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ABSTRACT

We analyze a model of optimal consumption and portfolio selection in

which consumption services are generated by holding a durable good. The

durable good is illiquid in that a transaction cost must be paid when the good

is sold. It is shown that optimal consumption is not a smooth function of

wealth; it is optimal for the consumer to wait until a large change in wealth

occurs before adjusting his consumption. As a consequence, the consumption

based capital asset pricing model fails to hold. Nevertheless, it is shown that

the standard, one factor, market portfolio based capital asset pricing model

does hold in this environment.

It is shown that the optimal durable level is characterized by three

numbers (not random variables), say x, y, and z (where x < y < z). The
consumer views the ratio of consumption to wealth (c/W) as his state
variable. If this ratio is between x and z, then he does not sell the
durable. If c/W is less than x or greater than z, then he sells his

durable and buys a new durable of size S so that S/W y. Thus y is

his "target" level of c/W. If the stock market moves up enough so that c/W

falls below x, then he sells his small durable to buy a larger durable.

However, there will be many changes in the value of his wealth for which

c/W stays between x and z, and thus consumption does not change.

Numerical simulations show that small transactions costs can make

consumption changes occur very infrequently. Further, the effect of
transactions costs on the demand for risky assets is substantial.
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1. INTRODUCTION

We analyze a model of optimal consumption and portfolio selection in which

consumption services are generated by holding a durable good. The durable

good Is Illiquld in that a transaction cost must be paid when the good is

sold. It is shown that optimal consumption is not a smooth function of

wealth; It is optimal for the consumer to wait until a large change in wealth

occurs before adjusting his consumption. As a consequence, the consumption

based capital asset pricing model (CCAPM) falls to hold. Nevertheless, It

is shown that the standard, one factor, market portfolio based capital asset

pricing model (CAPM) does hold in this environment.

In the standard model without transactions costs, and with additively

separable utility, a consumer, at an optimum, will be Indifferent between

investing a dollar and consuming goods worth a dollar. This implies that the

derivative of his indirect utility of wealth, say V'(W) will equal his

marginal utility of consumption u'(c); call this the envelope condition.

The CAPM Is based upon noting that given two assets with returns r1, and

rj.
the consumer must be Indifferent about switching a dollar from one to the

other, and this Implies that EV'(W) (r1 — r) = 0. Roughly speaking, the

CCAPM Is derived from this equation by using the envelope condition. However,

If it is costly to change the consumption flow, then it will no longer be the

case that the envelope condition holds, and this breaks the link between the

CCAPM and the CAPM.

A great deal of empirical evidence now exists in which the CCAPM is not

only statistically rejected but also in which it is shown that the CAPM

provides a better explanation for the observed risk premia on common stocks.

There are two sorts of inadequacies that are brought out by these studies.
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First, per capita consumption does not covary very much with stock returns,

o a very high risk aversion is needed to explain the observed risk premnia of

stocks. Second, the envelope condition forces the same parameter to be used

for both intertemporal substitution and risk aversion, while the data suggests

that two parameters are needed. Both of these difficulties are avoided by

considering a model where consumption derives from Illiquld durables.

The structure and results of this paper are as follows. Section 2 states

the consumer's optimization problem. It is assumed that the level of

consumption services can be changed only by selling the existing durable

(e.g., car or house) and purchasing a new one. In selling the old durable, a

transactions cost must be paid which is proportional to the value of the

durable being sold (e.g., a commission to a real estate broker). This acts

like a fixed cost in an optimal stopping problem. The consumer can invest in

n risky assets and a risk free asset. There is no transactions cost involved

in the purchase and sale of these financial assets.1' The value of the risky

assets follow a Brownian motion, and this is the source of randomness in the

model. It is assumed that the consumer has a constant relative risk aversion

utility function over durable services.

In the absence of a transactions cost, the consumer would choose his

consumption to maintain it in a fixed proportion to his wealth; if the stock

market rises, then he increases his consumption, while If it falls, he

decreases his consumption. Needless to say, this is not an optimal policy in

the presence of a (fixed) transactions costs. It is surely suboptimal for a

person to sell his house on every day In which the stock market changes, if on

each such sale he must pay a broker a 5% transactions fee. It is thus

obvious that the covariance of a single consumer's instantaneous consumption

changes and stock returns will be zero most of the time, and hence not be
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proper measure of asset riskiness.

Section 3 provIdes a characterization of the optimal policies. It Is

shown that the optimal durable level is characterized by three numbers (not

random variables), say x, y, and z (where x < y < z). The consumer views

the ratio of consumption to wealth (c/W) as his state variable. If this

ratio is between x and z, then he does not sell the durable. If c/W Is

less than x or greater than z, then he sells his house and buys a new

house of size S so that S/W = y. Thus y is his "target° level of c/W.

If the stock market moves up enough so that c/W falls below x, then he

sells his small house to buy a larger house. However, there will be many

changes in t,. value of his wealth for which cIW stays between x and z,

and thus consumption does not change.

Section 3 also proves that the consumer will choose a portfolio of stocks

which is mean-variance efficient. As a consequence, equilibrium in the stock

market requires that all consumers hold the market portfolio. This, of

course, implies that the standard capital asset pricing model gives the risk

premia of financial assets, i.e., an asset's mean excess return is

proportional to its covariance with the return on the market portfolio.

Finally, Section 3 discusses the extent to which transaction costs cause

the consumer to act in a more risk averse manner with regard to his holdings

of risky assets. It is shown that just after purchasing a new house, the

consumer holds a smaller percentage of his wealth in risky assets than he

would in the absence of transaction costs. This Is because a random event,

which increases his wealth, is worth less (than it would in the absence of

transactions cost), since a cost must be borne to get the consumption benefits

of the wealth increase. On the other hand, a random loss on the risky asset

is now worse because not only does consumption have to fall but a
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transaction cost also must be paid (causing consumption to fall by more than

it would have otherwise).

Section 4 presents numerical simulations of the model. It is shown that

small transactions costs can make consumption changes occur very infrequently.

Further, the effect of transactions costs on the demand for risky assets is

substantial.

Section 5 contains conclusions, and a discussion of the empirical results

of Bar-han and Blinder (1986) which bear directly on the model.

The Appendix contains proofs of all the Theorems.
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2. STATEMENT OF THE CONSUMER'S OPTIMIZATION PROBLEM

We assume that consumption services can be obtained only from the

possession of a durable physical asset K. This yields a continuous flow of

services to its owner and depreciates at rate over time, 0

We study a situation which departs in two main ways from the standard

consumption model. First, the physical asset comes In bulk ("houses") of

various sizes, and the services accruing to a consumer comes from the house

he lives in (the good is indivisible once bought, and there is no rental

market). Therefore, to change his consumption level beyond what Is caused

by depreciation, the consumer must sell his current house for a new one.

Second, the market for houses may operate Imperfectly, with transaction costs

due to, e.g., costs of matching buyers and sellers. We model this

imperfection by postulating that the selling price of the physical asset is a

fraction (1—X) of its value, 0 A < 1 . The case A = 0 corresponds to a

perfect market. A similar description of the market for consumer durables has

been used by Flernming [1969).

In addition to the durable good, the consumer can invest his wealth into

a risk free asset and a portfolio of risky assets. We take the durable good

as the numeraire. We assume that the instantaneous return on the risk free

asset is constant and given by rf. Let be the value of the i- risky

asset (inclusive of accumulated dividends) at time t. We assume that

dbit = (dt + dwjt) where t (Wit, W2t ..., W) is an n

dimensional brownian motion without drift, and instantaneous positive definite

covariance matrix . Let = 1t' b2t ' nt and =

2' •• . We assume that there are no transaction costs

involved in buying or selling these financial assets.
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If we let Bt' and X, respectively denote the (dollar) amount of the

risk free asset and the vector of risky assets chosen by the consumer at time

t, then his total wealth satisfies

(2.1) Kt + Bt + t• &

where 9. Is a vector of l's. Let t represent a time when the consumer

sells his house. In any Interval of time dt in which the consumer does not

sell his house, his wealth evolves as

(2.2) dQt = -Ktdt + rfBdt + t.(dtt+ dwt)

Note that we can define dbt = (-&1f)dt + dwt to be the vector of excess

returns on the risky assets, -
Zrf as the vector of mean excess

returns, and eliminate Bt from (2.1) and (2.2) to get

(2.3) dQt = -ctKtdt
+ rf(Qt

—
Kt)dt + t.dt for r (t, t + dt)

If the consumer sells his house at time r, then

(2.4) = —

where Q refers to the level of Q just before the house sale. Note

that there Is no transactions cost In purchasing a house, and XK_ is the

loss in selling a house of size K_

We consider an infinitely lived consumer In the economy whose tastes

are represented by the expected value of an Interteniporally separable utility

function E J e'6t u(Kt)dt where 6 > 0 , is the discount rate, and

K 0 , is the quantity of durable good held at date t . The consumption

service flow is taken to be proportional to the stock Kt

Given Initial conditions (Q0, K0_), the problem of the consumer is

to find non-anticipatory controls (Kt, t 0) (I.e., where (Kt,Xt)

6



depend only on the past values of b(t1), t' t), and non-anticipatory

stopping times r (i.e., he chooses a rule which determines for each time

t whether he should sell his house as a function of all the information he

has up to time t) which maximize expected utility subject to (2.3), (2.4)

and a no bankruptcy constraint:

(2.5) Qt—xKt0 foralit.

(If the consumer meets the constraint with equality at some date t , he is

forced to sell his house at that date, and is left with a zero consumption

from then on). We also assume that the absolute value of the fraction of

wealth invested in any asset is bounded.

Let V(Q,K) be the supremum of the expected utility that the consumer

can achieve, from the initial conditions (Q,K) . We assume that the utility

function exhibits constant relative risk aversion, i.e.:

Ka forsome a<1 ,aO

and this enables us to reduce the problem from two state variables to a

single state variable. The case of log utility, (i.e., a=O) can be analyzed

as a separate case along identical lines as in the analysis to follow.

Let

(2.6) I

a 1&/t .
Note that a2 > 0, and we assume that .z and rf + are strictly positive.

In the Appendix we prove:

Theorem 2.1: Assume = 6 - arf —
1 a

> 0 , and let
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Initial conditions (Q,K)

gets Sup V(Q—XK,c)
C

not change, while if the

V(Q,K) satisfies the

=
a(+r) [(rf+ J(1-a)]

. Then V(Q,) is well defined and there exists

a numbe V2 > 0 such that

V2(Q_XK)a
VQaV(Q,K)) a

Furthermore, V(Q,K) Is homogenous of degree a In (Q,K) and does not

increase when X Increases.

In all the following, we shall assume B > 0 (otherwise in the absence

of transaction costs, when A z o , the consumer could achieve an infinite

expected utility). The quantity v in the above theorem is the utility the

consumer gets when his initial wealth is equal to 1 and A 0 . It is

immediate that the consumer cannot gain from an increase in transaction

costs, and therefore v Qa provides an upper bound for V(Q,K). On the

other hand, the following strategy is always available to the consumer: sell

the house now and Invest all the proceedings In a new home to be kept forever

without any Intervention on the financial market. This gives the lower bound

on V(Q,K)

Now consider a consumer at date 0 , with

If he decides to change houses immediately, he

Therefore, If V(Q,K) > Sup V(Q-AK,c) he will
C

equality holds, he will change. Consequently,

following Bellman equation:

(2.7) V(Q,K) = Sup E
J

et dt +

C,t,(Xt)
e V(Q - XK,c)

]

where r is the first stopping time from date 0.

Using the homogeneity of V(Q,K) we make a change of variable which
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enables us to reduce the problem to one state variable . Let:

(2.8) = - x =

h(y) = K-a V(Q,K)

&=+aa r=a+rf.

Substituting Ka h(y) for V(Q,K) into the Bellman equation gives:

-t a iQ
Kah(Y) = Sup El J et a

dt + e CahI - Ajj
c,r,(xt) L 0 1

Let

IQ_—AK
-a

-

h
_-XK...

Sup I
T V = Sup (Y+X)—a h(y) = M

] [ -,
since = Q - - AK - . Divide through by Ka , a positive number, and useT t
the fact that K = KeT to get

(2.9) h(y) = Sup E
I e

dt + et M a
t,(Xt) [ o a

- QdK
, we obtain:Since: dy

Kt

(2.10) dy = • db + r(y+A—1)dt

The no bankruptcy constraint (2.5) becomes:

(2.11) 0 all t

Finally, the definition of H is:
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(2.12) M = Sup (y+A) h(y)
y

By Theorem 2.1, we have

Sup (Y÷XYaV(Y+x)a M Sup (Y+AYa and hence:

y y

(2.13) VMa

Given M

(2.9) subject

only once and

The following

satisfyIng (2.13), we first study the optimization problem In

to (2.10) and (2.11). ThIs is a problem where stopping occurs

the consumer receives a payoff MYa when he stops in state y.

result is an application of Krylov (1980], p.39.

Theorem 2.2: Let M be exogenously fixed satisfyIng (2.13), and let h(y;M)

denote the solution to (2.9)-(2.11) for such a given M. Then suppressing the

dependence of h(y;M) on M for notational convenience, h(y) is

continuously differentiable (except possibly at y = 1 - A) and

(1) If h(y) > YAM, then It Is optimal to not stop (i.e., t 0), h(y)

is twice continuously differentiable except possibly at y = 1 - A, and

(2.14a) Sup [h'I Var dy + h'(y)Edy - h(y) + 1/a]
= 0

(2.14b) where Var dy x' and Edy r(y+X—1) + x.j

(II) If h(y) = YaM, then stop (I.e., t = 0) and

(2.15) Sup [hY) Var dy + h'(y)Edy - lh(y) + 1/a] 0

except possibly at the boundary points of the set (yih(y) > yaM} ;

(2.16) h'(y) = ay1M if h(y) YaM
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The portfolio x(y) is optimal at state y if it attains the supremum

in (2.14).

This theorem can be understood as follows. First, from (2.9) it is

clear that h(y) since it is always feasible to set t = 0. If

h(y) > MYa then this means that t 0, so (roughly speaking) by continuity,

there is a time t small enough so that we can ignore events where stopping

occurs during (O,t) and thus:

t

h(y) sup E ds + et
h(yt)

and therefore, bringing the left-hand side to the right-hand side, and

dividing by t:

t_.. -

0 = limit sup E ds + e h(Yt) - h(y)
t-o

a

However, If we let Z e6t h(y) , then

— EZ —z
urn E et h(yt) — h(y) urn

°
EdZ

t-0 t0

where EdZ at t = 0 Is found by Ito's Lemma to be

h'(y)Edy + . hu(y) Var dy - h(y)
t -•s

This, combined with urn I
e ds = 1/a gives (2.14).a

The theorem states that there will be regions of values for y where

h(y) > y8M and no stopping is optimal, and other regions where stopping is

optimal and h(y) = YaM. Condition (2.16) is the "smooth pasting" condition
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which requires that h(y) be differentiable at the boundaries of regions

where h(y) MYa.

In the next Section we show that there is only one connected region

where h(y) > YaM, and we characterize the optimal portfolio rules.
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3. Optimal Portfolio and Consumption Rules

We begin by showing that the Consumer chooses a mean-variance efficient

portfolio. This result does not require that the utility function exhibit

constant relative risk aversion.

Theorem 3.1 In state y, the consumer chooses a portfolio x(y) which

maximizes + 2) , and consequently

(3.1) x(y) =

Proof: This follows immediately from Theorem 2.2, and the fact, proved

in the Appendix , that < 0, by substituting (2.14b) into

(2.14a) and maximizing with respect to x.

Since all consumers hold risky assets in the same proportion (even if

they have different utility functions and values of y), and since financial

market clearing implies that the sum of their holdings must equal the value

of the market portfolio, we obtain the standard (market portfolio based single

factor) capital asset pricing model:

Theorem 3.2 Let rm be the instantaneous return on the market portfolio

(i.e., a portfolio where the i financial asset has weight 6 / 6 ),1j=i .i

then a necessary condition for market clearing is

db
Coy (i. , rm)

iVar(rrn) (Erm_rf) 1=1,2, ...,n.

Proof: Recall that x(y) = X(y) , so that (3.1) ImplIes that

X(y) = s(y,K) , where s(y,K) is a positive scalar which depends on

the consumer's tastes, y and K. This can be summed over consumers to yield

=
, where s2 is a positive scalar and is the vector of
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asset values. This Implies that

= • and therefore S2t
=

and these two equations combine to give the result to be proved, since is

a matrix with (i.j) element equal to Cov(d61 / , d6 I 6)

Theorem 3.2 allows us to change the control In (2.9), (2.10), (2.14) and

(2.15) from the vector x to a scalar x which denotes the amount invested

In the market portfolio. Note that (2.6) gives the mean rate of return p

and variance a2 of the market portfolio. Therefore, (3.1) becomes

(3.2) x(y) = ______

and Var dy = x2a2 and Edy = r(y+X-1) + xp in (2.14b)

In order to understand why the consumption based asset pricing model

fails in our context it is necessary to further. characterize the optimal

consumption policy. The next theorem states that the optimal consumption

policy is characterized by three numbers y1, y, and y2 with the property

that y1 y2 and if the state variable y Is between y1 and y2,

then the house is not sold; if y is not between y1 and y2, then the

house Is sold and a new house Is purchased to bring the level of the state

variable from y to y*•

Theorem 3.3: There exists three numbers y y* y2 such that h(y) in

Theorem 2.2 satisfies

h(y) > Mya if and only if e (y1, y2)

and
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(3.3) H (y* + X)a h(y*) = sUp(y+A)
a

h(y)
y

To understand this recall that y = — A . If the financial assets rise

in value, then Q will rise and eventually the consumer will feel

sufficiently wealthy that he wants a larger house. When Q rises to the

point where y y2 , the consumer purchases a house K*(Q) with the property

that his new ratio of wealth to housing QIK*(Q) satisfies

(34) Q/(*(Q) - X

A similar effect appears on the downside. If wealth falls sufficiently, then

the old house will be sold and a new house will be purchased which satisfies

(3.4). Note that the size of the new house depends only on the total wealth

Q. Note that If was the level of wealth just before switching houses,

then the Q in (3.4) Is -
XK_.

We are now in a position to give a complete mathematical description of

the solution. Using (3.2) and (2.14), we seek a function h(.) and numbers

H, y1, y, y2 such that

(3.5)
-

[ j () + r(y+A-1) h(y) - Th(y) + = 0

for y e[y1, y2] ;

(3.6) h(y) YM for all y ;

and from (2.16)

(3.7) h(y1) = y H for I = 1, 2 ;

(3.8) h'(y1) = ay M for I = 1, 2 ;

and from (3.4)
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(3.9) M = (y* + X)a h(y*) = (+Y h(y)

To understand this system fix M and ignore (3.9). Equations (3.7)

and (3.8) represent 2 free boundary conditions for the second order

differential equation (3.5). Such a system can be understood by picking a

guess for y1, then usIng (3.7) and (3.8) to get h(y1) and h'(y1). This

provides an Initial condition to (3.5). Then (3.5) can be continued while

h(y) > YM until a point y2 is found where h(y2) = y M. If it Is also

the case that h'(y2) = ay M, then we are done, otherwise choose a new

value of y1 and repeat. If a solution can be found, then for the fixed M,

we will have a solution to (3.5) - (3.8): h(y; M). This function is then

substituted Into (3.9) to yield the problem: find an M* such that

(3.10) M* = sup(y+X)
a

h(y; M*)
y

The value for is the y which attains the supremum In (3.10).

We do not have an analytic solution to (3.5)-(3.9); however, the appendix

shows that there exists a solution and the next Section presents numerical

simulations of the solution. In addition, we prove that as transaction costs

increase, the interval over which no house sale occurs (y1, y2) grows:

Theorem 3.4: If y1, y2, M solve (3.5) - (3.9), then y1 is a strictly

decreasing function of X, and y2 is a strictly increasing function of A.

If M > 1 I (ag) , then M is a strictly decreasing function of A.

Note that M = 1 / (as) when it is optimal to never sell a house, starting

from y = , i.e. = 1A, x(y*) = 0 and neither y1 nor y2 are ever

reached starting from y = y

16



Though we cannot explicitly solve for h(.), substituting (3.2) into

(3.5) and differentiating once can be used to show that x(y) satisfies

the following differential equation
2

(3.11) x'(y)x(y) + r - - x(y) - (y + x - 1) =

2a a

Theorem 3.5 Let

for y (y1, y2)

(3.13) 2 + 2
[

r - 0 — 2 ! = o.

(3.14b) (x(y) - 01(y+X-1)) (x(y) - 02(y+X-1)) = c

for some real number c 0. Note that y [0, 1]

To understand (3.14) make a change of

(z) = x(z+1—X), so (3.14) becomes

variable to z = y + X - 1 and

(3.15) ((z)—G1z) ((z)—02z)1' = c for z €(z1, z2)

where z1 y1 + A - 1 and z2 = y2
+ A - 1.

Figure 1 plots the lines =
01z / (z+1) and

plotted, for 3 values of A, Is the curve (z)

above these two lines. As c goes to zero, the

the curve formed by the two lines =
01z and

(z) / (z+1) represents the fraction of wealth

17

x = / (z+1). Also

/ (z+1) which lies

curve (z) collapses onto

= Note that

X/Q Invested in the risky

(3.12)

and let O < o 2 > 0 be the two roots of the second degree equation

Then the

(3.14a)

optimal x at y, x(y) satisfies:

x(y) > Max
(e1(y+X-1),02(y+A-1))



asset. Note that from (2.1) and (2.8), z = (X+B) I K, and thus unlike

y, z is a description of the state independent of A. Hence, the reaction

of the x(z) to a change In A tells us how the holdings of risky assets

change in a particular state when A changes.

Note that the left—hand side of (3.15) is independent of A (i.e.,

e, e and y do not depend on A). Therefore, if we compare the solutions

to two identical optimization problems, except that ) a in one and

A = A in the other, then only c can be different across the two

problems. If we denote the optimal value of (z) by x(z; A) to Indicate

its dependence on A, then the previous remarks Imply that (z; Xa) is

either everywhere above or everywhere below (z; Ab) for the range of z's

where (3.15) holds. We do not know that c varies monotonically with A.

This is illustrated in Figure 1 where Aa >
Ab and (z; Xa) lies

everywhere below (z, Ab). Note, however, that there are values for

>'a which are larger than (•; Ad). For example x(zia; Aa) >

x(z; Ab) for all z €EZ1b Z2b). Note that if A = then z Zia is not

an attainable point in the state space since the consumer sells his house at

any state below Zib.

The above remarks indicate that the effect of A on the holdings of

risky assets is complex, and dependent on the particular state that the

consumer Is in. Roughly speaking, the existence of transactions costs makes

the consumer more risk averse in the middle of his state space (i.e., near

= y*) and less risk averse at the boundaries of his state space (y=y1 or

This can be understood by noting that the consumer's direct utility

function Mya is replaced by his indirect utility function h(y) for

purposes of asset choice. Figure 2 illustrates the consequences of this by

plotting h(y) - Mya. Note that the smooth pasting conditions assure that
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h(y) is tangent to MYa at y = y1 and y = y2. As the Figure shows,

this Implies that h(y) Is less concave than MYa at these points. (The

curve may not appear tangent at y1, but it is tangent; the second

derivative of h(y) - MYa Is quite large just to the right of y1.) Clearly

however, h(y) must become more concave than MYa somewhere between y1 and

To explore this further, note that

'3 16' x(y) X
'. ' y Q-XK'

gives the proportion of marketable wealth invested In the risky asset. If

X = 0, then our model is equivalent to Merton's model where the proportion

of wealth invested in the risky asset is

(3.17) 2
(1-a)a

We are able to prove the following:

Theorem 3.6: X(yi)
2

= 1, 2
Yj (1-a)a

*
x(y) .t

(1-a)a2

Therefore, the consumer behaves In a more risk averse manner just after

purchasing a new house, and In a less risk averse manner just before

purchasing a new house.
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4. NUMERICAL SIMULATIONS

The boundary value problem (3.5)-(3.9) can be solved on a computer using

roughly the technique described in Section 3 just after (3.9). We make the

following assumptions about parameters: The mean and standard deviation of

the excess return on the market portfolio are 5.9% and 22% respectively

from Ibbotson and Sinquefeld (1982).

Since the durable good is the numeraire, the nominal inflation on durable

goods should be subtracted from the nominal rate of interest to get the

appropriate real rate, rf . Ibbotson and Sinquefeld report an average short

run rate of 4.3% between 1953 and 1979. In the same period the nominal

inflation in housing prices was 4.2% per year, and 2.5% per year for

automobiles.!1 We thus, somewhat arbitrarily, set the risk free rate rf

to be 1%.

Table 1 presents some numerical results for the case of no depreciation

( = 0), = rf. and for various values of A, and of A 1-a which is the

coefficient of relative risk aversion. In order to define state variables

independent of A, we let

(4.1) y+A=Q/K.

Column 3 gIves the left boundary S1. and the right boundary y2 of the no

stopping region. It also gives the point to which Q/K is brought

after hits a boundary point.

Column 4 presents the expected length of time between house purchases.

Following Karlin and Taylor [1981, p.192) let T be the length of time

it takes to hit a boundary starting from y, and

(4.2) Va(Y) = ET
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Then Va( ) satisfies the following differential equation

(4.3) -1 = V(y) Edy + V(y) Var dy

with boundary conditions Va(Yi) = Va(Y2)
= 0

This is solved numerically, and V(y*) appears in the table.

The fifth column presents the result of numerical calculations on the

average holding of risky assets. The fraction of wealth invested in the

risky asset is a function of the state y. This state is a renewal process

which goes from y to a boundary and then returns. Karlin and Taylor

[1981, pp.192, 261] shows that the expected value of any function f(•) of

the state, can be found by solving the differential equation

(4.4) -f(y) = V(y) Edy + . V(y) Var Y

for Vb(.) with boundary conditions V(y1) = Vb(Y2)
= 0.

The average value of f(.) over renewal cycles Is Vb(y*) I Va(y*)

In column 5, the function presented is

'45 f( \Xf XK..x(y)
• / \Yi —

QY1
-

K Q - + A

which represents the fraction of total wealth invested in risky assets.

The sixth column uses wealth net of the transactions cost of selling the

durable to compute the average fraction of wealth held in the form of the

risky asset. This Is computed by setting f(y) x(y)/y In the previous

calculation.

The seventh column gives the value of X/Q In the absence of transactions

cost (I.e. in Merton's model), as it appears in (3.17).

The eighth column gives the probability that the consumer will reach the

lower boundary before reaching the upper boundary, given that he starts from

y = . It thus gives the fraction of occasions that a change in the value

of the stock market causes people to buy smaller houses, rather than larger

houses.
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The ninth (and final) column gives the rate of drift in wealth evaluated

at It is computed as E dy = 1x(y) +(y+X-1)r

Discussion of Table 1.

As is expected, a rise in transactions cost Increases the average time

between durable sales. The average time between durable sales is quite

large even for very small transactions costs. Note that in this Infinite

horizon model, If risky assets were not held (i.e., if .i = 0) and r =

then the consumer starting from y would never switch. He would Invest

all of his wealth In housing and consume the service flow. It Is the

uncertainty about stock returns and the upward drift in wealth when i > 0

that causes the boundaries to be hit.

In particular, with 6 = .01, r = .01 and = .059 and the range of

risk aversions being considered, the returns from saving In the form of

financial assets are so large that the consumer chooses a lifetime consumption

profile which (on average) drifts upward. To accomplish this he chooses a

relatively small durable and relatively large financial investments with the

property that his wealth drifts upward in the period between durable

purchases.'

Hence, the major reason for durable sales Is the upward drift in wealth.

As the final column of the Table makes clear, the parameters chosen imply that

wealth is expected to rise at a rate of, say, 6.22% for A = 1.1 and

X = .05 just after a new durable purchase has been made.

It should be emphasized that we are considering durable good sales caused

only by changes in wealth; not caused, by death, switching of jobs or spouses,

or changes in family size. The point to realize is that changes in stock

market wealth will be associated with consumption changes for an individual

only when measured over decades; there is essentially no covarlance between
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consumption changes and stock returns on a monthly or annual basis for

realistic measures of transactions cost.

The Table shows that the average fraction of wealth invested in risky

assets, X/Q, falls as transactions costs rise. For A = 2.0 , the

average holdings of risky assets falls from .584 at X = .005 to .460

at X = .25 ; in each case it is substantially lower than the no

transactions cost case where X = 0

The next column on the Table, labeled (ETY1 EX/(Q-XK) , also computes

the average fraction of "wealth" invested in the risky asset, but "wealth"

refers to the amount of money that would be realized if all assets and

durables were liquidated. This measure of wealth depends on the level of

transactions cost. The table shows that the average fraction invested in

risky assets Is not a monotone function of A . When A is large, "wealth"

falls and this makes it appear as if a large fraction of "wealth1' is invested

in the risky asset.

It is interesting to note that, for a given A , as the consumer

becomes less risk averse (i.e., A falls) the average holdings of risky

assets gets closer to the = 0 risky asset level. We understand this to

be caused by the fact that when A falls the consumer holds more risky

assets, and hence spends more time near the boundaries of his "no stopping"

region. (Note the Er falls as A falls.) The transactions cost causes

him to be less risk averse near the boundaries than he would be if A = 0

as noted in Section 3.

Discussion of Tables 2, 3, and 4

These tables consider the same parameters as Table 1, except that 6 is

raised to 2%, 4%, and 6%: in Tables 2, 3 and 4 respectively. It

may be thought that raising the discount rate lowers the average time between
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durable sales. The reasoning may be that when the discount rate is high

then the consumer should take advantage of a rise In wealth to increase

his consumption sooner rather than later. A comparison of Table 2 and

Table 1 shows that this is not the case. Instead, the dominant effect

appears to be that a rise In the discount rate to 2% lowers investment In

financial assets (as can be seen by comparing G1,*,2) across the two

tables), and this lowers the rate of upward drift in wealth.

Table 4 , in which 6 = 6% , shows that the investment In financial

assets falls to the point where the expected drift In wealth is almost zero

just after a new durable is purchased. For such parameter values, the

purchase of a durable, in the steady state, is due to variability in wealth

rather than the drift in wealth. The expected time between purchases Is very

large, far larger than f or the 6 = 1% of Table 1. Thus, for a consumer

in a steady state (i.e., where wealth would not be expected to drift after

a purchase), the variability of the stock market would not be correlated

with an infinitely long lived consumers durable purchase except at

frequences of many decades.

Discussion of Table 5

The previous discussion concerned situations where the durable does not

depreciate. If the durable depreciates rapidly, then there will be very

frequent purchases. The first column of Table 5 gives various annual

depreciation rates of the durable good from = 0 to = .10. Note that

the average fraction of wealth invested in the risky asset becomes very

close to Its X = 0 value when a is large. Further, it should be clear

that consumption will be a more responsive function of wealth when rapid

depreciation causes new purchases to occur very frequently.
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Notes: = 0, rF = .01, = 0.01, t = .059, a = .22

bOX Is the percent transactions cost of selling the old durable;

A 1-a Is the coefficient of relative risk aversion;

'2) are the three values of Q/K which characterize optimal

stopping;

Er Is the expected length of time to reach either or y2 starting

from y*;

6/01/87

Table 1

Some Numerical Simulations

)A A 1" ''2
(Years)
Et

11.47

E(X/Q)
E(T)

0.584

X
E Q-XK
E(T)

0.587

= 0,
X/Q

0.610

Prob.

(buy—
down)

.226

Rate of
Wealth
Drift
at y

.0262.005 2.0 (.34, 0.58, 0.89)

.25 2.0 (.40, 0.92, 2.54) 47.42 0.460 0.604 0.610 .022 .0293

.05 2.0 (.29, 0.70, 1.43) 28.94 0.530 0.570 0.610 .093 .0258

.05 1.75 (.27, 0.71, 1.56) 27.33 0.609 0.654 0.697 .100 .0313

.05 1.5 (.26, 0.76, 1.81) 25.64 0.717 0.768 0.813 .107 .0391

.05 1.1 (.26, 1.08, 3.16) 22.39 1.015 1.069 1.108 .121 .0622

.05 0.9 (.44, 2.56, 8.71) 20.46 1.303 1.335 1.354 .129 .0845

.005 0.9 (.76, 2.03, 4.38) 7.832 1.342 1.345 1.354 .261 .0840

.25 0.9 (.39, 3.62, 18.30) 35.08 1.220 1.342 1.354 .042 .0875

.08 2.0 (.30, 0.74, 1.65) 33.93 0.511 0.570 0.610 .069 .0262

.08 1.75 (.28, 0.76, 1.82) 32.17 0.587 0.654 0.697 .074 .0317

.08 1.5 (.26, 0.81, 2.12) 30.16 0.693 0.768 0.813 .082 .0397

.08 1.1 (.26, 1.17, 3.78) 26.49 0.989 1.068 1.108 .095 .0630

.08 0.9 (.40, 2.78, 10.56) 24.19 1.286 1.334 1.354 .103 .0849

.10 2.0 (.31, 0.77, 1.77) 36.48 0.501 0.572 0.610 .058 .0264

.10 1.75 (.29, 0.79, 1.97) 34.62 0.577 0.656 0.697 .063 .0321

.10 1.5 (.27, 0.85, 2.31) 32.49 0.680 0.770 0.813 .070 .0402

.10 1.1 (.27, 1.22, 4.14) 28.50 0.975 1.069 1.108 .083 .0635

.10 0.9 (.37, 2.90, 11.66) 26.34 1.276 1.334 1.354 .088 .0852
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Table 1 (continued)

(EY1 EX/Q

(EtY' E[X/(Q-XK)]

A = 0, X/Q

Prob (buy down)

Is the average fraction of wealth Invested in the risky
asset, using the steady state distribution under the

optimal policy;

Is the same as (EtY' EX/Q except that "wealth refers
to the amount which is obtained net of transactions cost
when all assets and durables are sold.

is the value of X/Q in the absence of transactions cost.

Is the prob that is reached from r before

is reached;

Rate of Drift
at y Is the expected rate of change in wealth

y = y
Table 2

evaluated at

= 0 rf = .01, = 0.02, p = .059, a = .22

A A

— —
1'"o'"2

(Years)
Er

11.86

X

E(X/Q) E Q-XK
E(t) E(r)

0.576 0.583

A = 0
LQ..
0.610

Prob.

(buy—
down)

.274

Rate of
Wealth
Drift
at y

.0212.005 2.0 (.274, 0.465, 0,711)

.25 2.0 (.375, 0.796, 2.162) 56.90 0.403 0.565 0.610 .050 .0245

.05 2.0 (.247, 0.576, 1.169) 32.06 0.504 0.552 0.610 .142 .0210

.05 1.75 (.226, 0.573, 1.243) 30.15 0.578 0.634 0.697 .149 .0257

.05 1.5 (.206, 0.581, 1.371) 28.04 0.678 0.745 0.813 .157 .0326

.05 1.1 (.179, 0.674, 1.935) 24.20 0.951 1.036 1.108 .171 .0533

.05 0.9 (.185, 0.909, 3.038) 21.95 1.206 1.292 1.354 .179 .0737

.005 0.9 (.262, 0.691, 1.480) 8.02 1.316 1.326 1.354 .302 .0724

.25 0.9 (.307, 1.369, 6.658) 39.81 1.017 1.292 1.354 .083 .0816
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Table 3

6 = 0.04, rf = 0.01, = 0.00, p = 0.059, a = 0.22

X Prob.

A

2.0

A

.005

— — . (Years)
'i'o'"2 ET

E(X/Q)
E(r)

0.562

E Q—XK A = 0
E(T) X/Q

0.571 0.610

(buy—
down)

.383(.198, .338, 0.513) 12.58

2.0 .25 (.344, .662, 1.753) 81.91 0.296 0.478 0.610 .208

2.0 .05 (.195, .443, 0.883) 37.95 0.454 0.517 0.610 .297

1.75 .05 (.175, .428, 0.911) 35.35 0.518 0.594 0.697 .301

1.5 .05 (.156, .415, 0.959) 32.43 0.603 0.697 0.813 .305

1.1 .05 (.125, .412, 1.153) 27.40 0.829 0.967 1.108 .311

0.9 .05 (.113, .440, 1.421) 24.43 1.032 1.200 1.354 .315

0.9 .005 (.118, .309, 0.652) 8.31 1.265 1.289 1.354 .393

0.9 .25 (.276, .736, 3.362) 50.61 0.706 1.144 1.354 .234

= 0.059, a = 0.22

x
E 0-AK A = 0
E(r) X/Q

Table 4

6 = 0.06, rf = 0.01, = 0.00, p

A A

Rate of
Wealth
Drift
at y

.0117

.0154

.0121

.0154

.0205

.0365

.0531

.0504

.0667

Rate of
Wealth
Drift
at y

.0027

.0076

.0042

.0063

.0096

.0213

.0343

.0297

.0500

,y0,y2)
2.0 .005 (.156, .268, 0.404)

2.0 .25 (.326, .590, 1.535)

2.0 .05 (.166, .369, 0.730)

1.75 .05 (.149, .352, 0.741)

1.5 .05 (.132, .336, 0.764)

1.1 .05 (.104, .314, 0.860)

0.9 .05 (.092, .312, 0.983)

0.9 .005 (.078, .205, 0.427)

0.9 .25 (.269, .568, 2.476)

(Years) E(X/Q)
Er E(t)

12.90 0.549

94.73 0.223

40.71 0.413

37.61 0.468

34.45 0.540

28.77 0.727

25.59 0.888

8.46 1.218

Prob.

(buy—
down)

.501

.512

.506

.502

.497

.487

.480

.488

.469

0.560

0.421

0.490

0.561

0.657

0.906

1.118

1.253

1.006

0.610

0.610

0.610

0.697

0.813

1.108

1.354

1.354

1.35455.48 0.498
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= 0.059, A =1.1,

Table 5

6 = 0.01, a = 0.22, rf = 0.01, A = 0.05

Rate of
Wealth
Or 1 ft

at y

— —
)"1'Oy2

(Years)E
22.39

E(X/Q)
E(r)

1.015

X

ELQ—AK
E(r)

1.069

A— 0
X/Q

1.108

Prob.

(buy-
down)

.121 .0622.00 (0.26, 1.08, 3.16)

.01 (0.54, 1.86, 4.90) 16.32 1.048 1.078 1.108 .114 .0714

.02 (0.84, 2.59, 6.46) 13.26 1.063 1.083 1.108 .099 .0811

.03 (1.14, 3.28, 7.93) 11.34 1.071 1.087 1.108 .084 .0908

.04 (1.46, 3.94, 9.32) 9.92 1.077 1.090 1.108 .071 .1006

.05 (1.77, 4.60, 10.67) 8.84 1.082 1.093 1.108 .059 .1105

.06 (2.08, 5.23, 12.01) 8.00 1.085 1.095 1.108 .049 .1203

.07 (2.40, 5.85, 13.29) 7.28 1.088 1.096 1.108 .041 .1302

.08 (2.73, 6.47, 14.55) 6.66 1.090 1.098 1.108 .034 .140

.09 (3.06, 7.07, 15.83) 6.16 1.092 1.099 1.108 .029 .150

.10 (3.37, 7.67, 17.09 5.73 1.094 1.100 1.108 .023 .160
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5. CONCLUSIONS

In the model, it Is optimal for consumers to have a target level y* for

the ratio y (Q—XK) I K of liquid wealth to durable size. Further, there

are two numbers y1 and y2 such that only if y y1 or y y2, will the

consumer sell his current durable K to return y to the level y, by

purchasing a new durable K*(Q) which satisfies = Q / K(Q) -

An important implication of the model is that the new size of the durable

purchased depends only on wealth. Therefore, to the extent that wealth

changes are unpredictable, changes in the size of new durable purchases will

be unpredictable. This was pointed out by Bar-han and Blinder (1986),

who used this idea to test an illiquid durable goods model against the

standard permanent income (i.e. no transactions cost) model of

consumption which had been tested by Hall (1978) and Flavin (1981).

They noted that the average size of the new car purchased at date t is a

proxy for K*(Q) and that changes in this variable should be unpredictable.

Indeed they find this correct for automobile purchases. They also note that

when one looks at the number of new cars purchased, then changes in this

variable should be predictable. Our model cannot be directly applied to

evaluate such a statement without modelling the aggregation over consumers.

However, it seems reasonable to conjecture that the number of consumers who

arrive at a boundary at time t will depend on the level of durables they

each hold at time t, and this in turn will depend on the history of prior

durable purchases. Therefore, changes in the number of people purchasing new

automobiles should be forecastable using information on the prior levels of

purchases. They indeed find this to be the case. Therefore, by

distinguishing the number of people making new purchases from the average

size of each purchase, it appears to be possible to test predictions of this
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model which are absent from the standard model as well as from the quadratic

adjustment cost model of the type studied by Bernanke (1985) and the convex

adjustment cost model of Eichenbaum and Hansen (1985). Clearly, further work

needs to be done on the aggregation problem before such tests can be made

precise.

Another area in which further work is needed is in modelling the

problems associated with multiple types of consumption goods, each of which

has a possibly different transactions cost. In assuming one type of

consumption good we ignore the issue of substitution between low transactions

cost and high transactions cost goods, and In particular that such

substitution might lead a change in wealth to cause an excessive movement In

the purchases of low transactions cost goods.

We also ignore the possibility that there are various types of durable

goods which are purchased at staggered dates by a given consumer. In such

a situation the consumer may be purchasing some durable good almost every

month. It would be interesting to know the correlation between consumption

service flows and stock returns in such a model.

It should be recognized that many goods which our national income accounts

consider to be noridurables, actually have a large "durable° component. This

is obvious for categories such as clothing and shoes. However, many

nondurables are used in almost fixed proportions with durables, and this

creates a transaction cost not dissimilar to that studied here. For example,

changing the level of food consumption may have transactions cost, If for

example, one has to find different friends with whom to go to better

restaurants, or learn about better foods to buy in grocery stores. (Some

people even live in areas for which eating better food would require them to

change jobs and move out of town.) Changing the level of gasoline, or
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electricity might require selling an automobile, home, or changing a living or

work location.

We have shown that small costs of changing consumption levels can lead

consumption to be insensitive to wealth for long periods. This makes the

consumption based asset pricing model inappropriate for predicting asset

risk premia. However, we show that market portfolio (i.e. wealth) based

measures of risk premia continue to be appropriate even in the presence of

consumption transactions costs.
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Footnotes

The CCAPM was rejected In tests performed in Hansen and Singleton

[1982 and 1983]. Mankiw and Shapiro [1984] compare the adequacy of the

CCAPM with the CAPM and find that the later performs better. The

most favorable evidence for the CCAPM appears in Breeden, Gibbons and

Litzenberger [1986], where the unconditional form of the CCAPM is

evaluated.

These observations are based upon Grossman, Melino and Shiller [1985].

See Constantlnides[1986] for results regarding proportional transaction

costs in security trading and a survey of work on security transaction

costs. See Harrison and Taylor [1978], and Richard [1977] for related

work on the optimal stopping of a controlled diffusion.

, To see this, note that in any neighborhood of (Q,K) in which V is twice

continuously differentiable and no stopping occurs, the Bellman equation is

o =
sp u(K) — V(Q,K) + (.+rf(Q_K)_K)V1(QJK) + V11(Q,K)X•I•X +

V2(Q,K)c&K}

Clearly V1 > 0 . If V1 0 , then this equation can only hold if

V11 = 0 . In such a case any value of X is optimal. If V1 > 0

then the equation requires that V11 < 0 and the optimal portfolio

—V

satisfies X v—1 I_1.
11

Economic Report of the President 1980, pp.260-261. See Stambaugh [1982]

for a discussion of real returns on various durables and assets.

This is analogous to what would occur in a certainty mode with r > 6

There, both consumption and wealth would "drift" upward at the same rate.
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7IBar—Ilan and Blinder analyzed a model without uncertainty, but their

insights can be directly applied to the model of this paper.

Caplin and Spulber (1985) consider a model with fixed transactions costs

where aggregation over consumers causes the model to behave in many ways

like a representative agent model without transactions cost. We do not

expect a similar result here because starting from cross-sectional

distribution of consumer state variables, at time 0, the cross—sectional

distribution at time t (and thus the density of house purchases) will

depend on the history of the stock market between 0 and t. In the

Caplin and Spulber model this is not the case because random shocks are

always of the same sign so it is as if the cross-sectional distribution of

characteristics revolves In one direction around a circle; always

maintaining the same density at each point.

To extend the analysis to the case of several assets, take

—1=I •
= x"I'

The argument of Footnote 4, transposed to the proof of Lemma 2, shows that the

optimal portfolio is proportional to
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APPENDIX

Most of the Appendix deals with the optimization problem (2.9) - (2.12)

of Section 2. However, as a preliminary step we prove Theorem 2.1

concerning the value function V(Q,K). Further, to simplify notations, we

consider the case of a single risky asset with drift + rf and

Instantaneous variance a2 (we indicate in footnotes how to extend the

analysis to the case of several assets, where appropriate).

Proof of theorem 2.1:

1) It is always possible for the agent to sell immediately

his current durable good, and to invest all his wealth Q — AK into

a house to be kept for all t 0 , without undertaking any financial

operation in the future =
Kt X = 0 for all t 0 ). If a > 0

this gives:

V' K' > (Q_XK)a"' / ' a(S+ac)

and v2 (+aa)1 . If a < 0 , then consider the strategy of setting

0 and buying a new house every year. If r > 0 and A < 1 then

this strategy will do at least as well as when r = 0 and A = 1. Thus,

assume that Q - AK is moved to an economy where henceforth r = 0 and

x = 1. In year n a fraction g of Q - AK is invested in housing,

where
6n 6

g=e 1-e
It is easily verified that g (0,1) and g, = 1, since a <0.

n=0

It follows that setting K(n) = (Q-xK)g is feasible and yields a discounted

utility of

n+ 1

I J
e u(g(Q_AK)e(t)dt

n=0

1



= (Q-xK1
v2 , wherea

[1 e
"2 =

—s

1-e2

(2) When

state variable,

to the standard

Since (2.1) and

A = 0 , V does not depend on K , and Q

while K and X are control variables.

model of consumption and portfolio choice

(2.3) are linear in (Q,K,X) and since

becomes the only

It is thus identical

as in Merton (1969).

a

V(Q) = E et — dt

V(Q) = Qa

[1986,

is finite,

a2(1—a)

and a formula for v:

1
a—i

K = [a(rF+u)v]

2

Q,

the solution, if it exists, must be, by homogeneity, of the form

where v = V(1) . This model has been studied by Karatzas, et.al.

p.290] who show that (our) > 0 is sufficient to ensure that v

where it Is crucial to note that we require 0 , and if = 0

then the process is stopped and the consumer gets u(0) . The Bellman

differential equation is

(A 1)
sup ____
(K,X)

V°(Q) + (rFQ
- (rF)K + X)V' (Q) - 6V(Q) + = 0

Substituting V(Q) = VQa into (A.1) yields optimal solutions



1

a-i

(A.2) (rF+u)(1—a)[a(rF+u)v]
= B

If B > 0 , then (A.2) can be solved for v , and thus there is a solution

to (A.1).

Since the consumer is obviously better off when X = 0 than when X > 0,

it follows that V(Q,K). Q.E.D.

The rest of the Appendix solves the optimization problem (2.9) - (2.12).

Given the state (or our knowledge...) of the mathematical literature, we have

been lead to take a rather roundabout approach.

First for fixed M, the optimization problem in (2.9) — (2.11) Is of the

form studied by Krylov (1980). There are however two Important differences.

Krylov assumes that (i)Xt is bounded and bounded away from zero, I.e.,

there are two numbers h > c > 0, with h Xt t, and (ii) t belongs

to a bounded state space, in the sense that there are numbers yLyhyL <

such that if = y' or If = h , then the consumer is forced to stop

(i.e. set r = 0). To solve the problem, we proceed as follows. We define an

auxiliary problem, with artificial bounds, which satisfies the assumptions of

Krylov, and we let h go to Infinity and c go to zero. Lemma 1, based on

a result of Krylov, shows that this procedure is justified: the value of the

auxiliary problem converges uniformly to the value of the limit problem.

Lemmas 2, 3 and 4 characterIze the solution and the optimal strategy of the

auxiliary problem. Remark 1 shows that for large enough the upper bound

in (I) is not binding. The first part of the proof is concluded by Lemma 5,

which describes the solution of the optimization problem (2.9) - (2.11) for

fixed M under the assumption (ii), by taking the limit of the optimal

strategies of the auxiliary problems.

3



The second part of the proof uses (2.12) to find M. Lemmas 6 and 7

show how the values obtained at the end of the first part vary with M

and X, and Lemma 8 characterizes the solution of the problem under the

constraint (ii) yZ t yh • It is only at this late stage in Lemma 9,

that we are able to show that, for y small enough and
large enough,

(ii) is not binding so that we can dispense from it.

We first study an auxiliary problem where the following constraints are

added to the optimization In (2.9) — (2.10), M is a real number of the same

sign as a, and h(y;M) denotes the maximized value of the objective.!1

(A.3) xh)xt)c>O forall t

(A.4) y&y(yh forall t

with y2' > 0 , and

= yh Implies h(y;M) = My
y = yt implies h(y;M) = My

Note that h(y;M) a priori depends on (e, y2• yh)• We have only made

explicit its dependency In c. We let h(y;M) denote the solution of the

auxiliary problem with c equal to zero.

Lemma 1. When c converges to zero, the function h(y;M) converges

uniformly to h(y;M) [yt,yh] and h(y;M) is continuous in M.

Proof of Lemma 1. The assumptions of Krylov 198O,p. 130] are

satisfied. We apply corollary 13, p. 138. Corollary 13 applies in fact

to:

h(y,T;M) sup E [ j et dt + e My]
t<T,(xt) 0

4



and states that h(y,T;M) converges uniformly to h(y,T;M), and that both

are continuous in M. We have

ih(y;M) - h(y,T;M)i < supIh(y;M)i < e suplM(y+A)aI
y y

h(y;M) - h(y,T;M)i < e6 sup ih(y;M)i < e61 SUPIM(Y+X)aI
y y

and the difference can be made as small as one wishes for T large enough

given y2,, yh. Now:

h(y;M) — h(y;M)I < h(y;M) — h(y,T;M)i +

h(y,T;M) — h(y,T;M)I +

h(y,T;M) — h(y:M)i.

The first and third terms go (uniformly) to zero by the preceding

inequalities while the second term converges uniformly to zero by corollary 13

of Krylov. Q.E.D.

We now proceed to study the auxiliary problem.

Lemma 2: h(y;M) is continuously differentiable in y on • For

laq enough, c and small enough, for M < (1—X)v there

exists an Interval (y,y) with y < y , such that:

(I) h(y;M) is twice continuously differentiable and h(y;M) > MY

on (y,y) ; (1-x)(1-a) rIB belongs to (y,y)

(ii) h(y;M) = MYa on the complement of in [2.h]

M > (l_A)-aV , h (y;M) = MYa tyL,yh

Proof of Lemma 2: It is Immediate to check that the auxiliary

problem satisfies the assumptions of Krylov [1980, p. 22). Therefore,

by Krylov's Theorem 3, h is a continuously differentiable function of y

for y [y, h] and dropping the arguments of the function h while

5



using h' and h" for the first and second derivatives with respect to y
C C

we have on the set C (y: h(y;M) > MY} :

(A.5) Sup [4
a2 h + (ry+x-r(1-X))h-h+ = 0

which can be rewritten as:

a2h" ph'12 1.Lh'

2

{

Li _1Sup x+
x

-

a'hJ 1 ]

+ r(y+x-1)h' - + = 0

Assuming is large, and x does not hit we get

— £ then:
a hU

C

(A.6) x(y) = - c
and

a2h

2 h'2

(A 7)
- 1 + r(y-+-X-1)h' - h + 1 = 0 ;c c aa c

if
C < c then x(y) = c , and-

a2h

(A.8) ah + (r(y+X-1) + MC)h' - h + 1 = 0
c c a

and

2
2 h'

(A 9)
- —

r(y+x-1)h
- + 0

0

Note that (A.7) can be rewritten as:

6



(A.1O) G(h,h,h,Y) = 0

where G is increasing in h and strictly decreasing in h

Let

(A.11) g(y) = G[a(a_1)My2,aMya_l,Mya,y]

g(y) = MBYa - (1-X)aMry +

We have:

g'(y) = aMy2(y - (1-A)(1-a)r]

Since aM > 0 , by (2.13), g(y) is increasing for

where = (1—X)(1—a)r/B and decreasing for y y

g() = - Ma-l[(1x)(1a)r + (1-X)ar +

g() = - Ma-l(1x)r + 1 = a-l(1X)r[v(l.X)-a -
M]

Therefore, by (2.13), g() is strictly positive for M < (l_XyaV

The proof of the lemma uses the following remark: j

y y 2(1-a)e / .i and h(y) = MYa then g(y) 0 . The remark is

true because h(z) MZ all z , thus for y h(y) = MYa we have

h(y) = aMya and h(y) a(a - 1)MYa_2

where h(y) refers to the derivative computed from the interior of the

set {y : h(y;M) > MYaI in case y is a boundary point of that set.

Therefore,

- ph(y) y -

a2h(y) a2 (1—a)
'

a2
1—a

—

so that (A.7) holds, which implies, using (A.10) and (A.11), that g(y) 0

7



Since g() > 0 and c can be chosen sufficiently small that > y
the preceding remark implies hG;M) > . That Is, (9h) can be

chosen to include . Let (y, 4) be the largest interval containing

such that h(y;M) > MYa . By the foregoing remark, we have

y ) y implies h(y;M) My and g($) 0

h(y;M) = and g($) 0

Now the shape of the function g(y) implies that g(y) < 0 for y < y
and y > 4 provided we choose y small enough so that (Y) < 0. (Note

that g(y) as Y —' 0.) We use this fact to prove part (11) of the

lema by contradiction. Suppose there was another interval (yji Y)

disjoint from (y, 4) such that h(y) > MYa for y In (Yj Y).

Note that h(y) = at y = yL and , = yh • Therefore, there is at

least a point y' in (Yj. y) which maximizes h(y;M) — MYa on [Yj Y1

At y'

h(y';M) >

h(y';M) = aMy
h(y';M) a(a—1) MYIa-2

It follows that g(y') > 0, since either (A.7) or (A.9) holds at y',

and this contradicts the fact that g(y) < 0 on the complement of (y, 4).

Finally, for M > (l-A)v , g(y) is negative for all y. If (y, 4)

was not empty, the maximizer y' of h(y;M) - MYa on [y, 4] would

satisfy g(y1) > 0, a contradiction. Q.E.D.

It will be very useful to get a precise description of the shape

of the optimal policy x(y) on (y , 4) . This involves a careful analysis

8



of the differential equation (3.11). The following Lemma uses the notation of

(3.12)—(3.14).

Lemma 3: a solution of (3.11) has one of the three possible following

shapes in the positive orthant:

(1) 0 < x(y) < 01(y+X-1), x'(y) < 0, x"(y) < 0, defined only on a

subset of [0,1-A],

(ii) x(y) > Max(01(y+X—1), 0(y+X-1)), x'(y) > 0,

(111) 0 < x(y) < e2(y+x—1), x'(y) > 0, xu(y) < 0, defined on a subset of

[1—X,+oo).

Proof of Lemma 3: dIfferentiating (3.11) after dividing through by x gives:

— r (x-(y+A-1)x')22 2
a X

Now:

x - (y+X—1)x' 1 + , - j. 1 y+X-1 — 2r y+X—12
x 2i x 2 xi

2a a

which implies, by definition of 0 and 02, that for x > 0:

x° < 0 for O < y+-1 < 0 • i.e., x" < 0 either when

x < 01 (y+X-1) , and y < 1-A

or when x > e2(y+X-1), and y > 1-A ;

x'1 > 0 for x > Max[01(y+X-1), 2(y+A-1)].

Finally (3.11) gives the sign of x'. Q.E.D.

Remark 1: The preceding analysis allows to justify that can be chosen

large enough so that the upper bound is not attained by the optimal strategy.

By Krylov [1980, p.39, Theorem 3], it Is always true, even if the upper

bound is attained, that h(y;M) Is twice continuously differentiable on the

set C and the argument at the end of Lemma 2 shows that there is always a

point y In [yZ,yhl] such that:

9



- C 1Y

a h"
a(1—a)

Letting > viax (Cyh ,, this implies that the continuous

function x(y) satisfies (A.6) on a nonempty subset of The shape

of the solution of (A.6), as deduced from Lemma 3 shows then that h can be

taken large enough so as not to be attained. Precisely, in the cases where

Lemma 3(1) and (iii) are relevant, we can take

x' > Max (01(y2'+X-l), e(yh+1_x))

To tackle the situation where x(y) satisfies Lemma 3 (ii) note that by

Lemma 2 there is always a point y' such that

x(y')
a (1-a)

Let E be the maximum value of c such that the convex set

{(x,y)t(x-O1(y+X-1) (x-O2(y+X-1) c}

has a nonernpty intersection with the set ((x,y)ix iy / a2(1—a)}. Let

i = h,2,. be two values taken by x when y equals y1 , = h,2.. along the

curve

(x-e1(y+X-1))1 (x-e2(y+X-1))1 =

To be sure that the upper bound is not binding, it suffices then to take

> Max(,h)

We are now In a position to describe the optimal strategy x(y)

associated with the auxiliary problem c.

Lemma 4: x(y) is continuous on (y, y). Furthermore1 for c

small enough, then exist two positive numbers z, z with y < z . z < y

10



such that:

(1) x(y) satisfies (3.11) on (y, z]. x(y) satisfies (3.11) on

[z, y).

(ii) If z < z, x(y) = c on [z, z]. If z = z, then x(y)

satisfies (3.14) on (y, y).

Proof of Lemma 4: When x(y) is larger than c, we have by

substituting (A.6) into (A.7):

x + r(y+X-1) + 1/a -h =

Differentiating once, and using (3.8) again, leads to (3.10):

x'x + (r- -
1—2)x

- (y+X-1) = 0

Therefore, Lemma 3 gives the shape of x(y) when x(y) > . Now, by

Lemma 2, h, = Ma a-1 at y = y, y , and h(y;M) > MYa implies

> a(a-1)M a_2 Therefore

p y
lim x(y) > Max

[
, } for 1=1,2.

y-y1 a (1—a)

For c small enough, x(y) > c , and the shape of the solutions of (3.14)

described in Lemma 3 give the desired result. Q.E.D.

This completes the description of the solution of the auxiliary problem

for h = and c > 0 . Using Lemma 1, we study now the function h(y;M),

letting c go to zero.

Lemma 5: h(y;M) is continuously differentiable strictly increasing in y

[9h] except perhaps at y = 1 - A. For M < (l—X)v , there exists

an interval (y1,y2), such that

11



(1) h(y;M) > MYa on (y1,y2) h(y;M) is twice Continuously

differentiable on (y1,y2), except perhaps at y = 1 - x.

= (1—X)(1—a)r I B belongs to (y1,y2).

(ii) h(y;M) = Mya on the complement of (y1,y2) in (2.,h] Moreover,

the optimal policy x(y), defined on (y1,y2), is a continuous function of y

such that:

x(y) > Max(01(y+X-1), e2(y+A-1))

and it satisfies (3.14) for some c > 0:

(x(y) — $1(y+X—1))1Y (x(y) — O2(y+X—1))1i'
= c.

Proof of Lemma 5: first note that for c > c', h(y;M) < h,(Y;M) all y,

since the space of strategies available increases when c decreases.

Therefore, y decreases with c, while y increases with c. Let y1 be the

limit of y when e goes to zero.

Now let £k, k=1,... be a sequence of positive numbers converging to

zero. Consider the sequence xk(y) of optimal policies associated with

hC(y;M). Considering Lemma 4, two nonexciusive possibilities may

arise: either there exists an infinite subsequence (same notation) along

which z = z, or there exists an infinite subsequence (same notation

again) along which z < z. In the first case, let c be an accumulation

point of the c, and x(y) be defined as a solution, limit of xC(y),

of (3.14) on (y1,y2). In the second case, similarly take an accumulation

point' of (ce, zr) and let x(y) be the limit of xC(y),

solution of (3.14) in (y1,z1j with constant c1, equal to zero in [zl,z2],

and solution of (3.14) in z2,y2), with constant c2.

Let the upper limit of h (y;M) be denoted by:
k

12



H(y;M) = E
[ j e dt + et My]

where dy = x(y) db + r(y+X-1) dt

and r = first time Yt leaves the interval (y1,y2).

By Lemma 4, H(y:M) = h(y;M).

The next step is to prove that h(y;M) is strictly increasing in y,

on (Y1.Y2). Recall that:

h(y;M) = sup E [ 1e6t dt + e MYa ]

o
a

dyt = Xtdb + r(yt+X-1)dt

where the supremurn Is taken over all the non-anticipatory strategies t,

(xt). Let y be in (y1,y2), y 1 - A, and for any random event w, let

(x(w)), r'(w)) be the optimal strategy followed by the consumer. Let

y' > y, and for each w, consider the value obtained by the agent starting

at y' when he uses the non-anticipatory strategy (x(w)), w'(w). When

= +o, he gets 1/as, with both initial conditions. When t'(w) <

a case that occurs with positive probability since y ' 1 — A, the agent

gets

-- -
$ a dt+e

MY.Y(W)
0

where Yy() is the value taken by the solution of the deterministic

differential equation

dz = x(w) db(w) + r(z+X-1)dt

at date t = t'(w); It is strictly bigger than rY(w) since at date 0,

13



y' > y and at each date t dz - dz1 = r(z - z')dt. Since H(y;M) = M a
on the complement of (y1,y2) in [2.h] this proves that h(y;M) is

strictly increasing on

To complete the proof, we show that the domain [z11z2] on which x(y)

is equal to zero is at most reduced to a point. In fact, if not,

h(y;M) would be twice continuously differentiable on (z1,z2) and by Ito's

formula, one would have

2

sup [ i— h x2 + (ry + xt - r(1-X))h' — h + = 0
x>0

and the sup would be obtained for x = 0. This implies h" < 0, h' < 0,

a contradiction with the fact that h is strictly increasing.

Finally, since x(y) > 0 for all y in [y1,y2) except at

z =
z1

=
z2, h(y;M) is twice continuously differentiable on (y1,y2)

except at z. Taking limits at y1 and y2, using the continuity of x(y)

and the fact, that h(y;M) > Mya with equality at y1, y2, gives

1-ly

x(y) > i=1,2
a (1-a)

Let y be the point In [y11y2) which maximizes h(y;M) - Mya. We have:

h'(y*;M) = aMy*a1

and

urn h"(y;M) < a(a_1)My*2

This implies

*
x(y*) < 11Y

a (1-a)

Therefore the function x(y) is above the half line of equation x = iy I

a2(1-a) for y = y1 and y = y2 , and under this half line at y = y in

14



(y1,y2). This implies that x(y) is of the type described in Lemma 3(11),

which In turn shows that z must be equal to (1-A). Q.E.D.

This completes the first part of the proof. We enter the second part of

the proof which consists In looking for a value of M that satisfies (2.12)

and in getting rid of the Inequality y1

The following property is going to be useful.

Lemma 6: Consider the stochastic differential equation

dy = x(y) db + r(y+X-1) dt

where x(y) is a solution of (3.11) satisfying Lemma 2(11), for some initial

condition y0, in (y1, y2).

If y0 < 1 — A , then y reaches y1 In finite time with a strictly

positive probability.

If y0 > 1 — A, then y reaches y2 in finite time with a strictly

positive probability.

If y0 = 1 - A and x(y0) > 0, then y reaches either y1 y2 jj

finite time with a strictly positive probability.

Proof of Lemma 6: It follows from a standard property of regular

diffusion processes: If yj < 1 — A , there Is an open interval containing

y0, say (y1, ), on which x(y) > c > 0 . Therefore, the probability

that y hits the boundaries of this interval in finite time is equal to one,

and the probability that y hits y1 before is strictly positive (adapt

e.g. Karlin and Taylor [1981, chapter 15)). A similar argument applies

f or y2 when yo > 1 — A. Q.E.D.

To each M satisfying (2.13), one can associate by Lemma 5 an interval

(y1(t.1),y2(M)) in which the solution h(y;M) of (2.9) under (2.10) and

(2.11) is such that h(y;M) > MYa . Note that y1(M), y2(M), h(y;M) are
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implicitly functions of x. We write h(y;M) to make this dependence

explicit. To go back to the original problem, an intermediate step is to

study how h(y;M) I M varies with A, holding M fixed.

Lemma 7: For M < (l_X)aV , or a > 0 (resp. a < 0) , if y is in

(y1(M),y2(M)), except y * i—x if x(1—A) = 0, then h(y;tv1) / M is

strictly decreasing (resp. increasing) in M and strictly increasing

(resp. decreasing) in A. Furthermore, if y is in (M)+A,2y (M)+A)

except y i-x if x(1-X) = 0, then h(Y-x;M) / H is strictly

decreasing (resp. increasing) in A.

Proof of Lemma 7: We give the proof when a and M are positive. The

case a < 0, M < 0 can be handled along the same lines. When H > 0, we

have:

.r -t —

h(y;M) = sup E f eM
dt + e a

a

dYt = Xt db + r(y+A—1) dt

where the supremum is taken over all the nonanticipatory strategies t, (xt).

We use an argument similar to the proof that h(y;M) is increasing in H,

in Lemma 5.

Given y in (y1(M),y2(M)), and any random event w, let (x(w),

T'(w)) be the optimal nonanticipatory strategy followed by the consumer.

t'(w) is strictly positive with probability 1. Therefore, if M is

decreased to H', applying the same strategy leads to a higher value than

hx(YM) I H, since the first term in the expectation is strictly increasing

and the second term is unchanged. Therefore:

h(y;M') I M' > h(y;M) / M
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Similarly, consider X1 > X . For all y, y 1. - X if x(1-X) = 0 , by

Lemma 6, r'(w) Is finite with positive probability. Consider an event w

such that t'(w) < + . Then applying the X optimal strategy when A'

prevails gives a higher value to y, and therefore the desired result. This

shows that h(y,M) / M Is strictly Increasing for all y, y 1 — x if

x(1—A) = 0.

Finally, we study the function h(y-X; M) . By definition:

(A.12) h(y-x;M) sup E[
r-t dt +

dYt = xtdb + r(yt+X-1) dt

y0 = y - A

When A decreases, the Initial condition increases, but (y0+A) stays

constant and, since the differential equation can be rewritten

d(yt+X) = xtdb + r(yt+A-1) dt,

for any event wy(wA) + A is equal to yt(w,A') + A'

Therefore, for all y, such that y 1 - A if x(1—A) = 0, we have for the

A optimal strategy starting at y:

A' < A Implies y(w,A') = y(wX) + A - A' > y(w+A).

Consequently

h,(y_X';M) > h(y—X;M), since t(w) is finite with strictly

positive probability by Lemma 6. Q.E.D.

To go back to the original problem and characterize the function h(y),

we have to determine how M varies with A through equation (2.12), which

can be rewritten
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(A.13) 1 = sup _a h (z—x;M) / M

when a is positive, the sup being taken on {ziy + A z ) + A}.

Note that the sup is replaced by an inf when a < 0

Lemma 8: The function h(y) which solves (3.1) to (3.4) is continuous,

strictly increasing in y, continuously differentiable except perhaps at

y = 1 - A. There exists an interval (y,y) and a number Mx such that:

(1) h(y) > M a on (y1,y2) and h(y) is twice continuously

differentiable on (y1,y2) except perhaps at y = 1 — A.

= (1—A)(1—a)r I belongs to (y1,y2). Mx is strictly decreasing in A,

when it is larger than 1/ia, y is strictly decreasing in A , and y
is strictly increasing in A

(Ii) h(y) = M a in the complement in R of (y,y)

Proof of Lemma 8: Let

H(x,M) = sup -a h (z—X;M) / M
z

When a > 0 , from (A.12) , H(X,M) tends to + when M tends to zero.

It is equal to (h / (Yh+X))a for M > (l—X)V . It is continuous in M

by Lemma 1 and by the theorem of the maximum. Furthermore, by Lemma 7, if

the maximizer z is different from 1 or x(1-X) > 0, H is strictly

decreasing in M and In A. Therefore, for A fixed, the solution in M

of equation (A.13)

H(X,M) = 1

is unique and a strictly decreasing function of A.

If z = 1 and x(1-A) = 0, H(A,M) = 1/aM and therefore M = 1 / a

By construction, again for a > 0:
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hx(y,Mx) I Mx > n

By Lemma 7, the left-hand side is strictly increasing In X (except perhaps

at y = 1 — A), which proves that the interval (y1,y2) increases

with A. Q.E.D.

To conclude the proof, we have to show that the solutions that we have

found satisfy (A.4), i.e.:

Lemma 9: For all A , 0 A < 1 , there exists h > > 0 such that:

y >y2'

<

Proof of Lemma 9: We use the fact that for all y 1 - A , hx is

twice continuously differentiable and

2 yl2' ax(y)
Furthermore:

x(y) Max (01(y+A-1), e2(y+x-1))

where < 0 and > 0 are the two roots obtained from (3.13).

Straightforward integrations, with starting points y1 and y2, and

h'(y1) / h(y1) = a I y. lead to:

for 1-X<yy2

h(y) h(y2) [1 + (y+A1)I_T2 [(Y+A1)T2 -
(y2+A1)T2]]

where = 1 -
2 is positive (from the second degree equation
a

defining °2 • Similarly
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for y1 y < 1 — A

h(y) h(y1) [i +
a

(1xy1)11 E (1Xy1)T1
-

(1-xY)1]]
where = 1 — is also positive while 1 - is negative.

Note that when we let y tend to (1-A) In the two above inequalities

we get:

(A.14) h(1-X) h(y1) [i + T (1-X-y1)
]

We know by adapting the argument of Theorem 2.1 to the case where y

satisfies (A.4) that

h(1—X)

and

a

h(y1) a

To complete the proof, we examine separately y1 and y2.

First y2. If y2 1 — A , one can take h = 1 - A . Otherwise,

(A.14) gives an upper bound for In fact, the right-hand side of the

inequality tends to + when y1 goes to + for a > 0 (check that

a I < 1 by definition of 2 another property of the second degree

equation defining and tends to zero for a < 0

Finally, y1 . Similarly, when y1 goes to zero, a > 0 , the

right—hand side of (A.14) goes to + . When a < 0 , h(y) v a by

(2.13), and this Implies that h(y1) tends to - when y1 tends to zero,

so that the right-hand side of (A.14) tends also to + . Q.E.D.

Theorem 2.2 Is then a direct consequence of Lemmas 3 and 9. Lemmas 8

and 9 imply Theorems 3.3 and 3.4. Theorems 3.5 and 3.6 follow from Lemma 5.
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