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Abstract. Syntactically correct process models are not necessarily meaningful 
or represent processes that are feasible to execute. Specifically, when executed, 
the modeled processes might not be guaranteed to reach their goals. We propose 
that assigning ontological semantics to process modeling constructs can result 
in more meaningful models. Furthermore, the ontological semantics can impose 
constraints on the allowed process models which in turn can provide rules for 
developing process models. In particular, such models can be designed to be 
valid in the senses that the process can accomplish its goal when executed. We 
demonstrate this approach for Petri Net based process models.  

1   Introduction 

Process modeling is a complicated task and, hence, error-prone (e.g., [7][10]). Much 
effort has been devoted to the verification of process models leading to methods and 
tools for analyzing structural properties of process models and for detecting logical 
problems in them. These approaches are applied to already developed models, but do 
not provide guidance on how to develop valid models. 

The syntax of process modeling languages specifies how to compose their 
constructs (which often have graphical notation) into process models. The semantics 
is believed to represent some real-world phenomena. These languages are usually 
defined textually or mathematically. Textual definitions are typically semi-formal or 
informal (e.g., “An event is something that “happens” during the course of a business 
process.” [8]). Mathematical definitions can support precise analysis of models. 

Syntactically correct process models are not necessarily meaningful or feasible to 
execute. This entails the need for checking completed process models for structural 
and behavioral properties related to whether they can be successfully executed or not. 

Some research evaluated process modeling languages by mapping their constructs 
to ontological concepts (which are assumed to convey real-world semantics) [9]. 
These attempts revealed various deficiencies such as ontological incompleteness, 
construct overload, redundancy, and excess. In particular, no ontological meaning was 
identified for control flow constructs which exist in practically every process 
modeling language (typically manifested as splitting and merging elements). 

Recently, the Generic Process Model (GPM) was used to suggest an interpretation 
of control flow structures [12]. GPM provides a process specification semantics based 
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on ontological constructs. It is intended as a framework for reasoning about process 
models in terms of their real-world meaning. To apply the GPM for this purpose, its 
constructs should be mapped to the modeling languages used, which often employ 
graphical notation easy for human use. Ontology-based semantics imposes modeling 
rules in addition to the language-based syntactical restrictions. We suggest that these 
rules can guide the construction of meaningful and feasible process models. 

In this paper we demonstrate the use of ontological semantics for Petri net based 
process models, or, more precisely, Workflow nets. Petri nets are widely used, 
provide a high degree of formality which supports model verification, and have a 
graphical notation with a precisely defined mathematical semantics. An extensive 
body of work exists on the mathematical, structural, and behavioral properties of Petri 
nets and Workflow nets (e.g., [2]). Furthermore, they serve for formalizing and 
analyzing models in other modeling languages (e.g., EPC [1]). Petri nets employ a 
small set of constructs, yet possess an impressive expressive power and can be used to 
represent precisely the entire set of workflow patterns [3]. 

Petri net analysis addresses the structure of the net rather than the semantics of its 
elements. GPM can provide such semantics in terms of state specification and state 
transitions of the process domain. In this paper we show that assigning this semantics 
to places and transitions can lead to better-designed process models and help avoid 
undesired situations (which in turn can be formalized using Petri net properties). 

In the following, Section 2 introduces GPM and its control flow interpretation; 
Section 3 maps Petri net constructs to GPM. Section 4 explores restrictions on Petri 
nets, and introduces additional restrictions based on GPM, and their implications for 
Petri net properties. Section 5 is a conclusion. 

2   The Generic Process Model (GPM) 

The focus of GPM analysis is a domain, which is a part of the world consisting of 
interacting things. We describe the behavior of the domain using concepts from 
Bunge’s ontology [4][5] and its adaptation to information systems [13][14] and to 
process modeling [11][12]. A domain is represented by a set of state variables, each 
depicting a property of the domain and its value at a moment in time. A successful 
process is a sequence of unstable states of the domain, leading to a stable state, which 
is in the set of goal states (simply – goal). An unstable state is a state that must change 
due to actions in the domain (an internal event). A stable state is a state that only 
changes due to action of the environment on the domain (an external event). Internal 
events are governed by transformation (transition) laws that define the allowed (and 
sometimes necessary) state transitions (manifested as events in the domain).  

We formalize these concepts as follows: 

Definition 1: A domain model is a set of state functions D={f1(t)…fn(t)}. The value 
of fk(t) at a given time is termed a state variable, denoted xk. 

The set of state variables for domain D is denoted by XD={xk; k∈I={1…n}}. The 
state of the domain at a given time is s(D)=<x1,…xn> (or simply s). A set of states of 
domain D is denoted by S(D). 

Definition 2: A transformation law on D is a mapping L:S(D)→S(D) 
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Definition 3: A domain will be said to be in a stable state if L(s)=s and in an unstable 
state if L(s)≠s. 

Definition 4: A law will be said to be well-defined iff it is a function.  

Often, several domain states can be considered equivalent. Hence, the transformation 
law can be represented as a mapping between sets of states. Such a set can be 
specified by a predicate C(s). Specifically, the process goal is a set of stable states, 
specified by a predicate that manifests business objectives to be fulfilled by the 
process. The task of the process designer is to implement a transformation law so that 
the process can accomplish its goal.  

To model practical situations, we consider a domain as comprising sub-domains, 
each represented by a subset of the domain state variables. Changes that occur in a 
sub-domain when the domain changes state, are termed the projections of the domain 
law (or domain behavior) on the sub-domain. Formally: 

Definition 5: A sub-domain is part of the domain described by a subset of XD. 
 

A sub-domain D1 of D is described in terms of XD1⊂XD; XD1={xk ; k∈ I1⊂I}. 

The state of D1 is s(D1)=<xk1,…xk|I1|>, kj∈I1
 and kj≠kl for j≠l. 

Definition 6: Let the state of D be s=<x1…xn>. The projection of s on the sub-domain 
D1 is s/D1=<y1…y|I1|> where yk=xI1(k). 
 

It is possible that several domain states will map on the same state of the sub-domain. 
This, in turn, can result in the same sub-domain state changing in different ways, 
depending on the state of the whole domain. 

Definition 7: Let v be a state of D1. The projecting set for v in D is the set of states of 
D that project v in D1:  S(v;D1)={s∈S(D) | s/D1=v} 

We now define the effect of the domain law (L) on the sub-domain D1 

Definition 8: Let v∈S(D1) and let  s(v;D1) be the projecting set of v. The law 
projection of LD on D1 (denoted L/D1) for v is defined by the mapping LD1: S(D1) 

→S(D1) such that L D1 (v)=∪{L(s)/D1 | s∈s(v;D1)}.  
 

In words – the projection of the law is defined as the union of projections of the states 
mapped into by the law. We are interested in cases where the projected behavior of 
the whole domain on a sub-domain creates a well-defined function in the sub-domain. 
In other words, a given unstable state of the sub-domain will always map in the same 
way, independent of the state of the whole domain, and hence independent of the 
states of other sub-domains. We will then say that the sub-domain behaves 
independently. Partitioning of the domain into independently-behaving sub-domains 
is often a consequence of different actors acting in the domain. These actors can be 
people, departments, machines, computers and combinations of those. 

Definition 9: A sub-domain D1 of D will be called an independently behaving (in 
short an independent) sub-domain iff the law projection on D1

 is a function. 

Corollary: For an independent sub-domain the law projection depends only on state 
variables of the sub-domain. 
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Note: a sub-domain might behave independently for only a subset of the state 
space of D. Definition 9 can be restricted to a subset of domain states.  

As an independent sub-domain changes its state to a stable one, it is possible some 
other independent sub-domains will become unstable and will begin transforming. 
Thus, a sequence of transformations occurs. This sequence comprises a process. 

Process models usually include split and merge points, which reflect either 
concurrency or choice between possible alternative paths. We now interpret these in 
GPM terms. First, it is possible a set of states arrived at may be partitioned so the next 
transformation is defined differently for each subset of states. Such partitioning might 
occur because the law becomes “sensitive” to a certain state variable. Consider, for 
example, a process where a standard product is manufactured, and then packaged 
according to each customer's requirements. Manufacturing does not depend on the 
customer (even when the customer is known). When manufacturing is completed, 
customer information will determine a choice between packaging actions. This 
situation is an exclusive choice (an XOR split). The different actions may lead to 
states which are equivalent for determining the next action (the law will not 
distinguish between different packaging options), for example, transferring the 
products to finished goods inventory. This is the point where the paths merge. 

Definition 10: Ssp is an exclusive choice splitting point iff there exist sets of states 
S1,S2,..Sn such that Si⊂Ssp, Sj∩Sk=∅, and L(Sj)≠L(Sk), j≠k, j,k=1…n. 

The corresponding form of a merge (sometimes termed simple merge) is when a 
single set of states is reachable by law from different sets of states. 

Definition 11: Let S1, S2, and Sme be sets of states such that S1≠S2, S1,S2≠Sme. Sme is a 
simple merge iff L(S1)=L(S2)=Sme. 

Also related to splitting and merging is concurrency. Since one domain cannot have 
concurrent transformations, concurrency should relate to transformations in different 
sub-domains. It means that if each sub-domain proceeds through a sequence of 
(projected) states, all combinations of the projected states of the different sub-
domains are possible (in principle). 

Lemma 1: Two sub-domains can transform concurrently only if they are 
independent.  

Proof: Assume that two sub-domains are not independent. Then the transitions in one 
can depend on the state of the other. In this case, only some combinations of states of 
each sub-domain are possible.   

It follows that a split leading to concurrency must be related to a decomposition of the 
domain into independently behaving sub-domains. In such a split, for the process to 
continue, at least one sub-domain must be unstable with respect to its (projected) law. 
If all these sub-domains are in unstable states for all states in the split, then this is a 
parallel split. Otherwise, several possibilities exist, depending on the number of the 
unstable sub-domains (see [12][11]). In particular, if exactly one sub-domain can be 
in an unstable state, then, based on Definition 10, this is an exclusive choice.  

Definition 12: Ssp is a parallel split iff there exist at least two sub-domains such that 
at Ssp each sub-domain becomes independent and is in an unstable state. 
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For example, in the process discussed above, once products are ready, the process 
domain can be decomposed into two independent sub-domains: one where shipment 
is arranged and one where the products are transferred into the warehouse. These two 
sub-domains are independent and in an unstable state, thus they operate concurrently.  
A decomposable domain may entail different types of merge points (see [12][11]). In 
particular, a simple merge - where the completion of action of any sub-domain causes 
the process to proceed. Here we define a synchronizing merge, where process 
continuation requires that all active sub-domains complete their tasks. Consider a set 
of states in a merge point. These states should be unstable to enable the process to 
continue. They should be reachable from the split, hence their projection in each sub-
domain should be reachable from the split for the sub-domain. In a synchronizing 
merge, each sub-domain becomes stable (“waiting” for the other sub-domains). Once 
all the sub-domains reach the merge, the process can continue. Formally: 

Definition 13: Let Dk⊂D, k=1...n be independent sub-domains operating concurrently 
following a split point Ssp. Let Sme be a set of unstable states in D, reachable from Ssp. 
Sme is a synchronizing merge iff ∀s∈ Sme , ∀k,  s/Dk is stable. 
 

Finally, the explicit representation of process goal in GPM supports the analysis of 
process models for goal reachability. A process whose design ensures its goal will 
always be achieved under a certain set of triggering events (which are external to the 
domain) is termed valid [11] with respect to this set of events.   

3   GPM – Petri-Net Mapping 

3.1   Petri-Nets and Workflow Nets 

This section provides some definitions of Petri-nets in general and Workflow-nets in 
particular, and their properties which are relevant for our discussion. 

A Petri-net is a directed bipartite graph with two node types called places (circles) 
and transitions (rectangles), connected by arcs. Connections between two nodes of the 
same type are not allowed. 

Definition 14: A Petri-net is a triple (P, T, F): 

- P is a finite set of places; 
- T is a finite set of transitions (P∩T = ∅) 
- F⊆(PxT)∪(TxP) is a set of arcs. 

 

At any time a place contains zero or more tokens (black dots), and the state of the net 
is the distribution of tokens over places. The notations •t, t•, •p, p• indicate the sets of 
input and output places of transition t and the sets of transitions of which p is an input 

and output place, respectively. Given two states M1 and Mn, M1 Mn denotes that Mn 
is reachable from M1 through a firing sequence σ. 

Some Petri-nets properties, relevant for our discussion, are defined below. 

Definition 15: A Petri net is bounded iff for each place p there is a natural number n 
such that for every reachable state the number of tokens in p is less than n.  
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Definition 16: A Petri net is a free choice Petri net iff, for every two transitions t1 and 
t2, •t1∩•t2≠∅ implies •t1=•t2. 

A Petri net which is not free-choice usually involves a mixture of choice and 
parallelism, which is hard to analyze and considered inappropriate. Most of the 
mathematically-based properties identified and analyzed with respect to Petri nets 
relate to free-choice Petri nets only. 

A specific form of Petri net, often used with respect to workflow modeling is 
Workflow net (WF net).  

Definition 17: A Petri net (P, T, F) is a Workflow net (WF-net) iff: 

(i) There is one source place i∈P such that •i=∅. 
(ii) There is one sink place o∈P such that o•=∅. 
(iii) Every node x∈P∪T is on a path from i to o. 

A WF-net represents the life-cycle of a single workflow case in isolation. It has an 
initial state following the generation of a case, where only one token exists in place i, 
and a final state o after which the case is deleted. The property which is ultimately 
sought and verified for WF nets is soundness. 

Definition 18: A procedure modeled by a WF-net PN= (P, T, F) is sound iff: 

(i) For every state M reachable from state i, there exists a firing sequence 
leading from state M to state o. 

(ii) o is the only state reachable from state i with at least one token in place o. 
(iii) There are no dead transitions in (PN, i). 

 

Soundness means that the modeled procedure will terminate eventually, and properly 
(i.e. no further transition will occur). Soundness can be verified in polynomial time 
for free-choice WF-nets. Another property, closely related to soundness, is well-
structuredness. In a well-structured WF-net a splitting point and a merging point 
which correspond to each other are of the same type, namely, a split at a place 
(transition) corresponds to a merge at a place (transition). 

 3.2   Mapping Workflow-Nets to GPM 

Table 1 presents the GPM interpretation of WF-net basic constructs and combinations 
which form control-flow basic building blocks. We focus our discussion on WF-nets, 
since these have a distinct termination place, which may correspond to GPM’s goal 
concept. Nevertheless, most of the discussion is applicable to Petri nets in general. As 
shown in Table 1, every basic WF net construct and building block can be assigned a 
GPM-based interpretation. We do not attempt to do a reverse mapping, namely 
interpret GPM terms using WF nets, since GPM addresses issues beyond the control 
flow of the process, which are not in the scope of WF nets. Nevertheless, considering 
the proposed control flow mapping, this interpretation assumes certain domain 
semantics assigned to the places and transitions of a WF net. This semantics poses 
requirements which do not exist in the WF net syntax. If these requirements are not 
met, a WF net cannot be transformed into a meaningful GPM specification. It can 
thus be claimed that the expressive power of WF nets exceeds the expressive power 
of GPM with respect to control flow. Alternatively, it can be argued that WF net 
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Table 1. GPM interpretation of WF-Net constructs and basic building blocks 

WF-net construct / building block GPM interpretation 
Place p A set of states of a sub-domain (the projection  

of a set of states over a sub-domain) 
Transition t A transformation in a sub-domain 
Arc An unstable state leading to a transformation.  

A transformation leads to a state. 
Initial place i The initial set of states I  

Final place o The goal set G  

Sequence t1 is a transformation in a sub-domain, from a  
set of states p1 into a set of states p2 

A parallel split t1 is a transformation after which the domain 
becomes decomposable, where p1 and p2 are  
state projections over different sub-domains 

A synchronizing  
merge 

t1 is a transformation whose initial set of states  
is p1∩p2

1
    

An exclusive  
choice 

p1 is a set of states in which one of two sub- 
domain transformations is possible 

A simple  
merge 

p1 is a set of states reachable by two  
transformations, t1 and t2, separately 

 
syntax, being anchored in mathematical semantics of graphical symbols, allows 
structures which are not necessarily possible in reality. 

4   Mapping-Based Modeling 

4.1   Modeling Requirements 

Assigning a GPM meaning to WF-nets imposes additional requirements on the use of 
WF-nets for process modeling. In particular, we will use the goal concept of GPM to 
form these requirements with respect to WF-nets.  

Definition 19: A WF-net is a well-mapped domain representation iff it can be 
mapped to a GPM specification. 
 

To make this concept operational, we derive necessary conditions for a WF-net to be 
a well-mapped domain representation in the sense of this definition. First, every place 
in the net should represent a set of states of some defined sub-domain (xi..xk).  

 

Necessary condition 1: ∀pk∈P, ∃Dk⊆D such that pk is active iff Dk is in a given set of 
states S ⊆S(Dk).  

We denote the sub-domain as Dpk , its state variables as Xpk and the set of states by 
Spk. Spk can be specified by a predicate C(Xpk).  pk is active iff C(Xpk) is TRUE. 

Regarding condition 1, consider the meaning of several tokens in a place. The 
predicate C can be some composite expression, which may assume the value TRUE in 
                                                           
1 GPM merge relates to the states, while Petri-net relates to the transition that follows the states. 

t1 

t2 

t1 

i 

t1 
p2 p1

p1 
p2 

p1

o 

p1

t1 p2

p1 t1

t2
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more than one situation (each applicable to a subset of states of the sub-domain). In 
particular, if the predicate is of the form <Expression OR Expression>, then it may 
assume the value TRUE when each of the expressions becomes TRUE. In this case, 
each atomic expression may stand for a token. As an example, consider an order 
delivery process, where the customer orders several items which can be manufactured 
concurrently, and each item is delivered once it is ready. This can be modeled by a 
single place prior to delivery, whose predicate would be ((Item A=ready) OR (Item 
B=ready) OR…).  The arrival of each item is modeled as adding a token to that place, 
triggering the delivery transition.  The maximal number of tokens in a place is the 
number of atomic expressions related by an OR in the predicate that defines it. If the 
predicate cannot be decomposed to the form <Expression OR Expression>, then the 
maximal number of tokens allowed in that place is 1. 

Lemma 2: A WF-net which is a well-mapped domain representation is bounded. 
 

Proof: Directly from the token interpretation. It is not possible to formulate a 
predicate composed of an infinite number of expressions. 

 

As a second requirement, every transition should transform the state of a defined sub-
domain (based on its input places). To continue, it must place a new sub-domain in an 
unstable state. Hence, the domains that correspond to the set of output places of a 
transition should have some common state variables with the domain corresponding 
to each of its input places. We denote the sub-domain transformed by transition t as 
Dt, and its set of state variables is Xt. 

Necessary condition 2: ∀t∈T, pj∈•t, pk∈t•, it must be that Xt⊆∪jX
pj; Xt∩Xpk ≠∅. 

In other words, for every transition, the state variables of the sub-domain in which 
the transition occurs, should: (a) be a subset of the state variables of all sub-domains 
represented by the input places (leading to it), and (b) include some state variable of 
every sub-domain represented by places preceding it. For example: assume the 
transition represents manufacturing a product. The transition should “use” only state 
variables from its inputs (e.g., raw materials and resources), and must affect the state 
which triggers the next activity (e.g. packaging or shipping the ready product). 

Third, for a transition to act within a sub-domain, the sub-domain law must be 
independent (for the set of states represented by the transition’s input place). 

Necessary condition 3: ∀t∈T, ∀p∈P, if p=•t then Dt is independent at p.  
Fourth, concurrently operating threads operate over sub-domains that do not share 

state variables. Note that this is necessary, but not sufficient to guarantee that these 
sub-domains behave independently. 

Necessary condition 4: Every two transitions t1 and t2 that may operate concurrently, 
satisfy Xt1∩Xt2=∅. 

In particular, the following two cases can be specified: 

Parallel split: Let ts be a transition where a parallel split occurs, so ts•={p1, p2}, and 
consider t1=p1• and t2=p2•. Then Xt1∩Xt2=∅. 
Synchronizing merge: Let tm be a transition where a synchronizing merge occurs, so 
•tm={p1, p2}, and consider t1=•p1 and t2=•p2. Then Xt1∩Xt2=∅. 



24 P. Soffer, M. Kaner, and Y. Wand 

Note that while necessary condition 4 addresses concurrency situations, we make 
no similar requirement with respect to choice-related splits. Since these may relate to 
both decomposable and non-decomposable domains, no strict rules can be formed 
here. Choice-related splits lead the domain in one of several possible paths, which, in 
turn, put the domain in one of possible (alternative) states. As opposed to the path 
definition in Petri nets, which relates to any sequence of connected elements, we 
relate to domain paths (D-paths), which correspond to selected sequences of states of 
the domain. The difference between these terms can be seen with respect to parallel 
splits, where the domain is decomposed into independently transforming sub-
domains. In the graphical Petri net representation the sequence of elements in each 
sub-domain forms a different “path”. However, since no choice (decision) is made, 
we do not address these as separate D-paths.  

GPM defines a path as a set of states the domain goes through via a sequence of 
transitions determined by the law and by external events. Petri nets (and specifically, 
WF-nets) do not explicitly address external events, assuming they will occur as 
expected. In a WF-net, considering a sub-domain D, its state is the distribution of 
tokens at a given moment in all the places pj that satisfy Xpj⊆ XD. We denote the state 
of sub-domain D by MD.  

Definition 20: Let D be a sub-domain in a WF-net. A domain path (D-path) of D is a 
sequence of states of D <MD

1, M
D

2,…MD
K>, such that a sequence of transitions <t1, 

t2,…tk-1> exists that satisfies MD
i  MD

i+1 … MD
k, for 1 ≤ i ≤ k-1.  

 
For clarity, we hereafter relate to domain paths as D-paths and to “ordinary” (or 
“traditional”) Petri net paths simply as paths. 

 
 
 
 
 
 

Fig. 1. D-paths example 

D-paths are demonstrated with respect to the Petri net in Fig. 1, which includes 
four D-paths: (1) p1→ p6→ p7, (2) p1→ p2+p3→ p4+p5→ p7, (3) p1→ p2+p3→ 
p2+p5→ p4+p5→ p7, and (4) p1→ p2+p3→ p3+p4→ p4+p5→ p7. These are not 
equivalent to the three “ordinary” paths of the net. When examining the four D-paths, 
it is clear that three of them (D-paths 2, 3, and 4) relate to different orderings in which 
the concurrent transitions can be performed, while D-path 1 specifies a different way 
for reaching p7. This can be formalized in the following definition: 

Definition 21: Let Ac be the set of places that become active in D-path C. Two D-
paths C1 and C2 are termed distinct iff Ac1-Ac2≠∅ and Ac2-Ac1≠∅.  
 
One of the basic properties of Petri nets is free-choice, which is associated with 
“desirable” mathematical properties of nets. Non free-choice Petri nets are associated 
with situations of confusion between choice and parallelism, and are considered 

p1 p2

p3

p4

p5

p6

p7
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improper (albeit syntactically possible). We do not require that Petri nets would be 
free choice to be well-mapped domain representations. Instead, we have a more 
relaxed requirement, which we term relaxed free-choice, specified as Necessary 
condition 5. In a free-choice Petri net, if two transitions share input places, then all 
their input places must be the same (namely, they have exactly the same triggering 
conditions). In contrast, the relaxed free-choice requirement is for the two transitions 
to share the same set of inputs (sub-domain state variables), but not necessarily at the 
same values (places). In other words, each of them may trigger on different 
combinations of values of the same set of state variables. We denote by D•t the 
domain of all input places of a transition t: X•t= ∪{Xpk |pk∈•t}.  

Necessary Condition 5 (Relaxed free choice): For every two transitions t1, t2, if 
•t1∩•t2≠∅ then D•t1=D•t2. 
 

The relaxed free choice requirement is a result of Necessary conditions 2 and 3. 
Condition 2 requires Dt to be included in D•t, while condition 3 requires Dt1 and Dt2 to 

be independent. If Dt1 and Dt2 partly overlap (since •t1∩•t2≠∅), then they cannot be 
independent of each other. In other words, at a given place a sub-domain can either 
transform independently or dependently of other sub-domains, both are not possible. 

One of the basic concepts in GPM is the goal of a process, which we relate to the 
sink place o of a WF-net. 

Necessary condition 6: The sink place in a WF net o marks a set of stable states of the 
entire process domain. 
 

Two notes should be made. First, this set of stable states must be in the process goal. 
Second, a well mapped WF net is constructed so that once o is reached no other part 
of the domain can still be active. A particularly interesting case is when concurrent 
paths are merged by a simple merge. This structure is in violation of the well-
structuredness property, yet we allow it. When concurrent paths are joined by a 
simple merge, the merge place may hold more than one token. The next transition 
may have other input places, so it may not be fired even when the merge place has 
tokens. For example, consider a process where two teams work concurrently to find a 
solution to a problem. When one team finds a solution, the process can continue. The 
solution found by the other team is not used. In this process model, the place 
representing that a solution exists may have two tokens, but only one token is used by 
the following transition. In the final state of the process, the entire domain is in a 
stable state. Nevertheless, for one sub-domain there might still be a solution “waiting” 
to be used, namely, to trigger additional action. For the entire domain to be stable 
with certainty, some action is required to “notify” the unstable sub-domain that no 
further transitions will take place. Technically, this can be accomplished by adding a 
transition from such nodes to the final place (in our example such transition may 
stand for archiving or discarding the “losing” solution). 

Another result of Necessary condition 6 is that the net cannot include loops which 
action continues in parallel to the continuation of the process, namely, loops whose 
exit point is a parallel split, as formulated in Lemma 3. 
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Lemma 3: Let a WF-net be a well-mapped domain representation, and consider a 
transition t and three places p1, p2, and p3, such that p1=•t, •p2=•p3=t. Then p1 is not 
reachable from p2 or from p3. 
 

Proof: Assume p1 is reachable from p2. When t fires, p2 and p3 become active, and 
while p3 may lead to o, p2 will lead infinitely to the sequence that activates t. This 
means that o may be reached while the loop sub-domain is unstable, in contradiction 
to Necessary condition 6. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A complaint processing process 

To demonstrate how the necessary conditions can be used, let us examine the example 
given in Fig. 2 (taken from [1]). The WF-net representing complaint processing is not a 
well-mapped domain representation, for the following reason. The predicate that can be 
assigned to c5 is (Questionnaire_status=time_out Xor Questionnaire_status=processed) 
Or Complaint_status=processed. It follows that c5 is defined over a sub-domain which 
includes at least the Questionnaire_status and the Complaint_status state variables. c5 
and c7 are input places of the transition process_complaint (a synchronizing merge), 
which transforms the status of a complaint. Such merge violates Necessary condition 4, 
which requires the sub-domains joined by a synchronizing merge to be disjoint. The 
modified model (Fig. 3) defines c5 over a sub-domain which does not include the 
complaint status, thus it is a well-mapped domain representation. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A modified model of the complaint processing process 
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4.2   Process Validity Considerations 

Validity of a process model can only be assessed with respect to a set of expected 
external events and to a defined goal [11]. How these are determined is outside the 
scope of the current analysis. We consider only the reachability of the process 
termination state, assuming that it represents the process goal. Assuming that all the 
expected external events occur, validity relates to completeness of the internal law 
definition (which relates to internal events) and to its consistency with the goal 
definition. 

Incompleteness reflects potential deadlock situations. Following [6], a process 
instance is in deadlock iff it is not in the goal and no transition is enabled. GPM also 
allows for a process execution “hanging” when external events fail to occur, but we 
assume here no such failure happens. Thus, deadlock means that the process is in a 
state for which the law is not defined. In a well mapped domain representation this 
may occur when a transition has more than one required input place (i.e., it is a 
synchronizing merge which joins different sub-domains) and not all of them are 
enabled. Two situations are possible:  

(1) Not all sub-domains have been activated at the split point. 
(2) At least one of the sub-domains took a D-path which does not lead to the 

input place of the merge transition. 

We will specify modeling rules to avoid each of these cases. Case (1) is possible if an 
exclusive choice is followed by a synchronizing merge. According to [12], such 
structure should not appear in a valid process. It also does not appear in a well-
structured WF-net [1], where an exclusive choice is matched by a simple merge and a 
parallel split is matched by a synchronizing merge. As discussed above, we do not 
require well-structuredness. Instead, we only require that every synchronizing merge 
be preceded by a parallel split, leaving the simple merge unconstrained as to the type 
of split it should be preceded by. Since in Petri nets a synchronizing merge is in a 
transition, it should correspond to a transition in the split point (parallel split). This is 
formalized in Modeling rule 1.  

Modeling rule (MR)1: Let x and y be two elements (i.e., places or transitions) in a 
well-mapped domain representation WF-net, connected by two different elementary 
paths leading from x to y. If x is a place then y should be a place too. If y is a 
transition then x should be a transition too.  

To avoid the second case, the modeler needs to make sure that if two sub-domains 
that have alternative distinct D-paths need to synchronize, then every possible 
combination of these D-paths has a merging transition defined for it. To illustrate the 
idea, consider the examples of Fig. 4. 

In Fig. 4(a), the process domain is split in t1 to two concurrently active sub-
domains, and both these sub-domains have different D-paths that can be selected. The 
process may clearly deadlock, if one sub-domain takes a D-path leading to p7 while 
the other reaches p10, or if one sub-domain reaches p8 while the other takes a D-path 
that leads to p9. There are more combinations of D-paths that can be taken than 
combinations that lead to the goal of the process. The sub-domain on the left side  
has two distinct D-paths: (1) p2→p7, and (2) p2→p8. The sub-domain on the right  
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Fig. 4. D-path combinations 

side has four distinct D-paths: (1)p3→p4→p6→p9, (2) p3→p4→p6→p10, (3) 
p3→p5→p6→p9, and (4) p3→p5→p6→p10. To eliminate the possible deadlock, we 
need to define action in every possible situation the process may reach. We may look 
for a place which is reached from all D-paths. Considering the right side sub-domain, 
p6 is reachable in all the distinct D-paths. Hence, it is guaranteed to be reached. Let us 
examine a possible correction, where p6 is connected to t11. Then t6, t7, and t11 
would share p6 as an input place, while t11 is also preceded by p8 (whose domain is 
different). This is in contradiction to Necessary condition 5 (relaxed free choice), 
which proscribes a sub-domain from being both independently transforming and 
merging at a given place. Following this analysis, p9 and p10, which are reachable in 
two distinct D-paths each and together “cover” all the four D-paths, do not represent 
states where the sub-domain is independent (since they lead to a merge). A complete 
solution, addressing every possible situation, requires the net to include a transition 
defined for every possible combination of non-independent places in the two sub-
domains, namely, (p7, p8)x(p9, p10), as shown in Fig. 4(b). 

The above analysis is formalized in Modeling rule (MR) 2 that requires that if a 
transition depends on a combination of states of two sub-domains, and that 
combination is not guaranteed to happen, there must be other transitions specified for 
every other possible state combination.  

 

Modeling rule (MR) 2: Let D1, D2 be two sub-domains, and t1 a transition such that 
•t1={p1,p2}, where p1∈D1 and p2∈D2. Let PM1 and PM2 be sets of places such that the 
domain of each place in PM1 or in PM2 is not independent and for every distinct D-
path in Dk there is a place in PMk, k=1,2. Then for every pair of places pj∈PM1 and 
pk∈PM2, there must be a transition t such that •t={pj,pk}. 
 

Note: D1 and D2 can be identified by backtracking paths from p1 and p2 until the first 
transition which is included in both paths. For example, it is easily seen that the model 
in Fig. 3 is in compliance to MR2. 
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Inconsistency between the law and the goal definition relates to infinite loops. In 
WF-nets, since every element must be on a path from i to o, loops must have (at least 
one) exit points. These may be parallel splits or exclusive choice splits. According to 
Lemma 3, parallel splits cannot be exit points of loops in a well-mapped domain 
representation WF-net. We shall hence examine the possible structures in which loops 
whose exit point is an exclusive choice may become infinite. When a loop has an 
exclusive choice as an exit point at place p, two cases are possible: 

(1) The next transition has only one input place (•t={p}). Then the exit depends 
on one sub-domain only. Structurally, this is not an infinite loop, and the exit 
from the loop depends on the decision criteria defined by the analyst. 

(2) The next transition has more than one input place (i.e., it merges a number of 
concurrent sub-domains). In this case, if the merge deadlocks, the loop will 
continue infinitely. However, merging deadlocks can be eliminated by using 
modeling rules 1 and 2. Hence, if the modeling rules are used in a well-
mapped domain representation WF-net, it does not include infinite loops. 

 

Theorem 1: A well-mapped domain representation WF-net which satisfies Modeling 
rules 1 and 2 is sound. 
 

Proof: soundness has three requirements. (ii) proper termination – follows directly 
from Necessary condition 6, and (iii) no dead transitions – follows from Necessary 
condition 2. To prove (i), namely that o is reachable from every state reachable from 
i, we will show that for any state M reachable from i there is a transition t that can be 
fired. Since all the elements in a WF-net are on a path from i to o and no infinite loops 
are possible, if any arbitrary state M transforms, o will be reached. 
 

We will show that in a given state M every transition is either (a) within an 
independent sub-domain, or (b) a result of a merge between two (or more) sub-
domains. In the first case, a transition will be fired with certainty. In the second case, 
by MR1, all the required sub-domains should be active, and by MR2 there is a 
transition defined for every possible combination of D-paths of the sub-domains. 
Hence a transition will be fired. 

Formally: Let P(M) be the set of active places in M, and consider a place p1∈P(M) 
and a transition t1∈p1•. Two cases are possible: (1) •t1⊆P(M), then t1 fires at M. (2) 
•t1∩P(M)≠∅, •t1⊄P(M). Then t1 cannot fire at M, but we will show that there exists a 
transition t2 that can fire at M. Having more than one input place, t1 merges two or 
more independent sub-domains Di. Assume •t1={p1,p2}, where p1 is the projection of 
M over Dj, and p2∉P(M). We assume p2 is the projection of some state M’ over a sub-
domain Dk (k≠j). Since, by MR1, Dk is active at M, we denote the projection of M 
over Dk by p3 (p3∈P(M)). According to MR2 there exist a transition t2 and a place p4, 
such that •t2={p1,p4}, Dp4⊆Dk, and p4 is on a D-path that includes M/Dk. Three cases 
should be checked: (1) p3→p4. Then M→M’, thus t2 can fire. (2) p3=p4. Then t2 can 
fire. (3) p4→p3.This is impossible due to Necessary condition 5 (relaxed free choice). 

In summary, following the necessary conditions and modeling rules, it is possible 
to construct a sound WF-net.  
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5   Conclusion  

This paper proposed to use the ontologically-based GPM semantics for existing 
constructs of process modeling languages. We demonstrated how this can be done for 
WF-nets. We also showed how modeling guidelines, based on this semantics, can 
assist in avoiding process modeling problems that traditionally could only be detected 
by verification of the completed models. Existing verification algorithms for WF-nets 
can analyze in polynomial time only specific classes of models (free-choice or well-
structured). The modeling rules suggested here can lead to sound WF-nets which are 
not necessarily free-choice or well-structured. Note that the modeling rules do not 
constitute a verification approach. Rather, they form a construction approach, which 
yields sound models when applied. 

The essence of the analysis is in mapping common situations that can occur when a 
domain undergoes state transitions, into a WF-net representation. For a process to be 
guaranteed to reach its goal, its definition should fulfill three conditions: (1) no 
situations should arise where it “hangs”, (2) completeness: all possible states should 
have defined transitions, and (3) no infinite loops. Process “hanging” can happen 
when several conditions need to be fulfilled for the process to continue – i.e. in merge 
situations. Merges occur because a split has occurred earlier in the process. By 
choosing only appropriate combinations of splits and merges, the process can be 
guaranteed to proceed. This was the purpose of Modeling Rule 1. Completeness 
requires that the process model will specify continuation for all possible states – this 
was the purpose of Modeling Rule 2. Both rules and the goal definition ensure the 
absence of infinite loops. Constructing models that conform to these two rules, 
therefore assures that the process, when executed, can always complete (in the sense 
of reaching its goal). It is important to note that the rules guide the actual construction 
of process model, rather than being applicable only to complete models. 

As GPM concepts are generic, they can be applied to other modeling languages. 
We intend to do this in future research. This application would require mapping of 
these languages to GPM and deriving appropriate restrictions and modeling rules. In 
addition, we plan to empirically investigate the effectiveness of the propositions made 
here in contributing to the quality of models produced by modelers. Finally, we will 
develop a modeling tool to support the application of the modeling rules when 
constructing a model. 
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