
dx

+
1

2
MX

k (qt, ωt, T − t, ak, bk). (A50)

Since∫ ∞
0

e−Ak(qt,ωt,T−t)x2 sin[(BX
k (qt, ωt, T − t)− ρ)x]

x
dx =

1

2
π

[
2Φ

(
BX
k (qt, ωt, T − t)− ρ√
2Ak(qt, ωt, T − t)

)
− 1

]
,

where Φ(·) is the standard cumulative normal distribution function (a result which can be obtained

using Mathematica), (A50) implies (A41).

To prove Proposition 8, our first step is to use Lemma A2; we then use Lemma A3 to simplify

(A37) and (A38):

Ê1
t

[
ea1qT+b1ωT 1{qT+dωωT>ρ}

]
=MX

1 (qt, ωt, T − t, a1, b1)Φ

(
BX

1 (qt, ωt, T − t)− ρ√
2A1(qt, ωt, T − t)

)

and

Ê2
t

[
ea2qT+b2ωT 1{qT+dωωT<ρ}

]
= Ê2

t

[
ea2qT+b2ωT (1− 1{qT+dωωT>ρ})

]
= Ê2

t

[
ea2qT+b2ωT

]
− Ê2

t

[
ea2qT+b2ωT 1{qT+dωωT>ρ}

]
=MX

2 (qt, ωt, T − t, a2, b2)

[
1− Φ

(
BX

2 (qt, ωt, T − t)− ρ√
2A2(qt, ωt, T − t)

)]

=MX
2 (qt, ωt, T − t, a2, b2)Φ

(
ρ−BX

2 (qt, ωt, T − t)√
2A2(qt, ωt, T − t)

)
.

Hence,

φXn,1,t,T = e−k1(T−t)e−a1qt−b1ωtMX
1 (qt, ωt, T − t, a1, b1)Φ

(
BX

1 (qt, ωt, T − t)− ρ√
2A1(qt, ωt, T − t)

)

φXn,2,t,T = e−k2(T−t)e−a2qt−b2ωtMX
2 (qt, ωt, T − t, a2, b2)Φ

(
ρ−BX

2 (qt, ωt, T − t)√
2A2(qt, ωt, T − t)

)
.

We know that

qt = ln
π̂1,t

π̂2,t
− dωωt = ln

[
(1− ν1,t)

−γ2

ν−γ11,t

]
− dωωt,
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and so

φXn,1,t,T = e−k1(T−t)−(b1−a1dω)ωt

(
νγ22,t

νγ11,t

)a1
MX

1 (qt, ωt, T − t, a1, b1)Φ

(
BX

1 (qt, ωt, T − t)− ρ√
2A1(qt, ωt, T − t)

)

φXn,2,t,T = e−k2(T−t)−(b2−a2dω)ωt

(
νγ22,t

νγ11,t

)a2
MX

2 (qt, ωt, T − t, a2, b2)Φ

(
ρ−BX

2 (qt, ωt, T − t)√
2A2(qt, ωt, T − t)

)
.

Simplifying the above expressions gives

φXn,1,t,T = e−k1(T−t)+b1(ωt−ω̂Xk )[1−e−λx(T−t)] exp

{
a1µ̂

X
q,1(T − t) +

1

2
a2

1σ
2
q (T − t)

+ a1b1
1− e−λx(T−t)

λx
σqσ

sys
X +

1

2
b21

1− e−2λx(T−t)

2λx
σ2
X

}
Φ

(
BX

1 (qt, ωt, T − t)− ρ√
2A1(qt, ωt, T − t)

)
,

φXn,2,t,T = e−k2(T−t)+b2(ωt−ω̂Xk )[1−e−λx(T−t)] exp

{
a2µ̂

X
q,2(T − t) +

1

2
a2

2σ
2
q (T − t)

+ a2b2
1− e−λx(T−t)

λx
σqσ

sys
X +

1

2
b22

1− e−2λx(T−t)

2λx
σ2
X

}
Φ

(
ρ−BX

2 (qt, ωt, T − t)√
2A2(qt, ωt, T − t)

)
.

Replacing the cashflow X with the aggregate endowment Y gives (59) and (60).

A.13 Proof of Proposition 9: Long-term yield

Note that

ν1,t + ν2,t = 1.

Hence,

ν1,t = 1− ν2,t.

Because γ1 < γ2, we have

ν
γ1
γ2
1,t ≥ 1− ν2,t.

Also note that since

πt = π̂k,tν
−γk
k,t = λk,0e

−r̂kte−
1
2
θ̂2kt−θ̂kZtν−γkk,t ,

we have

π
− 1
γk

t = π̂
− 1
γk

k,t νk,t

νk,t = π
− 1
γk

t π̂
1
γk
k,t .

Therefore, (
π
− 1
γ1

t π̂
1
γ1
1,t

) γ1
γ2

≥ 1− λ
1
γ2
2,0π

− 1
γ2

t π̂
1
γ2
2,t
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(
π−1
t π̂1,t

) 1
γ2 ≥ 1− λ

1
γ2
2,0π

− 1
γ2

t π̂
1
γ2
2,t

2∑
k=1

π̂
1
γ2
k,t ≥ π

1
γ2
t(

2∑
k=1

π̂
1
γ2
k,t

)γ2
≥ πt

If we define γ2 = max[1, γ2], then

ν
γ1
γ2
1,t ≥ 1− ν2,t,

and so (
2∑

k=1

π̂
1
γ2
k,t

)γ2
≥ πt

Now note that

ν
γ2
γ1
2,t ≤ 1− ν1,t.

Therefore, (
π
− 1
γ2

t π̂
1
γ2
2,t

) γ2
γ1

≤ 1− π̂
1
γ1
1,tπ

− 1
γ1

t

λ
1
γ1
2,0π

− 1
γ1

t π̂
1
γ1
2,t ≤ 1− π̂

1
γ1
1,tπ

− 1
γ1

t

πt ≥

(
2∑

k=1

π̂
1
γ1
k,t

)γ1
.

If we define γ
1

= min[1, γ1], then

ν
γ2
γ1
2,t ≤ 1− ν1,t.

Then,

πt ≥

(
2∑

k=1

π̂
1
γ
1

k,t

)γ
1

.

Therefore, (
2∑

k=1

π̂
1
γ2
k,t

)γ2
≥ πt ≥

(
2∑

k=1

π̂
1
γ1
k,t

)γ1
,

and (
2∑

k=1

π̂
1
γ2
k,t

)γ2
≥ πt ≥

(
2∑

k=1

π̂
1
γ
1

k,t

)γ
1

.
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The latter inequality implies that

(
2∑

k=1

π̂
1
γ2
k,T

)γ2
≥ πT ≥

(
2∑

k=1

π̂
1
γ
1

k,T

)γ
1

,

which implies that

(
2∑

k=1

(
π̂k,T

XT

X0

) 1
γ2

)γ2
≥ πT

XT

X0
≥

(
2∑

k=1

(
π̂k,T

XT

X0

) 1
γ
1

)γ
1

.

Since f(x, y) = (x1/γ + y1/γ)γ is strictly convex (concave) if and only if γ < 1 (γ > 1), it follows

from Jensen’s Inequality that

(
2∑

k=1

(E0 [π̂k,TXT ])
1
γ2

)γ2
≥ E0[πTXT ] ≥

(
2∑

k=1

(E0 [π̂k,TXT ])
1
γ
1

)γ
1

.

Recall that
π̂k,T
π̂k,0

XT

X0
= e−kkT

Mk,T

Mk,0
e
−
(
γk− 1

ψk

)
(ωT−ω0)

.

Wlog, π̂k,0 = 1. Hence,

π̂k,T
XT

X0
= e−kkTMk,T e

−
(
γk− 1

ψk

)
(ωT−ω0)

= e−kkTMk,T e
−
(
γk− 1

ψk

)
(ωT−ω0)

,

and so

E0

[
π̂k,T

XT

X0

]
= e−kkTE0

[
Mk,T e

−
(
γk− 1

ψk

)
(ωT−ω0)

]
= e−kkT Êk0

[
e
−
(
γk− 1

ψk

)
(ωT−ω0)

]
= e−kkT e

(
γk− 1

ψk

)
ω0Êk0

[
e
−
(
γk− 1

ψk

)
ωT

]

= e−kkT exp

{
−
(
γk −

1

ψk

)
(1− e−λxT )(ω̂Xk − ω0) +

1

2

(
γk −

1

ψk

)2 1− e−2λxT

2λx
σ2
Y

}

It follows that 2∑
k=1

(
e−kkT exp

{
−
(
γk −

1

ψk

)
(1− e−λxT )(ω̂Xk − ω0) +

1

2

(
γk −

1

ψk

)2 1− e−2λxT

2λx
σ2
Y

}) 1
γ2

γ2

≥ Et[πTXT ]
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≥

 2∑
k=1

(
e−kkT exp

{
−
(
γk −

1

ψk

)
(1− e−λxT )(ω̂Xk − ω0) +

1

2

(
γk −

1

ψk

)2 1− e−2λxT

2λx
σ2
Y

}) 1
γ
1

γ
1

,

which implies

− 1

T
ln

 2∑
k=1

(
e−kkT exp

{
−
(
γk −

1

ψk

)
(1− e−λxT )(ω̂Xk − ω0) +

1

2

(
γk −

1

ψk

)2 1− e−2λxT

2λx
σ2
Y

}) 1
γ
1

γ
1


≤ − 1

T
ln vX0,T

≤ − 1

T
ln


 2∑
k=1

(
e−kkT exp

{
−
(
γk −

1

ψk

)
(1− e−λxT )(ω̂Xk − ω0) +

1

2

(
γk −

1

ψk

)2 1− e−2λxT

2λx
σ2
Y

}) 1
γ2

γ2
 .

Letting T →∞ gives

min(k1, k2) ≤ − lim
T→∞

1

T
ln vX0,T ≤ min(k1, k2),

and so

− lim
T→∞

1

T
ln vX0,T = min(k1, k2).

The other results in the proposition, for the yield on riskless bonds and the term premium, follow

once we set σsysX = µX,i = 0 in the equation above.

A.14 Proof of Corollary 5: Survival and price impact under identical prefer-
ences and different beliefs.

The corollary follows immediately from Proposition 9, after setting β1 = β2 = β, γ1 = γ2 = γ,

ψ1 = ψ2 = ψ, and µY,1 = µY .

A.15 Proof of Proposition 10: Risk premium and volatility of risky assets

We shall derive results for a more general risky asset, which is a perpetual claim to the cash flow

process, X, where the evolution of X is given by

dXt

Xt
= µXdt+ σsysX dZt + σidXdZ

id
t , (A51)

where Zidt is a standard Brownian motion under P, orthogonal to Zt. Under probability measure

Pk, k ∈ {1, 2}, the dynamics of the cash flow process are given by

dXt

Xt
= µX,kdt+ σsysX dZk,t + σidXdZ

id
t ,
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where µX,k is given by

µX,k − µX
σsysX

=
µY,k − µY

σY
.

Then, to get the risk premium and the volatility of the stock market, we will set µX = µY ,

σsysX = σY , and σidX = 0.

The risk premium for the claim paying X in perpetuity is given by the standard asset pricing

equation:

Et

[
dPXt +Xtdt

PXt
− rtdt

]
= −Et

[
dπt
πt

dPXt
PXt

]
. (A52)

Applying Ito’s Lemma to PXt = Xtp
X
t gives

dPXt
PXt

=
dXt

Xt
+
dpXt
pXt

+
dXt

Xt

dpXt
pXt

= µXdt+ σsysX dZt + σidXdZ
id
t +

1

pXt

[
∂pXt
∂ν1,t

ν1,t(µν1,tdt+ σν1,tdZt) +
∂pXt
∂ωt

(λx(ω̄ − ωt)dt+ σY dZt)

]
+

1

2

1

pXt

∂2pXt
∂ν2

1,t

ν2
1,tσ

2
ν1,tdt+ σsysX

1

pXt

∂pXt
∂ν1,t

ν1,tσν1,tdt+ +σsysX

1

pXt

∂pXt
∂ωt

σY dt

+
1

2

1

pXt

∂2pXt
∂ω2

t

σ2
Y dt.

Thus, the total volatility of the return on the claim that pays X in perpetuity, σXR,t, is given by

σXR,t =

√(
σX,sysR,t

)2
+
(
σX,idR,t

)2
.

where the idiosyncratic component of the volatility of the claim’s returns is given by

σX,idR,t = σidX ,

and the systematic component of the volatility of the claim’s returns is given by

σX,sysR,t = σsysX + σν1,t
ν1,t

pXt

∂pXt
∂ν1,t

+ σY
1

pXt

∂pXt
∂ωt

Hence, substituting (??) into (A52) gives

µXR,t − rt = θtσ
X,sys
R,t , (A53)

where

µXR,tdt = Et

[
dPXt +Xtdt

PXt

]
.
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Substituting (54) into (A53) gives

µXR,t − rt =

(
Rt σY +

[
µY − µY,t

σY

])
σX,sysR,t .

Also, Agent k’s perception of the risk premium for the claim paying X in perpetuity is given by

the standard asset pricing equation:

Ekt

[
dPXt +Xtdt

PXt
− rtdt

]
= −Ekt

[
dπk,t
πk,t

dPXt
PXt

]
.

Hence,

µXR,k,t − rt = θk,tσ
X,sys
R,t , (A54)

where

µXR,k,tdt = Ekt

[
dPXt +Xtdt

PXt

]
.

Substituting (55) into (A54) gives

µXR,1,t − rt =

(
Rt σY +

[
µY − µY,1

σY

])
σX,sysR,t ,

Agent 2’s perception of the risk premium is given by

µXR,2,t − rt =

(
Rt σY +

[
µY − µY,2

σY

])
σX,sysR,t ,

Setting µX = µY , σsysX = σY , and σidX = 0 in the above expressions gives the results in the

proposition.

A.16 Proof of Proposition 11

φn,1,t,u = Et

[(
π̂1,u

π̂1,t

)1− n
γ1

(
π̂2,u

π̂2,t

) n
γ2 Xu

Xt
1{ π̂1,u

π̂2,u
>R

}
]

= Et

[
e

(
1− n

γ1

)
(ς1,u−ς1,t)+ n

γ2
(ς2,u−ς2,t)+xu−xt1{ς1,u−ς2,u>ρ}

]
.

Taking the Fourier transform of the above expression yields

F [φn,1,t,u, z] = Et

[
e

(
1− n

γ1

)
(ς1,u−ς1,t)+ n

γ2
(ς2,u−ς2,t)+xu−xtF

[
1{ς1,u−ς2,u>ρ}, x

]]

= Et

[
e

(
1− n

γ1

)
(ς1,u−ς1,t)+ n

γ2
(ς2,u−ς2,t)+xu−xt

(
eiz(ς1,u−ς2,u)

iz
+ πδ(z)

)]

=
1

iz
Et

[
e

(
1− n

γ1

)
(ς1,u−ς1,t)+ n

γ2
(ς2,u−ς2,t)+iz(ς1,u−ς2,u)+xu−xt

]
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+ πδ(z)Et

[
e

(
1− n

γ1

)
(ς1,u−ς1,t)+ n

γ2
(ς2,u−ς2,t)+xu−xt

]
= e
−
[(

1− n
γ1

)
ς1,t+

n
γ2
ς2,t
]
−xt
(

1

iz
Et

[
e

(
1− n

γ1

)
ς1,u+ n

γ2
ς2,u+iz(ς1,u−ς2,u)+xu

]
+ πδ(z)Et

[
e

(
1− n

γ1

)
ς1,u+ n

γ2
ς2,u+xu

])
= e
−
[(

1− n
γ1

)
ς1,t+

n
γ2
ς2,t
]
−xt
(

1

iz
M
(
ς1,t, ς2,t, xt, u− t,

(
1− n

γ1

)
+ iz,

n

γ2
− iz, 1

)
+ πδ(z)M

(
ς1,t, ς2,t, xt, u− t, 1−

n

γ1
,
n

γ2
, 1

))
.

Taking the inverse Fourier transform gives

φn,1,t,u = e
−
[(

1− n
γ1

)
ς1,t+

n
γ2
ς2,t
]
−xt
[

1

2π

∫ ∞
−∞

eiρz
1

iz
M
(
ς1,t, ς2,t, xt, u− t,

(
1− n

γ1

)
+ iz,

n

γ2
− iz, 1

)
dz

+ π
1

2π

∫ ∞
−∞

eiρzδ(z)dzM
(
ς1,t, ς2,t, xt, u− t, 1−

n

γ1
,
n

γ2
, 1

)]
= e
−
[(

1− n
γ1

)
ς1,t+

n
γ2
ς2,t
]
−xt
[

1

2π

∫ ∞
−∞

eiρz
1

iz
M
(
ς1,t, ς2,t, xt, u− t,

(
1− n

γ1

)
+ iz,

n

γ2
− iz, 1

)
dz

+ π
1

2π

∫ ∞
−∞

eiρzδ(z)dzM
(
ς1,t, ς2,t, xt, u− t, 1−

n

γ1
,
n

γ2
, 1

)]
= e
−
[(

1− n
γ1

)
ς1,t+

n
γ2
ς2,t
]
−xt
[

1

2π

∫ ∞
−∞

eiρz
1

iz
M
(
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and so we obtain
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. (A55)

Now observe that∫ ∞
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=
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If (ς1,t, ς2,t, xt) is analytic affine, thenM (ς1,t, ς2,t, xt, u− t, z1, z2, z3), z1, z2, z3 ∈ C is a holomorphic

function whose restriction to the real numbers is real-valued, and so

M (ς1,t, ς2,t, xt, u− t, z1, z2, z3) =M (ς1,t, ς2,t, xt, u− t, z̄1, z̄2, z̄3) ,

where z̄ denotes the complex conjugate. Therefore
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and so ∫ ∞
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Therefore, we obtain (70). Recall that
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Hence
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Following the same steps as the derivation of (A55), we obtain
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If (ς1,t, ς2,t, xt) is analytic affine, then we obtain (71).
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A.17 The Distribution of The Consumption Share Do we re-

ally need

this sec-

tion?

In this section we give the conditional probability density function of the consumption share

ν1, and derive its long-run behavior.

Proposition A1 (Density function for the consumption share) The density function for ν1,t+u,

conditional on qt and ωt is denoted by pν1,t+u(v|qt, ωt), and is given by

pν1,t+u(v|qt, ωt) = (A56)

1√
σ2
qu+ 2dω
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σqσY + d2
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1−e−2λxu

2λx
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,

where φ(z) = 1√
2π
e−

1
2
z2 is the standard normal density function and
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1

2
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h1(v) = vγ1(1− v)−γ2 ,

Rt(v) =

(
v

1

γ1
+ (1− v)

1

γ2

)−1

.

If both agents have the same survivial indices, that is, µq = 0, then

lim
u→∞

pν1,t+u(v|ν1,t) =
1

2
(δ(v) + δ(v − 1)) ,

where δ(·) is the Dirac-delta function.

Proof of Proposition A1

Note that

e∆t = h1(ν1,t).

The cumulative distribution function for ν1,t+u, conditional on νt is given by

Pr(ν1,t+u ≤ v|qt, ωt) = Pr(h−1
1 (e∆t) ≤ v|qt, ωt)

= Pr(e∆t ≤ h1(v)|qt, ωt).
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The previous line shows that we shall not need to compute the inverse function h−1
1 (·). Coupled

with the fact that ∆ is Gaussian, this means deriving the cumulative distribution function is

straightforward:

Pr(e∆t+u ≤ h1(v)|qt, ωt) = Pr(∆t+u ≤ lnh1(v)|qt, ωt)

= Pr(qt+u + dωωt+u ≤ lnh1(v)|qt, ωt).

Now observe that

Pr(qt+u + dωωt+u ≤ lnh1(v)|qt, ωt) = Et[1{qt+u+dωωt+u≤lnh1(v)}]

= Et[1{qt+u+dωωt+u≤lnh1(v)}]

= 1− Et[1{qt+u+dωωt+u>lnh1(v)}].

Lemma A3 implies that
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Hence

Pr(ν1,t+u ≤ v|qt, ωt) = Φ

 lnh1(v)− [qt + dωωt + µqu+ dω(1− e−λxu)(ω̄ − ωt)]√
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Since qt + dωωt = lnh1(ν1,t), we have

Pr(ν1,t+u ≤ v|qt, ωt) = Φ
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− [µqu+ dω(1− e−λxu)(ω̄ − ωt)]√
σ2
qu+ 2dω

1−e−λxu
λx

σqσY + d2
ω

1−e−2λxu

2λx
σ2
Y


The density function pν1,t+u(v|qt, ωt) is given by

pν1,t+u(v|qt, ωt)
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=
dPr(ν1,t+u ≤ v|qt, ωt)

dv

=
1√
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Since

h′1(v)

h1(v)
=

γ1γ2

v(1− v)Rt(v)
,

we obtain (A56). When µq = 0, the limit of (A56) as u → ∞ when v ∈ (0, 1) gives zero. When

v = 0 or 1, the limit is infinite, but symmetry and the fact that pν1,t+u(v|qt, ωt) is a probability

density function (and hence integrates to one) implies that limu→∞ pν1,t+u(v = 0|qt, ωt) = 1
2δ(v)

and limu→∞ pν1,t+u(v = 1|qt, ωt) = 1
2δ(v − 1).
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Borovička, J., 2012, “Survival and Long-Run Dynamics with Heterogeneous Beliefs Under Recursive
Preferences,” Working Paper, University of Chicago.

Buraschi, A., and A. Jiltsov, 2006, “Model Uncertainty and Option Markets with Heterogeneous
Agents,” Journal of Finance, 61, 2841–2897.

Buraschi, A., F. Trojani, and A. Vedolin, 2009, “When Uncertainty Blows in the Orchard: Co-
movement and Equilibrium Volatility Risk Premia,” Working Paper, Imperial College.

Buraschi, A., F. Trojani, and A. Vedolin, 2010, “Economic Uncertainty, Disagreement, and Credit
Markets,” Working Paper, Imperial College.

Calin, O. L., Y. Chen, T. F. Cosimano, and A. A. Himonas, 2005, “Solving Asset Pricing Models
when the Price-Dividend Function is Analytic,” Econometrica, 73, 961–982.

Campbell, J. Y., and J. H. Cochrane, 1999, “By Force of Habit: A Consumption-Based Explanation
of Aggregate Stock Market Behavior,” Journal of Political Economy, 107, 205–251.

Cecchetti, S. G., P.-s. Lam, and N. C. Mark, 2000, “Asset Pricing with Distorted Beliefs: Are
Equity Returns Too Good to Be True?,” American Economic Review, 90, 787–805.

73



Chan, Y. L., and L. Kogan, 2002, “Catching Up with the Joneses: Heterogeneous Preferences and
the Dynamics of Asset Prices,” Journal of Political Economy, 110, 1255–1285.

Cochrane, J. H., 2001, Asset Pricing, Princeton University Press.

Constantinides, G. M., 1990, “Habit Formation: A Resolution of the Equity Premium Puzzle,”
Journal of Political Economy, 98, 519–543.
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