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Abstract5

We propose discrete time asset trading framework based on quan-6

tum probability formalism that represents well the ambiguity of agents7

in respect to the fundamental values and price states of the traded8

assets. Divergence of beliefs alike classical finance frameworks (e.g.9

works by Harrison and Kreps, 1978 [24]; Scheinkman and Xiong, 200310

[50]) produces different expectations of agents about the future price11

distribution of the traded risky asset. The model accounts for the12

emergence of heterogeneous beliefs from agents’ ambiguity about both13

the future asset price states and the fundamentals, as opposed to the14

strands that attribute heterogeneous beliefs to asymmetric informa-15

tion and different, yet firm prior beliefs about stochastic processes over16

fundamentals. The introduced quantum probability paradigm allows17

to depict a genuine ambiguity of agents in respect to the future realiza-18

tion of payoff relevant variables and prices. There are two sources of19

ambiguity: i) the imperfect market knowledge of agents, manifest in a20

divergence of ambiguous priors, ii) uncertainty about the probability21

distribution of price states and dividends in the next trading period.22

Agents update their beliefs via Born rule (instead of Bayesian update)23

when observing the realised price outcomes and dividend signals. An24

important feature relates to individual traders’ not possessing a joint25

probability distribution over the payoff relevant variables and price26

outcomes that brings up attraction, respective aversion to ambiguity27

in their interpretation of public signals. On the level of the composite28

model of stock exchange, formed by the expectations of two ensem-29

bles of agents, an interference term can serve as a quantitative testable30
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prediction in respect to the excess volatility of asset prices created by31

traders’ optimistic and pessimistic beliefs.32

keywords: asset trading; speculative asset prices; heterogeneous beliefs;33

ambiguity; state dependence; quantum probability.34

1 Introduction35

There is a long standing debate in the standard neoclassical finance litera-36

ture on the impact of uncertainty on financial asset prices. The best known37

models going back to Miller, [44] have held that uncertainty is represented38

by some measure of divergence of investors’ opinions, grounded in the pres-39

ence of information asymmetries in incomplete markets. Miller conceived40

that ”the very concept of uncertainty implies that reasonable men differ in41

their forecasts”, [44], p.1151. Such divergence of states of beliefs causes the42

deviation of asset prices from the so called fundamental value as predicted43

by the asset pricing models such as CAPM.1 Since the central premise of44

rational expectations (RE) models is homogeneity of investors’ beliefs, along45

with some restricted perfect market conditions, arbitrage is not possible in46

the long run and asset prices do not deviate from what the fundamentals47

predict. This is also an important implication of the seminal EMH (Efficient48

Market Hypothesis) by [23] that builds upon the notion of common knowledge49

of market actors about all the available information as well as singularity in50

mapping from the observed fundamentals to asset prices. As a consequence,51

in the absence of new information all agents agree on the fair price of a52

risky asset. When new information about payoff relevant variables arrives,53

the agents react to the price relevant news following a classical Bayesian up-54

date scheme.2 The assumption of equal priors and homogeneous posterior55

beliefs, as a result of common knowledge that is central to the above finance56

frameworks, was shown to be a rather idealized postulation, in particular,57

when one deals with such a complex system as finance market containing58

multiple sources of noisy information, as opposed to an observation of some59

simple events, such as a coin toss. For decades finance literature was pre-60

occupied with the identification of the sources of heterogeneous beliefs and61

their impact upon asset prices, associated with periods of high volatility and62

1Capital asset pricing model establishes the ‘right’ rate of return for holding a risky
asset that together with expected cash flow projections, or all expected future dividends
allows to assess a current ‘fair’ price of that asset.

2Under asymmetric information with non-biased private signals, rational agents would
ideally be able to infer other traders’ information from the observed asset prices and hence
a fully revealing rational expectations equilibrium is attained, [21].
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‘bubbles’, [11] [24], [32], [45], [50], as well as recently, [1], [9], [38], [19], [13].63

The main causes of heterogeneous beliefs are divergent priors that can steam64

from overconfidence as well as optimism and pessimism. Asymmetric infor-65

mation and incomplete markets is also a widely identified factor that triggers66

uncertainty about the fair asset value among the less informed ensembles of67

agents. The markets can also be incomplete for all types of agents, giving68

raise to divergence of opinions, [1]. As a consequence the agents’ externally69

irrational beliefs about the fundamentals are not a common knowledge. The70

above works espouse that information processing of agents follows Bayesian71

scheme with some noisy estimates that distort a singularity of opinions based72

on the above mentioned cognitive factors. The ‘noisy’ forecasts are captured73

via classical Markov processes and related stochastic equations, with some74

adjustments to the chosen parameters, to capture a disagreement about the75

fundamentals, see, e.g., [9], [13], [38], [50]. Works by [1] and [32] explore dif-76

ferences in interpretation of signals and their mapping to prices values under77

incomplete and fully available public information respectively.78

The present paper aims to serve as contribution to the exiting theoreti-79

cal frameworks on asset trading under heterogeneous beliefs and ambiguity.80

Agents can hold ambiguous beliefs about the next period asset price distribu-81

tion of a financial asset in an informationally incomplete market. We model82

agents ambiguity via a ‘projective’ probability calculus, based on quantum83

probability (QP). This formalism aims to go beyond SEUT (Subjective Ex-84

pected Utility Theory) formalization of preferences that builds upon classical85

probability theory of [39]. The main premise of our framework is that agents86

can be non-Bayesian and find themselves in a deeper state of ambiguity, given87

by indeterminate superposition states of opinions. Following earlier works on88

speculative bubbles by [24] and [50], we assume a basic setup with infinitely89

lived risk neutral investors, short sales constrains, no liquidity constraints90

and frictionless markets.3 Agents maximize discounted expected value in91

a classical SEUT mode. They hold non-classical beliefs that are updated92

via the Born rule. Our model assumptions carry some similarities with the93

framework of [1], characterized by informational incompleteness of the mar-94

ket that triggers agents’ divergence in opinion about the liquidation value of95

the risky asset and the noisy dividend signal in the next trading period. In96

their model the agents have different likelihood functions mapping the ex-97

pectations over fundamentals onto the price states. We seek to modify their98

framework by introducing a quantum probability (QP) based scheme of in-99

3Risk attitudes do not affect risk premium and the impossibility of short sales does not
allow pessimists to short the asset, thereby giving rise to bubbly and, in other trading
periods, as belief states switch, to deflationary pressures.
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formation processing and belief formation under informational ambiguity of100

agents about the dividend signals and prices in the next trading period. It101

is important to note that agents form separate beliefs about the price evolu-102

tion and dividend signal distribution, contrary to the assumptions of classical103

DDM (Dividend Discount Models) in which only the future dividend streams104

matter for the current asset price. The state space of the agents, the so called105

Hilbert space, consists of the subspaces related to the outcomes of price and106

dividend observables, which act upon the belief state vector (ψ) of each agent.107

QP calculus relaxes the assumption of a joint probability distribution over108

prices and fundamentals that is axiomtized in classical probability theory via109

the commutativity rule of probability distributions.4 Agents can be affected110

by non-commuting observables (given by random variables in classical prob-111

ability theory), associated with dividends and prices. A quantum formula112

of total probability introduced in eq. (2) contains an additional interference113

term that mathematically depicts the interference effects in agents’ beliefs.114

Positive interference of probability amplitudes pertains to overweighting of115

probability of price value. Negative interference gives raise to pessimistic be-116

liefs, manifest in under-weighting of the probabilistic prognosis in respect to117

the realizations of future increase in price and dividends. Non-classical am-118

biguous beliefs produce trading preferences associated with upwards volatility119

in respect to the fundamental valuation based on RE. As beliefs of agents120

oscillate between the trading periods, a state transition to pessimistic beliefs121

creates trading preferences that contribute to deflationary pressures.122

Given the importance of the non-singularity of beliefs in affecting the123

asset price volatility we operate with two ensembles of agents. Their het-124

erogeneous ambiguous beliefs are caused by optimism or pessimism affect.5125

We also conceive that the cognitive states of pessimism and optimism trigger126

ambiguity attraction respective aversion among agents, when evaluating the127

asset price distributions in the next trading period, which is in line with find-128

ings in [49]. In the absence of dividend signals, agents’ ambiguity attraction129

in creates beliefs that the asset price will go up in the coming trading period.130

Upward price volatility emerges and the risky asset price raises above its131

fundamental value. The coefficients of interference allow to quantify the de-132

gree of overvaluation respective undervaluation by the agents. Divergence of133

4Non-commutativity brings up a non-satisfaction of the core rule of classical probability
theory, the formula of total probability, [39]. A deviation from classicality in information
processing, given by a violation of the independence axiom of SEUT has been detected in
a large body of studies in economics, starting with the seminal Ellsberg paradox.

5In the proposed model uncertainty about divided distribution is assumed to be sym-
metrical, and the heterogeneity in the limiting probability distribution is solely due to
divergence in the prior ambiguous beliefs.
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agents’ beliefs is mathematically represented via a weighted sum of different134

pure states, ψ, producing a composite mixed state of ambiguous beliefs. The135

difference in the phase between the belief states of the two ensembles of agents136

allows in the similar manner to [50] to quantify the difference in ambiguous137

beliefs. The two types of agents interact, as one agent type trades based138

on their ptimistic beliefs about the prices in the next trading period. The139

optimistic agents can switch their beliefs to pessimistic in the next trading140

period t1, and deflationary pressures on prices can emerge. This behaviour141

is in line with [46], showing that short-sale constraints, combined with pes-142

simistic mood during crises can lead to undervaluation of assets. A switching143

of beliefs occurs, as the observed price states feed back into ambiguous belief144

states of the agents. Since the operators of prices and dividends do not com-145

mute, a different order of price and signal observations can create different146

limiting probability distributions of beliefs known in the literature as ‘order147

effect’, [55].6148

QP is by now widely applied in economics and decision theory, in par-149

ticular, to formalise information processing under ambiguity. Probabilistic150

measures given by quantum probability amplitudes can be interpreted as151

classical objective, or subjective probability. Just to mention few, the works152

[47], [12], [26], [55], [2], [27], [35], [10], and [15] formalize the applicability153

of QP as a probabilistic framework in decision theory under uncertainty and154

risk. Dynamical models are also widely applied in information modeling in155

aggregate financial, economic and social systems, see for instance [4], [5], [6],156

[7], [8] [25], [28], [29], [26], [34].7 Monographs by [4]-[5] generalize the ap-157

plicability of quantum mechanics and quantum field theory to modeling of158

the dynamics of financial instruments on the capital market. An agent-based159

model of asset trading via the introduction of raising and lowering operators,160

affecting the share holdings and prices as agents interact is devised in [6]-[7].161

The information dynamics under the existence of arbitrage is modeled via162

wave function in [25]. Similarly, the work by [28] introduces Schrödinger163

equation to derive states of equilibrium and dis-equilibrium in an economic164

system. Quantum Markovian dynamics is applied in [34], to derive long term165

equilibrium states of asset prices.166

6In Appendix 8 we espouse a multi-period belief evolution setup, where the internal
belief evolution can create differences in information update, following the observation of
a sequence of dividend and price outcomes.

7We focus here on quantum dynamical models. A survey of the achievements of models
borrowed from physics in the fields of economics and finance can be found in the monograph
by [41] as well as recent works by [31] and [3]. The latter work examines the potential of
physical frameworks to serve as alternative financial models to model asset price formation
beyond EMH.
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To sum up, our setup is aiming to enrich the field of above reviewed167

contributions of QP models to capture asset pricing under two deviations168

from RE given by, i) non-classical information processing and heterogene-169

ity in opinions, ii) informationally incomplete markets. To the best of our170

knowledge, there are no contributions to speculative asset pricing that focus171

on these two phenomena by representing agents’ opinion update by QP prob-172

abilistic measures. The paper is organized as follows: in the next Section 2173

we sketch the mathematical differences between the classical and quantum174

probability information processing schemes. We motivate the usage of quan-175

tum probability framework as a descriptive DM model for agents’ decision176

making under uncertainty. In Section 3 we provide a mathematical frame-177

work underpinning the all-important distinction of quantum versus classical178

modeling of heterogeneous beliefs under uncertainty. In Section 4 we illus-179

trate the geometric properties of agents belief state evolution, and introduce180

belief and price behaviour operators. In Section5 we define the Born rule of181

information update in the QP measurement scheme. In Section 6 we sum-182

marize the possible empirical predictions of our framework, and in Section 7183

we conclude.184

1.1 Related Literature185

It has been shown in a large body of finance studies that heterogeneous and186

irrational beliefs can generate speculative pressures on capital markets mani-187

fest in asset price bubbles, which may sustain for long periods, see accounts in188

[51]-citeShiller2. A survey of bubble emergence emphasising the role of diver-189

gent beliefs on agents’ speculative behaviour can be found in [56]. The impact190

of heterogeneous beliefs is not the only cause of the existence of inflationary-191

deflationary pressures on asset prices. Excess volatility can also take place192

under rational expectations, caused for instance by dynamic inconsistency193

of agents and credit constraints, [43]. Shiller documents:”speculative bubble194

(is) a natural consequence of the principles of social psychology coupled with195

imperfect news media and information channels.” [52], p.1487.196

The ‘agree to disagree’ phenomenon and its effects on asset trading,197

whereby speculative behaviour can emerge was firstly formalized in the asset198

trading framework by [24], followed by a dynamical representation in [50].199

The existence of disperse beliefs is reflected in deviations from the RE equilib-200

rium price that is based on homogenous expectations of agents.8 In partially201

8Seminal ‘no-trade theorem’ due to [53] postulates the impossibility of the emergence of
bubbles under RE. Under the existence of symmetric information and classical information
processing scheme, traders are aware of the true probability distribution of future returns
and hence, the fundamental value of assets is a common knowledge. Any time any bubbly

6



revealing equilibriums of asset trading, the agents can be aware of other202

agents’ possessing divergent beliefs, due to different private information sets,203

or due to overestimation of the informativeness of some public signals. This204

awareness can trigger trading behaviour directed to benefit from perceived205

overvaluation of assets by other less rational agents, see asset trading under206

‘beauty contest’ by [11]. A similar assumtion about the lack of rationality207

of other agents is made in [50]. Among other, the models by [24], [50], [11],208

assume symmetric upcoming information, yet the agents can make different209

forecasts due to optimism and different priors. In particular the work by [11]210

addresses higher order beliefs (i.e. the beliefs of investors about the beliefs of211

others) under symmetric information and different priors, expanding on the212

seminal work of Harsanyi.213

Optimism as a cognitive feature of the decision makers also contributes214

to a divergence in prior belief states (i.e. the degree of optimism will cause215

different, yet firm prior beliefs among ensembles of agents under symmetric216

information) as postulated in [24]. The heterogeneity in beliefs is an im-217

portant trigger of speculative trade, as beliefs about asset valuation switch218

between agents over the trading periods. Frameworks by [45] and [11] also219

formalize asset trading with divergent prior opinions. Learning among agents220

can occurs over time, as agents observe a sequence of dividends and prices221

converge to the fundamentals over long term, [1], [19], [45]. At the same222

time, agents can update separately their price expectations and dividend ex-223

pectations, based on the observed market outcomes, [1]. Finally, managerial224

decision making under different opinions is exlpored in [19]. In their work225

the role of asymmetric information and optimism, characterising the diver-226

gence of beliefs in principal-agent relationships can create under-investment.227

The stream of literature that explores emergence of adverse selection due to228

asymmetric information is also broad based with a focus on identifying the229

degree of adverse selection impact on the finance market performance.9230

Divergence of opinions can be coupled with adverse selection, where some231

traders lack the private information possesed by other traders. A widely used232

measure of the existence of adverse selection is the bid-ask spread , that quan-233

tifies agents’ attempts to minimise their possible losses, due to the lack of234

complete information, [20]. Contribution by [9] addresses the impact of ad-235

verse selection by devising a continuous dynamical asset pricing model for236

trends are due to emerge, an agent can infer information from prices by possesing the same
likelihood function as other agents.

9Adverse selection problem would naturally not exist in efficient markets, since less
informed investors would follow the more informed ones, since the rationality of all agents
is common knowledge, [21].
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rational investors under incomplete, but symmetrical information.10 In addi-237

tion to the above reviewed causes, heterogeneous beliefs can also emerge as a238

result of non Bayesian information processing. As mentioned, the divergence239

in beliefs can result from different ‘biases’ that cause the non-classical pro-240

cessing of information where ‘noise’ is present often categorised as optimism241

and pessimism. The ‘noise’ in the estimation of the dividend rate can be cap-242

tured via a Markov process following [38], with a coefficient π that serves to243

create optimism (π > 0), or pessimism (π < 0) in respect to the variance of244

the drift factor µ. Another cause behind the violation of Bayesian update and245

other axioms of classical probability can be due to agents’ employing a fun-246

damentally different mechanism of information updating under uncertainty,247

rather than information processing rationality implied by the neo-classical248

normative decision theories. In real finance setting, the agents often cannot249

reach resolution from uncertainty about the realization of future states of the250

world. The agents can trade, while being ambiguous about the future prob-251

abilistic distribution of asset price returns, or have ambiguous expectations252

about the informativeness of private signals. Belief formation and update un-253

der ambiguity and ambiguous information is already well researched in asset254

trading theories, mainly via the usage of ‘max-min expected utility’ (MEU)255

and a dynamical modification thereof, see [13], [16], and references herein.256

Agents can exhibit ambiguity aversion and ambiguity attraction that affect257

their preference formations as espoused in ([18],[36], [17]). In recent contri-258

butions, [14] also seek to examine the effect of an interaction of public and259

private information upon asset prices via an introduction of two ensembles260

of agents. The informed agents exhibit ambiguity aversion and hence bias261

the full revelation of prices for the other (less informed) ensemble of agents.262

Further, the effect of short sale constraint upon return volatility is formalized263

by [46], showing that as the private information becomes more ambiguous,264

negative effects on asset price dynamics emerge when coupled with short sale265

bans. Finally, work by [30] extends the analysis of bubbles to include over-266

time regime shifts in the fundamentals to provide the necessary conditions for267

bubble emergence in derivative markets. To round up, classical probabilistic268

heterogeneous beliefs in the sense of [39] are likely to be attributed to: i)269

divergence of prior beliefs due to some cognitive differences of agents; ii) lack270

of common knowledge caused by asymmetric, or uncertain information, and271

iii) non classical mode of information processing, such that Bayesian reason-272

ing is not employed due to some ‘biases’ or ‘noise’. The last case demands a273

10In this context, it is important to observe how the effect of uncertainty on prices differs
from the standard risk attitude divergence. Different preferences about the required risk
premium can yield divergence in required discount rate among investors and hence, their
affect their valuation of the fair price as shown in the early work by [42].
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relaxation of some of the classical probabilistic axioms, such as distributiv-274

ity and commutativity. Under uncertainty and information asymmetry, the275

beliefs of agents can be also ambiguous and contextual factors can give raise276

to ambiguity aversion that affect their preference formation, [13], [17], [18],277

[36]. Ambiguity attraction is less researched in ambiguity based asset trading278

works, yet can be closely related to optimistic behaviour under uncertainty,279

[2], [49]. We note that the reviewed frameworks also make opposite pre-280

dictions in respect to the emergence of speculative trading; while ambiguity281

aversion implies under-pricing, heterogeneous beliefs and optimism can lead282

to overpricing, thus creating bubbles. The present framework aims to unify283

these predictions, by relating instances of overpricing and under-pricing, via284

the transformation of agents’ heterogeneous (beliefs) in different time periods285

that follow the rules of projective measurements of quantum probability.286

Ambiguity impact on decision preferences, as well as information process-287

ing under ambiguity has been well addressed in recent studies in economics288

and decision theory via the usage of QP, rather than classical theory of prob-289

ability and stochastic processes, for instance, [47], [12], [26], [33] address290

the emergence beliefs and preferences under non-classical ambiguity that de-291

scribe well the violation of classical Bayesian updating scheme in ‘Savage292

Sure Thing principle’ problems and the ‘agree to disagree’ paradox. In [27]293

additional empirical evidence on non-consequential preferences in investment294

choices is collected and accommodated in QP framework. A QP model for295

order effects is formalized in [55] that accounts for state dependence in infor-296

mation processing. Ellsberg and Machina paradox behaviour from ambigu-297

ous beliefs is formalised in [2] with aid of QP calculus. The work by [35]298

proposes decision making scheme via the usage of creation and annihilation299

operators from the quantum information theory. The existence of ‘zero prior300

paradox’ that challenges Bayesian updating from uninformative priors is at-301

tested and solved with the aid of projective scheme of information update in302

work by [10]. Finally, [15] apply the QP formalism of information update un-303

der the study of persuasion in investment and consumption choice, showing304

that the non- satisfaction of the recursive dynamic consistency of choices can305

be mathematically depicted through incompatible information observables.306

The usage of QP as an alternative descriptive (and potentially normative)307

framework of preference formation under uncertainty can be justified given308

the body of empirical evidence in the above mentioned and related studies309

in economics and psychology. The findings affirm an existence of different310

attitudes among decision makers towards ambiguity and risk that are not in311

accord with the SEUT or non-linear probabilistic transformations thereof.312

The main advantage of QP is that it is a complete probabilistic framework313

that allows to accurately depict indeterminacy of agents and its overtime314
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dynamics. The axiomatic of quantum probability is based on a different315

mathematics, where QP is by definition a non set-theoretic probability the-316

ory relaxing the distributivity axiom (exclusivity of events and their additiv-317

ity) and commutativity (context independent joint probability distribution).318

The prior ambiguous beliefs are modeled in QP framework as superposition of319

agents’ belief states. Superposition state allows to reproduce the ambiguity320

of agents associated with the probability distributions of future asset prices321

and dividends. The initial belief state is an indefinite, ‘superposition’ state322

of various probability distributions, or preferences and interference effects323

can be present. We would like to emphasize that superposition representa-324

tion is fundamental to differentiate between the classical and quantum belief325

state description. Our proposal, along with the existing studies using QP326

based decision theory, is that the superposition representation of probability327

amplitudes captures better the ambiguous beliefs than a classical ensemble328

description. The quantum probability is obtained from quantum wave func-329

tion (probability amplitudes) that can also vacillate over time.11 The random330

variables in QP are given by observables and the events by subspaces of a331

Hilbert space, rather than by the sigma algebra on the probability sample332

space. To round up, the QP approach to information processing is consid-333

ered in the literature as a viable mathematical framework of information334

processing that can also be applied to agents’ information processing on the335

financial market. In proposed model we aim to develop the belief formation336

scheme about fundamentals and price in a discrete time setup and describe337

the emergent non-classical asset price equilibrium today. In the next sections338

we continue with the formulation of the quantum probabilistic setup, to de-339

vise a model of belief state formation and update under uncertainty in the340

context of asset trading.341

2 Model of trading under uncertainty in quan-342

tum probability (QP) framework343

The aim of the framework is to elucidate how non-classical heterogeneous be-344

liefs of market participants create interference effects that amplify the trading345

optimism and in other periods trading pessimism. The state of the market346

participants changes after an informational context and the interference af-347

fects can create amplification of buying respective selling, even under no348

upcoming information,[51]-[52]. The states of participants update (e.g. af-349

11For an extended mathematical analysis cf. monographs by [12], [26] and survey by
[48].
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ter observation of previous trading dynamics) and trading bids and asks can350

create sudden price moves for no apparent reason.351

In our model we capture the amplification mechanism via non-classical352

belief indeterminacy, where the ambiguous beliefs about the price states can353

interfere with the ambiguous beliefs on fundamentals’ distribution.354

Before we present information processing under QP under asset trading,355

we review in a simple dichotomous scheme the information update under356

uncertainty that lies at the heart of SEUT.357

2.1 Agents’ decision making: classical probability based358

information processing359

In the classical probabilistic information update, each infinitely lived agent360

from the population N is endowed with an initial pure belief state with361

respect to one risky asset value I in question. Every agent operates in belief362

space for dividends, D and a belief space, K for asset price realizations, upon363

which she makes the hold and sell decisions. The composite state space that364

includes all possible asset price and dividend realisations up to the decision365

time t is Ωt, where t = 0, 1, 2... are some discrete points in time. Hence,366

every agent is a composite system of D and K.12 To simplify the exposition367

of probabilistic update of the model at this stage we consider two types of368

beliefs about the discrete asset price movements, P+ and P−, that correspond369

to agents’ decisions to buy or sell the asset now. There is a dividend signal370

that we denote in dichotomous form as positive or negative (S+ or S−) related371

to the asset valuation. The arrival of such as signal in classical finance theory372

changes the initial belief state of the agents in a Bayesian updating scheme.373

What is important, in classical probabilistic framework the random variables374

corresponding to the asset prices, and informational signals are partitions of375

the same sample space, i.e. the agents have a joint probability distribution of376

signals and corresponding price outcomes, due to Kolmogorov [39] probability377

theory. The agents can also form a joint probability distribution of all asset378

price states given the dividend realisations in a given decision making context.379

The key rules of classical information processing scheme (due to SEUT380

and its modifications based on classical probability theory) imply that the381

agents make a joint probabilistic evaluation of all possible signal-events and382

the corresponding consequences. These probabilities are corresponding to383

12On the finance market only the actions and decisions of actors are visible through the
changes in asset prices. Hence, the beliefs about asset prices are given by the expectations
of the agents about the asset price given the future dividends. Each realization of the
dividend at time t = 1 allows to assume as specific value of the asset price.
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firm beliefs and no indeterminacy in agent’s expectations is present at each384

time point. If the probability of the price increase is higher than of a price385

decrease, the risk neutral decision maker will have a higher expectation value386

from holding the asset between t = 0 to t = 1. For now, we assume that387

the price increase and decrease size in next trading period is of the same388

magnitude. We also assume that in the pricing of the asset the agent would389

use some risk neutral discount factor r , i.e. Pt=0 = e−r∆tEt=1(Pt=1). The390

expectation value for price at t1 is obtained by agents via analysing the391

probabilistic distribution of fundamentals (approximated by dividends). Af-392

ter the dividend outcome news are observed, each agent is able to evaluate in393

a Bayesian mode the conditional price state distributions. We remark that394

S± denotes the news about the dividend increase or decrease in the next395

trading period. We note that alike the classical finance frameworks the ac-396

tual dividend distribution causes a proportional decrease in the price value397

on the ex-dividend date. In incomplete markets some signals are more dif-398

ficult to verify and noisy assessments can take place. This brings agents to399

have different evaluation of the new equilibrium price that corresponds to a400

divergence of (classical) probabilistic beliefs about payoff relevant signals. If401

the probability of the price increase and decrease is the same, then the price402

is in a short term equilibrium, until new informational signals reach the fi-403

nance market, [23]. For the composite finance market one can observe the404

frequency of trading after the informational signal, e.g. if S+, the company405

will pay the dividend with certainty. In an ideal case, if all the agents buy406

the asset (they hold singular beliefs and information update) the price goes407

up to the new equilibrium price. In this setting, the commutativity axiom408

is also satisfied, and no context effects (related to the order of information409

processing) are present, p(P+|S1∩S2) = p(P+|S2∩S1), where p denotes prob-410

ability and S1, S2 some dividend signals. Next, under uncertainty the agents411

are able to evaluate instantaneously the past and present information and412

form subjective probabilities, associated with future signals and conditional413

price realizations. This mode of information processing can be formalized414

with the aid of the formula of total probability (FTP) which lies at the heart415

of classical probability theory.416

In the general case the Pi corresponds to the realization of a concrete
price value, the Sk corresponds some informational signal and p is associated
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probability measure.13

p(Pi) =
∞∑
k=1

p(Pi ∩ Sk) =
∞∑
k=1

p(Sk)×
p(Pi ∩ Sk)
p(Sk)

(1)

We remind that the disjoint subsets Sk and Pi belong to the same probability417

sample space Ω. A simple decision tree represents information processing of418

agents in classical probability framework.419

Figure 1: The chance nodes are given by circles and the belief/decision nodes
are given by squares.

We can see from figure 2.1 that when a positive or negative signal reaches420

the market the belief states of agents update via Bayes rule, giving the condi-421

tional probability for (P+|S+), (P+|S−), (P−|S+), (P−|S−). The conditional422

probabilities can be interpreted in Bayesian fashion as each agent’s subjective423

beliefs about a price increase, given that S± is true. Naturally, an econom-424

ically rational agent would always assume a P+ realisation, if the signal is425

positive and vice versa.14 Under a divergence of beliefs, given an objective-426

frequency interpretation, one can observe that some populations of agents427

13We operate with discrete probability measures to follow the formulation of classical
neo-economic decision theories. We also restrict the formulation to dichotomous outcomes
of variables, Pi = ± and Sk = ±.

14We discuss in more detail the objective versus subjective interpretation of classical
and quantum probability in Section 3).
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believe in e.g. (P+|S+) and less frequently in (P−|S+). From here one can428

derive a divergence of beliefs based on classical probability that yields trad-429

ing of the risky asset among these ensembles agents. If all agents hold the430

same beliefs about the fundamental asset price, given the set of informational431

signals, one would observe p(P±) to be equal to unity. The same mechanism432

applies, when the agents update their belief states in respect to the negative433

signal S−.15
434

With dichotomous signals and price realizations we get:

p(P+) = p(S+)× p(P+|S+) + p(S−)× p(P+|S−)

for the price realisation P+. The probability (p) on the left-handside provides435

a probabilistic prognosis of the asset price increase (to a specific value) as-436

suming a representative agent information processing under a set of different437

informational scenarios. Here we also assume that agents act upon their be-438

liefs by maximizing the expected utility. In the same way, a total probability439

of (P−) expectation can be expressed. Under the frequency interpretation,440

one can observe the frequency of agents that would hold or buy the unit of441

the asset for the next trading period, based on their firm beliefs.442

2.2 Possibility of a violation of the classical mode of443

information processing: quantum probability rep-444

resentation445

Extensive evidence on decision making under uncertainty and risk shows that446

agents often do not process information in classical probabilistic mode and do447

not employ Bayesian updating scheme. There are contexts, in which agents448

can process information in classical probabilistic mode, and contexts in which449

agents are not able, or prefer not to process information classically. Setting450

of uncertainty pertains to the non classical mode of information processing451

supported by empirical findings from psychology and behavioural economics,452

see a theoretical analysis and discussion in [2], [12], [26], [27], [47] and [48].453

The above list of QP motivated works to information processing fallacies and454

preference reversals is far from being exhaustive. As documented by [51],455

and references herein, a real setting of the finance market is characterised456

by a vast level of information complexity and ambiguity, and hence agents’457

15In a more general setup, a random variable S can have multiple realizations (dividend
values), upon which the agents condition the price outcomes. In classical finance models
with continuous probability distribution of dividends, agents would possess a price function
that maps each value of the dividend into a real value of a price at any time, t.
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decision making may not follow the cannons of classical probability based458

information processing.459

QP has been shown to be able to describe the divergence in agents’ pos-460

terior beliefs that are at variance with Bayesian inference and linearity of461

probability measures. The interference effects and the order of information462

processing can affect agents’ limiting distribution of beliefs as shown in [47],463

[55], [33], and [10]. Ambiguous beliefs are well captured via probability inter-464

ference that can create amplification of optimistic, or pessimistic expectations465

under ambiguity via probability wave interference.466

In the quantum probability framework instead of a probability sample467

space, the price and fundamentals observables are represented in the com-468

plex Hilbert state space, and the events are given by subspaces. In the469

simplest two dimensional model, these are one-dimensional rays. A QP for-470

mulation relaxes the distributive axiom, where a joint distribution of price471

probabilities and dividend signals may not be accessible to the decision mak-472

ers. Non-satisfaction of the commutativity condition of classical probability473

theory, as the order of information processing affects the final distribution of474

agents’ beliefs, is given via incompatible observables in quantum probability475

setup. When price and dividend observables are not measured, the agent’s476

belief state is an ambiguous state, in which different beliefs about signals477

and prices may coexist. It is only when the agents trade the asset based on478

their expectations, the measurements becomes classical Von Neuman-Lüders479

measurement, where the belief state collapses either into P+ or P−.16 Given480

that each agent is endowed at t = 0 with 1/N units of the risky asset I and481

no liquidity constraints, the beliefs about the price states bring the acts to482

hold and buy, respective to sell. When the information is present on the483

finance market and it is verifiable, an ideal case from the viewpoint of EMH484

is that all agents buy an asset, until particular price threshold is reached, es-485

tablishing a new unique REE. In that way no overreaction or under-reaction486

takes place by any ensembles of agents. Under divergence of beliefs, agents487

can be in different initial (quantum) belief states. The divergence in initial488

belief states can be caused by optimism, respective pessimism. Under the489

impossibility of short selling, the agents can: i) buy the asset, even if not able490

to resolve the uncertainty about the informational signals and price expecta-491

tions in the next trading period, ii) overreact to the dividend signals based492

on their prior optimistic belief states about the asset price. More precisely,493

a classical FTP is replaced with a more general quantum formula of total494

16On the real finance market the measurements can also be ‘unsharp’. For instance, an
agent is almost confident that she will trade an asset, given her assessment of the future
price realization, yet some ambiguity is still present in her preference formation.
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probability (QFTP) that has an additional interference term that we denote495

by λ. A representation for a dichotomous outcome case:496

p(P+) = p(P+|S+)p(S+)+p(P+|S−)p(S−)+2cosθ
√
p(P+|S+)p(S+)p(P+|S−)p(S−)

(2)

λ = p(P+)− p(P+|S+)p(S+)− p(P+|S−)p(S−) (3)

The parameter cosθ 6= 0 makes the whole term λ either negative or pos-497

itive. The quantum probabilistic formulation allows for the interference of498

agents’ beliefs about signals and price realizations, giving raise to inflation-499

ary (the λ > 0), or deflationary pressures (the λ < 0) on the on asset prices500

under ambiguity. In mathematical language, we expect sub-additivity effects501

respective super-additivity effects of agents’ beliefs about asset price states502

in the next trading period t = 1. If λ = 0 then QFTP collapses into FTP,503

and agents update the information in a classical mode under ambiguity. This504

means that no deviation from the fundamental value is observed. In several505

recent studies in economics and finance, the above mentioned interference506

angle (θ) was quantified experimentally and decision making contexts asso-507

ciated with its observed values were explored, cf.[47], [26], [2], [27]. The508

last work specifically explores preference formation in an investment context509

under risk, called a ‘Portfolio Game’.510

When agents are ambiguous but their initial (prior) belief states are iden-511

tical, the total frequency of their trading under uncertainty can be approx-512

imated by the probability of price increase in the next trading period. The513

preference for buying under uncertainty is based on agents’ belief interfer-514

ence of probability amplitudes related to S±, and P±. One can obtain the515

total probability of P+, given by the left hand side of (2). If all agents516

hold time separable rational preferences, then the discounted expected value517

(E)
∑

(Pt=1±), gives a equilibrium price Pt=0. When the decision makers are518

in non-classical ambiguous belief states, Pt=0 can be different from the price519

based on classical information processing, (1). The interference term denoted520

in eq. (3) as λ, quantifies this difference. The variable θ denotes the angle521

of the belief state wave function of the agents. Constructive and destructive522

interference terms in the quantum probability framework explain the rela-523

tionship between trading under uncertainty and the inflationary, respective524

deflationary pressures on the asset price. Interference in belief formation is525

shaped by incompatible decision making contexts, encountered by financial526

agents under uncertainty.17 We represent such a state update in Section, 4527

17The theoretical propositions that are derived from the model can be tested empirically
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and extend the formulation in Appendix, 8. The above formalization assumes528

a representative agent (there is no divergence in probability interference an-529

gle and the initial belief states) and hence, a pure state representation can530

be used. When the agents are in different pure belief states they will have531

different probability interference magnitudes under ambiguity that are mod-532

eled as a composite (mixed) state of given by weighted sum of pure states,533

please see Section (3).534

3 Uncertainty versus diversity535

In this section we analyse in more detail the quantum versus classical repre-536

sentations of uncertainty and diversity of probabilistic beliefs. The difference537

can be perceived as subtle, yet we aim to draw a distinction between different538

subjective beliefs of agents as opposed to different ambiguous beliefs of agents539

on the possible values of the signal and the price. The below mathematical540

analysis is just the first step towards the understanding of this important541

distinction in asset trading context.542

In the simplest quantum probability based model, market’s state is based543

on the two dimensional qubit state space H. Consider in H the orthonormal544

basis |+〉, |−〉, where |±〉 are the states representing the beliefs that the545

price of some infinitely lived financial asset will go up and down in the next546

trading period. Since uncertainty is present in respect to the outcome of the547

future distribution of dividends and prices, the agents hold ambiguous beliefs548

about the asset price states and hence, their trading under ambiguous beliefs549

generates deviations from the fundamental price value of the stock I.550

Consider the state of the market before the arrival of the information
about the value of some fundamentals.In a state of maximal ambiguity, the
pure state representation of the beliefs of a representative agent are given as
the uniform superposition of the price states, respective dividend states.

|ψ〉 =
|+〉+ |−〉√

2
. (4)

This is the state of a maximal uncertainty of market’s agents about the
future dividend raise/fall and the consequent price raise/fall. If the agents
possess some prior information (e.g. observed realization of previous divided
and price outcomes), they can make stronger expectations about the price
would go up or down, and hence the superposition state would be be not

by the measurement of interference terms from the limiting probabilities and belief state
reconstruction via the Born rule.
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uniform, where the squared modulus of the complex state coordinates c, d
would sum to unity and each provide a classical probabilistic outcome on the
price state (±).

|ψ〉 = c|+〉+ d|−〉, c, d ∈ C, |c|2 + |d|2 = 1. (5)

Such a skewed superposition would also exist, if the agents exhibit e.g. over-551

optimism, or pessimism under ambiguity.552

The above representation gives the state of indeterminacy of beliefs, but553

not the state of diversity, since all agents are assumed to have the same pure554

state of beliefs, as in the notion of a ‘representative agent’, see eq.(4). In this555

model diversity of beliefs is generated through transition from a pure state556

(represented by a normalized vector ψ) to a mixed state (represented by a557

density operator ρ). In the latter, agents can hold heterogeneous ambiguous558

beliefs. The important mathematical distinction is that each of such belief-559

components of the mixture ρ is also a state (pure) of ambiguity. Thus, we can560

speak about probabilistic diversity of uncertainties, in contrast to diversity of561

certainties in the classical measure-theoretic models.18 Let us present briefly562

the latter for an ensemble of financial agents. Let Ω be the ensemble of all563

agents of the market. It is endowed with the classical probabilistic structure:564

a σ-algebra F and a probability measure P. Let ξ : Ω → {±} be a random565

variable representing expectations of agents A,B about behavior of the price566

of an asset.19 Set Ω± = {ω ∈ Ω : ξ(ω) = ±}. Then each agent ωA ∈ Ω+567

believes that the price would go up, and each agent ωB ∈ Ω− believes that568

the price would go down. The probability distribution p(±) = P (Ω±) gives569

the measure of diversity of price behaviour beliefs. In this set-up, each agent570

of each agent type has a definite expectation of price behavior.571

Now let us present belief formation in QP framework. Let ρ be a density
operator and |e1〉, |e2〉 be its basis of eigenvectors with the eigenvalues q1, q2

which are non-negative and sum up to one:

ρ = q1|e1〉〈e1| + q2|e2〉〈e2|. (6)

Let us re-expand the vectors |e1〉, |e2〉 with respect to the price-expectation572

basis |+〉, |−〉 : |ej〉 = cj|+〉 + dj|−〉. Thus with the weights q1 and q2 the573

18This is a fundamental remark that separates the proposed model from the information
asymmetry based models, where diversity of expectations is encoded in different prior and
posteriors probability distributions that agents possess over the asset valuation.

19Future venues of research can focus on a generalization of the model to a market
portfolio of assets, where the agents form expectations about the price behaviour of the
composite finance market dynamics, see discussion in [51] and theoretical contribution
in[34].
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ensemble of agents Ω is split into two sub-ensembles ΩA and ΩB characterizing574

that agents belonging to each of them have the same state of uncertainty575

about possible behavior of the price.576

In quantum probability random variables are given by observables, hence
we introduce the price expectations observable, P , for the asset I represented
by the operator having the vectors |±〉 as eigenvectors with eigenvalues ±1 :

P = |+〉〈+| − |−〉〈−| ≡ P+ − P−. (7)

Before forming a concrete preference on holding, or selling the unit of an
asset, an agent has to resolve her ambiguity about the possible behavior of
the stock price realization. For the simplicity of the model, the preferences
are given classically, based on the discounted expected future value of stock
price in the next trading period. To resolve the (non-classical) ambiguity the
agent performs a (self-)measurement of the corresponding price expectation
observable represented by the operator P. This operator, jointly with agent’s
belief-state ψ that is in a superposition of the different informational signals
given as in eq. (5), encodes the probabilities that the price of this asset will
go up or down.20 They are given by Born’s rule (one of the core postulates
of quantum mechanics):

p(±) = |〈±|ψ〉|2 = ‖P±ψ‖2. (8)

For a pure state Born rule normalizes the quantum measurement scheme577

on an observable. More specifically, it identifies the probability rule for ob-578

serving probability of a realization of an eigenstate (price value) after the579

measurement of the price behaviour observable P .580

For a mixed state with a density matrix p, Born rule can be expressed
via a trace formalism:

p(±) = TrρP± (9)

In this setup the limiting distribution of obtaining a concrete price output581

± for asset I in the next trading period is given by taking the trace of the582

action of a projector P± upon the mixed state ρ.583

One can measure the heterogeneity of beliefs about the asset liquidation584

value at t = 1, by considering, beliefs of the ensembles of agents A,B ∈ Ω585

separately, in a similar mode as in [50]. 21 If one cohort of agents is in586

the pure state ψA and the other is in the pure state ψB, the difference in587

20To exemplify such a state transition, for the moment, we employ pure states.
21The dynamics of the value of belief heterogeneity denoted by k can be in their model

crucial for creating upwards volatility in asset prices, if k > yσ2Q, where Q denotes the
total supply of the asset and y is a standard measure of risk aversion.
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ambiguous beliefs is obtained my measuring the angle (phase) between the588

state vectors ψA and ψB, such that θA−B = ∆AB. If the ensemble A holds589

exactly the opposite ambiguous beliefs to the ensemble B, then ∆AB = π.590

3.1 Interpretation of agents’ beliefs: subjective and591

objective models592

In quantum probabilistic models to decision making there are explored two593

basic models for completion of the process of decision making by an agent.594

These models are based on the two core interpretations of probabilities, ob-595

jectivist and subjectivist.22
596

• Objective probability: an agent actually performs a measurement on597

one of the outcomes, ±1, and depending on this outcome she makes598

her decision. The probabilities given by eq.(8) are objective (frequency)599

probabilities. They do not have any meaning for an individual agent.600

They can be found by collecting statistics for a large ensemble of agents.601

Such probability is interpreted as statistical frequency of agents that602

expect the asset to up or down.603

• Subjective probability: an agent assigns subjective probabilities to pos-604

sible outcomes given by eq. (8) and then she proceed as in the classical605

subjective decision making framework by calculating the odds and mak-606

ing her choice by comparing the odds with 1 (certainty). Subjective607

probability approach is also known in economic literature as the ‘de-608

gree of belief’. In this paradigm one treats the probability as individual609

agents’ beliefs about the realisations of dividend and price outcomes.610

The second interpretation seems to be closer to the classical subjective611

probability models of decision making, such as SEUT and its non-linear gen-612

eralisations. Moreover, the behavior of such an agent can be considered to be613

more rational from the viewpoint of neo-classical economic theory (see also614

analysis in section 2.1.) For instance, if the probability of a price decrease615

is unlikely, p(P−) << 1, then it is rational to make the decision that the616

price is to go up. Thus, an agent with the belief-state encoding very low617

probability that the price is to go down never expects that the price will go618

down and acts accordingly. This interpretation of expectation formation also619

allows to operate with the notion of a ‘representative agent’, assuming that620

22A discussion on the interpretation of subjective and objective probability in experi-
ments is provided in an early work by [54], for applications of QP interpretation in decision
theory see [26].
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all agents have similar subjective beliefs and form identical preferences. In621

contrary, an objective probability, or frequency interpretation implies that622

single agents have different trading preferences. Of course, the probability623

(the frequency of agents, who have some certain beliefs and trade upon them)624

of such a decision is very low, but not zero, as in the subjective interpretation625

model. It might be that the validity of these two models can be tested exper-626

imentally. In fact, such an experimental comparison is not just a ‘quantum627

probability theoretic problem’. This is a problem of application of objective628

versus subjective probabilities in models of decision making for populations629

of agents.630

3.2 State dependence in asset trading and feedback631

reaction632

How do the observed price states feed back into the ambiguous belief states633

of the agents about the asset price in the next trading period?634

By making the decision αt = ±1 for the asset I at time t (which is given by635

t = 0 in the first trading period), an agent’s initial state ψ is projected onto636

the eigenvector |αt〉 that corresponds to an eigenstate for a particular value637

of price realization for that asset in the current trading period.23 After the638

price realization up to time t of the asset is observed, the agent has to make639

a decision about the possible price behavior of the asset at time t + 1, and640

she performs a measurement of the corresponding expectation observable, for641

the updated belief-state |+t+1〉. The index t + 1 denotes agent’s ambiguous642

beliefs about the dividends-prices in the subsequent trading period. The643

eigenvalues αt = ±1 of the price behaviour observable Pt, are given with the644

probability:645

pt→(t+1)(αt → αt+1) = |〈αt|αt+1〉|2. (10)

The above mathematical exposition of state transition provides quantum
transition probability. They have also an objective meaning. Consider an
ensemble of agents in the same state ψ who made the decision αt with re-
spect to the price’s behavior of the asset. In the next step the agents form
preferences about the subsequent period asset price realizations and con-
sider only those whose decision is αt+1. In this way it is possible to find
the frequency-probability pt→(t+1)(αt → αt+1). Following a classical tradi-
tion, we can consider the above output as the quantum analogue of the

23In a simple setup with two types of price movements we fix only two eigenvectors |α+〉
and |α−〉, corresponding to the eigenvalues a = ±1. These price outcomes are observed
by the agent on the finance market when trading takes place.
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conditional probabilities, pt→(t+1)(αt → αt+1) ≡ pt+1|t(αt+1|αt). We remark
that the trading in this setup takes place under informational ambiguity in
respect to the next trading period, when the agents are still in an indeter-
minacy given as a superposition in respect to next coming dividend signals,
p(S±), ψt = β1|+〉+β2|−〉, |β1|2+|β2|2 = 1 . Hence, in each of the subsequent
updated belief states about price behaviour the agents are in superposition in
respect to the fundamentals that can change the price and interference effects
as in eq.(2) exist for each agent’s pure belief state (that can be approximated
by a type of a representative agent). By using the probabilities (8)-(10) we
can define the quantum joint probability distribution for price expectation
about the price of the asset I in both trading periods, t and t+ 1.

pt,(t+1)(αt, αt+1) = pt(αt)p(t+1)|t(αt+1|αt). (11)

This joint probability respects the order structure of beliefs, where the ob-
served price outcome at time t changes the beliefs about the asset price
distribution at t+ 1.24 In general:

pt,(t+1)(αt, αt+1) 6= p(t+1),t(αt+1, αt). (12)

Equation, (12) is an exhibition of the order effect that is not in accord with646

Bayesian probability updating scheme, see theoretical analysis in [48], [55].647

Order effects bring a non-satisfaction of the joint probability distribution and648

give raise to violation of the commutativity principle of classical probability.649

Order effects in a state update under ambiguity can exist for: i) prefer-650

ence formation related to a sequence of asset price observation as depicted651

above; ii) information processing related to the order of the sequences of state652

updates from observed dividend signal realizations. Non-commuting observ-653

ables allow to depict agents’ state dependence in belief formation that affects654

their trading preferences and hence the RE equilibrium price departures.25
655

If state dependence is absent, the observable operators are commuting and656

the agent possesses a joint probability distribution for the infinite sequence657

of decision variables, given by some element, ω ∈ Ωt, ω = {Pt, St}∞t=0.658

It is important to remark that in the general quantum probability setup659

the operators for stock price behaviour at different time points do not com-660

mute, i.e., [Pt, Pt+1] 6= 0. This means that the price (and dividend signal)661

24The same state update scheme takes place in respect to the informational signals, i.e.
the state update in respect to the price implies that the bases associated with the dividend
realizations have a different phase in respect to this new updated state at ψt. The limiting
probability distribution of the asset prices, when current prices and dividends at time t are
observed is determined by agents’ order of measurement of the corresponding observables.

25In the formalization above we focus on dependence of the belief stes upon the realised
price states.
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observables overtime, are complementary and agents cannot form a joint662

probability space of these random variables in the process of information663

processing. The order of price and dividend observations creates the pes-664

simistic, respective optimistic belief states of the agents that deviate from665

the classical joint evaluation of past and future price and dividend realiza-666

tions. The important consequence is that it is impossible to define a family667

of random variables for dividends and prices denoted as ξi : Ω → {±1} on668

the same classical probability space, (Ω,F ;P ), which would reproduce the669

quantum probabilities p(±1) = |〈±|ψ〉|2 as P (ξi = ±) and quantum tran-670

sition probabilities pt→(t+1)(αt → αt+1) = |〈αt|αt+1〉|2, αt, αt+1 = ±, as the671

classical conditional probabilities P (ξt+1 = αt+1|ξt = αt).672

In QP model the agents do not form definite expectations about the price673

behavior, and the observed price realization can change their future expec-674

tations about the asset price. This type of state dependence in beliefs is not675

in accord with classical RE pricing models that imply a current price depen-676

dence only on the future discounted payoff relevant variables. Furthermore,677

the agents exhibit ambiguity in respect to the probabilistic composition of678

future dividend signals and impact on price value, whereby the interference679

of these beliefs gives raise to a deviation of the belief distribution from the680

classically modeled rational beliefs. Given a price observation, agents can681

form conditional expectations only sequentially and not jointly. In the next682

section we present an operational depiction of the heterogeneous asset price683

belief evolution under informational ambiguity.684

4 Creation and annihilation operators685

We present a belief state space construct based on two ensembles of repre-686

sentative agents in different initial belief states and describe the operators687

that create their beliefs about the price of the risky asset. Consider a type688

A agent, and her belief-state space K,, about the price behaviour let it be689

a two dimensional qubit state space.26 We define an orthonormal basis in690

K, denoted as |0〉, |1〉. The states are interpreted as follows: they represent,691

respectively, agent A′s beliefs that the price of the stock will decrease or692

increase under ambiguity. In general A is in a state of a superposition of693

these ‘core beliefs’ representing her ambiguity in respect to the asset price694

26As noted above, the preference states of agents are visible from the market data, where
the belief states about price behaviour are playing a key role, since the agents trade upon
their beliefs, when there are no liquidity constraints. We introduce two operators A and
B that describe the interaction of A′s beliefs about the price behaviour and the actual
finance market price behaviour.
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configuration at t+ 1:695

|ψ〉 = c0|0〉+ c1|1〉, (13)

where cj ∈ C and |c0|2 + |c1|2 = 1.696

The initial state ψ encodes all price and dividend realization histories697

and encodes the prior ambiguous state of an agent. Two ensembles of agents698

that we introduce later, can have different states ψ that also change over the699

run of trading periods. Mathematically, weighted combinations of the pure700

states, mixed states, are employed.701

Following [35] we introduce the so called creation and annihilation oper-702

ators a?, a, having the following role in the setting of asset trading.27
703

The operator a? ‘creates’ a belief that the price would go up, a?|0〉 = |1〉,
and the operator a ‘annihilates’ the belief that the price would go up, a|1〉 =
|0〉. It can be interpreted as the operator of the creation of a belief that the
the price is to go down. Hence, these operators provide a mathematical tool
for the generation of firm beliefs about the price change. These operators
satisfy canonical anti-commutation relations:

{a, a?} = I, {a, a} = 0, {a?, a?} = 0, (14)

where I is the unit operator and {A;B} = AB+BA denotes anti-commutator
of two operators A,B. In the basis |0〉, |1〉 the operators can be represented
by 2× 2 matrices:

a? =

(
0 0
1 0

)
, a =

(
0 1
0 0

)
. (15)

We now introduce the operator of the price behavior B = a?a. We remark704

that B|1〉 = |1〉 and B|0〉 = 0. Thus, in the basis of sharp beliefs about the705

price behavior B has the diagonal form B = diag(0, 1). This operator, in fact,706

coincides with the orthogonal projector onto the vector |1〉, i.e., B = |1〉〈1|.707

This operator represents the observable of the actual price behavior on the708

finance market. Agents can make self-inspections of their beliefs about the709

27The paper by [6] apply raising a lowering operators to describe the process of cre-
ation and reduction of traders’ stock holdings. See also the work by [7] that uses this
formulation to describe trading between two agents, or a system of ‘n agents in a general
trading game. The operators can be applied to describe non classical dynamics in more
complex macroscopic systems, [8]. An interpretation of raising and lowering operators in
our framework is given by their operational role in modeling the price changes in financial
markets, while belief update of agents takes place.
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possible price changes throughout the investment process.28 By applying the710

inverse Born’s rule one can reconstruct the subjective probability distribution711

of the dividend signals from agents’ initial belief states coupled with the712

observed price states, given that Pt = e−r∆t(|c1|2P+ + |c2|2P−). The squared713

complex coordinates c1, c2 denote the total probability of the price increase714

or decrease given by eq. (2).715

In this set-up an agent that is isolated from the surrounding informational716

environment, can observe her trading preferences and the uncertainty that717

can be updated via her observations of the asset price behaviour. We remark718

that the observed asset prices can further enhance the agent’s A optimism719

in respect to the realization of future positive signals and price outcomes, as720

depicted in Section, 3.2.721

Now we consider the system of two types of agents (A,B) with belief-722

state spaces Ki, i = 1, 2, with bases |0〉i, |1〉i. The belief-state space of this723

system is given by the tensor product K = K1 ⊗ K2 and it has the basis724

|00〉, |10〉, |01〉, |11〉.29 The basis states |αβ〉 are the states of sharp beliefs,725

e.g., in the state |00〉 both agents believe with certainty that the price of the726

financial asset will go down.727

The individual ambiguity of the agents is encoded in superposition of the
form in eq.(13). The joint belief-state of two agents is given by the factor
product:

|ψ1〉 ⊗ |ψ2〉 = (c0|0〉+ c1|1〉)⊗ (k0|0〉+ k1|1〉) (16)

The most general belief-state of these two agents has the form of superposi-
tion:

|ψ〉 = c00|00〉+ c10|10〉+ c01|01〉+ c11|11〉 (17)

where cij ∈ C and |c00|2 + ...+ |c11|2 = 1.728

The creation and annihilation operators of agents are lifted to the belief-
state space K and we denote them by bold symbols, e.g., a1 = a1⊗ I. These
operators satisfy so called qubit commutation relations. For the fixed i, such
operators satisfy the canonical commutation relations, see eq.(14) for the one
dimensional fermionic system, but for different i, j they commute:

[ai, a
?
j ] = [ai, aj] = [a?i , a

?
j ] = 0, (18)

where [A,B] = AB −BA is the usual commutator.729

28In the work by [14] a price function of a form p(s) is introduced, which maps the
signals into asset prices, and the agents can infer the probability distributions from the
price function by taking its inverse. We do not directly associate multiple signals (a set of
different signals) with the observed price, since the beliefs about the signals are ambiguous.

29Here we simplified notation, |α〉i ≡ |α〉 and |α〉1 ⊗ |β〉2 ≡ |αβ〉, α, β = 0, 1.
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For the composite state of the two agent types the introduced operators730

generate agents’ joint belief dynamics and hence, give the price expectations731

associated with the composite set of agents that trade the risky asset.732

5 The Born rule of information update733

After formulating the belief state evolution process with the aid of the price-734

creation and annihilation operators, the next stage is to explain how the735

ambiguity of agents’ beliefs is resolved to classical probabilistic distribution736

of belief states after arrival of signals. By this we mean how: a) each agent’s737

belief state and, b) a mixture of agents’ belief states giving the composite fi-738

nance market will update once a signal about asset prices reaches the market.739

The probability of state realization and conditional probabilities of signals740

are given by Born rule (for mathematical details cf. monographs [12], [26].30
741

Born rule specifies probability to obtain a particular result of measurement742

(eigenvalue) after a measurement on a pure state ψ, or mixed state given by743

a density matrix ρ. The formulation of Born rule differs for pure and mixed744

states, yet in both cases it specifies the classical limiting probability distri-745

bution associated with each eigenvalue realization. We specify the dividend746

signal observable λ with a corresponding operator S that has dichotomous747

eigenvalues ±1, with |±k〉 as its eigenvectors.748

As specified in eq.(8), we can observe the probability of arrival of some
new dividend signal for the pure initial belief state ψ as:

p(S±) = ‖S±ψ‖2. (19)

We can in the similar way introduce µ as the price movement observable749

with corresponding operator, P that is now measured after the arrival after750

dividend outcome ±.751

The operator has eigenvectors |±〉. Conditional probability from eq. 20
specifying the probability of obtaining a price value ±, under the condition
that signal ± was observed is given in a similar way as in eq.(10). We
denote here the signal and price operator eigenvectors via λ± respective µ±
to elucidate the state transition scheme from one (normalized) eigenvector
to another:

p(P±|S±) = |〈λ±|µ±〉|2 (20)

The conditional probability in eq.(20) contains the information about the op-752

erator S that updates the price behaviour and as a result trading preferences,753

after an information arrival, such as some signal. Moreover, the conditional754

30Probabilities can be subjective or objective, as discussed in Section 3.
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probability will contain the information regarding interaction between the755

observables µ and λ acting upon the initial ambiguous belief state of finan-756

cial agents.31 In a real finance market setting the agents can also have an757

internal dynamics of their ambiguous beliefs in addition to the updates of758

the S, P as well as the ambiguity in respect to these observables may not be759

resolved concurrently. In the Appendix, 8 we devise a more detailed math-760

ematical representation of agents information processing and measurement761

scheme about the price behaviour.762

The order of information (or the order, in which the agent chooses to763

process the information) alike the choice on asset trading exposed in Section764

3 can affect her updated belief state. Order effects can be modeled in QP via765

different eigenvectors associated with the observables and hence, the effect766

of phase between the eigenvectors upon the final conditional probabilities767

under different sequences of measurement schemes surfaces. We recap that768

he impact of measurement sequence upon conditional probabilities is due769

to incompatible observables in this setup. The order effect is important to770

understand the state update under different orderings of information that can771

create posterior biased belief state of overoptimism, respective pessimism.772

The effect of such state updates via Born rule (the sum of which is given by773

the composite market mixed state) can give raise to sudden price behaviour774

changes, due to interference effects of information and action states. Such775

a process can be captured via dynamical quantum probabilistic models, see776

[47], [28], [12], [26], [34], [40] applying the Schroedinger equation and its777

extensions to model the belief and information dynamics.778

6 Discussion: empirical predictions?779

Our model so far has described the quantum probabilistic formulation of the780

uncertainty, or divergence of belief states of agents that creates asset price781

volatility in the capital market. The central contribution of this work is due782

to formalization of the of divergence of beliefs in classical versus quantum783

probabilistic framework given ambiguity about both dividend and price states784

shaped by agents internal states and informationally incomplete markets.785

The motivation to apply QP is to capture agents’ trading under a deeper,786

endogenous uncertainty.787

However, for empirical prediction of the model we need to consider how788

the measurements of belief states performed by the signal and price behaviour789

31The QP update algorithm allows also to depict information update from uninformative
and close to zero priors that cannot be captured by classical Bayesian update, see the work
by [10].
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operators on the initial belief states of the agents, or the market belief state790

as a whole, impacts the probabilities of movements of asset prices. Certainly,791

according to QP formulation the probabilities are obtained from the familiar792

trace formulation, as shown in the above model, which contains the interfer-793

ence terms for different ensembles of agents. Since the size of the interference794

term indicates the magnitude of probabilistic interference, we can surely talk795

about e.g. sub-additivity of baseline probability for P+, if it is above the sum796

of the conditional probabilistic disjunctions given the different signals (the797

so called ‘disjunction effect’ is present). On the aggregate finance market,798

we can interpret it as a bubble in the condition of uncertainty, when the ac-799

tual signals are not measured by market participants in a Bayesian fashion.800

When interference effect is positive, an overweighting of probability takes801

place, and the p(P+) is above the total probability of P+, given the different802

sets of information as specified in FTP.803

As noted, when cosθ = 0 no interference is present and QFTP collapses804

into its classical analogue the FTP so that agents have a classical probabilis-805

tic distribution of the asset price expectations, given the different signals. In806

this case all agents agree on the fundamental value, given that there is no807

dispersion in their information processing. A positive, respective negative808

magnitude of the interference term also depends on the belief evolution dy-809

namics under uncertainty, and periods of ‘optimistic’, respective ‘pessimistic’810

trading cycles can emerge, where bubbles can burst suddenly, without any811

warning signals, [56]. We remark that in contrary to the modifications of812

classical probability calculus that are introduced to describe volatility cy-813

cles form agents’ beliefs in the classical finance literature, the endeavour of814

QP based framework of asset trading is to consider a different probability815

calculus that is complete in terms of its axiomatics.816

Since the two ensembles of agents can have different belief states about817

the price ups and downs, the whole market can be given mathematically a818

system of these ensembles of agents in different pure belief states, denoted819

via a mixed state. This representation allows to depict divergence of the820

uncertain (pure) belief states of agents, where under short selling constrains821

agent ensembles with positive λ create inflationary pressures. The model822

generalized to markets with no short selling constraints, makes the pessimists823

and also speculators act by creating periods of asset undervaluation, whereby824

the evolution of the mixed state in the QP model allows to observe the net825

effect on the limiting probability distribution of the price states, given in826

eq.(9). The proposed theoretical model can be advanced further, by replacing827

the notion of risk neutral agent and introducing a discount factor based on828

the risk aversion of the different ensembles of agents, see [1].829

Finally, the QP based model of beliefs has the potential to provide man-830
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agers and practitioners with an insight into the possible response patterns831

of investors to new share issuance as well as valuation of the traded risky832

assets on the secondary markets. The studies can be based on the empiri-833

cal investigations of interference terms and of dispersion of opinions data as834

mentioned above. Such studies would bring more insights about the future835

expectations of primary and secondary markets of risky assets. The proba-836

bilistic prognosis of agents’ price valuation under the subjectivist probability837

interpretation can allow for better understanding of cognitive processes of838

individual investors as attested experimentally in, e.g. [27], [37]. The ‘ob-839

jectivist’ interpretation of the quantum probabilities would correspond to840

the prognosis of the frequency of agents buying and selling the asset under841

ambiguity and hence, provide an indication of the composite finance market842

trading volume.843

7 Conclusion844

We have suggested a QP based model of asset trading behaviour under un-845

certainty. Our model fundamentally differentiates from the standard neoclas-846

sical finance models of price behaviour under heterogeneous beliefs, based on847

classical probability theory and non-additive modifications. The main mo-848

tivation for adopting an alternative modeling is that there is a high degree849

of divergence in predictions in the standard literature regarding the price850

behavior under uncertainty, for example, whether diversity of beliefs leads to851

adverse selection problem, or overpricing respective under-pricing following852

speculative trading. There is also a lack of a unifying framework describing853

the mechanism of speculative bubble formation but also trading that can lead854

to market crashes. Our model aims to offer an alternative foundation to spec-855

ulative asset pricing under ambiguity, based on QP of belief representation.856

First of all, the description of uncertainty in the model is based on a super-857

position of belief states, and not on classical probability distributions. We858

also deploy a novel technique of anhilliation-creation operators, to describe859

observables that measure the “belief state” of the market. The interference of860

probability amplitudes related to price states and fundamentals gives a mea-861

sure of over-pricing and in other trading periods under-pricing, following the862

state dependence on observed asset price states. The proposed framework in863

the subjectivist probability interpretation, is providing a quantifiable testable864

prediction on price volatility in respect to the from fundamental value, un-865

der belief ambiguity. The framework can be further tested in experimental866

asset trading markets, where one can reckon the degree of inflationary, or867

deflationary pressures created by the ensembles of traders in different be-868
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lief states under ambiguity. The agents’ asset trading preferences can be869

revealed under uncertainty and contrasted with their preferences after some870

informational signals reached them to attest the classicality of their belief871

update in investment, as performed in a similar setting in [27]. Order effects872

belief evolution, given by the order of the observed price states and payoff873

relevant variables can be also further tested with a similar setup as recently874

proposed in [40]. We hope that this simple theoretical model will bring up875

new experimental studies in the area of investment preferences of agents for876

different types of financial instruments and financial markets, coupled with877

the impact of stock market news upon the evolution of agents’ expectations878

that can be potentially modeled in a QP based decision theoretic framework.879

8 Appendix880

We espouse a more detailed mathematical representation of the existence of881

internal dynamics of the belief states of the agent types, given by their diver-882

gent mode of information processing, beyond the measurements of dividend883

and price signals at the specific points in time (t0 − t).884

Without loss of generality, let us consider a Hilbert state space H of885

an arbitrary dimension, in which two operators S and P with respective886

eigenvalues ±1 and eigen-subspaces HS
± and HP

± , act upon the preference887

state of the agents. The corresponding projectors are denoted by S± and888

P±, i.e., S = S+ − S− and P = P+ − P−.889

The measurements of S (or P ) for the state ψ with the outcomes ±1890

projects ψ onto the state ψS± = S±ψ (or ψP± = P±ψ). The belief state of an891

agent can be modified (updated) through the measurements of S or P. This is892

basics of the (belief) measurement scheme due to the ‘Von Neuman-Lüders’893

projection postulate of quantum theory.894

It is useful to extend exposition of quantum probabilistic belief update895

to include the internal dynamics of the belief state t→ ψt in order to better896

approximate the information processing to real finance market environment.897

This is a belief dynamics of agents in the absence of the updates, given by898

the measurements of S and P observables. Such dynamics is mathematically899

described by a family of unitary operators Ut that transform the ambiguous900

belief distribution overtime, where ψt = U(t− t0)ψ0.901

Suppose that at instances of time t1, ...., tn, ... the agent performs a mea-902

surements of S, or in other words she gets a signal that dividends will raise903

or fall, and at instances of time s1, ..., sn, ... she measures P, so she updates904

her expectations about the asset price based on the observed price dynamics.905

It natural to assume that t1 < s1 < t2 < .... < tn < sn... since the agents906
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trade under informational ambiguity.907

Hence a complete dynamics of an agent’s belief state can be represented
as a series of projections coupled with the (agent specific) unitary evolution:

ψt0 → ψt1 =
Sλ1Ut1−t0ψt0
‖Sλt1Ut1−t0)ψt0‖

→ ψs1 =
Pµs1Us1−t1ψt1
‖Pµs1Us1−t1ψt1‖

→ ...,

where λtj = ±1 and msi = ±1 are the outcomes of the measurements of S908

and P, respectively.909

For any t, the probabilities of the possible measurements outcomes S and910

P are given by the Born rule: p(S = ±1) = ‖S±ψt‖2 and p(P = ±1) =911

‖P±ψt‖2. In particular, for an instance of time tj, we obtain p(S = λtj) = 1,912

for the next instance of time si, we obtain p(P = msi) = 1.913

The model also specifies transition probabilities, e.g., the probability of914

transition from belief λtj about the dividend distribution at t = tj to a belief915

µsj about the price distribution: p(λtj → µsj) = |〈ψsj |ψtj〉|2.916

In the simplified model that we proposed earlier, we omit the impact917

of the internal evolution of the belief state, i.e., to set Ut ≡ I. Here the918

state dynamics is reduced to a series of state updates resulting from the919

measurements of the core variables S and P :920

ψt0 → ψt1 =
Sλt1ψt0
‖Sλt1ψt0‖

→ ψs1 =
Pµs1ψt1
‖Pµs1ψt1‖

→ ...,

Thus, for tj ≤ t < sj, we get ψt = Sλtj ...Pµs1Sλt1ψt0/‖Sλtj ...Pµs1Sλt1ψt0‖,921

and for sj ≤ t < tj+1,

ψt = PµsjSλtj ...Pµs1Sλt1ψt0/‖PµsjSλtj ...Pµs1Sλt1ψt0‖.

The sources of internal dynamics can be manifold and are given by agent922

specific variables. Some salient triggers of agent specific belief evolution923

detected experimentally [37], [40] due to individual differences in learning924

from own gains and losses as well as decision outcomes, coupled with agent’s925

cognitive capacity and risk attitude.926
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