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ABSTRACT

Asset Pricing in Multiperiod Securities Markets

Gary Chamberlain

The paper provides an intertemporal version of the capital asset pricing
model (CAPM) of Sharpe and Lintner. Although we allow for general changes in
the investment opportunity set and for general risk-averse preferences, there
are conditions under which two mutual funds are sufficient to generate all
optimal portfolios. In particular, we require that the Riesz claim, which
represents the date 0 pricing functional for the marketed claims, should lie
in a scalar Brownian information set. Then we obtain an instantaneous
counterpart to the CAPM pricing formula: a linear relationship between the
conditional mean returns on the securities and conditional covariances with
the return on the market portfolio. Our use of option pricing techniques
requires continuous trading but does not require continuous consumption.

In addition, we consider a large economy with a factor structure, as
in Ross' arbitrage pricing theory. The dividends are assumed to have an
approximate factor structure, with the factor components lying in the
information set generated by an N-dimensional Brownian motion, and with the
covariance matrices of the idiosyncratic components having uniformly bounded
eigenvalues. We obtain an N-factor version of the pricing formula and relate
the factors to the gains processes (price change plus accumulated dividends)
for well-diversified portfolios. An approximate factor structure for dividends
implies an approximate factor structure for the gains processes of the
securities. Furthermore, the assumption that per.capita supply is well
diversified can motivate our condition that the Riesz claim lies in an
N-dimensional Brownian information set.




1. INTRODUCTION AND SUMMARY

The paper provides an intertemporal version of the capital asset
pricing model (CAPM) of Sharpe [38] and Lintner [26]. In addition, we
consider a large economy with a factor structure, as in Ross' [34, 35]
arbitrage pricing theory (APT). This enriﬁhes the interpretation of our
model and in turn suggests a multifactor extension of it.

To set up the static CAPM, suppose that there is a single consumption
good and that agents are interested in certain cansumptfon at date 0 and
state contingent consumption at date T. There are K+1 securities representing
contingent claims to the good at date T. These claims 1ie in a Hilbert
space H of random variables with finite variance. A share of the kth
security pays dkeH units of the good. The Oth security is a riskless
asset that pays one unit of the good in all states of nature. The price
of a share of the kth security at date 0 is ZkD' We use the Oth security
as numeraire, so that Z00 = 1, and we set ZkT = dk. Under this numeraire,
the riskless interest rate is zero.

Markets are frictionless, with no transactions costs and no restrictions
on short sales. Al1l agents share the same probability assessments. The jth
agent chooses a claim x}eH from the linear span of do,...,dK; the value of
J x%¥. The CAPM asserts that the

=17
expected change in the price of a security is proportional to its covariance

the market portfolio at T is W =}

with the value of the market portfolio:

(1.1) E(ZkT -1 ¢ Cov(ZkT - ZkO’ W) (kf],...,K).

kO)




The argument runs as follows: suppose that each agent chooses a
mean-variance efficient portfolio, so that the market portfolio is also
mean-variance efficient. One can show that all mean-variance efficient
claims in M are linear functions of a single claim p (mutual fund separation);
furthermore, p represents the price system in that ZkO = E(pdk). Then (1.1)
directly follows.

Now consider an intertemporal model in which security trading can
occur at intermediate dates 0= t0< t] <...< tN=T. In a dynamic programming
approach, one chooses a portfo]jo at ti to maximize the conditional
expectation of a value function defined over wealth at tiyy- The problem
is that this value function depends also upon the information available at

t Additional state variables must be introduced to summarize changes

i+1°
in the investment opportunity set, as in Merton [31]. In Merton's continuous
time model, the pricing formula contains covariances of price changes with
changes in the state variables, so that one does not generally obtain a
simple relationship like (1.1).11 Cox, Ingersoll and Ross [10] have provided
a general equilibrium setting for these additional covariance terms.
Equilibrium models in a discrete time framework have been provided by
Lucas [29], Brock [4], and Prescott and Mehra [32}.21

We shall adopt the continuous trading framework of Merton [30, 31]
and Cox, Ingersoll and Ross [10], but we shall not use dynamic programming
techniques. There is an information structure {(given by an increasing
sequence of o-fields) {Ft, 0<t<T}, and a stochastic process —Z—t= (ZOt"“’ZKt)
giving the prices at date t of the K+1 securities, as a function of the
information available at that date. This information is common to all of

the agents. As before, agents are interested in certain consumption at t=0




and state contingent consumption at t=T. Their endowments consist solely
of the consumption good and the securities at t=0; there are no nontraded
assets. A trading strategy Qt = (GOt”"’eKt) is a stochastic process in
which ekt specifies how many shares of the kth security to hold at date t,
as a function of the information available at that date. An admissible
trading strategy must be self-financing in that the value of the portfolio
at t equals the initial value plus the accumulated gains {and losses) from
frading prior to t. |

A contingent claim xeH is marketed at t=0, denoted by xeM, if there
YA

1s an admissible trading strategy 6 such that @ Then

8Ly = Zko KT kT = %
(if there are no free lunches) we can follow Harrison and Kreps [19] in
defining the implicit price of x at t=0 by n{x) = —G'ZO We assume that T
can be extended to a continuous linear functional ¢ on H; so, by a theorem
of Riesz, ¢ can be represented as y(x) = E{(px), where peH.

Now an agent's problem is to choose a claim xeM subject to
m(x) (= E(px)) satisfying his budget constraint. The agents are risk-averse
in the following sense: if x = X + e, where E(e{i) = (0, then they prefer
X to x. Preferences may differ across the agents, but they all use the same
probability measure in making this calculation. Then we are able to show
that every optimal claim is a measurable function of p, provided that these
claims are marketed.

With continuous trading, this restriction on optimal claims can
lead to a mutual fund result which, as in the CAPM, leads to a pricing
formula. The key to the mutual fund result is the martingale representation

theory used by Harrison and Kreps [19] to provide a foundation for the

Black-Scholes [1] option pricing formula. Suppose that p is in the




B). We shall

information set generated by a Brownian motion B (i.e., peF
discuss the motivation for this assumption below. Let 6* be the trading
strategy chosen by the jth agent. Then there are (nonant1c1pat1ng) stochastic

processes aj and y such that

(1.2) o3

t t .

. = * o =
;t gjO Zo + IO adeBs + IO ajsysds (3=1,...,35 0<t<T)
--the value process for any optimal portfolio can be represented as a
stochastic integral over a single process Yt = B + fg Y ds. Hence the

, ‘ o
value of the market portfolio, W, = ZJ =1 eJt Z;, also has such a
representation.

From here we use a martingale projection argument to obtain our

pricing formula:

t t
(1.3) W Wo * fo a dB. + IO Y ds,

(1.8)  Zp, = Zog+ J§ BredBy + J§ Bye¥sds * Viy (k=T,....K;s 0<t<T),

where o, Yy, and Bk are (nonanticipating) stochastic processes and Vk is a
martingale that is uncorrelated with B; i.e., Cov(B,, thlFs) =0 for 0<s<t<T.
In differential form (if ay # 0),

-1

(1.5) dz = dw, + dv

Kt Byt kt

and

(1.6) E(dZ, |F,) = o, Cov(dZ,,, dW,|F.),



where ¢t = yt/ut. Equation (1.6) is our intertemporal counterpart to the
static CAPM equation (1.1).

In order to assess the assumption that psFB, suppose the information
structure is generated by a vector E{ = (Blt""’BLt) of independent Brownian
motions. We show that it is not necessarily the case that one can construct
a scalar Brownian motion B such that peFB. So this condition must be
regarded as restrictive. Such a construction is possible if there is an
invertible function g: R—+R such that (g(p), Q{],...,gtn) has a multivariate
normal distribution for any finite set of points tje[o, T].

An alternative justification, which I prefer, considers a large
economy with a countable set of securities. Assume that the security payoffs
have an approximate one-factor structure generated by a Brownian motion B;
i.e., dk = fk + € where the factor components fk are in the information
set generated by B, and the covariance matrix of the idiosyncratic components
(e],...,en) has uniformly bounded eigenvalues as n-+w.§/ Then we can follow
the Pareto-efficiency argument in Connor [8] to motivate the assumption
that peFB. Furthermore, the role of the market portfolio can be played by
any well-diversified portfolio.

The plan of the paper is as follows. Section 2 continues the
Introduction by deriving the CAPM equation (1.1) in a way that mimics our
treatment of the multiperiod case. Section 3 sets up the information
structure and the price system, and follows Harrison and Kreps [19] in
defining a new probability measure under which the security prices are
martingales. Section 3 also summarizes some martingale theory, in particular
the key notion of the martingale covariance process. Section 4 derives the

restriction in (1.2) on the value of an optimal portfolio, and Section 5

derives our pricing formulas (1.3-1.6).




Section 6 shows how the restriction in (1.2) gives a mutual fund
result. The two mutual funds consist of the riskless asset and a A-fund

that holds A & shares of the kth security at date t. For any optimal claim,

k
there is a scalar process a such that by holding Gy units of the A-fund at t,
and adjusting the holding of the riskless asset to keep the strategy self-
financing, we generate that claim at T. Furthermore, the risky A-fund is
chosen to be instantaneously mean-variance efficient.

Section 7 presents an N-factor version of the pricing formula for a
countable set of securities, and it allows for consumptfcn and dividends at
intermediate dates. We relate the factors to the gains‘processes (price
change plus accumulated dividends) for well-diversified portfolios, and we

show that an approximate factor structure for dividends implies an

approximate factor structure for the gains processes of the securities.




2. THE STATIC CAPM

I shall begin by reviewing the Sharpe-Lintner mode].ﬁ/ The treatment
of the dynamic case will follow it quite closely. Also some of our notation
will be set up in this section.

There is a complete probability space (Q, F, P} and a space H of

F-measurable random variables that are square integrable:
= . 2y _ 2
H= {xeF : E(x°) = [ x“(w)dP(w) < =}

(xeF denotes x is F-measurable). H is a Hilbert space under the mean-square
inner product (x,y) = E(xy).

There is a single consumption good and agents are interested in
certain consumption at date 0 and state contingent consumption at date T.
There are K+1 securities representing claims to the consumption good at T.
A share of the kth security pays dk units of the consumption good, where
d eH. Tﬁe Oth security is a riskless asset with do(w) = 1 for all states

k
wefl, which we denote by d.=1_. The {nonstochastic) price of the good at

0@
t=0 is qeR, where R is the real line. The price of a share of the kth
" security at t=0 is ZkosR. We use the Oth security as numeraire, so that
Z00 = 1, and we set ZkT = dk (k=0,1,...,K). Under this numeraire the riskless
interest rate is zero: Z00 = ZOT = 1.

The set M of marketed claims is the linear span of do,...,dK:

=
[

[do,...,dK]

)ERK+]}.

"

K
{x= ] ,0

k=0

ekdk : (60,...




If x = Zekdk, the (implicit) price of x at t=0 is n{x) = ZekaO' We can
regard 7 as defined on M instead of on portfolio vectors in RK+] since if
x = J8,d = J6,d,, an arbitrage argument implies that 1820 = 2805
otherwise, a claim to 0 could be sold at a positive price, so that agents
could costlessly increase their consumption at t=0. So m:M-+R is a linear
functional; it is continuous since M is a finite dimensional subspace.
Hence, by Riesz's theorem, there is a peM such that w(x) = E(px).

The jth agent has preferences over RxH represented by a utility
function Vj (j=1,...,d). He is risk-averse in the folfowing sense: if
X = X + e, where E(e) = E(exX) = 0, then vj(c,i) > vj(c,x) for all ceR, with
strict inequality unless e=0 a.s.y This definition of risk-aversion is objection-
able, as argued by Rothschild and Stiglitz [37]; one would 1ike to replace -
E(ex) =0 by E(e|x) =0. The continuous tradingmodel will allow us to do that.

Agents have endowments at t=0 consisting of the consumption good
and shares in the securities. Consumption at T is provided for by holding
a portfolio of securities; there are no nonmarketed endowments. The jth
agent solves the following problem: max vj(c,x) subject to (c,x)eRxM and
qc + n(x) < a; where a; is the value at t=0 of his endowment.

Now there are two basic steps, which will be repeated when we consider
continuous trading. First we determine the space of efficient portfolios,
or, more directly, of efficient claims. This space is generated by p. Then
we project security prices onto this space.

Given any xeM, consider its projection X onto the linear space

[19,03: x = X + e, where E(e) = E{pe) = 0. Hence vj(c,i) > vj(c,x) for any

ceR unless x = X a.s. Note that XxeM since k2= dosM and peM; furthermore,

m(x) = n(x) since n(e) = E(pe) = 0. So if (cg,xg) is chosen by the jth agent,




then xge[ln,p].éf This key mutual fund property implies that the market

claim, W = Zg=]

W is the value at T of the market portfolio.

x}, js also in [19,0] : W=1 +ap, where T,acR. Note that
Now consider the projection of ZkT onto {19,0]:
ZkT = Tk + Bko + vk:

where E(Vk) = E(ka) = 0 and Ty BkeR (k=1,...,K). Since Zko = E(kaT)

and Z00 = Ep_ 1, we have

~N
f

0 = Tk * B E0).

Hence

ZkT = Zko + Bk(p- ED) + BkY + vk:

where yeR. Since
W=1+ ap,
it follows that, if Var(W) # 0,

(2.1) E(ZkT - Zko) = ¢ Cov(ZkT - zko,w),

where ¢ = ay/Var(W). With the numeraire chosen to give a zero interest rate,
the expected change in the price of a security is proportional to its

covariance with the value of the market portfolio.
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3. CONTINUOUS TRADING: MARTINGALES AND THE PRICE SYSTEM

3.1. The Price System

Suppose that trading can take place at any date in [0,T]. We need
to extend the static model so that there is a price system and an information
structure at each date. The information structure is given by a filtration:

F = {Ft’ 0 < tg<T} is a family of sub-o- fields with FS€=F‘ for 0 ss<st<T

t

and F. = F. Date 0 events are certain in that P(A) =0 or 1 for AEFO. In

T
addition, F is a standard filtration: Fs =F, =0 Ft (right-continuity),

- t>s
and FO contains all the P-null sets (completion).zj

The (K+1)-dimensional stochastic process ;{ = (ZOt?""ZKt) gives
the prices at t of the securities; Z is adapted to F in that Z{ is Ft-measurable
(ZtEFt)' As before, the kth security pays dkeH units of the consumption
good at T and d0 = 19. We use the 0th security as‘numeraire so that ZOt = 1Q,

_ 2 o (k= ..
and we set ZkT = dk‘ Assume that E(Zkt) <o (k=0,...,K; 0 < t <T).

We also need to specify the admissible trading strategies. Define a
simple trading strateéy as a (K+1)-dimensional stochastic process 8§ = {gt, 0<t<T}
that satisfies three conditions: (1) QtEFt; (2) egtEH* SuPt,wlekt(w)l < o
(k=1,...,K); (3) there is a finite integer N and a sequence of
dates 0 = tg <ty < ... <ty =T such that Qt(w) is constant over the
. _ 8/ . - oK
interval t _; <t <t for every state w(n=1,...,N)~ Then 8 -2, (= ], _ 8 +Zy¢)

represents the value of the portfolio at t. Define § to be a self-financing

simple strategy if




I TSR e R
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i.e., the value of the portfolio before trading at tn equals the value after
trading. This self-financing requirement can also be expressed as follows:
ift <t<t g

(3.1) -e—t.-z—t = _0' + Z t (Z "Z )+ (Z 'Z )

T t
--the value of the portfolio at t is the initial value plus the accumulated
capital gains and losses. |

We sha]l assume that the space 0 of admissible'trading strategies
is linear (ag + a'g9'e0 if 0,0'¢0 and a,a'eR) and includes the simple,
self-financing ones. We shall say more about © after we have set up the
necessary martingale machinery.

A claim xeH is said to be marketed at t=0, which we denote by xeM,
if there is a trading strategy 60 such that eT'ZT = x a.s. The cost of
that strategy is QO'ZO' We can identify QO'ZO wi;h the price of x if
85°Zg = 8y°Ly for any 8'e0 with 1. = x a.s. As in Section 2, this
follows from an arbitrage argument: if go-go > Qé'—ﬂ’ consider the portfolio

strategy

= ¢ - 1Y,
It @.t gt + £(g0 go) Z sos-~':0]°
This is admissible (Ye®), requires no initial investment (IO'ZO = 0), and
generates positive consumption at T (IW'ZT = (go-gé)-;o > 0).
We shall say that a portfolio stategy 60 is a free lunch if
«Z, < 0 and g-+Z-eH , where H_ consists of the claims xeH with P{x > 0} =

8975 < =T =T
and P{x > 0} > 0. Assume there are no free lunches and define the price of
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claims in M by m(x) = 90'—0’ where €e0 and QT-;T = X a.s. We shall assume
that m admits an extension y to all of H, where ¥:H-+R is a continuous,
strictly positive, linear functional: y(x) = m(x) for xeM and y(x) > 0 if

xeH Harrison and Kreps [19] provide general conditions on preferences

+
under which there must be such an extension in order for optimal net trades
to exist, and hence in order for (M,7) to be viable as an equilibrium price
system.

Then by Riesz's theorem there is a peH such that y(x) = E(px) for
all xeH; p > 0 a.s. since ¢ is strictly positive. We shall assume that p is
uniformly bounded above and away from zero: there is a &R sucﬁ that
P{0 <6< P2 6']} = 1. From our choice of numeraire, w(lg) = E(p) = 1.

So following Harrison and Kreps [19] we can define a new probabi]ity measure
P*, with P*(A) = fA pdP; let E*(x) = [xdP* for xeH. Then Z is a (P*,F)-

martingale:
LEMMA 1. EX(Z,[F.) = L, 0<s<tc<T.
Proof. See Harrison and Kreps [19, Theorem 2]‘2/

3.2. The Martingale Covariance Process

With an eye to applications, we are mainly interested in martingales
generated by stochastic integrals over Brownian motion. However, the structure
of our arguments is somewhat clearer if we work with general continuous
martingales. In particular, this helps to underline the key role of the

covariance process and the associated notion of martingale projection.lg/
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We shall assume that all martingales adapted to F are continuous;
more precisely, if X is a martingale (under P or P*) adapted fo F, then the

function t » X _{w) is continuous on [0,T] for weQ', where P(Q') = 1. An

+{
example is the filtration generated by a vector of independent Brownian

motions.

We shall say that a (P,F)-martingale X is square-integrable, or

, if HXH2 (EX )% < o, (Note that, by Jensen's inequality, EX%

0<t<T). If Xst, there is a unique décomposition of X2

e 2

T’
as the sum of a

XeM < EX

continuous martingale and a continuous, increasing, intégrable process with
initial value 0. This latter process is known as the quadratic variation
or variance process and will be denoted by'<X:>11/ it can’be obtained by
= t and

partitioning the interval [0,T] into 0 = ton < tip < e- € tk(

n),n
forming the quadratic variation

k(n)-1
g7 (X - x, )%
Jj=0 j+l,n Jn
if max {ltj+1,n - tjn!’ j=0,...,k{n) -1} > 0 as n + =, then

n
(3.2) E|St - <X>tl - 0.

Given XeM2 define HZ(X) to be the set of predictable processes
such that Hal (Ef0 ag d<X>s)z5 < .12/ Then the stochastic integral
IO a dX is well-defined for aenz(x), and Y is a square-integrable
(P,F)—mart1nga1e (YEMZ).

By analogy with

Cov(x,y) = X[Var(x+y) - Var(x-y)] (x,yeH),
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define the covariance process for the martingales X and Y in M2 by

<X,Y> Ll<X+Y> - <X-Y>t].

t

Note that <X,X> = <X>. Then Xth - <X,Y>t is a martingale, and <X,Y> is
the unique continuous, bounded variation, integrable process that has this
property and initial value 0. We can obtain <X,Y> by forming a partition

as in (3.2) and then

(3.3)  E|}(X - X, (Y -Y, ) - <Y
i %4 YHn YH+ian tn

¢l >0

as n + »,

If <X,Y>, =0 for 0 <t<T, then X, Y, is a martingale and so

E(XYelFg) = XY = E(X.IF) E(Y,[F)

for 0 <s <t <T. Hence X, and Y, are uncorrelated conditional on F_, an

extremely useful property. We shall say that the martingales X and Y are

uncorrelated.

If Y, = [ agdX_ and V. = [ B dW_, where X, WeM’, aell (X), and

2
Bell, (W), then <Y, V>, = fo a B d<X,W>_. If B is a Brownian motion, then

<B>, = t and so the covariance process for IO o dB and IO . dB_ is fo (Bds-

t
These definitions apply equally well under P*. So if X and Y are

(P*,F)-martingales, XeM? denotes HXIE = (E*X%)p2 < =, <X> is the variance

process (so Xi - <X>, is a (P*,F)-martingale), <X,Y> is the covariance

t
process, and HZ(X) is the set of predictable processes o such that
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Halk = (E* fg mgd<x>$)!§ < o, If we are not explicit, the measure that the
martingale property refers to should be clear from the context. The
filtration is always F unless we say otherwise. Note that P(A) = 0 if and
only if P*(A) = 0, so there is no ambiguity in the use of "almost surely."
Since Z is a P*-martingale, if 8 is a simple, self-financing,
portfolio strategy, then (3.1) implies that g{-;t is a square-integrable
martingale under P*. That gt-;t is a P*-martingale is the appropriate
generalization of "self-financing"; see Harrison and Pliska [20]. The
square-integrability is convenient, and we shall assume that gt-gteMZ under
P* for all 6e6. This is all we need to say about © to obtain our asset
pricing formula. After deriving the formula, we shall give a definition

for © in Section 6 which allows us to exhibit portfolio strategies that can

serve as mutual funds.
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4. PREFERENCES AND THE REPRESENTATION OF OPTIMAL CLAIMS

4.1. The Structure of Optimal Claims

As in Section 2, the preferences of the jth agent are given by a
utility function vj:RxH + R (j=1,...,d). Now, however, we adopt a more

appealing definition of risk aversion: If x,xcH and x =X +e, where E(e[)?) =0,

then vj(c,i) > vj(c,x) for all ceR, with strict inequality unless e = 0 a.s.

This holds, for example, if vj(c,x) =.E[uj(c,X)], where u(c,*) is strictly

concave in its second argument (and supposing that the expectation exists).
The jth agent has an endowment consisting of Ej units of the

consumption good and 5jk units of the kth security at t=0. So his budget

| constraint at t=0 is determined by aj = qu + éj-go. He solves the following

problem:

max v,.(c,x)
C,X

subject to ceR, xeM, gc + m(x) < aj.

We shall assume that this problem has a solution, which we denote by cg,xg.
Now we show how risk-aversion restricts the set of optimal claims.

Define H(p) as the set of claims in H that are measureable with respect to p:

H(p) = {xeH: x = g{p) a.s. for some measurable function g:R-+R}.
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LEMMA 2. If H(p)<= M, then xgeH(p) (3=1,...,d).

Proof. Let x = E(x*|p), so x* = % + e with E(e]p) = 0. (We have dropped

the j subscripts to simplify notation.) Then xcH{p) = M (by Jensen's
inequality), and (c*,x) satisfies the budget constraint: 7(x) = 7(x*) - w(e)
= 1(x*) since n{e) = E(pe) = 0. E(e|x) = O implies that (c*,x) is strictly

preferred to (c*,x*) unless e=0 a.s. Q.E.D.

A Representative Agent

Lemma 2 shows that an optimal claim is a functien of p if the set
of marketed claims is sufficiently iarge. With some additional structure,
we can sum over the agents and then invert to express p as a function of
aggregate consumption. This result is not needed to obtain our pricing-
formula, but it does enrich the interpretation of p.

Suppose that the preferences of the jth agent are given by
v.(c, = w, + . .
J(c x) wJ(C) E[uJ(X)]

where uj:R-+R is increasing and strict]y concave with derivative uj. If
yeM and ©(y) = E(py) = 0, then a necessary condition for xg to be an optimal
claim is that E[uj(xg + oy)] is maximized over aeR at o*=0. Under suitable
conditions, this requires E[yuj(xg)] = 0. If M=H (complete markets), then
E[yuj(xg)] = 0 for all y in H with E(py) = 0, and so u}(x?) = Ajp a.s.,

where AjeR is positive. Since uj is strictly decreasing, xg = gj(p) a.s.,

where g.:A. >R is strictly decreasing on its domain Aj < R. Hence

J J
X = Zg=] XE = g(p) a.s., where g = Zgz] 95 is strictly decreasing, and so

p=h(X) a.s., where h is strictly decreasing.
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From here we could construct a representative agent, with time-
additive, strictly concave, von Neumann-Morgenstern preferences, whose
optimal claim is X. Such constructions have been used in [16, 17, 9, 22].
For our purposes, however, all that matters is that p is a measurable function
of aggregate consumption: o(w) = h[X{w)] for (almost) all states w. Note
that this implies, given Lemma 2, that optimal claims are functions of

aggregate consumption, as in Breeden and Litzenberger [3].

4.,2. Martingale Representation

In Section 2 we used mean-variance preferences to restrict the
optimal claims to linear functions of p. Lemma 2 is weaker, but with
continuous trading it can lead to a sharp restriction on the values of
optimal portfolios. In ordér to make this connection, we need the following
representation for H(p):

CONDITION (R). There is a P*-martingale YeM’ with Yy = 0 and E*(<¥>5) < =

4]
such that if xeH(p), then

T
= * +
X E*(x) fo adeS
for some aeHZ(Y).
The motivation for Condition (R) comes from representation results
for functionals of Brownian motion. Suppose that B = (8},...,BL) is a

vector of independent Brownian motions under P; we shall follow the convention

that a Brownian motion has initial value equal to 0. Llet F%—denote the
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o-field generated by {§S, 0<s < t}, let F§-= F%3 and Tet FE-denote the
corresponding fi]tration.lg/ The martingale representation theorem of
Kunita and Watanabe [25; 15, p. 88] implies that if X is a square-integrable

(P,FE)-martingale, then it can be represented as:
Lot

where aneHZ(Bn). Harrison and Kreps [19] and Kreps [24] have shown how
martingale representations provide the foundation for the Black-Scholes
option pricing formula. Duffy and Huang [14] have shown how these represen-
tations relate to the number of continuously traded securities needed to
implement an Arrow-Debreu equilibrium.

Suppose that Yst is a P*-Brownian motion and let Xy = E*(xIFI),
where xeH(p). If peFY then xsFY, and the martingale representation theorem
gives x = XT = E*(x) + fg anYS. The following lemma provides a corresponding
result in terms of the original measuré P. The proof follows Duffy and

Huang [14, Proposition 6.3].

LEMMA 3. If there is a P-Brownian motion BEM2 with osFB, then Condition (R)
holds.
Proof. Let Vt = E(pIFg). The Kunita-Watanabe result implies that

- t
V, = 1+ [;8dB,

where BeHZ(B) and Btng. Girsanov's theorem [27, Theorem 6.2] implies that

_ t -1
(4.1) Y, = B, - fg V. 'Bds
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is a P*-Brownian motion in MZ. If xeH, then Lipster and Shiryayev [27,
Theorem 5.20] implies that the (P*,FB)-martinga}e St = E*(x]F%) can be
represented as S, = E*(x) + IS a dY , where aeHZ(Y).l&/ The result follows

since ST = x if xeH(p). Q.E.D.

Suppose that F is generated by an L-dimensional P-Brownian motion:
F= FE; There is a counterexample in Appendix B to show that given yeH,
it need not be true that there is a scalar Brownian motion B:—:M2 such that
ysFB. Hence the Lemma 3 condition that peFB must be reéarded as restrictive.
I shall indicate a special case in which a scalar Brownian motion B
can be constructed such that peFB. Suppose that F = F§3 and that there is
some measurable function g:R+R with a measurable inverse such that g(p)
together with B form a Gaussian system; that is, the distribution of
(g(p), B, ,...;gt ) is multivariate normal for any finite set of points

n
tie[O, T]. Then we have the following representation for g(p):

dB

%s “°ns?

L (T
o(p) = E[a(e)] + j
n=1 /0

where @ [0, T]>R is a deterministic function. (This follows from the

L-dimensional version of [27, Theorem 5.6; 28, p. 13].) Define

L 2 .% .
Yt (Zn:] “nt) and, to avoid some complications, suppose that

v

vy >0 (0 <t <T). Then

t
nc1 JO Ys %ns 9Bps

is a scalar Brownian motion in Mz, and
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T
g(p) = E[g(p)] + Jo Y dB

(27, Lemma 6.9]. Since " is deterministic, it follows that g(p)sFB and
SO peFB. Note that, given a representative agent, this argument applies if
some invertible function of aggregate consumption together with B form a
Gaussian system.

We shall return to the representation problem in Section 7, when
we consider an N-factor version of Condition (R). There we relate the
factors to well-diversified portfolios and show how Condition (R) can be
motivated from the assumption that aggregate per capita consumption is well
diversified. |

Now we shall show how Condition (R) combines with Lemma 2 to restrict

the values of optimal portfolios.

LEMMA 4. Suppose that Condition (R) holds. If xeH(p) and there is a
portfolio strategy 80 such that gq-gx = X a.s., then there is an aeHZ(Y)
such that

=0 . t
842y = 89y * [g g9 : 0cteT).

Proof. (R) implies that there is an aeHZ(Y) such that

x = E*(x) + [§ o dY_.
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Since 8. and [8 a dY, are P*-martingales,

'Ly

.e..t._z..t E*(Q.T'.Z_TlFt) = E*(XIFt)

Ex(x) + [§ agdY,.

Then the result follows from E*(x) = ¢y(x) = w(x) = QO'ZO' Q.t.D.

Lemmas 2 and 4 establish the key-mutﬁal fund pfpperty. If H(p) is
marketed, then the value of an optimal portfolio is restricted to be a
stochastic integral over a single martingale Y, which is common to all
optimal portfolios. A portfolio strategy that, together with the riskless
asset, plays the role of a mutual fund is displayed in Section 6. The form
of that strategy is not needed for the derivation of our asset pricing

formula in the next section.
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5. THE ASSET PRICING FORMULA

Following the development of the static CAPM, we need a counterpart
for the projection of Zk on p. It is given by the martingale projection
theorem, which uses the notion of the stable sﬁbspace generated by a
square-integrable martingale X with X, = 0. This stable subspace s(x)

consists of the stochastic integrals over X:

. 2.y . (t
S(X) = eM“:V, =[5 adX , ael,(X)}.

LEMMA 5. Suppose that Condition (R) holds. Then

- t - )
(5.1) Zyy = g+ [g BredYs * Vit (k=1,...,K; 0 < t < T),
where BkeHZ(Y) and Vk is a square-integrable P*-martingale that is
uncorrelated with S(Y): <X’Vk>t = 0 if XeS(Y).

Proof. This is a direct application of the martingale projection theorem:

Mz

is a Hilbert space under the inner product (Xy:X5) = E*(Xy1Xo7)3 S(Y) is
a closed subspace of M2 under the M2 norm, and so the Hilbert space projection
theorem gives Zkt - ZkO = Zkt + th, where ZkeS(Y) and (XT’va) = 0 for all

XeS(Y); this implies that V, is uncorrelated with S(Y) [15, pp. 87, 88]. Q.E.D.

k

Let gge@ be the portfolio strategy chosen by the jth agent and

define W as the value of the market portfolio:
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J
W, = ] 8% -2

< t < .
L 8t 0<t< T)

The projection result in Lemma 5 is not by itself restrictive; we
could get such a representation by projecting Zk onto any square-integrable
P*-martingale. The restrictions come from the fact that S(Y) contains o,
the claim that represents the price system. So the mutual fund result in

Lemmas 2 and 4 implies that W, - woeS(Y). In addition, since p is the

t
density of P* with respect to P, we can show that Vk in (5.1) is also a
martingale under the original measure P. These are the key points in the

following result.

THEOREM 1.  Suppose that Condition (R) holds. If H(p)<= M, then

| t t
(5.2) W Wy + Io adX + fo a Y d<X>_,

t t ' ) '
ZkO + fo Bksdxs + fo BkSYSd<X>S + th (k=1,...,K; 0<t<T),

(5.3) 1

kt

where X and Vk are square-integrable martingales under P; o, v, and Bk are

in HZ(X); and Vk is uncorrelated with S(X).

Proof. (i) Lemma 2 implies that x;eH(p) and then Lemma 4 implies that an

optimal portfolio strategy satisfies

(5.4) 8102, + J§ oy dY,

x o -
8% Ly 30°Zo

I

where ajEHZ(Y). Hence o,

J
) .. is in M,(Y) and summing (5.4) over the
=1 7 :

J agents gives
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- t
(5.5) W, = Wy o+ [bady.

t js dP/dP*. Since AcH(p) (recall that there

1

(ii) Note that xzp~

is @ 6eR such that 0 < § < p < &  a.s.), Condition (R) implies that

A = EX() + g n Y,

where neHZ(Y), and so

_ _ t
(5.6) Ay = E*(A[Ft) = E*(A) + jo ndY¥,-

th in (5.1) is a P-martingale if Atvkt is a P*-martingale [15, p. 83];
this follows since At-xoeS(Y) and V, s uncorrelated with-S(Y) under P*.

(iii) From Girsanov's theorem [15, p. 83],
= - t.,-1
Xe = Yy = fogAg' dx,Y>

is a local P-martingale. So there is a sequence {r(g), k=1,2,...} of
stopping times such that t(k)4T a.s. and Xt = Xt (k) is a P-martingale

(a.b = min{a,b}). X is a P-martingale if for each te[0,T]

(5.7) {IxtAT(k)l, k=],2,...}

is uniformly integrable [7, Proposition 1.8]. The Kunita-Watanabe

inequality gives

Xl < sup Y|+ 67 <as% <>

% _
O<s<T T

1l
N

[7, eq. (5.17)]. Since A, is a bounded P*-martingale, E*<A>$ <w[7,

t
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Theorem 4.1(i)], and E*<Y>$ < = by Condition (R). Hence E*(zz) < o by Doob's

VEx(2?) implies that uniform

inequality [7, Theorem 1.4], and so E(z%) <6
integrability holds in (5.7), and X is a square-integrable martingale under P.
= t = -
From (5.6), <)\,Y>t = fo nsd<Y>s. Note that P{<X>t <Y>t, 0<t<T} =1
since X -Y is a continuous process with bounded variation. Hence HZ(X) = HZ(Y) and

_ t -1
(5.8) Yt = Xt fD A nsd<X>S.

Substituting (5.8) into (5.5) and (5.1) gives (5.2) and (5.3) with v, = x;‘ Ny

Finally, for any ceHZ(X) we have
<fr’.sdxs’vk)t i} IS Ld<XVp>g = 0,

since <X,Vk>t = <Y,Vk>t =0, Q.E.D.

COROLLARY 1. Suppose that there is a P-Brownian motion BeM2 with peFB.
If H(p) =M, then

t t
t w0 * fO 0‘sst * J’0 o‘sstS’

]

(5.9) W

t t . .
(5.10)  Zp = Zyg+ [o BgdBg * [o Bovgds + Vi (kelo ks 0<teT),

where a, v, and Bk are in Hé(B), and Vk is a square-integrable martingale

under P that is uncorrelated with S(B).

Proof. From Lemma 3, (4.1) and (5.8), B -X has bounded variation. Since
B-X is a continuous P-martingale, P{B, = X, 0<t<T}=1[i5, p. 54]. Now

the result follows from the Theorem since <B>t = t. Q.E.D.
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Under the assumptions of Corollary 1, let Y be the P*-Brownian

motion constructed in Lemma 3. Then (5.1) and (5.5) imply that
Byss ds»

t
<W>, = I ag ds,
0

so, if ay # 0,

d<Z,, W>,/dt o
d<W>,/dt kt"t °

We can obtain consistent estimates of the variance and covariance processes
<W> and <Zk, W> from a single realization of W and Zk’ by forming the |
quadratic variation and covariation as in (3.2) and (3.3). Hence a
consistent estimator of BktaE] may be available as the sampling interval
between observations shrinks to zero. The restriction from our pricing

formula is that

t o4

is a P-martingale. ‘
Expressing (5.9) and (5.10) in differential form gives

dw,_ = atdBt + a,v,dt,

t't

dz ds dt + dv

kt = Brt9Be * Byevy Kt
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The formalism corresponding to the martingale property of B and Vk is
E(dBtIFt) = E(dvktlFt) = 0, and corresponding to <B>, =t and <B,V, >, = 0
we have Var(dBtIFt) = dt and Cov(dBt, dvktlFt) = 0. Hence

E(dZ,¢Fp) = Byyvedts

Cov(dz dwt[Ft) = Bktatdt,

kt?

and, if a, 7 0,
(5.11)  E(dZ . |F,) = ¢, Cov(dZ,, dW |F,),

where ¢t = yt/at. This is perhaps the closest counterpart to the static CAPM

equation (2.1) that one can hope to obtain in a general intertemporal setting.

Now consider changing the numeraire so that the price of the kth
securjty at t is Zkt = ptzkt (k=1,...,K), ZOt = Py and pyeF, s positive
a.s.lé/ If dpt/dt = Pylys corresponding to a locally riskless interest rate
of Fes then Ito's formula [7, Theorem 5.10] gives

~

Ay = PyZyg * Zyydpys
using rates of return, we have

-1 5 -1 47

kt = Iy 9Ly toredt




o

“w

T,h,gn with .blt = ptut, (5.11) becomes

(5.12) E(z'1 detIF ) = oy gt + T, Cov(Z -1 47

where 1

t = OeMe

Eliniaraltaii ol

Kl

kt’

U ,

-V i

IF )s
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6. THE MUTUAL FUND PORTFOLIO

Let 6 = (eo,...,eK)eHZ(;) denote ekenz(zk), k=0,...,K, and let
t K t . ..
IO 8.dZ_ denote Zk=0 IO 0,47 - We shall specify 0, the set of ad¢1ss1b1e

portfolio strategies, to consist of all g;nz(g) such that

- . t .
(6.1) 842y = 852+ [p 859Ls> RER SR

The stochastic integral in (6.1) replaces the summation in the definition
of self-financing simple strategies in (3.1). Then © is a linear space that

contains the simple, self-financing strategies, and (6.1} ensures that Qt'zt

is a square-integrable P*-martinga]e.lg/

Define S, = (Z

2% ’ZKt)’ and suppose that S is an Ito process:

-‘t,---
= t t
(6:2) 5y = S+ [ 28 + [g ugds,

where B = (Bl""’BK) is a vector of independent P-Brownian motions in Mz.
. t . .
The jth element of [; ¢ dB_ is } f¢jksd8ks’ where ¢jkeH2(Bk) (3,k=1,...,K).

The KxK matrix ¥, = QtQE is the local ‘covariance matrix for §_t (A' denotes

the transpose of the matrix A), and it is convenient to assume that its
eigenvalues are a.s. uniformly bounded above and away from zero: there is a

8cR such that a.s. we have 0<&<a' ¥ 356'1 (0<t<T) for any g_e:RK with

t
asa = 1. The Kx1 vector u is a predictable process with E(fg gs-gsds) <o,

Recall that Z If F is generated by B, we shall write F = FEu

ot = 1.



31

PROPOSITION 1. Suppose that Condition (R) holds. (i) If YTsM, then

H(p) S M. (i) IfF=FE, then M = H. (iii) If F = F2 and

Plugeuy >0, 0 <t < T} = 1, then the riskless asset and the mutual fund
: .

Ay = w; n, generate H(p); i.e., if xeH(p), there are processes 6, and o
such that 9, = (BOt’ atx]t,..,,atAKt)e:O and 8;-Z; = X a.s.

Proof. See Appendix A.

If Y, is marketed, there is a portfolioc process y that generates it.

T
The two mutual funds consist of the riskless asset and thé fund that holds
Yt shares of the kth security at t (k=1,...,K}. For any optimal claim
(i.e., xeH(p)), there is a scalar process o such that by hé]ding oy units
of the y-fund at t, and adjusting the holding of the riskless asset to keep
the strategy self-financing, we generate that claim at T. If e # 0, we

can use W;] I for the risky fund. This corresponds to the mean-variance

efficient portfolio in the static case.
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7. LARGE ECONOMY FACTOR MODELS

7.1. Extension of the Pricing Formula

I shall present an N-factor version of the pricing formula and relate
the factors to the gains processes for well-diversified portfolios. This requires
a countable set of securities. I shall also extend the consumption space and
allow securities to pay dividends before the terminal date.

Suppose that there is a fixed set of dates 0 < Ty < Tp< e ST = T
at which consumption and dividend payments may occur. (We allow consumption
at t=0 but not dividend payments.) Let Hi = {xeH: xeFTi}. A share of the
kth security pays dkiEHi units of the consumption good at T (k=1,2,...3
i=1,...,L). The Oth security pays no dividends until the terminal date,
when it pays one unit of the consumption good: dOi = 0 (i=1,...,L-1) and

dgp = 1o+ We Tet the Oth security be numeraire and set Zy, =1 (0 <t <T).

oL Q
In terms of this numeraire, the price of the consumption good at Ty is

qiEHi (i=1,...,L-1), the price at t=0 is qOER, and we set q = 1. We assume

there is a GeR such that P{0 < & < a; < 671, i=T,...,L-1} = 1.
Define
D,, = ] q.d,., D, = (Drps.--sD ),
kt i:Tift i ki =t ot nt

and define the gains process for the first n+l securities as

Here n is a finite integer which may be arbitrarily large; a more explicit

but more cumbersome notation uses gnt’-gnt’ etc. Suppose that securities

are sold ex-dividend and set Z. = (0,...,0). lLetg = (eo,.;.,en) be a simple
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trading strategy, as defined in Section 3. Define HT = H] X eoo X HL and
consider a claim x = (x],...,xL)sHT. The analog of the self-financing
requirement in (3.1) is

m-1
(7.1) 8Ly = 8g°Zy * jgo itj°‘9tj+; gtJ) * 8y (8 -8 ) - i:;i o
for t, < t< tm+]'

A claim §;HT is said to be marketed at t=0, which we denote by xeM,
if it is generated by an admissible trading strategy. The set 0 of these
admissible strategies is assumed to be linear and to contain at least the
simple strategies that satisfy (7.1) for some xeH', which is then the x
generated‘by that 6. An admissible strategy employs only a finite number
of segurities. If Qdee generates X;, We assume that Z?:] aigﬁ generate§
I 2% (ageR).

A trading strategy 6¢0 is a free lunch if QO'ZO = 0 and § generates
ggHI (i.e., Xx; 2 0, i=1,...,L, a.s. and z%=1 x? > 0 with positive probability).
We assume there are no free lunches, which allows us to define the price of
xeM by m(x) = 8g°Zy» where £e0 generates x.

HT is a Hilbert space under the inner product (x,y) = E(Z%=] Xiyi)°
We assume that m admits an extension y fo all of H', where ¥ is a continuous,
strictly positive linear functional: y(x) = w(x) if xeM and ¥(x) > 0 if
ggHI. By Riesz's theorem there is a peH" such that y(x) = E(Z%=] piX;).

We shall assume there is a deR such that P{O<<6-§pi§_6'1, i=l,....L} = 1.
Given our choice of numeraire, w[(o,...,o,lg)] = E(pL) = 1.

As in Section 3, we define a new probability measure P*, with

P*(A) = IA o dP; let E*(x) = [xdP* for xeH. Then the gains‘procgss is a

P*-martingale:
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LEMMA 6. E*(G,,IF) = 6, (k=0,1,...; 0<s<t<T).

Proof. We follow the proof in Harrison and Kreps [19, Theorem 2].12/ Fix
k>0, s, t, and AcF_. Consider the case in which s<ty<t and d,, = 0 for i#1.
(The argument in the other cases is similar.) Consider_the simple trading

strategy 9 defined by

eku(w) 1 for uels,t) and weA,

0 otherwise;

6ou(@ = “Zy (w) for uels,t;) and weA,
= -st(w) + q](w)dk](w) for ue[ri,t) and weA,

= -st(w)A+ q](w)dk](w) + Zkt(w) for ue[t,T] and weh,

]

0 otherwise;

Bju(w) 0 for all j#0,k.

This strategy satisfies (7.1) and generates the claim x = (0,...,0,xL)

with X = (th - Gks)]A' Since the initial cost of the strategy is zero,

9 = ‘P(i) = E*[(th = GkS)]A].

Since this holds for all AcF_, we have G, = E*(thlFs). Q.E.D.
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Since G = (GO,...,Gn) is a square-integrable P*-martingale, we
can adopt the following specification for the admissible trading strategies:
- t
let 8ell,(G) denote 8, M,(G,) (k=0,...,n), and Tet /g 6,6, denote
n t . _
Ye=0 Jo 846,53 then © consists of all 8eTl,(8) (for n=0,1,...) such that

(7.2) 9L = 8yZy+ Jt a6, - T ax; | 0<teT)
for some ggHT; we say that 6 generates x and that ]g gsdgs is the gains
process corresponding to x. '

In order to use diversification arguments, we shall allow agents to
choose claims from M, the closure of M in H'. If Egﬁ, define the corresponding
gains’process as

L
(7:3) 6= BT agxlFy) - o).

This corresponds to the following limits: suppose that gneM is generated
by the trading strategy 6 0, and that x -x as n»x. Then n(gﬂ) = W(éﬂ)'*W(ﬁ)
n_ (t .2 .
and Gt z fo Qﬂsdgs converges in M~ to the P*-martingale G.
Preferences of the jth agent are represented by a utility function
v, :RxH' > R and are risk-averse in the following sense: if x, igHT and
x; = x; +e; (i=1,...,L), where E(eilil’i"’ii) = 0, then vj(c,g) fvj(c,g)
with strict inequality unless e = 0 a.s. This holds if
vic,x) = uo(c) + Z%zl Efu;(x;)], where u; is strictly concave.

The jth agent solves the following problem:
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max v.(C,
J( x)

subject to ceR, xeM, gt + ¥(x) < a5,

where ajeR. Assume this problem has a solution and denote it by

* *: j= ges ey .

Define

H(p) = {5§HT: X; = gi(p],...,pi) a.s. for some measurable

function gi': R' >R, i=1,...,L}

and

H'(p) = {xeH: x = Q(Q],...,QL) a.s. for some measurable

function g: RL-+R}1
LEMMA 7. If H(p) =M, then xkel(p)  (3=1,...,0).
Proof. As in Lemma 2.

CONDITION (RN). There is a vector of uncorrelated P*-martingales Y = (Yl""’YN)’

with YmEMZ, Ymo = 0, and E*(<Ym}$) < o (m=1,...,N), such that if xeH'(p) then

T

(7.4) x = E*(x) + JO gsdxs

for some ggHZ(X).
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LEMMA 8. If there is an N-dimensional vector B of independent P-Brownian

motions in MZ, and if piEF'B— (i=1,...,L), then Condition (RN) holds.

Proof. As in Lemma 3, we have

t
B 0B,

_ B, _
V= Elo D) = 1+ Jo

where §§H2(§), and Girsanov's theorem [27, Theorem 6.4] implies that
t -
(7.5) Y :gt-J V'8 ds

is a vector of independent P*-Brownian motions in Mz. Then the result
follows since any ycH that is measurable with respect to Fﬁ.can be represented

as a stochastic integral over Y [27, Theorem 5.20; or 23, Theorem 8.3.1]. Q.E.D.

The following result places an (N+1)-mutual fund restriction on

the optimal gains processes.

LEMMA 9. Suppose that Condition (RN) holds. If G is the gains process

for xeM, and if xeH(p), then there is an ggnz(j) such that

t
(7.6) %=JO%QS 0<t<T).

Proof. First we need to show that q; = piE*(oillFT }, i=1,...,L-1. Consider
i
the claim y = (y],...,yL) with Y; = zeHi, Y = -9;2, and ¥j = 0 for all j#i,Lﬁ

Then yeM and y(y) = 0 implies that E(quiz) = E(piz), or E*(qiz) = E*(piloiz) =

E*(o['[F, ). Since this holds for all zeH,, we have

E*(npiz), where n
.i
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From (7.3),

GT =

L e |

qixi - lb(l(_) .

i=1

- -1 . -1 . .
Note that 9;%; = E*(pL pixi[FTi). Since o pixiEH (o), Condition (RN)
implies that

1
-1 - -1 .
oL pixy = Exlp Togxg) + Jo a5odYes
where 9i€n2(1)f Hence
Ty
g.x; = E*(o']px Y+ . dY
i™ L Pi%q/ 0 =is —s’
and so
T
(7.7) 6, = Jo ady,,

_ ¢ - ~ _ i .
where o, = J;_y &;o.and &, =@ = 0 otherwise. Then

i < T.3 Q.
- iftcrsa

imt imt
the result follows by taking expectations conditional on Ft in (7.7). Q.E.D.

Lemmas 7 and 9 show that if H(Q) is marketed, then the gains
process for any optimal trading strategy can be represented as a stochastic
integral over an N-dimensional martingale, which is common to all optimal
gains processes.

%
Let 63 be the gains process chosen by the jth agent and define
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If there are a finite number of securities (i.e., d; = 0 for k > k), then
we interpret ét as the gains process for the market portfolio. If the
number of securities is infinite, it would be well to allow for an infinite
number of agents, or to interpret our J agents as types, each of which
stands for an infinite number of identical agents. We shall not pursue this
formally, but rather interpret ét as the aggregate gains process for what
may be a proper subset of the agents in the economy.

Define the stable subspace generated by Y as

t

- 2, -
S(Y) = {UeM": Uy JO ady., gﬁHz(!)}.

LEMMA 10.  Suppose that Condition (RN) holds. Then

t

dy_ +V (k=1,2,...; 0 <t < T),

(7.8) Gyt = j Bisd¥s * Vit

0

where §keH2(1) and Vk is a square-integrable P*-martingale that is

uncorrelated with S(Y).

Proof. As in Lemma 5. 18/

THEOREM 2. Suppose that Condition (RN) holds. If H(p) =M, then

- N t t
(7.9) Gt = m-Z] {JO cy.deXmS [ % Yms d<X }
Nt t _
AL {Joskms ws* || Blnstostehyd * Vi (k12,0505 47,




40
where X = (X],...,XN) is a vector of uncorrelated, square-integrable
martingales under P; o, y, and g, are in nz(g); and V, is a square-integrable
martingale under P that is uncorrelated with S(X).
Proof. As in Theorem 1.
COROLLARY 2. Suppose that there is an N-dimensional vector B of

independent P-Brownian motions in M and that Qing‘(i=1,...,L). If

H(p) = h7l, then

Lt t
(7.11) Gt = J _oisdgs + JO gs'lsds’

0
t t -
(7.12) G4 = jo B, (B, *+ Jo Bug'xds + Vi (k2,50 <t <),

where o, y, and B, are in nz(g), and V, is a square-integrable martingale

under P that is uncorrelated with S(B).

Proof. As in Corollary 1.

These results ought to extend to more general spaces for consumption
and dividends. Suppose that cumulative consumption and cumulative dividends
are (integrable) bounded variation processes as in Huang [21], and that the
price at t=0 of such a claim is given by y(C) = E(fg psdcs). Suppose that
the optimal claims have the agents consuming in rates, Ct = fg csds with

E(fg cgds) < w, as in Duffy [13]. If the jth agent has preferences over
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consumption rates given by vj(C) = E[IB ujs(cs)ds], where Usg: R-+R is
strictly concave, then as before we shall have cgtng if the set of marketed
claims is sufficiently large; i.e., the optimal consumption processes will
be adapted to the filtration generated by the p process. If there is an
N-dimensional vector B of independent P-Brownian motions in M2 with

pteFE'(O < t < T), then the pricing formulas in {7.11) and (7.12) will
follow.

With continuous consumption, it becomes possible to derive
"consumption-g" pricing formulas, as in Breeden [2]}, but we shall not pursue
that here. His model, with the extensions of Grossman and Shiller [18],
addresses many of the limitations of the CAPM. Nevertheless, aggregate

consumption data have serious limitations if one's objective is to work

with daily (or more frequent) data on security price fluctuations.
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7.2. Factor Structure and Diversification

Next I want to relate the B process in Corollary 2 to the gains

process for a well-diversified portfolio.lg/ Let

I = {k(j), j=1,2,...}

be a subsequence of the nonnegative integers that indexes the securities in

positive net supply.

DEFINITION 1. Suppose that B is an N-dimensional vector of independent

P-Brownian motions in Mz. The dividend process for the securities in

positive net supply has an approximate N-factor structure generated by B if

(7.13) d,. =f, . +e (kel; i=1,...,L),

ki ki ki

B - : atri
where fkigFE}, E(eki) = 0, and the covariance matrix of (ek(l),i""’ek(n),i]

has uniformly bounded eigenvalues as n-+«.

We shall refer to fki as the factor component and to Vii 28 the
idiosyncratic component. The bounded e%genvalue condition on the
idiosyncratic components is suggested by the analysis in Chamberlain and
Rothschild [6]. We could replace the fkieFE-condition by a restriction
that square-integrable functions of the factor components are representable

as stochastic integrals over a vector Y of uncorrelated P*-martingales.
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DEFINITION 2. ggﬁ is a well-diversified claim if there is a sequence of

trading strategies gﬂe@ such that (i) gﬂ generates §neM and gﬂ-+5_in H' as n-—+o;

(11) 8n¢ = 8yg

uses only the securities in positive net supply.

eR" (0 <t <T)andg o8 o0 as n>=; (i11) 6,4 = 0 if kel;

i.e., gﬂ
For an example of a well-diversified claim, let an’denote how many

of the first n securities are in positive net supply, and set enkO = I/an

if kel, 8,kp = O Otherwise (k=0,1,...,n-1). Then 8080 ° 1/an~+0 if there

are an infinite number of'securities in positive net supply. Since gn

generates x = Z;Q] gk(j)/an, tim x is a well-diversified claim if this

series converges in H' as n-w,

THEOREM 3. Suppose that B is a vector of independent P-Brownian motions

in M2 with pieF[—a- (i

=1,...,L). If the dividend process for the securities
in positive net supply has an approximate N-factor structure generated by B,

and if G is the gains process for a well-diversified claim, then

t t
(7.14) G, = JO g':_‘d_B_S + JO a vy, ds
t t
(7.15) th = jo gksdgs + JO Bys s ds + th (k=1,2,...; 0<t<T),

where o, y, and B, are in n2(§) (o depends upon the well-diversified claim;
y and §k do not), and Vk is a square-integrable martingale under P that is
uncorrelated with S(B). In addition, if QﬂeR" satisfies ¢ ¢ ~0 as n>
and ¢nk =0 if ké¢ I, then




a4

n 2
(7.16) sup E[ 6 V. .] -0
Oct<T &y kit

as ne; f.e., Loy 6 V> 0 in M.

Proof. Let ggﬁ denote the well-diversified claim that has G for its gains

process, so that

[ [ W ance ] aned

G. =

T q’ix'l = lp(_X_),

i=1

and let {Qﬂ} and {gn} be the sequences specified in Definition 2. ‘Then

n-1
*ni = Lo OnkoFiq * Skt

and zkenkoeki converges in H to 0 as n+= due to the bounded eigenvalue

condition. Hence ZkenkofkiEFE converges in H to Xy and so xieFEu

Construct the vector

t
Yo =By * Jo 15ds

of independent P*-Brownian motions in (7.5); any yeH that is measurable with
respect to FE-can be represented as a stdchastic integral over Y. Following

the proof of Lemma 9,

-1
PL Pi%y

;
-1
Ex(p pyxy) + jo a4dYs

it

+ X
q'l 1

E* (o] R
QL pixi) + n g_is ls’
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The proof of (7.15), like that of (7.12), follows the proof of (5.3)
and (5.10) in Theorem 1 and its Corollary; the assumption that H(p)< M and
the structure of optimal claims are not needed for that argument.

. n . .

To prove (7.16), note first that Zk=] ¢nkvk 1s‘the residual from

the projection of ZE=] ¢nka onto S(Y) under P*. In addition,
n
Gk = Un + Un’

kzl ¢nk

where Ua and U; are P*-martingales with

Ul

L
nT ifii - E*(iZ] 9]

1"
~1
-
=
=
-~
-~ o
t~1
0

and

n L
U;‘;T = .yn - E*(yn)’ .yn = kZ] ¢nk(1gl qiek'l).

Since U&es(l), we have

n
ut=0Q + § ¢V
n n sy nkok

for some Qn€3(l)- Hence

- 2 n 2
uplls = lig lls + Hk; OniVidlz ~ O
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as n+«, since the bounded eigenvalue condition together with the boundedness

of a4 imply that Ey§-+0, and so E*y§-+0. Q.E.D.

t t
We can regard fO 8, 4B, + fO By "1 ds as the factor component and
Vit as the idiosyncratic component in (7.15). It follows from (7.16) that
the covariance matrix of [vk(l),t""’vk(n),t] has uniformly bounded
eigenvalues as n+>=, So if the dividend process for the securities in
positive net supply has an approximate factor structure, then the corresponding

gains process also has an approximate factor structure.

In the one-factor case, the differential form of (7.14) and (7.15) is

dG

& cxtdBt + atytdt

dG dB, + B, 4v,dt + dV, 4,

kt = Bkt

or, if at#O,

-1
kt = Pt d

dG Gt + det.

Then E(detlFt) 0 and Cov(th, detIFi) = 0 imply that

kelFt) =

where ¢t = Yt/at. So, under an approximate one-factor structure, the gains
process for any well-diversified claim can play the role of the gains process:
for the market portfolio.

In the N-factor case, let G? be the gains process for a well-

diversified claim 5?, so that
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m_ m m =1,...4N),
dGy = 0B, + o, y,dt (m )

and let A, be the Nx N matrix with gz as its mth column. If At is

nonsingular, we have

v RS
where th = At gkt’ and

N
E(d6, ,|F,) = ]

m
1 gy COV(dG, ., dGPIF,),

where Et = A;] Y4+ I plan to return in subsequent work to the problem df

ensuring that At is nonsingular.

Well-Diversified Supply

Connor [8] introduced the condition that per capita supply be
well-diversified, and he used it to obtain an exact pricing formula in a
static factor model. I want to sketch how his analysis can be applied to
our model.‘

Consider a sequence of economies in which the nth economy has n¢nj
identical agents of type j, where Z§=1 ¢nj = 1 and ¢nj converges in R to ¢j
as n>«, Only the first n+l securities are available in the nth economy.
Simplify notation by excluding consumption at t=0 and by assuming that the
net supply of each security is one share. Then per capita supply of the

single perishable good at t=T, is 22=0 dki/" (i=1,...,L). Assume that
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Z:=O dy;/n converges in H to d; as n>«. If the dividend process has an

approximate N-factor structure generated by B, then Z:=& eki/" converges in
H to 0, and so aisF%:. This restriction on ai is our counterpart to
Connor's condition t;at per capita supply be well diversified.

The preferences of type j agents are given by the utility function
Vj(i) Z -1 E[u (x )1, where ujg R-+R is increasing and strictly concave
with derivative uji‘ Let 5? eH' be the solution to max vj(g) subject to_;eM,
.€R, and assume that Z§=] ¢jxg* = ai a.s. IfM=H" (complete

J
e :
markets), then {xJ , j=1,...,J} is a Pareto-efficient allocation for the

p(x) < a

1limit economy; i.e., there is no allocation {g?EHT} that (i) satisfies the
Jd
J=1
. . .

and (ii) dominates {59 }: vj(éﬁ) > vj(59*) (3=1,...,d).

resource constraint for the 1limit economy: ¢jxg < éi a.s. (i=1,...,L);

~3 ~j s%
Consider the allocation {59}, where x% = E(xg iF%;). This satisfies
i

the resource constraint since

Q-l

I B
Z] 9587 = E(jgl IF—') = E(d, iF;}

A% 3% A 3%
Furthermore, vj(gg) > vj(59 ) unless 59 = 59 a.s. Hence Pareto-efficiency

i % 1% s %
of {59 } implies that 59 eFE; Since uji(xg ) = Ajoi, where kjeR is positive,

we have piaFEn So this argument can motivate the hypothesis of Theorem 3.
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APPENDIX A

Proof of Proposition 1. (i). If YTeM, there is a I?HZ(Z) such that

= - = L) T
(A1) Yo = ypoZp Yg'Zg + [ 1 dZ, a.s.
If xeH(p), then Condition (R) implies there is an aaHZ(Y) such that

CE(x) + [ adY.

>
[}

From (A.1),

-
n

¢ = Bl = YoZy + Jg X4,

The bounds on the eigenvalues of ¥ imply that axgnz(gj and the associative

law [15, p. 62] gives
x = E*(x) + [ oy dZ .

Define the portfolio strategy 6 = (80, g*) as follows: 874 = (atylt”"’atYKt)

and

- t .
(A.2) By, = E*(x) + [Laydi -e.-S,.

Then 80 and QT°ZT = X a.s.

(ii) and (iii). By the martingale representation theorem [25],
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- - t
op = EIF) = 1+ b as,

where 1gn2(§). By Girsanov's theorem [27, Theorem 6.4],

t -1
(A.3) B} B, - Jprg Lgds

i

is a vector of independent P*-Brownian motions in Mz. From (6.2) and (A.3)

- t t
(A.4) S, = S+ [;0.d8: + [;z.ds,

1

where g, =y, + p; +Ly- Since S,

absolutely continuous component of (A.4) is a.s. identically 0 [15, p. 54]

t % *_ 3 X
o and [, ¢ dBY are P*-martingales, the
and so Ly < 0 for almost every t. (This result, when S is a Markov diffusion,
is in Harrison and Kreps [19, p. 398].)
By the martingale representation theorem in [27, Theorem 5.20; or

23, Theorem 8.3.1], we have

(A.5)

-1 ) t
Ny EX(e™ [Fy) = 1+ [g BydBE,

-1

where ggnz(gf). Hence np=e T dP/dP*, and by Girsanov's theorem,

i1]

(n.6) B, = BY-[fn' s

ijs a P-Brownian motion in MZ. From (A.3) and (A.6), §{ - Et is an absolutely

continuous P-martingale, and so P{B, = E{, 0 <t<Tk=1. Hence
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(A.7)

17
I

+ fo o dB?

t t -1
5 * IO 2gdBg * fO g OsBgds-

Comparing (6.2) and (A.7), we have a.s. by =Ny @tﬁt for almost every t,
and so (A.5) and (A.7) give

-1 _ T
(A.8) 0 = 1+ IO nsz\_sd§s,

where = t By
S1nce Y is a square-integrable P*-martingale, it can be represented as

- t _ t
Ve = Yot JossdB5 = Yo+ Jp 85
where ell, (B*) [27, Theorem 5.20; or 23, Theorem 8.3.1], and Yqt = ®"15tenz(§)ﬁ
We can set & (e ..,eK) Y and choose 8y SO that 6 = (60,6 )e© and

QT'ZT = Y7 a.s.; hence Y;eM. If xeH, applying this argument to E*(x[Ft

shows that xeM. As in (A.2) the riskless asset and Yy serve as mutual funds
that generate H(p). Since p-]eH(p), condition (R) gives

-1 T
(A.9) o = 1+ IO vd¥e = 1+ [5 vy, dS,

where ueHZ(Y). From (A.8) and (A.9), Nedy = VgYq, for almost all t a.s.

Since P{p -y, >0, 0<t<T} =1, we have v% >0 and yq; = u;l nth]Et for

almost all t a.s. Q.E.D.
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APPENDIX B

Suppose that F = F§3 where B = (B], Bz) is a vector of independent
Brownian motions. Define y = fg B1S dBZs' We shall assume that there is
a Brownian motion BeM2 such that yeFB and obtain a contradiction. Our
counterexample was suggested by an example in [23, p. 204].

By the martingale representation theorem,

t t
B =J Mo dB]S+j Aog 4By (0<t<T),

t t
, vy = E(y[F,) = ] B, B, = j g 4B
0 0
* t t
= JO ag Als d315 + JO o XZS dBZS (0<t<T),
and so
T T 2
(8.1) 0= E[]O o, Mg dBy + jo (o Agg - By )dBy,]
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2 B
Note that <y>, = IO B1s ds, and so By.eF” (0 < t < T). Hence there

is a YEHZ(B) such that

2 t t
Big -t = ZJ Byg dByg = I Yg dBg
0 0
t t
- Jo Y Apg @Bpg + Jo Yg Apg By (0<t<T),
and so
T T ' 2
(B.2) 0 ='E[j0(ys Ag - 2By )dB; + [o Yg Apg dBy]

= E T( A, - 2B )st +E 2 A2 ds.
0 Ys Ms 1s 0 Azs

Let u denote Lebesgue measure on [0, T]. Since A]t gt =1 for
almost every (t, w) under the product measure u x P (u x P - a.e.), (B.1)
and (B.2) imply that
2 2 _ 2.2 /4

0= o Adye = Brg Me ™ Ye M

(px P - a.e.),

a contradiction.
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FOOTNOTES

l/Simplifications can be obtained by using special functional forms
for preferences, as in Cox, Ingersoll, and Ross [11]. See Stapleton and
Subrahmanyam [39] for the case of exponential utility; they also give
references to earlier work using functional form restrictions.

g/Constantinides [9] shows how complete markets can be used to
construct a representative agent of the sort needed for these models. The

investment opportunity set in his model is assumed to not change over time.

§-/'l'his approximate factor structure will in fact be imposed only

on the securities in positive net supply.

Q/For overviews and critiques of the CAPM, see Ross [36] and

Ro11 [33].
Q/We use a.s. to denote with probability one or almost surely.

Q/This relationship between mean-variance efficiency and the claim
(p) that represents the price system is developed in Chamberlain and

Rothschild [6].
7/ cqq s :
~/See Chung and Williams [7, p. 6].

§--/mtt-:‘r‘native]y, we could specify that et(w) is constant over the
interval tn-1< tg'tn, in order to obtain a simple predictable process as in

Harrison and Pliska [20].

nghe "almost surely" qualification will be left implicit in all

assertions involving conditional expectations.




55

lg/For a treatment of the material in this section, see, for example,

Chung and Williams [7] or Durrett [15].

ll/Stochastic processes U and V are indistinguishable if
P{Ut = Ve 0<t<T} = 1. The variance process <X> is only defined up to
indistinguishability, and so we shall leave the "almost surely" qualification
implicit in all assertions involving variance processes. We shall follow
the same convention for assertions involving covariance processes, stochastic

integrals, or, as in footnote 9, conditional expectations.

12/1he predictable o-field T is the o-field of subsets of [0, T]xQ
genérated by the sets of the form {0}><AO and (s,t] xA, where A05F0 and Aer
for 0<s<t in R. A stochastic process, which should be regarded as a
mapping from [0, T]xQ to R, is predictable if it is measurable with reépect
to II.

lé/Here and throughout the paper we take Fg-to be a standard
filtration that has been completed so that F%—contains all the P-null sets
in F.

lﬁ/That we can choose o to be a predictable process follows from

[7, Lemma 3.5 and Theorem 3.6].
l§-/Chamg'ing the numeraire in models of this sort is treated in
[19, 20, 21, 13].

lé-/The simple strategies of Section 3.1 are predictable since all

martingales adapted to F are continuous.

lz/working with a very general consumption space, Huang [21] obtains

this result by means of a somewhat different argument.
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l§/See [12, pp. 356-359] for the N-dimensional version of the

martingale projection theorem.

l2-/1'he development here corresponds to that in [5] for the static

case.
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