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Abstract

This paper introduces a new methodology for constructing a network of

companies called a dynamic asset graph. This is similar to the dynamic asset tree

studied recently, as both are based on correlations between asset returns.

However, the newmodifiedmethodology does not, in general, lead to a tree but a

disconnected graph. The asset tree, due to theminimum spanning tree criterion, is

forced to ‘‘accept’’ edge lengths that are far less optimal (longer) than the asset

graph, thus resulting in higher overall length for the tree. The same criterion also

causes asset trees to be more fragile in structure whenmeasured by the single-step

survival ratio. Over longer time periods, in the beginning the asset graph decays

more slowly than the asset tree, but in the long run the situation is reversed. The

vertex degree distributions indicate that the possible scale free behavior of the

asset graph is not as evident as it is in the case of the asset tree.

1. Introduction

In a recent paper Mantegna suggested to study the

clustering of companies using the correlation matrix of

asset returns [1], transforming correlations into distances,

and selecting a subset of them with the minimum spanning

tree (MST) criterion. In the resulting tree, the distances are

the edges connecting the nodes, or companies, and thus a

taxonomy of the financial market is formed. This method

was later studied by Bonanno et al. [2], while other studies

on clustering in the financial market are [3–7], and those

specifically on market crashes [8, 9].

Recently, we have studied the properties of a set of asset

trees created using the methodology introduced by Man-

tegna in [10–12], and applied it in the crash context in [13]. In

these studies, the obtained multitude of trees was interpreted

as a sequence of evolutionary steps of a single ‘‘dynamic asset

tree’’, and different measures were used to characterize the

system, which were found to reflect the state of the market.

The economic meaningfulness of the emerging clustering was

also discussed and the dynamic asset trees were found to have

a strong connection to portfolio optimization.

In this paper, we introduce a modified methodology

which, in general, does not not lead to a tree but a graph,

or possibly even several graphs that do not need to be inter-

connected. Here we limit ourselves to studying only one

type of ‘‘dynamic asset graph’’, which in terms of its size is

compatible and thus comparable with the dynamic asset

tree. Although in graph theory a tree is defined as a type of

graph, the terms asset graph and asset tree are used here to

refer to the two different approaches and as concepts are

mutually exclusive and noninterchangeable. The aims of this

paper are to introduce this modified approach and to

demonstrate some of its similarities and differences with our

previous approach. Further considerations of topology and

taxonomy of the financial market obtained using dynamic

asset graphs are to be presented later.

2. Constructing asset trees and asset graphs

In this paper, the term financial market refers to a set of

asset price data commercially available from the Center for

Research in Security Prices (CRSP) of the University of

Chicago Graduate School of Business. Here we will study

the split-adjusted daily closure prices for a total of N ¼ 477

stocks traded at the New York Stock Exchange (NYSE)

over the period of 20 years, from January 2, 1980 to

December 31, 1999. This amounts a total of 5056 price

quotes per stock, indexed by time variable ! ¼ 1;

2; . . . ; 5056. For analysis and smoothing purposes, the

data is divided time-wise into M windows t ¼ 1; 2; . . . ;M

of width T, where T corresponds to the number of daily

returns included in the window. Several consecutive

windows overlap with each other, the extent of which is

dictated by the window step length parameter �T, which

describes the displacement of the window and is also

measured in trading days. The choice of window width is a

trade-off between too noisy and too smooth data for small

and large window widths, respectively. The results pre-

sented in this paper were calculated from monthly stepped

four-year windows. Assuming 250 trading days a year gives

�T ¼ 250=12 � 21 days and T ¼ 1000 days, which we

found optimal from a wide set of values for both

parameters [10]. With these choices, the overall number

of windows is M ¼ 195.

In order to investigate correlations between stocks we

first denote the closure price of stock i at time ! by Pið!Þ

(Note that ! refers to a date, not a time window). We focus

our attention to the logarithmic return of stock i, given by

rið!Þ ¼ lnPið!Þ � lnPið! � 1Þ which for a sequence of

consecutive trading days, i.e., those encompassing the

given window t, form the return vector r
t
i . In order to

characterize the synchronous time evolution of assets, we

use the equal time correlation coefficients between assets i

and j defined as

�tij ¼
hrtir

t
ji � hrtiihr

t
ji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½hrt2i i � hrtii
2�½hrt2j i � hrtji

2�
q ; ð1Þ
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where . . .h i indicates a time average over the consecutive

trading days included in the return vectors. Due to

Cauchy–Schwarz inequality, these correlation coefficients

fulfill the condition �1 � �ij � 1 and form an N�N

correlation matrix C
t, which serves as the basis for graphs

and trees to be discussed in this paper.

For the purpose of constructing asset graphs and asset

trees, we define a distance between a pair of stocks. This

distance is associated with the edge connecting the stocks

and it reflects the level at which the stocks are correlated.

We use a simple non-linear transformation

d t
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� �ij
tÞ

p

to obtain distances with the property

2 � dij � 0, forming an N�N symmetric distance matrix

D
t. Now two alternative approaches may be adopted. The

first one leads to asset trees, and the second one to asset

graphs. In both approaches the trees (or graphs) for

different time windows are not independent of each other,

but form a series through time. Consequently, this multi-

tude of trees or graphs is interpreted as a sequence of

evolutionary steps of a single dynamic asset tree or dynamic

asset graph.

In the first approach we construct an asset tree according

to the methodology by Mantegna [1]. This approach

requires an additional hypothesis about the topology of

the metric space, namely, the so-called ultrametricity

hypothesis. In practice, it leads to determining the

minimum spanning tree (MST) of the distances, denoted

T
t. The spanning tree is a simply connected acyclic (no

cycles) graph that connects all N nodes (stocks) with N� 1

edges such that the sum of all edge weights,
P

dt
ij
2Tt dtij, is

minimum. We refer to the minimum spanning tree at time t

by the notation Tt ¼ V;Etð Þ, where V is a set of vertices

and Et is a corresponding set of unordered pairs of vertices,

or edges. Since the spanning tree criterion requires all N

nodes to be always present, the set of vertices V is time

independent, which is why the time superscript has been

dropped from the notation. The set of edges Et, however,

does depend on time, as it is expected that edge lengths in

the matrix Dt evolve over time, and thus different edges get

selected into the tree at different times.

In the second approach we construct asset graphs. This

consists of extracting the N N� 1ð Þ=2 distinct distance

elements from the upper (or lower) triangular part of the

distance matrix Dt, and obtaining a sequence of edges

dt1; d
t
2; . . . ; d

t
NðN�1Þ=2, where we have used a single index

notation. The edges are then sorted in an ascending order

and form an ordered sequence dtð1Þ; d
t
ð2Þ; . . . ; d

t
ðNðN�1Þ=2Þ.

Since we require the graph to be representative of the

market, it is natural to build the graph by including only

the strongest connections in it. The number of edges to

include is, of course, arbitrary. Here we include only N� 1

shortest edges in the graph, thus giving Et ¼ fdtð1Þ; d
t
ð2Þ; . . . ;

dtðN�1Þg. This is motivated by the fact that the asset tree also

consists of N� 1 edges, and this choice renders the two

methodologies comparable, and possibly even similar to

one another. The presented mechanism for constructing

graphs defines them uniquely and, consequently, no

additional hypotheses about graph topology are required.

It is important to note that both the set of vertices Vt and

the set of edges Et are time dependent, and thus we

denote the graph with G
t ¼ Vt;Etð Þ. The choice to include

only the N� 1 shortest edges in the graph means that the

size of the graph, defined as the number of its edges, is fixed

at N� 1. However, the order of the graph, defined as the

number of its vertices, is not fixed for the graph but varies

as a function of time. This is due to the fact that even a

small set of vertices may be strongly inter-connected, and

thus may use up many of the available edges. This may also

lead to the formation of cycles in the graph. These aspects

are clearly different from the tree approach, where the

order is always fixed at N and no cycles are allowed by

definition.

In order to compare the two methodologies visually,

Figs. 1 and 2 show a sample plot of the asset tree and the

asset graph, obtained using the first and the second

approach, respectively. Here a smaller dataset is used,

which consists of 116 S&P 500 stocks, extending from the

beginning of 1982 to the end of 2000 [14]. The window

width was set at T ¼ 1000 trading days, and the shown

sample tree is located time-wise at t ¼ 168, corresponding

to January 1, 1998. Distance between a pair of vertices is

Fig. 1. A sample asset tree Tt for t ¼ 168, where General Electric (GE) is

used as the central vertex.

Fig. 2. A sample asset graph Gt for t ¼ 168.
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indicated by the color of the incident edge, as given by the

color bar in Fig. 1. The sample plots show how the asset

tree spans all the nodes, whereas the asset graph contains

only their subset. The isolated vertices in Fig. 2 are

included for purposes of comparison only, but are not

included in the vertex set Vt of the graph G
t ¼ ðVt;EtÞ.

This figure also shows how the asset graph is disconnected

and consists of several components, and it demonstrates

the presence of cycles in it, which are not allowed for the

asset tree. The lengths of the edges in the asset graph are

clearly shorter than those in the asset tree, as indicated by

the differences in their color. The different markers in Figs.

1 and 2 correspond to different business sectors of the

studied companies as defined by Forbes, http://www.forbes.

com. These definitions can be used to form economically

meaningful clusters in the tree, as studied in detail in [12].

Also the asset graph tends to link together stocks that

belong to the same business sector, a property to be studied

further in some other context.

3. Market characterization

For the market characterization let us start by comparing

the two approaches, i.e., asset tree and asset graph, by

examining visually their edge length distributions. We

present three distribution plots of (i) distance elements dij
contained in the distance matrix D

t (Fig. 3), (ii) distance

elements dij contained in the asset (minimum spanning) tree

T
t (Fig. 4), and (iii) distance elements dij contained in the

asset graph G
t (Fig. 5). In all these plots, but most

prominently in Fig. 3, there appears to be a discontinuity in

the distribution from roughly 1986 to 1990, such that a part

has been cut out, pushed to the left and made flatter. This

anomaly is a manifestation of Black Monday (October 19,

1987), and its length along the time axis is related to the

choice of window width T [12, 13].

We can now reconsider the tree and graph construction

mechanism described earlier. Starting from the distribution

of the N N� 1ð Þ=2 distance matrix elements in Fig. 3, for

the asset tree we pick the shortest N� 1 of them, subject to

the constraint that all vertices are spanned by the chosen

edges. For the purpose of building the graph, however, this

constraint is dropped and we pick the shortest elements

from the distribution in Fig. 3. Therefore, the distribution

of graph edges in Fig. 5 is simply the left tail of the

distribution of distance elements in Fig. 3, and it seems that

the asset graph rarely contains edges longer than about 1.1,

the largest distance element being dmax ¼ 1:1375. In

contrast, in the distribution of tree edges in Fig. 4 most

edges included in the tree seem to come from the area to the

right of the value 1.1, and the largest distance element is

now dmax ¼ 1:3549.

Instead of using the edge length distributions as such, we

can characterize the market by studying the location

(mean) of the edge length distribution by defining a simple

measure, the mean distance, as

�dd tð Þ ¼
1

NðN� 1Þ=2

X

dt
ij
2Dt

dtij; ð2Þ

where t denotes the time at which the tree is constructed,

and the denominator is the number of distinct elements in

Fig. 3. Distribution of all N N� 1ð Þ=2 distance elements dij contained in

the distance matrix D
t as a function of time.

Fig. 4. Distribution of the N� 1ð Þ distance elements dij contained in the

asset (minimum spanning) tree T
t as a function of time.

Fig. 5. Distribution of the N� 1ð Þ distance elements dij contained in the

asset graph G
t as a function of time.
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the matrix. It is noted that one could instead use the mean

correlation coefficient, defined as

��� tð Þ ¼
1

NðN� 1Þ=2

X

�t
ij
2Ct

�tij; ð3Þ

which would lead to the same conclusions, as the mean

distance and mean correlation coefficient are mirror images

of one another and, consequently, it suffices to examine

either one of them. In a similar manner, we can

characterize the asset tree and the asset graph, which are

both simplified networks representing the market, but use

only N� 1 distance elements d t
ij out of the available

N N� 1ð Þ=2 in the distance matrix Dt. Thus we define the

normalized tree length for the asset tree as

Lmst tð Þ ¼
1

N� 1

X

dt
ij
2Tt

d t
ij; ð4Þ

and the normalized graph length for the asset graph as

Lgraph tð Þ ¼
1

N� 1

X

d t
ij
2Gt

dtij; ð5Þ

where t again denotes the time at which the tree or graph is

constructed, and N� 1 is the number of edges present.

These three measures are depicted in Fig. 6, from which the

following observations are made. First, all three measures

behave very similarly, which is also reflected by the level of

mutual correlations. Pearson’s linear and Spearman’s rank-

order correlation coefficients between the mean distance

and normalized tree length are 0.98 and 0.92, respectively,

while between the mean distance and the normalized graph

length they turned out to be 0.96 and 0.87. Thus, the

normalized tree length seems to track the market slightly

better. Second, the average values of these measures

decrease in moving from the mean distance, via the

normalized tree length, to the normalized graph length,

being 1.29, 1.12 and 1.00, respectively. Also, the normal-

ized tree length is always higher than the the normalized

graph length, differing on average by 0.13. Thus it seems

that the asset tee, due to the minimum spanning tree

criterion, is forced to ‘‘accept’’ edge lengths that are far less

optimal (longer) than the asset graph, resulting in a higher

average value for the normalized tree length than for the

normalized graph length. Third, the normalized graph

length tends to exaggerate the depression caused by the

crash, which can be traced back to the graph construction

mechanism. We have earlier studied just one of these

measures, namely, the normalized tree length and found it

to be descriptive of the overall market state. Furthermore it

turned out to be closely related to market diversification

potential, i.e., the scope of the market to eliminate specific

risk of the minimum risk Markowitz portfolio [10, 11]. The

fact that the normalized distance and normalized tree

length behave so similarly suggests that they are, at least to

some extent, interchangeable measures.

4. Evolution of asset trees and asset graphs

The robustness of asset graph and asset tree topology can

be studied through the concept of single-step survival ratio,

defined as the fraction of edges found common in two

consecutive graphs or trees at times t and t� 1:

�ðtÞ ¼
1

N� 1
jEt \ Et�1j: ð6Þ

As before, Et refers to the set of edges of the graph or the

tree at time t;\ is the intersection operator and j . . . j gives

the number of elements in the set. Although it has not been

explicitly indicated in the definition, �ðtÞ is dependent on

the two parameters, namely, the window width T and the

step length �T. Figure 7 shows the plots of single-step

survival for both the graph (upper curve) and the tree

(lower curve) for �T ¼ 250=12 � 21 days and T ¼ 1000

days.

The most evident observation is that the graph seems to

have a higher survival ratio than the tree. For the graph, on

average, some 94.8% of connections survive, whereas the

corresponding number for the tree is 82.6%. In addition,

Fig. 7. Single-step survival ratios �ðtÞ as functions of time. The thicker

(upper) curve is for the graph and the thinner (lower) for the tree. The

dashed lines indicate the corresponding average values.

Fig. 6. (a) Mean distance, (b) normalized tree length, (c) normalized graph

length as functions of time.
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the fluctuation of the single-step survival ratio, as measured

by its standard deviation, is smaller for the graph at 5.3%

than for the tree at 6.2%. In general, both curves fluctuate

together, meaning that the market events causing re-

wirings in the graph also cause re-wirings in the tree. This is

very clear in the two sudden dips in both curves, which

result from the re-wirings related to Black Monday [13].

Although both curves fall drastically, the one for the asset

graph falls less, indicating that the graph is more stable

than the tree also under extreme circumstances, such as

market crashes. The higher survival ratio for the asset

graph is not caused by any particular choice of parameters,

but is reproduced for all examined parameter values. Some

indication of the sensitivity of the single-step survival ratio

on the window width parameter is given in Table I. The

fact that asset graphs are more stable than asset trees is

related to their construction mechanism. The spanning tree

constraint practically never allows choosing the shortest

available edges for the tree and, consequently, the ensuing

structure is more fragile. A short edge between a pair of

stocks corresponds to a very high correlation between their

returns. This may result from the companies having

developed a cooperative relationship, such as a joint

venture, or it may be simply incidental. In the first case

the created bond between the two stocks is likely to be

longer lasting than if the MST criterion forced us to include

a weaker bond between two companies.

We can expand the concept of single-step survival ratio

to cover survival over several consecutive time steps �T.

Whereas the single-step survival ratio was used to study

short-term survival, or robustness, of graphs and trees, the

multi-step survival ratio is used to study their long-term

survival. It is defined as

�ðt; nÞ ¼
1

N� 1
jEt \ Et�1 � � �Et�nþ1 \ Et�nj; ð7Þ

where only those connections that have persisted for the

whole time period of length n�T without any interruptions

are taken into account. According to this formula, when a

bond between two vertices breaks even once within n steps

and then reappears, it is not counted as a survived

connection. A closely related concept is that of graph or

tree half-life t1=2, defined as the time in which half the

number of initial connections have decayed, i.e.,

�ðt; t1=2�TÞ ¼ 0:5. The multi-step survival ratio is plotted

in Fig. 8, where the half-life threshold is indicated by the

dashed horizontal line.

The time axis can be divided into two regions based on

the nature of the decay process, and these regions are

located somewhat differently for the graph and the tree.

The precise locations of the regions are, of course, subject

to speculation, but for the purpose carrying out fits and

analysis they need to be fixed. For the asset graph the first

and second regions, discretized according to �T ¼ 1
12

year

as mentioned before, are defined on the intervals ð1
2
; 4Þ and

ð4 1
12
; 16 1

6
Þ, respectively, both given in years. Within the first

region, the graph exhibits clean exponential decay, as

witnessed by the fitted straight line on lin-log scale in the

inset of Fig. 8. Somewhere in between the two regions there

is a cross-over to power-law behavior, which is evident

within the second region, resulting in a straight line on the

log-log plot of the same figure. For the asset tree the

regions are defined on ð 1
12
; 1 1

2
Þ and ð1 7

12
; 11 1

4
Þ. Within the

first region the asset tree decays faster than exponentially,

as can be verified by comparison with the straight line

decay of the graph in the inset. Similarly to the graph, there

is a cross-over to a power-law, although the slope is faster

than for the graph. If we write the power law decay as

�ðt; nÞ
� �

t
	 n�� , the fits yield for the asset graph � � 1:39,

whereas for the asset tree we have � � 1:19.

The finding concerning the slower decay of the asset graph

within the first region is fully compatible with the results

obtained with single-step survival ratio. Since the graph

shows higher survival ratio over a single-step, it is to be

expected that, at least in the early time horizon (within the

first region), graphs should decay more slowly than trees.

The half-lives for both the graph and the tree occur within

the first region, and thus it is not surprising that the graph

half-life is much longer than the tree half-life. For the graph,

we obtained t1=2 � 1:71 years, and for the tree t1=2 � 0:47.

Although the half-lives depend on the value of window width

T, the differences between them persist for different param-

eter values. When measured in years, for window widths of

T ¼ 2, T ¼ 4 and T ¼ 6, the corresponding half-lives for the

asset tree are 0.22, 0.47 and 0.75 years, whereas for the asset

graph they are 0.88, 1.71 and 2.51 years, respectively.

Interestingly, the situation seems to be reversed within

the second region, where both decay as power-law. Here

the higher exponent � for the asset graph indicates that it

actually decays faster than the asset tree. This finding

could, of course, be influenced by our choice of the window

width T. Explorations with that parameter revealed

Fig. 8. Multi-step survival ratio �ðt; kÞ for asset graph and tree as a

function of survival time k, averaged over the time domain t.

Table I: Mean and standard deviation of the single-step

survival ratio �ðtÞ for the asset graph and the asset tree for

different values of window width T, given in days:

T¼ 500 T¼ 1000 T¼ 1500

mean �(t) tree 72.3% 82.6% 86.9%

graph 90.1% 94.8% 96.0%

std �(t) tree 7.5% 6.2% 5.4%

graph 6.3% 5.3% 4.5%
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another interesting phenomenon; the slope for the asset

tree seems to be independent of window width, as discussed

in [12], but for the asset graphs this is not the case. For

T ¼ 500, T ¼ 1000 and T ¼ 1500, given in days, we

obtained for the asset tree the exponents � ¼ 1:15,

� ¼ 1:19 and � ¼ 1:17, respectively, which, within the

error bars, are to be considered equal [12]. For the asset

graph, however, we obtain the values of � ¼ 2:07, � ¼ 1:39

and � ¼ 1:55. Although no clear trend can be detected in

these values, a matter that calls for further exploration, it is

clear that the value of � is higher for the asset graph than

for the asset tree. Therefore, the asset graph decays more

slowly than the asset tree within the first region, while

within the second region the situation is just the opposite.

5. Distribution of vertex degrees in asset trees and asset

graphs

As the asset graph and asset tree are representative of the

financial market, studying their structure can enhance our

understanding of the market itself. Recently Vandewalle

et al. [15] found scale free behavior for the asset tree in a

limited time window. They proposed the distribution of the

vertex degrees fðkÞ to follow a power law of the following form

f ðkÞ 	 k��; ð9Þ

with the exponent � � 2:2. Later, we studied this phenom-

enon further with a focus on asset tree dynamics [12]. We

found that the asset tree exhibits, most of the time, scale

free properties with a rather robust exponent � � 2:1
 0:1

during times of normal stock market operation. In

addition, within the error limits, the exponent was found

to be constant over time. However, during crash periods

when the asset tree topology is drastically affected, the

exponent changes to � � 1:8
 0:1, but nevertheless the

asset tree maintains its scale free character. The interesting

question is whether asset graphs also display similar scale

free behavior and if so, are there are differences in the value

of the exponent. As Figs. 9 and 10 make clear, the observed

data does not fit as well with scale free behavior for the

asset graph as it does for the asset tree. The obtained

average value for the exponent of the asset graph is

significantly lower, i.e. � � 0:9
 0:1. In addition, the

exponent for the asset graph varies less as a function of

time and does not show distinctively different behavior

between normal and crash markets.

In the case of the asset tree, there were sometimes clear

outliers, as one node typically had a considerably higher

vertex degree than the power-law scaling would predict.

This outlier was used as a central node, a reference node

against which some tree properties were measured. How-

ever, the fact that one node often had ‘‘too high’’ vertex

degree provided further support for using one of the nodes

as the center of the tree, as discussed in detail in [12]. In

case of the dynamic asset graph, these types of outliers are

not present. This observation merely reflects upon the

differences between the topologies produced by the two

different methodologies but does not, as such, rule out the

possibility of using one of the nodes as a central node1.

In [12], we estimated the overall goodness of power-law

fits for the asset trees by calculating the R2 coefficient of

determination, a measure which indicates the fraction of the

total variation explained by the least-squares regression

line. Averaged over all the time windows, we obtained the

values R2 � 0:93 and R2 � 0:86, with and without outliers

excluded, respectively. Since there were no outliers in the

data for asset graphs, it was used as such to give an average

of R2 � 0:75. This indicates that the scale free behavior is

not evident in this case.

6. Summary and conclusion

In summary, we have introduced the concept of dynamic

asset graph and compared some of its properties to the

dynamic asset tree, which we have studied recently.

Comparisons between edge length distributions reveal

that the asset tree, due to the minimum spanning tree

criterion, is forced to ‘‘accept’’ edge lengths that are far less

optimal (longer) than the asset graph. This results in a

higher average value for the normalized tree length than for

the normalized graph length although, in general, they

behave very similarly. However, the latter tends to

exaggerate market anomalies and, consequently, the

normalized tree length seems to track the market better.

The asset graph was also found to exhibit clearly higher

single-step survival ratio than the asset tree. This is

understandable, as the spanning tree criterion does not

allow the shortest connections to be included in the tree

Fig. 9. Typical plots of vertex degree distributions for normal (left) and

crash topology (right) for the asset tree. The exponents and goodness of fit

for them are are � � 2:15, R2 � 0:96 and � � 1:75, R2 � 0:92.

Fig. 10. Typical plots of vertex degree distributions for the asset graph.

The exponents and goodness of fit for them are � � 0:93, R2 � 0:74 and

� � 0:96, R2 � 0:74, respectively.

1
The reason why the concept of central node is not applicable to dynamic

asset graphs is that nothing guarantees that we have just one graph. We

may have many that are not connected, and thus we cannot determine

how far from each other these graphs are.
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and their omission leads to a more fragile structure. This is

also witnessed by studying the multi-step survival ratio,

where it was found that in the early time horizon the asset

graph shows exponential decay, but the asset tree decays

faster than exponential. Later on, however, both decay as a

power-law, but here the situation is reversed and the asset

tree decays more slowly than the asset graph. We also

studied the vertex degree distributions produced by the two

alternative approaches. Earlier we have found asset trees to

exhibit clear scale free behavior, but for the asset graph

scale free behavior is not so evident. Further, the values

obtained for the scaling exponent are very different from

our earlier studies with asset trees.
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