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Montréal (Québec), Canada, H3T-2A7

(Pascal.St-Amour@hec.ca)

September 24, 2003



Abstract

We propose a consumption-based Capital Asset Pricing Model with state-dependent risk aversion.

The corresponding risk premium includes consumption risk and the risk associated with variations in

preferences. Our model can be estimated without specifying the functional form linking risk aversion with

state variables. The estimates are based on Markov chain Monte Carlo estimation of exact discrete-time

parameterizations for linear diffusion processes. We find estimates for relative risk aversion that are (i)

reasonable by usual standards, (ii) correlated with both consumption and returns and (iii) indicative of

an additional preference risk of holding the assets.

Key Words: Bayesian analysis; Continuous-time estimation; Asset pricing puzzles; Markov chain

Monte Carlo.



1 INTRODUCTION

The consumption-based capital asset pricing model (C-CAPM) of Lucas (1978) and Breeden (1979)

predicts a linear relationship between risk and return for risky assets. Under the assumption of separable,

iso-elastic utility, the quantity of risk is measured by the consumption covariance, and the price of this

risk is given by the Arrow-Pratt coefficient of relative risk aversion. Heuristically, an asset which pays low

returns when consumption is also low (and marginal utility is high) is considered risky. A positive mean

excess return is required to induce a risk-averse investor to hold it. Other things being equal, a higher

level of risk aversion for the representative investor results in a higher equilibrium mean excess return.

Although theoretically elegant, and intuitive, the empirical performance of this model has been found to be

disappointing (Kocherlakota, 1996; Campbell, 2000, provide excellent surveys).

This paper attempts to resolve the empirical anomalies of the C-CAPM by replacing un-conditional

iso-elastic utility by conditional, or state-dependent iso-elasticity. We derive a pricing equation where an

additional preferences risk supplements the low observed consumption risk in justifying the high observed

premia on equity. This second risk is related to the coincidence of low returns and high marginal utility

obtained through changes in risk aversion. As the contribution of this second risk is found to be important,

the estimated price of consumption risk – i.e. risk aversion – is much lower, thus addressing the equity

premium puzzle. Second, this additional source of inter-temporal marginal rate of substitution (IMRS) risk

justifies a larger precautionary demand for the risk-less asset, thereby potentially solving the low risk-free

rate puzzle. Finally, we show that the cyclicality of the prices of risks implied by the model could help

solving the predictability puzzle.

State-contingent preferences have been used successfully to explain behavior characterized by appar-

ently excessive, or changing risk aversion (Drèze and Rustichini, in press, provide a representation theorem

for state-dependent utility, and a survey of applications). Robson (1992) reproduces the ‘concave-convex-

concave’ behavior of Friedman and Savage (1948) by incorporating preference over status to the instantaneous

utility function. When status is allowed to depend on the distribution of wealth, richer curvatures may be

obtained. Karni (1983, 1987) introduces state dependency to rationalize the purchase of flight insurance

by agents already holding life insurance. Since implausibly high (and potentially changing) aversion to
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risk is also found with standard asset pricing models, it seems reasonable to ask whether state-contingent

preferences may be helpful in explaining the high returns on risky assets.

Early applications of state-dependent preferences to asset pricing are presented in Merton (1973) and

in Cox et al. (1985). Both consider a representative agent whose current utility is affected by a vector of

exogenous state variables. Although the particular functional form relating states and utility is left implicit,

they use Itô processes to characterize the states, and analyze the equilibrium pricing implications. They

obtain a k + 1-factor linear premium where the individual risks are given by the covariances of returns with

the return on total wealth (i.e. the market), and the k state variables that condition the agent’s utility.

Under state independence, and/or if the states are uncorrelated with returns, the model simplifies to the

standard consumption covariance C-CAPM. With state-dependencies, these additional covariances represent

important sources of IMRS risk that could justify larger premia.

More recently, Melino and Yiang (in press) explain why state-dependent preferences have the potential

to resolve the equity premium puzzle. In a two-state Mehra and Prescott (1985) world, they show that the

stochastic discount factor (SDF) should be (i) highly sensitive to the current state, and (ii) consistent with a

counter-cyclical pattern to risk aversion, in order to match the first two moments of returns. Since observed

consumption is relatively smooth and state-insensitive, state-contingent risk aversion appears to be a natural

candidate towards achieving that aim. Along these lines, observing that mean equity premia increase during

recessions, Campbell and Cochrane (1999) consider a time-non-separable Hyperbolic Absolute Risk Aversion

(HARA) specification in which the subsistence level is time-varying, a parameterization which can also be

associated with a ‘slow-moving’ habit. As consumption falls toward subsistence during downturns, relative

risk aversion increases, thus implying counter-cyclical attitudes toward risk. Building from Robson (1992),

Bakshi and Chen (1996) also allow for status preference in the VNM utility function. To the extent that

wealth-dependent self-perception of status influences marginal utility of consumption, the equilibrium relative

risk aversion is a decreasing function of the individual’s wealth, and therefore also displays a counter-cyclical

pattern.

Gordon and St-Amour (2000) discuss how state-dependent curvature leads to rotations of the marginal

utility schedule, which increase risks to the IMRS. If initial consumption is low and risk aversion is counter-
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cyclical, an unanticipated fall in consumption raises risk aversion and translates into a larger increase in

marginal utility than under fixed preferences. These additional sources of risks affect the agent’s portfolio

decisions, and consequently the equilibrium returns on assets. As in Cox et al. (1985), excess returns then

incorporate a second risk reflecting co-movements in the state – and thus in risk aversion – and returns,

reducing the emphasis placed on consumption risk in explaining the high premia. In the special case in

which risk aversion and asset returns are not correlated, the model simplifies to one similar to that studied

by Chou et al. (1992). The difference is not innocuous; we shall see that this preference risk plays a substantial

role in explaining observed premia.

We choose to address the issue of state-dependencies from a somewhat more general perspective compared

to the previous literature: instead of specifying a functional form relating risk aversion to proxies for the

state of the world, we model risk aversion as a latent variable. Nonetheless, our framework imposes more

structure compared to unrestricted latent-variable models of conditional mean returns. For example, Brandt

and Kang (in press) estimate a latent-variable model of conditional mean returns and volatility. They find

strong support for the presence of a counter-cyclical pattern in excess returns. Our model restricts conditional

means to be defined by a C-CAPM, and focuses only on first moments. Our results are also consistent with

a strong counter-cyclical pattern. Our parameterization of conditional iso-elasticity is both parsimonious

and general: the concavity index is assumed to follow an Itô process. This assumption is useful as the

joint process of curvature, log consumption and cumulative excess returns can be written as a multivariate

arithmetic Brownian motion. One advantage of this setup is that exact likelihood representations exist,

and can be used to control for time aggregation, rather than using discrete-time approximation. We use

Bayesian Markov chain Monte Carlo (MCMC) and data augmentation techniques to estimate the state-

dependent model using excess returns data.

The main findings of this study are the posterior moments for time-varying risk aversion. These estimates

are (i) moderately volatile, (ii) correlated with returns and consumption and (iii) well within the range of

values that many consider to be reasonable (e.g. between 0 and 10). We find that the magnitude of the

additional concavity risk is much larger than that implied by consumption-returns covariances. Furthermore,

the estimated contribution of this risk is positive, so that the model can justify the high observed premia
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on risky assets without requiring high levels of risk aversion. Our results also suggest that risk aversion

is negatively correlated with unanticipated consumption shocks as well as with other pro-cyclical business

conditions indicators. This is consistent with a counter-cyclical pattern to risk aversion.

The paper is organized as follows. After the model is outlined in Section 2, our next objective is to

identify the time series path of risk aversion indices consistent with post-war monthly US data. In Section 3,

we estimate the state-dependent model by means of data-augmentation techniques, with results discussed in

Section 4. Finally, a conclusion reviews the main findings, and offers suggestions for future research.
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2 THEORETICAL FRAMEWORK

As in most empirical asset pricing studies, we focus on a pure exchange economy populated by a large

number of homogeneous agents, with a single perishable consumption good, and perfect markets. This frame-

work is convenient since it simplifies the computation of equilibrium quantities. Agents who are identically

endowed, and who have identical preferences do not trade, and consume their endowment. Equilibrium prices

can then be characterized through the Euler equations for an interior optimum, evaluated at the aggregate

consumption levels. This section first describes the environment, followed by a discussion of the state-

dependent preferences of a representative agent. We subsequently discuss the implications for equilibrium

returns.

2.1 Economic Environment

Uncertainty and Opportunities. Our setup is entirely standard with the exception of the instantaneous utility

function. For completeness, we characterize the economic environment closely following the description in

Duffie (1992). We assume that the stochastic environment is described by a standard independent Brownian

motion B ∈ Rd on a probability space (Ω,F , P ), with filtration F = {Ft : t ≥ 0} and infinite time horizon.

The investment set consists of N securities, in zero net supply, with (cum-dividends) prices X ∈ RN , which

are assumed to be adapted Itô processes.

Next, consider the trading strategy α ∈ RN , consisting of the values invested in the various securities.

Denote by H2(X) the set of trading strategies satisfying the integrability constraint E(
∫ t

0
α2

sds) < ∞ for

t > 0. Moreover, let C and e denote the consumption and endowment processes respectively, and let L2
+

denote the non-negative set of Itô processes also satisfying the corresponding integrability constraint e.g.

E(
∫ t

0
C2

s ds) < ∞ for t > 0. The trading strategy α finances the consumption process C − e if:

α′tXt =
∫ t

0

α′sdXs −
∫ t

0

(Cs − es)ds ≥ 0, ∀t. (1)

Then, the choice set of a representative agent is given by:

Λ = {(C, α) ∈ L2
+ ×H2(X) : α finances C − e}. (2)
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Representative Agent’s Preferences. Next, we assume that the representative agent has separable VNM

preferences given by:

U(C, γ) = E

∫ ∞

0

u(Ct, γt, t)dt, (3)

where γt is a non-negative time-varying curvature index. We make the following assumption.

Assumption 1 γt ∈ L2
+ is an exogenous adapted Itô process.

The agent’s problem is therefore:

sup
(C,α)∈Λ

U(C, γ). (4)

We now characterize further the agent’s preferences. More specifically, we assume that within-period

utility is conditionally iso-elastic, i.e.:

u(Ct, γt, t) = exp(−δt)
Θ

(1− γt)

(
Ct

Θ

)1−γt

, γt > 0, ∀t, (5)

where δ > 0 is a constant subjective discount rate and Θ > 0 is a constant subjective scaling factor. Since,

conditional on the realization of an event Bt, γt is also the Arrow-Pratt measure of relative risk aversion

for a-temporal risk, we refer to the model in (3) and (5) as state-dependent risk aversion (SRA) preferences.

Note that since expected utility is unique up to an affine transformation, unconditional iso-elastic (CRRA)

preferences are obtained by imposing that γt is a constant ∀t.

Preferences (5) are a special case of Merton (1973) and Cox et al. (1985) who consider a model where

instantaneous utility is an implicit function of the state of the world. These state variables are taken as

having an impact on production – and thus on equilibrium returns – but can also include “. . . state variables

that do not affect production opportunities but are nevertheless of interest to individuals.” (Cox et al.,

1985, p. 366). In particular, the state could be related to individual decisions, such as past consumption,

or accumulated wealth. Assumption 1 rules out such cases, with the preference state being unaffected by

the agent’s choices. Merton (1990) also distinguishes between systematic, i.e. states that are correlated with

returns, and idiosyncratic state variables, i.e. states that are uncorrelated with returns. Our setup implicitly

allows for both systematic and idiosyncratic states.
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Utility (5) is a state-dependent case of the Hyperbolic Absolute Risk Aversion (HARA) utility function

u(C, t) = exp(−δt)
Θ

(1− γ)

(
C

Θ
− η

)1−γ

,

where η is a bliss parameter (Merton, 1971; Rubinstein, 1974). In our framework, we impose η = 0, and

allow for a state-contingent concavity index γt, while we remain agnostic concerning the relevant state.

Alternatively, Campbell and Cochrane (1999) consider the case where concavity γ is constant, while the

bliss parameter ηt is a function of the state that is related to aggregate consumption. Bakshi and Chen

(1996) instead impose that η = 0, and γ is a constant, while they allow for a state-dependent subjective

metric Θt, where the state is associated to total wealth.

The instantaneous utility function (5) captures the effects of pro- and counter-cyclical risk aversion on

marginal utility risk. As outlined in Gordon and St-Amour (2000), changes in the curvature index γt cause

rotations of the marginal utility schedule about the pivot point Ct = Θ. Hence, the level of consumption

with respect to the subjective scaling parameter Θ determines how a change in risk aversion affects marginal

utility. To see this, consider the case of an unanticipated decline in consumption resulting in an increase

in marginal utility. For the case of low consumption (Ct < Θ), counter-cyclical risk aversion implies an

increase in risk aversion, causing a clockwise rotation in the marginal utility schedule. As a result, marginal

utility increases more than in the state-independent case. Conversely, for the case of high consumption

(Ct > Θ), pro-cyclical risk aversion implies a decrease in risk aversion, causing a counter-clockwise rotation

in the marginal utility schedule. Again, marginal utility increases more than in the standard case. Finally,

when consumption levels are close to the subjective scaling factor (Ct ≈ Θ), the SRA effect is minimized,

i.e. fluctuations in curvature cause only limited movements in the marginal utility schedule.

An important feature of the SRA framework is that it is flexible enough to incorporate either counter-

or pro-cyclical risk aversion to have an effect on the the volatility of marginal utility. In what follows, we

let this issue be determined empirically. This additional contributor to marginal utility risk will be shown

to have important implications for the pricing of securities.
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2.2 Security Market Equilibrium

A security-market equilibrium for this economy is a collection {X; (C, α)} such that (C, α) solves (4) and

markets clear:

α = 0, and C − e = 0. (6)

We now derive the equilibrium risk premium for risky assets, along with the risk-free rate consistent with

SRA.

Under the maintained assumption that γt is exogenous, a standard argument establishes that equilibrium

is characterized by a unique, non-negative state-price deflator πt defined by:

πt = uc(et, γt, t), (7)

where uc(et, γt, t) is the instantaneous marginal utility of consumption evaluated at equilibrium consumption.

This state-price deflator has the property that the deflated security price process Xπ is a martingale (Duffie,

1992, p. 98). Denote by dRt ≡ dXt/Xt the return process. Let µz
t ∈ Rk and σz

t ∈ Rk×d denote the drift

and diffusion on any arbitrary Itô process z ∈ Rk. Then, no arbitrage implies that:

µR
t − rt =

−1
πt

σR
t σπT

t , (8)

rt =
−µπ

t

πt
, (9)

where rt is the risk-free short rate.

Since the endowment e and the curvature index γ are Itô processes, a straightforward application of Itô’s

lemma in Appendix A reveals the following main results:
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Proposition 1 Let ct ≡ Ct/Θ be the scaled consumption level. The equity premia and risk-free rate are

given by:

µR
t − rt = γtσ

R
t (σcT

t /ct) + log(ct)σR
t σγT

t ; (10)

rt = δ + γt(µc
t/ct) + log(ct)µ

γ
t − 0.5γt(γt + 1)(σc

t/ct)(σcT
t /ct)

+[1− γt log(ct)](σc
t/ct)σ

γT
t − 0.5[log(ct)]2σ

γ
t σγT

t . (11)

Proof. See Appendix A.

Equations (7) and (8) establish the standard C-CAPM result that the source of risk is the covariance of

returns with changes in marginal utility. However, under SRA (5), unless Ct is close to Θ (i.e. ct is close

to 1 ) and/or γt is constant, changes in marginal utility are ascribed to changes in γt as well as changes in

consumption ct. Since both can co-vary with returns, the risk premium (10) captures both sources of IMRS

risk.

The price of the consumption risk σR
t (σcT

t /ct) is given by the state-dependent risk aversion index γt.

The price of the preferences risk σR
t σγT

t is given by the log of weighted consumption ct. The SRA model

can potentially replicate the high observed premium at reasonable levels of risk aversion if the contribution

of the preference risk, i.e. log(ct)σR
t σγT

t , is positive, and large. This can obtain under two scenarios: (i) low

consumption (ct < 1) and negative correlation between risk aversion and returns, i.e. counter-cyclical risk

aversion or (ii) high consumption (ct > 1) and positive correlation between risk aversion and returns, i.e.

pro-cyclical risk aversion. To see this consider again a worsening of the state of the world leading to negative

innovations in consumption and returns. Under scenario (i), risk aversion increases, thereby rotating the

marginal utility schedule clockwise and amplifying the increase in marginal utility. Under scenario (ii), risk

aversion falls, causing a counter-clockwise rotation in the marginal utility schedule. Again, the increase in

marginal utility is amplified. Even a moderately risk-averse representative agent selects her portfolio so as to

hedge against these larger shocks to marginal utility and thereby demands a larger compensation for holding

the risky asset.
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The presence of this second source of risk is common to all models of state-dependent preferences where

the state is systematic. Merton (1973) shows that state dependence induces additional hedging portfolios in

the agent’s demand for assets that supplement the standard mean-variance efficient portfolio. This result

parallels the one obtained under a time-varying investment opportunity set, with state-independent prefer-

ences (Merton, 1990). As a result, the ratio of asset demands is not preferences-free, and the 2-fund (risk-free

+ market) separation generalizes to a (k + 2)-funds separation theorem to take into account shifts in the k

systematic preference states. Consequently, the security market line extends to a security market hyperplane

with excess returns being linear in the excess return on the market, and the k replicating funds.

Similarly, a multi-factor pricing equation is obtained by Cox et al. (1985) in a general equilibrium con-

text whereby the k additional risks are given by the covariances with wealth and the k state variables that

condition utility. In both cases, if preferences are state-independent, and/or if the state variables are id-

iosyncratic (i.e., uncorrelated with returns), the model simplifies to the usual single consumption beta. The

same reasoning applies here, except that the incidence of the state variables is completely summarized by

the assumption that γt is an Itô process. Hence, only a single additional state-related beta is obtained in

the pricing equation.

Note also that SRA has the potential for successfully addressing the other C-CAPM pricing anomalies.

In particular, even if the innovations are all conditionally homoscedastic, i.e. σi
t = σi, ∀i, t, the risk

premium will in general be time-varying, through the presence of time-varying prices of consumption [γt]

and preferences [log(ct)] risks. For example, if risk aversion is counter-cyclical, periods of low consumption

(ct < 1) would witness an increase in the equity premia, which would subsequently be reduced as consumption

increases (ct > 1) during recoveries. Moreover, if consumption is low and risk aversion co-varies negatively

with consumption, a lower risk-free rate obtains in (11). Note also that, regardless of the consumption

level, the volatility of risk aversion contributes to reducing the short rate, thereby potentially addressing the

low risk-free rate puzzle. Whether SRA actually solves these additional pricing anomalies remains an open

question which we leave for further research. The rest of this analysis focuses on the equity premia.
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3 EMPIRICAL APPLICATION

The discussion in Section 2 suggests that the SRA model may offer a potential explanation for the equity

premium puzzle. Our aim in this section is to estimate a simple SRA model and see whether or not it can

fit observed risk premia with plausible levels of risk aversion.

The risk premium in (10) was developed for the case in which the data follow arbitrary Itô processes.

More structure must be added on that process in order to apply the model to the data. A convenient feature

of the model is the linearity of the risk premium (10) in log(ct) and γt. We adopt an econometric model in

which excess returns, consumption, and risk aversion are generated by a multivariate arithmetic Brownian

motion process. The restricted form of the model – i.e., the model with (10) imposed – will also have this

form. This continuous-time joint process is particularly useful, since there exists a closed-form expression

for the corresponding likelihood function for time-averaged data. More importantly, this structure allows us

to identify and estimate the realized risk aversion process. This section outlines the econometric model, as

well as the estimation procedure.

3.1 The Parameterized Model

Multivariate Arithmetic Brownian Motion. Suppose for now that γt is an observable process. The theoretical

treatment in Section 2 is made operational in three steps. First, we consider the case of a single risky portfolio

(i.e. N = 1) with excess return dRe
t and cumulative excess return process Re

t . We then postulate a tri-variate

process for excess returns, consumption growth, and changes in risk aversion. Second we assume conditional

homoscedasticity, and replace the initial independent Brownian motion Bt by the correlated process B̃t ∈ R3,

where we denote by σ̃ ∈ R3×3 the diagonal diffusion matrix, and by ρ ∈ R3×3 the matrix of correlation

coefficients. Hence, in terms of the previous notation, σ̃iσ̃jρij ≡ σiσjT. The homoscedasticity assumption

is required to make use of closed-form likelihood functions for time-averaged data. Second moments under

SRA could be modelled under a stochastic volatility framework, exploiting the theoretical restrictions. We

plan to pursue this approach in subsequent research. Finally, we impose the theoretical restrictions (10) on
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excess returns, but allow for unrestricted processes for log(ct) and γt. The resulting model is:




dRe
t

d log(ct)

dγt




=

{



0 σ̃γ σ̃eρeγ σ̃log(c)σ̃eρe log(c)

alog(c)e alog(c) log(c) alog(c)γ

aγe aγ log(c) aγγ







Re
t

log(ct)

γt




+




0

blog(c)

bγ




}
dt +




σ̃e

σ̃log(c)

σ̃γ







dB̃e
t

dB̃
log(c)
t

dB̃γ
t




, (12)

or, more compactly as:

dY t = {AY t + b} dt + σ̃dB̃t, (13)

where Y t ≡ [Re
t , log(ct), γt]′, and the other parameters and Brownian motion are implicitly defined.

Since by Itô’s lemma σ̃log(c) = σ̃c/c, these restrictions on A and b ensure that the expected risk premium

in (12) is analogous to (10):

µe
t = log(ct)σ̃γ σ̃eρeγ + γtσ̃

log(c)σ̃eρe log(c) (14)

= log(ct)σ̃eγ + γtσ̃
e log(c)

= log(ct)σR
t σγT

t + γtσ
R
t (σcT

t /ct)

= µR
t − rt.

The other parameters {alog(c)e, alog(c) log(c), alog(c)γ , aγe, aγ log(c), aγγ} in (12) are unrestricted feedback effects,

while {blog(c), bγ} are unrestricted constants. That is, no restrictions are placed on how the cumulative

returns, consumption and risk aversion affect changes in consumption and risk aversion. The mean excess

return, however, is restricted by the theoretical model. Finally, the standard deviation matrix σ̃ is also

unrestricted.
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An important feature of (13) is that it defines a multivariate arithmetic Brownian motion. As is shown

next, this characteristic allows us to take into account the temporal aggregation bias using discrete data in

the estimation, without resorting to discrete-time approximations to the diffusion process.

The Augmented Likelihood Function. Even if risk aversion were an observable process, we do not have

data available in a continuous-time format consistent with the model. In particular, monthly consumption

data is an average of continuous flow measures. Fortunately, the simple nature of (13) allows us to make use

of well-known results in the application of continuous-time models to time-averaged data in order to obtain

an expression for the “augmented” likelihood function (i.e., the likelihood function for the case in which risk

aversion is observed).

Suppose that Y t satisfies (13) and define Yt ≡
∫ t

t−1
Y τ dτ as the time-averaged measure. It can then

be shown that the discrete time series process Y satisfies

Yt = λYt−1 + g + ηt, (15)

where λ ≡ eA, g ≡ (eA − I)A−1b, where eA is the matrix exponential of A and where the error vector ηt

is a multivariate MA(1) process (Phillips, 1976; Bergstrom, 1984; Grossman et al., 1987; Melino, 1996). The

likelihood function is based on the likelihood function for that VARMA(1,1) model described by (15).

Let γ ≡ {γt}T
t=1 represent the time series vector of time-averaged risk aversion coefficients from a sample

of T observations. The initial value γ0 is treated as a parameter. Let φ ≡ {A, b, σ,ρ} denote the set of

structural parameters. Given values for η0, φ, γ and γ0, we can then evaluate the augmented likelihood

function L(φ|γ, γ0,η0, data) according to the procedure outlined in the Appendix B.

Identification Issues. An important feature of the restricted model (12) is that it reflects the restrictions

necessary to identify the latent risk aversion series. Firstly, by modelling the process as a diffusion, we

assume that γt is smooth. Secondly, it is well known that, for the generic iso-elastic C-CAPM, positive risk

aversion is a sufficient condition for the Euler equations to characterize the optimum. In our context, interior

solutions at t are guaranteed if γt is nonnegative. Since we follow the tradition in the asset pricing literature

of assuming that the Euler equations are valid throughout the sample, we impose this restriction on the

realized values for risk aversion. Given the equivalence in the way that our Bayesian estimation algorithm
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treats both the parameters and the latent variables, this “sample selection” assumption can be interpreted

as imposing a prior belief that risk aversion is positive throughout the sample, i.e., that we believe that the

data are consistent with the Euler equations. This restriction is incorporated into the likelihood function by

including a correction in which negative values of γt are ruled out. Thirdly, the SRA restrictions mean that

there are no free parameters that can be adjusted so that an arbitrary process γ̃t can be made to satisfy

(14). It is perhaps useful to elaborate on this point.

Suppose for now that Θ is known; we will return to this point shortly. We observe consumption and

excess returns, so log(ct), σ̃e, σ̃log(c), ρe log(c) can be identified independently. For a given γt, we can obtain the

remaining terms σ̃γ , ρeγ . Suppose that this process γt satisfies (14), and consider the linear transformation

γ′t = φ0 + φ1γt. Note that σ̃γ′ = φ1σ̃
γ whereas the correlation term remains unchanged, so there are no

other free parameters that need to be adjusted. If we substitute the new values of γ′t and σ̃γ′ into (14), it is

straightforward to demonstrate that the new risk aversion series can reproduce the expected risk premium

for any t only if φ0 = 0 and φ1 = 1.

On the other hand, the information contained in excess returns data is not sufficient to identify both

Θ and γt. In other applications of models of time-varying relative risk aversion (Campbell and Cochrane,

1999; Gordon and St-Amour, 2000), the risk-free rate is used to identify the scale of the consumption series.

Unfortunately, we are not able to incorporate (11) into the econometric model. Convenient expressions for

the likelihood function of time-averaged data are only available for a limited class of models, and including

the quadratic terms in log(ct) and γt would greatly complicate estimation of the model. In the rounds of

estimation below, we provide results using various calibrated values for the subjective scaling factor. We find

that varying Θ has the effect of changing estimates for certain parameters. Different values for the scaling

metric on the other hand do not appear to affect our estimates for risk aversion.

3.2 Estimation Algorithm

We make use of Bayesian analysis to estimate our model. Much has been written (Zellner, 1971; Leamer,

1978; Poirier, 1988, 1995) on the theoretical justifications for doing so, and the recent development of Markov

chain Monte Carlo techniques has greatly increased the feasibility of Bayesian methods of inference. In the
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current context, the fact that Bayesian methods are not obliged to make use of asymptotic theory makes

them far preferable to the use of classical methods. The reason is that (14) implies that expected excess

returns will depend on log consumption. If consumption is assumed to grow without bound, and if the

processes log(c) and γ are not co-integrated, then predictions for excess returns could be dominated by the

log(ct)σ̃γ σ̃eρeγ term. If this were the case, classical inference based on large-sample approximations would

be problematic. A simple solution to this problem would be to let Θ = Θt, a deterministic function of time,

so that log(ct) ≡ log(Ct/Θt) is stationary, but we elect to leave Θ a constant. On the other hand, results

from a Bayesian estimation are valid for any finite sample. The empirical results below suggest that our

simple diffusion model is a reasonable approximation for our data; the model produces plausible estimates

that have no detectable trend. Keeping in mind that the log of real per-capita consumption ranges from 8.6

to 9.4 in our sample, this assumption is not too farfetched.

If the risk aversion series were observed along with the vector η0, inferences about φ would be based on

the posterior distribution:

P(φ|γ, γ0, η0, data) =
L(φ|γ, γ0,η0, data)P(γ0)P(φ)∫

L(φ|γ, η0, data)P(γ0)P(φ) dγ0 dφ
. (16)

Two practical difficulties are posed by (16): γ, γ0 and η0 are not observed, and even if these values were

observed, the non-standard form of the likelihood function suggests that evaluating the integral in the

denominator of (16) looks to be a particularly daunting task. Two recent developments in the Bayesian

statistical literature prove to be extremely useful in addressing these problems.

Tanner and Wong (1987) note that in many latent variable models, the estimation of the parameter vector

is straightforward if the latent variables were observed; this is the case in the current setting. Their “data

augmentation” approach is based on simulating values for the missing data from the model. The augmented

data can then be used to estimate the fixed parameters. The applicability of data augmentation techniques

– and Bayesian methods in general – has become markedly easier with the development of Markov chain

Monte Carlo techniques. It is often the case that using MCMC with data augmentation is easier than trying

to estimate latent variable models using classical techniques (McCulloch and Rossi, 1994; Jacquier et al.,

1994).
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In this application, the estimation is based on an iterative algorithm in which draws are made according

to:

γ(m) ∼ P(γ|γ(m−1)
0 , η

(m−1)
0 ,φ(m−1), data);

η
(m)
0 ∼ P(η0|γ(m), γ

(m−1)
0 , φ(m−1), data);

γ
(m)
0 ∼ P(γ0|γ(m), η

(m)
0 , φ(m−1), data);

φ(m) ∼ P(φ|γ(m), γ
(m)
0 , η

(m)
0 , data).

(17)

Under fairly weak conditions that are known to be satisfied in this application (see Roberts and Smith, 1994)

the sequence of draws {φ(m), γ(m), γ
(m)
0 , η

(m)
0 } forms an aperiodic and irreducible Markov chain whose stable

distribution is the joint posterior distribution P(φ, γ, γ0, η0|data) (Gelfand and Smith, 1990). The algorithm

used in this study satisfies the sufficient condition that the full conditional densities used to generate new

values for the chain have positive mass everywhere in the admissible region. Given a sample of N draws from

the posterior, we can consistently estimate the posterior moments of the parameters of interest. We make

use of data augmentation in the first two steps in (17), and in both cases, the simulation is straightforward.

Implementation details are outlined in Appendix C.

3.3 Prior Specification

The fixed parameters of (13) are only instrumental to our analysis. Our main interest lies in estimating the

coefficients of relative risk aversion. Because our focus is on determining what levels of risk aversion are

consistent with the data, we prefer to use priors that are sufficiently diffuse so as to allow the form of the

posterior distribution to be dominated by the likelihood function.

Since the parameters describe the diffusion process of a set of variables that are fairly smooth, we believe

that the absolute values of some of the elements of φ will be relatively small. In specifying the priors for

the unrestricted elements of A and b, we use normal priors centered around zero. Prior beliefs about the

elements of σ̃ are also described by a diffuse normal distribution. The prior means are chosen to be consistent

with σ̃log(c) = 0.01, σ̃e = 0.02, ρe log(c) = 0.1, ρlog(c)γ = −0.5 and ρeγ = 0.5. The choices for the prior means

for σ̃log(c), and σ̃e are roughly consistent with the levels of observed volatility for consumption growth and

for excess returns. We expect that movements in risk aversion will tend to be negatively correlated with
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consumption growth. From (14), the usual CRRA model will provide estimates of γ that are biased upwards

if the term log(ct)σ̃γ σ̃eρeγ is positive. In our data set, log(C) is always positive, and, in the absence of strong

priors on the subjective scaling factor, we may start by setting Θ = 1, so log(c) is positive. We believe that

the estimates for risk aversion generated by the CRRA models are implausibly high, which suggests a positive

correlation between excess returns and risk aversion.

In choosing priors for the parameters governing the diffusion process for γt, we incorporate our belief

that fluctuations in levels of risk aversion will be fairly small. In the two-state model developed in Gordon

and St-Amour (2000) it was found that changes in relative risk aversion are small and infrequent. In our

main results, we use an inverse-gamma distribution for (σ̃γ)2 that is equivalent to the information contained

in a fictitious sample of 100 observations of innovations in risk aversion with a mean of zero and standard

deviation of 0.05. Lastly, the mean parameter for the prior distribution for γ0 is set equal to unity. We believe

that these values are reasonably close to the region of the parameter space where the likelihood function

has mass. In order to attain local uniformity in this region, the prior standard deviations for parameters

other than (σ̃γ)2 are set at the relatively large value of 10. Our results are robust to this choice of prior.

In another round of estimation, we used a diffuse prior for the variance of the risk aversion term, centered

around 0.05, but with a standard deviation of 10. We obtained results that are qualitatively similar to those

in Section 4.
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4 RESULTS

4.1 Estimation Details

Data and Estimation. Our results are based on a standard US monthly data set that has been used exten-

sively in assessing the performance of various asset pricing models. The consumption measure is per-capita

expenditures on nondurable goods and services measured in constant 1992 dollars, the risk-free rate is prox-

ied by the real rate of return on 3-month T-Bills, and the S&P500 composite index serves as our risky asset.

Our sampling period is 1962:8 to 2000:12, for a total of 461 observations.

A well-known problem of modelling this data set with continuous-time models is that consumption is

measured as a time-averaged series, whereas holding-period returns are not. Therefore, to make all series

conformable, we follow the procedure outlined in Grossman et al. (1987) and Hansen and Singleton (1996)

which involves using the time-averaged returns. In particular, we calculate the holding-period return over

the previous month for each day of the month. We then take the average of those monthly returns over the

days of the month. Excess returns are obtained by subtracting the risk-free return from the risky return (to

compute the excess price variable Re
t we simply accumulated excess returns, from a base observation of 0).

Although the Markov chain (17) will in principle converge from any starting value and using any proposing

distribution for the Metropolis-Hastings algorithm, it is more efficient to make use of a few trial runs to

identify the region in which the posterior has mass in order to select the appropriate spread for the proposing

distributions. Our results are based on a sample of 2000 draws from the posterior; technical details are

described in Appendix C. The numerical standard errors for the posterior means for the parameters φ and

for γt were calculated using the method in Geweke (1992). They are generally around 0.5% of their estimated

posterior means.

Presentation of Results. Our main results for the model (12) are presented in Tables 1 and 2. Panel A

of Table 1 presents the estimated unrestricted feedback and constant parameters (A, b) in the drift terms.

Panel B of Table 1 reports the estimated diffusion (σ̃i) and correlation terms (ρij). Table 2 presents the

sample moments for the derived risk aversion series (γt).

18



We mentioned earlier that the subjective scaling factor Θ is not identifiable from excess returns alone.

We therefore calibrate this parameter to three values: log(Θ) = 0 (column 1), log(Θ) = 9.06 (column 2),

and log(Θ) = 16.00 (column 3) and estimate all the remaining parameters. In the first round of estimation,

we impose the restriction that the agent’s scaled consumption is consumption itself. Since, in our sample,

log consumption ranges between 8.63 and 9.43, this implies that consumption is always larger than the

subjective metric (i.e. consumption is always ‘high’ relative to the metric, and log(ct) > 0 throughout the

sample period). In the second round of estimation, we set the subjective metric equal to the unconditional

mean value for consumption, i.e. Θ = E(Ct). As mentioned earlier, since the level of scaled consumption is

centered on the pivotal point (c = 1) on the marginal utility schedule, the effect of SRA should be minimal. In

the third round of estimation, we set the subjective metric to a relatively high value of 16. This implies that

consumption is always smaller than the subjective metric (i.e. consumption is always ‘low’, and log(ct) < 0

throughout the sample period).

4.2 Estimated Parameters

A first observation from the estimated drift parameters in panel A of Table 1 is that the magnitude of

instantaneous changes in consumption falls in the level of consumption, but increases in the level of risk

aversion. Moreover, this last effect is larger in absolute value compared to the other. Secondly, the magnitude

of instantaneous changes in risk aversion falls in the levels of consumption and of risk aversion. Again,

the feedback effect of the level of risk aversion is more important compared to that of consumption. We

therefore find strong feedback effects between levels of and changes in consumption and risk aversion, with

risk aversion levels having particularly strong effects on changes in consumption and risk aversion. These

effects are robust to the calibration of the subjective metric Θ. Conversely, we find that the value of the

metric has an incidence on the effect of the cumulative returns level on changes in consumption and risk

aversion. First, a high returns level reduces anticipated changes in consumption and increases anticipated

changes in risk aversion when the SRA effect is larger (i.e. when log(Θ) 6= 9.06). Hence, the feedback effect

of returns on consumption and risk aversion depends on the level of scaled consumption.
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Turning to the diffusion parameters in panel B, we find again that most parameters are robust to the

choice of Θ, with the exception of the correlations involving returns. In particular, positive innovations

in returns tend to be associated with positive innovation in consumption, and negative innovations in risk

aversion. Moreover, these effects are re-enforced when the subjective scaling metric increases. This suggests

a counter-cyclical pattern to unanticipated changes in risk aversion which is confirmed by the strong negative

correlation between innovations in consumption and risk aversion.

4.3 Risk Aversion Estimates

Panel A of Table 2 presents the sample moments for the time series of γt. These results reveal that the risk

aversion series is (i) moderate by any usual standard and (ii) moderately volatile. Indeed, the coefficient

of variation for risk aversion is only 0.35, compared to 14.60 for excess returns. The SRA model therefore

points to a representative agent that is neither excessively risk averse, nor subject to high volatility in his

level of risk aversion. Interestingly, the estimation results regarding risk aversion are robust the calibrated

value for the subjective metric Θ.

A third feature again confirms counter-cyclical attitudes toward risk. In order to characterize further

the ‘state of the world’, we use the experimental indices of Stock and Watson (2003). To avoid potential

non-stationarity, we use first-differences for the indices and then compute correlations. Correlations between

changes in γt and the various indices are presented in panel B. They indicate that increases in risk aversion

are associated with falls in the business conditions index and/or increases in the recession index, whether

leading or coincident, and whether financial variables are included or not. Again, those results are robust to

the calibration of Θ.

This interpretation is confirmed when we look at the levels of risk aversion for log(Θ) = 0 which are

displayed in Figure 1 (thick line, RHS scale), along with the deviations from a polynomial deterministic

trend in the log of the XCI indicator, a coincident business conditions index (thin line, LHS scale). Indeed,

we see that an improvement in the state of the world tends to be associated with a decrease in risk aversion.

In addition to being intuitively appealing, these characteristics of risk aversion have important consequences

for asset pricing, an issue to which we now turn.
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4.4 Implications for Asset Returns

To summarize our findings thus far, we have estimated a risk aversion index for the SRA model of equity

premium that is (i) reasonable, (ii) moderately volatile, and (iii) counter-cyclical. The implication of (i) in

particular are that the additional contribution of curvature risk to IMRS risk must be important in order to

reproduce the high observed premium on equity.

Table 3 presents the sample moments for the components of predicted premium, as well as those of the

observed equity premium. To illustrate the contribution of each sources to IMRS risk, we distinguish between

consumption, γtσ̃
e log(c), and curvature risk terms, log(ct)σ̃eγ , as well as the total predicted excess returns. A

first observation is that the calibrated value for Θ has a more important effects on the results. This finding is

consistent with our earlier result that the calibration of the subjective metric has an important incidence for

feedback parameters as well as correlations between returns on one hand, and consumption and risk aversion

on the other, whereas the other parameters remain unaffected. Unsurprisingly, the predicted premia, which

involves mainly returns correlations, is similarly dependent on the value of Θ.

Panel A presents the sample means. Recall that when log(Θ) = 9.06, scaled consumption is centered on

the pivot point and the SRA effect is minimized. Indeed, in this case, curvature risk becomes negligible and

the predicted premia is only 0.15% of the observed one. Relaxing this restriction increases the SRA effect.

In particular, we can see that curvature risk is by far the most important contributor to IMRS risk compared

to consumption risk when log(Θ) 6= 9.06. Consequently, the predicted premium increases substantially. This

being said, the additional IMRS risk generated by SRA is insufficient to reproduce the observed premium

when log(Θ) = 0. Nonetheless for log(Θ) = 16, the predicted premium matches well the observed one.

We therefore conclude that the SRA model is able to reproduce the high observed premium on equity at

reasonable levels of risk aversion when the subjective metric is calibrated to a high level. The risk premium

(10) establishes that a high metric implies a high (negative) price of preference risk. Furthermore, recall

from Panel B in Table 1 that log(Θ) = 16 also corresponds to the highest negative correlation between

returns and risk aversion. Consequently, the contribution of preference risk is larger and the equity premium

is replicated without having to inflate risk aversion to excessive levels.
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Panel B presents the volatility of the predicted and observed premia. We can see that increasing the

subjective metric generally increases the volatility of the predicted premium. However, this volatility remains

very low compared to that of the observed premium. This result is a direct consequence of our earlier finding

that risk aversion is only moderately volatile. Since neither risk aversion nor consumption are subject to high

variance, and because the innovations are assumed to be conditional homoscedastic, the theoretical premium

remains relatively smooth. This suggests that further research should focus on more complex heteroscedastic

structures in order to model second moments.

Finally, we analyze the correlation of the predicted and observed excess returns with the state variables in

panel C. It appears that SRA is unable to match the pro-cyclical pattern found in observed premia. Indeed,

recall that risk aversion was found to be counter-cyclical, especially with respect to coincident business

indicators. This translates into a counter-cyclical predicted premia with respect to that same variable.

Correlations with other indicators are negligible.

To conclude, our estimation results show that, for high levels of the subjective metric Θ, the SRA model

is able to reproduce the high observed mean excess return on equity at reasonable levels of risk aversion,

thereby potentially addressing the equity premium puzzle. Although the focus of this study is on equity,

it is interesting to ask how the model performs with respect to the risk-free rate. For that purpose, we

calibrate the subjective discount rate δ = 0.03/12, a realistic value, and use the parameter estimates for the

consumption and risk aversion processes, as well as the posterior means for risk aversion in (11) to obtain

the predicted short rate.

We find that when we set log(Θ) = 0, the posterior mean for the fitted risk-free rate is -0.1826, compared

to an observed rate of 0.0017. However, when we set log(Θ) = 16, the fitted risk-free rate increases to

-0.0894. Although the case where risk aversion is counter-cyclical appears to have a better chance of fitting

the risk-free rate, these fitted risk-free rates have very large posterior standard deviations – around 0.37 for

the case log(Θ) = 0 and 0.27 when log(Θ) = 16 – so no strong conclusions can be made at this point. But

these results do suggest that an approach in which risk aversion and the subjective metric are estimated

jointly, using the the information contained in the observed risk-free rate in addition to excess returns, should

generate better and more precise results. In a similar context, Gordon and St-Amour (2000) find that a SRA

22



model that uses stock and bond prices to estimate both γt and Θ fits the risk-free rate fairly well. We plan

to address this issue in future research.
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5 CONCLUSION

The application of state-dependent preference specifications to the C-CAPM is motivated by a long-

standing paradox of conventional macro-economic asset pricing models: since asset returns and consumption

are weakly correlated, the observed equity premia can only be generated by an unreasonably high prices of

consumption risk, i.e. excessive risk aversion. In the SRA framework, observed risk premia can be replicated

with plausible levels of relative risk aversion indices. The reason for this is the presence of an additional

concavity risk that supplements the usual consumption risk within the valuation equation. Moreover, the

price of this risk is a function of log consumption, providing a rationale for time-varying and cyclical excess

returns. Finally, the increment in IMRS risk obtained under SRA justifies a low risk-free rate of return

through a precautionary savings argument.

Our empirical implementation concentrates on identifying both the characteristics of the stochastic pro-

cess for risk aversion consistent with US data as well as the predicted values of this process. After specifying

a simple linear multivariate Brownian motion, we use data augmentation techniques to obtain estimates for

their realized values at each data point. In resorting to Bayesian methods, we provide finite-sample results

based on the exact likelihood function for time-averaged data. The estimated posterior moments point to a

sequence of relative risk aversion indices that are:

• Well within the plausible range;

• Moderately volatile compared to returns;

• Counter-cyclical;

• Able to justify the high observed equity premium when the subjective metric is calibrated to a high

value.

Overall, our results indicate that the additional curvature risk associated with the covariance between risk

aversion and returns is a strong contributor to the IMRS risk.

Our estimates should be interpreted as an unrestricted reduced form that can be used as a guide in

developing other specifications. For example, the finding that innovations in consumption and risk aversion
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are strongly correlated suggests that both processes could be modelled as functions of a single state variable.

A natural candidate would be wealth: it seems plausible to suppose that unanticipated increases in wealth

would increase consumption and reduce risk aversion. Theoretically, incorporating wealth into the current

model does not pose any great difficulties (the Euler equations for equilibrium would include terms that take

into account the fact that the agent has partial control over the evolution of the state variable), but empirical

implementation of the model would be greatly hampered by the lack of reliable high-frequency wealth data.

On the other hand, data augmentation approaches similar to that used here may prove to be useful research

tools toward identifying wealth and estimating the model.
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APPENDIX A: PROOF OF PROPOSITION 1

First, from (7) and instantaneous utility (5) we have that:

πt = e−δtc−γt

t

= π(Zt, t), where Zt ≡ [ct, γt]T, and

dZt = µZ
t dt + σZ

t dBt.

By Itô’s lemma, we have that the drift and diffusion of πt are respectively:

µπ
t = πZ(Zt, t)µZ

t + πt(Zt, t) + 0.5tr[σZ
t σZT

t πZZ(Zt, t)], (A.1)

σπ
t = πZ(Zt, t)σZ

t , (A.2)

where πZ(Zt, t) denotes the gradient row vector, πt(Zt, t) is the derivative with respect to time, and

πZZ(Zt, t) is the Hessian matrix. The relevant elements are:

πc(Zt, t) =
−γt

ct
πt, πγ(Zt, t) = − log(ct)πt, πt(Zt, t) = −δπt; (A.3)

as well as

πcc(Zt, t) =
γt(γt + 1)

c2
t

πt, πcγ(Zt, t) =
−[1− γt log(ct)]

ct
πt, (A.4)

and

πγγ(Zt, t) = [log(ct)]2πt. (A.5)

Substitute in (A.1) and (A.2), and use the resulting expressions in (8) and (9) to obtain the equity premia

(10) and the risk-free rate (11).
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APPENDIX B: DERIVATION OF THE AUGMENTED

LIKELIHOOD FUNCTION

The error vector ηt in (15) is normally distributed, but these errors are not iid. They follow a MA(1)

process such that E[ηtηt
′] ≡ Ω0, E[ηtηt−1

′] ≡ Ω1, and E[ηtηt−s
′] = 0, for |s| > 1. Grossman et al. (1987)

provide a straightforward way of calculating Ω0 and Ω1 as functions of φ.

It is well known (Hamilton, 1994; Chib and Greenberg, 1994; Melino, 1996) that estimation of the

parameters of moving average processes is greatly simplified when the model is characterized in terms of

its state-space representation. Our approach is based on the Bayesian procedure outlined by Chib and

Greenberg (1994).

Since the error terms are not independent, the joint density of the sample cannot be expressed as the

product of the marginal densities for ηt. However, we can make use of the fact that ηt and ηt−s are

uncorrelated for values of s ≥ 2. Since the errors are normally distributed, the fact that they are uncorrelated

means that P(ηt|ηt−1, ηt−2, . . .) = P(ηt|ηt−1). These conditional distributions are also normally distributed,

with conditional mean η̂t|t−1 ≡ Ω1Ω−1
0 ηt−1 and with conditional variance G−1 ≡ Ω0−Ω1Ω−1

0 Ω′
1. Consider

a sample of T observations generated by (15). The conditional distribution of η1, η2, . . . , ηT given η0 is

therefore:

P(η1, η2, . . . , ηT |η0) =
T∏

t=1

P(ηt|ηt−1). (B.6)

A problem is posed in the first period of the sample. Since data for Y−1 are unavailable, there is no way to

retrieve η0. In order to facilitate the derivation of the likelihood function we suppose that η0 is observed.

Given a value for the parameter vector φ, we can compute the reduced-form parameters λ, g and G

according to the procedures outlined above. From these parameters, we can then retrieve the sequence

{ηt}T−1
t=1 from (15). These values - along with η0 - can then be used to compute the sequence {η̂t|t−1}T

t=1.

Define εt ≡ Yt − φYt−1 − g − η̂t|t−1 and let γ ≡ {γt}T
t=1 represent the time series vector of time-averaged

risk aversion coefficients. The unconditional joint density for the augmented data set is therefore:

P(data, γ|η0, γ0, φ) = (2π)−(n+2)T/2|G|T
2 exp{−0.5

T∑
t=1

ε′tGεt}. (B.7)
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The sample selection correction associated with imposing positivity for simulated values of γt at each

data point is taken into account by dividing (B.7) by the joint probability that a realized sequence of γ is

positive:

P(data, γ|η0, γ0, φ, γ > 0) =
(2π)−(n+2)T/2|G|T

2 exp{−0.5
∑T

t=1 εt
′Gεt}∏T

t=1 P(γt > 0|Y t−1, φ)
. (B.8)

The augmented likelihood function is simply (B.8) interpreted as a function of the unknown parameters

given the augmented data set.

APPENDIX C: THE MCMC ALGORITHM

Since (15) is linear in γt and ηt, the full conditional distributions for each element of γ and of η0 are also

normal. Consider the full conditional distribution P(γt|γ−t, η0, φ, data), where γ−t denotes the elements

of γ other than γt. Isolating the contribution of γt to the likelihood, we note that P(γt|γ−t,η0,φ, data)

is proportional to the kernel of a normal density whose mean and variance are given by the usual Kalman

filter expressions. The first step of (17) therefore reduces to a sequence of draws from a univariate normal

distribution. Kong et al. (1994) note that there may be efficiency gains to be had by simulating the γt terms

in blocks, instead of one at a time. This doesn’t seem to be the case here. Since the risk aversion series does

not appear to be strongly autocorrelated (the new estimates have an autocorrelation coefficient of around

0.1) we found that there were essentially no efficiency gains to be had there; when we re-estimated the model

using algorithms in which the risk aversion terms are simulated in blocks of k = 2 and k = 3, the numerical

standard errors were more or less the same as the single-move case. It’s also worth noting that reducing

the number of risk aversion simulation steps by a factor of k provides no computational gains, either: since

we impose the restriction γt > 0, simulating a k−vector from a multivariate truncated normal requires k

simulations from a truncated univariate normal.

The second step of (17) is done in a similar manner. We note that we can isolate the contribution to the

likelihood of each element of η0, and that its full conditional distribution also has the form of a univariate

normal. The values of η0 are generated using the appropriate normal distributions (see Chib and Greenberg,

1994, for a detailed treatment). Similarly, if the prior distribution for γ0 is normal, then the full conditional

distribution is also normal, with mean and variance given by well-known formulae (Poirier, 1995, p. 293).
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Given the output of the previous steps, the structural parameters can be dealt with in a straightforward

fashion. Since the conditional distribution P(φ|γ, γ0,η0, data) is non-standard, we use the “Metropolis-

within-Gibbs” technique of simulating draws for each element of φ using the random-walk version of

Metropolis-Hastings acceptance-rejection algorithm (see Tierney, 1994; Chib and Greenberg, 1995, for a

description). The random walk candidate generating densities were mixtures of two normal distributions,

each with mean 0. Candidates had a 90% probability of being drawn from a distribution whose standard

deviation was approximately equal to the posterior standard deviation (calibrating these standard deviations

required several preliminary rounds of estimation), and a 10% chance of being drawn from a distribution with

a standard deviation 10 times as big. Giving the chain regular exposure to ‘extreme’ candidates attenuates

(but can never entirely eliminate) the probability that it will get stuck in a ‘bad’ region of the state space.

Typical acceptance rates for a given parameter were around 30%. In order to reduce autocorrelations in

the chain, the sample of 2500 draws was generated by keeping every fifth draw of chain of 12,500 iterations.

The first 500 draws of this sample were discarded, leaving the sample of 2000 draws used in calculating our

estimates.
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TABLES

Table 1: Estimated Parameters

parameter interpretation log(Θ) = 0 log(Θ) = 9.06 log(Θ) = 16
A. Unrestricted drift parameters

alog(c) log(c) consumption level -1.00e-4 -0.0012 -0.0089
on consumption growth (0.0003) (2.4e-4) (1.9e-4)

alog(c)e cumulative returns -0.0021 0.0093 -0.0172
on consumption growth (0.0060) (0.0054) (0.0052)

alog(c)γ RA level 0.5905 0.5209 0.5786
on consumption growth (0.0357) (0.0434) (0.0488)

aγ log(c) consumption level -0.0397 -0.0403 -0.0446
on RA change (0.0029) (0.0031) (0.0038)

aγe cumulative returns 0.0222 -0.0513 0.1158
on RA change (0.0310) (0.0387) (0.0176)

aγγ RA level -3.7650 -3.9384 -3.4816
on RA change (0.6077) (0.2065) (0.5040)

blog(c) consumption -0.0234 -0.0114 -0.0149
(0.0056) (0.0032) (0.0042)

bγ RA 0.5194 0.5404 0.5442
(0.0326) (0.0148) (0.0287)

B. Diffusion and correlation parameters
σ̃e standard error 0.0430 0.0430 0.0430

returns (0.0015) (0.0015) (0.0014)
ρe log(c) consumption correlation 0.1121 0.1830 0.2837

with returns (0.0557) (0.0733) (0.1105)
ρeγ RA correlation 0.0260 -0.0972 -0.1283

with returns (0.0590) (0.1060) (0.0725)
σ̃log(c) standard error 0.0109 0.0108 0.0104

consumption (6.4e-4) (5.3e-4) (9.7e-4)
ρlog(c)γ consumption correlation -0.9532 -0.9430 -0.9502

with RA (0.0157) (0.0157) (0.0163)
σ̃γ standard error 0.0638 0.0624 0.0644

RA (0.0058) (0.0060) (0.0064)

Note: The estimates are the posterior means of the various features of interest; the posterior
standard deviations are in parentheses; ct ≡ Ct/Θ, where Θ is subjective scaling factor; a, b as
well as σ, ρ parameters refer to the parameters in the restricted Brownian motion model (12).
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Table 2: Sample Estimates for Risk Aversion

parameter interpretation log(Θ) = 0 log(Θ) = 9.06 log(Θ) = 16
A. Sample moments

E(γt) mean 0.0452 0.0421 0.0497
risk aversion (0.0076) (0.0063) (0.0095)

std(γt) standard error 0.0158 0.0156 0.0189
risk aversion (0.0028) 0.0018 (0.0034)

B. Correlation with state variables
ρ(∆γ, ∆XRI) leading recession 0.0507 0.0751 0.0471

index
ρ(∆γ, ∆XLI) leading business -0.0435 -0.0621 -0.0397

conditions index
ρ(∆γ, ∆XCI) coincident business -0.1482 -0.1046 -0.1602

conditions index
ρ(∆γ, ∆XRI − C) coincident recession 0.1268 0.1126 0.1205

index
ρ(∆γ, ∆XLI − 2) lead. bus. cond. ind., -0.1245 -0.1202 -0.1039

no financial series
ρ(∆γ, ∆XRI − 2) lead. recess. ind., 0.0806 0.0947 0.0554

no financial series

Note: The estimates are the posterior means of the various features of interest; the posterior
standard deviations are in parentheses; Θ is subjective scaling factor.

Table 3: Moments of Excess Returns

log(Θ) = 0 log(Θ) = 9.06 log(Θ) = 16 data
A. Mean

consumption risk: γtσ̃
e log(c) 2.4e-6 3.6e-6 6.3e-6

curvature risk: log(ct)σ̃eγ 6.5e-4 -2.4e-9 2.5e-3
total 6.5e-4 3.6e-6 2.5e-3

2.4e-3
B. Standard deviations

consumption risk: γtσ̃
e log(c) 5.5e-7 9.7e-7 1.9e-6

curvature risk: log(ct)σ̃eγ 1.5e-5 5.5e-5 7.4e-5
total 1.5e-5 5.5e-5 7.4e-5

3.5e-2
C. Correlation with state variables

ρ(Re,∆XRI) 0.0060 -0.0058 -0.0049 -0.0582
ρ(Re,∆XLI) -0.0167 0.0164 0.0159 0.1163
ρ(Re,∆XCI) 0.1186 -0.1275 -0.1216 0.0495
ρ(Re,∆XRI − C) 0.0054 0.0008 -0.0006 -0.1114
ρ(Re,∆XLI − 2) -0.0084 0.0039 0.0051 0.0853
ρ(Re,∆XRI − 2) 0.0004 0.0012 0.0000 -0.1280

Note: See Table 2 for explanation of state variable indices.
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TITLE AND NOTE OF FIGURE

Figure 1: Risk Aversion Estimates and Coincident Index

Note: Quarterly estimates for risk aversion γt (thick line, RHS scale) for first model (log(Θ) = 0),

and deviations from deterministic trend in the log of coincident Stock-Watson XCI index (thin

line, LHS scale).
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