
Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 16–31, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Assigning Ontology-Based Semantics to Process
Models: The Case of Petri Nets

Pnina Soffer1, Maya Kaner2, and Yair Wand3

1 University of Haifa, Carmel Mountain 31905, Haifa, Israel
2 Ort Braude College, Karmiel 21982, Israel

3 Sauder School of Business, The University of British Columbia, Vancouver, Canada
spnina@is.haifa.ac.il, kmaya@braude.ac.il, yair.wand@ubc.ca

Abstract. Syntactically correct process models are not necessarily meaningful
or represent processes that are feasible to execute. Specifically, when executed,
the modeled processes might not be guaranteed to reach their goals. We propose
that assigning ontological semantics to process modeling constructs can result
in more meaningful models. Furthermore, the ontological semantics can impose
constraints on the allowed process models which in turn can provide rules for
developing process models. In particular, such models can be designed to be
valid in the senses that the process can accomplish its goal when executed. We
demonstrate this approach for Petri Net based process models.

1 Introduction

Process modeling is a complicated task and, hence, error-prone (e.g., [7][10]). Much
effort has been devoted to the verification of process models leading to methods and
tools for analyzing structural properties of process models and for detecting logical
problems in them. These approaches are applied to already developed models, but do
not provide guidance on how to develop valid models.

The syntax of process modeling languages specifies how to compose their
constructs (which often have graphical notation) into process models. The semantics
is believed to represent some real-world phenomena. These languages are usually
defined textually or mathematically. Textual definitions are typically semi-formal or
informal (e.g., “An event is something that “happens” during the course of a business
process.” [8]). Mathematical definitions can support precise analysis of models.

Syntactically correct process models are not necessarily meaningful or feasible to
execute. This entails the need for checking completed process models for structural
and behavioral properties related to whether they can be successfully executed or not.

Some research evaluated process modeling languages by mapping their constructs
to ontological concepts (which are assumed to convey real-world semantics) [9].
These attempts revealed various deficiencies such as ontological incompleteness,
construct overload, redundancy, and excess. In particular, no ontological meaning was
identified for control flow constructs which exist in practically every process
modeling language (typically manifested as splitting and merging elements).

Recently, the Generic Process Model (GPM) was used to suggest an interpretation
of control flow structures [12]. GPM provides a process specification semantics based

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 17

on ontological constructs. It is intended as a framework for reasoning about process
models in terms of their real-world meaning. To apply the GPM for this purpose, its
constructs should be mapped to the modeling languages used, which often employ
graphical notation easy for human use. Ontology-based semantics imposes modeling
rules in addition to the language-based syntactical restrictions. We suggest that these
rules can guide the construction of meaningful and feasible process models.

In this paper we demonstrate the use of ontological semantics for Petri net based
process models, or, more precisely, Workflow nets. Petri nets are widely used,
provide a high degree of formality which supports model verification, and have a
graphical notation with a precisely defined mathematical semantics. An extensive
body of work exists on the mathematical, structural, and behavioral properties of Petri
nets and Workflow nets (e.g., [2]). Furthermore, they serve for formalizing and
analyzing models in other modeling languages (e.g., EPC [1]). Petri nets employ a
small set of constructs, yet possess an impressive expressive power and can be used to
represent precisely the entire set of workflow patterns [3].

Petri net analysis addresses the structure of the net rather than the semantics of its
elements. GPM can provide such semantics in terms of state specification and state
transitions of the process domain. In this paper we show that assigning this semantics
to places and transitions can lead to better-designed process models and help avoid
undesired situations (which in turn can be formalized using Petri net properties).

In the following, Section 2 introduces GPM and its control flow interpretation;
Section 3 maps Petri net constructs to GPM. Section 4 explores restrictions on Petri
nets, and introduces additional restrictions based on GPM, and their implications for
Petri net properties. Section 5 is a conclusion.

2 The Generic Process Model (GPM)

The focus of GPM analysis is a domain, which is a part of the world consisting of
interacting things. We describe the behavior of the domain using concepts from
Bunge’s ontology [4][5] and its adaptation to information systems [13][14] and to
process modeling [11][12]. A domain is represented by a set of state variables, each
depicting a property of the domain and its value at a moment in time. A successful
process is a sequence of unstable states of the domain, leading to a stable state, which
is in the set of goal states (simply – goal). An unstable state is a state that must change
due to actions in the domain (an internal event). A stable state is a state that only
changes due to action of the environment on the domain (an external event). Internal
events are governed by transformation (transition) laws that define the allowed (and
sometimes necessary) state transitions (manifested as events in the domain).

We formalize these concepts as follows:

Definition 1: A domain model is a set of state functions D={f1(t)…fn(t)}. The value
of fk(t) at a given time is termed a state variable, denoted xk.

The set of state variables for domain D is denoted by XD={xk; k∈I={1…n}}. The
state of the domain at a given time is s(D)=<x1,…xn> (or simply s). A set of states of
domain D is denoted by S(D).

Definition 2: A transformation law on D is a mapping L:S(D)→S(D)

18 P. Soffer, M. Kaner, and Y. Wand

Definition 3: A domain will be said to be in a stable state if L(s)=s and in an unstable
state if L(s)≠s.

Definition 4: A law will be said to be well-defined iff it is a function.

Often, several domain states can be considered equivalent. Hence, the transformation
law can be represented as a mapping between sets of states. Such a set can be
specified by a predicate C(s). Specifically, the process goal is a set of stable states,
specified by a predicate that manifests business objectives to be fulfilled by the
process. The task of the process designer is to implement a transformation law so that
the process can accomplish its goal.

To model practical situations, we consider a domain as comprising sub-domains,
each represented by a subset of the domain state variables. Changes that occur in a
sub-domain when the domain changes state, are termed the projections of the domain
law (or domain behavior) on the sub-domain. Formally:

Definition 5: A sub-domain is part of the domain described by a subset of XD.

A sub-domain D1 of D is described in terms of XD1⊂XD; XD1={xk ; k∈ I1⊂I}.

The state of D1 is s(D1)=<xk1,…xk|I1|>, kj∈I1
 and kj≠kl for j≠l.

Definition 6: Let the state of D be s=<x1…xn>. The projection of s on the sub-domain
D1 is s/D1=<y1…y|I1|> where yk=xI1(k).

It is possible that several domain states will map on the same state of the sub-domain.
This, in turn, can result in the same sub-domain state changing in different ways,
depending on the state of the whole domain.

Definition 7: Let v be a state of D1. The projecting set for v in D is the set of states of
D that project v in D1: S(v;D1)={s∈S(D) | s/D1=v}

We now define the effect of the domain law (L) on the sub-domain D1

Definition 8: Let v∈S(D1) and let s(v;D1) be the projecting set of v. The law
projection of LD on D1 (denoted L/D1) for v is defined by the mapping LD1: S(D1)

→S(D1) such that L D1 (v)=∪{L(s)/D1 | s∈s(v;D1)}.

In words – the projection of the law is defined as the union of projections of the states
mapped into by the law. We are interested in cases where the projected behavior of
the whole domain on a sub-domain creates a well-defined function in the sub-domain.
In other words, a given unstable state of the sub-domain will always map in the same
way, independent of the state of the whole domain, and hence independent of the
states of other sub-domains. We will then say that the sub-domain behaves
independently. Partitioning of the domain into independently-behaving sub-domains
is often a consequence of different actors acting in the domain. These actors can be
people, departments, machines, computers and combinations of those.

Definition 9: A sub-domain D1 of D will be called an independently behaving (in
short an independent) sub-domain iff the law projection on D1

 is a function.

Corollary: For an independent sub-domain the law projection depends only on state
variables of the sub-domain.

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 19

Note: a sub-domain might behave independently for only a subset of the state
space of D. Definition 9 can be restricted to a subset of domain states.

As an independent sub-domain changes its state to a stable one, it is possible some
other independent sub-domains will become unstable and will begin transforming.
Thus, a sequence of transformations occurs. This sequence comprises a process.

Process models usually include split and merge points, which reflect either
concurrency or choice between possible alternative paths. We now interpret these in
GPM terms. First, it is possible a set of states arrived at may be partitioned so the next
transformation is defined differently for each subset of states. Such partitioning might
occur because the law becomes “sensitive” to a certain state variable. Consider, for
example, a process where a standard product is manufactured, and then packaged
according to each customer's requirements. Manufacturing does not depend on the
customer (even when the customer is known). When manufacturing is completed,
customer information will determine a choice between packaging actions. This
situation is an exclusive choice (an XOR split). The different actions may lead to
states which are equivalent for determining the next action (the law will not
distinguish between different packaging options), for example, transferring the
products to finished goods inventory. This is the point where the paths merge.

Definition 10: Ssp is an exclusive choice splitting point iff there exist sets of states
S1,S2,..Sn such that Si⊂Ssp, Sj∩Sk=∅, and L(Sj)≠L(Sk), j≠k, j,k=1…n.

The corresponding form of a merge (sometimes termed simple merge) is when a
single set of states is reachable by law from different sets of states.

Definition 11: Let S1, S2, and Sme be sets of states such that S1≠S2, S1,S2≠Sme. Sme is a
simple merge iff L(S1)=L(S2)=Sme.

Also related to splitting and merging is concurrency. Since one domain cannot have
concurrent transformations, concurrency should relate to transformations in different
sub-domains. It means that if each sub-domain proceeds through a sequence of
(projected) states, all combinations of the projected states of the different sub-
domains are possible (in principle).

Lemma 1: Two sub-domains can transform concurrently only if they are
independent.

Proof: Assume that two sub-domains are not independent. Then the transitions in one
can depend on the state of the other. In this case, only some combinations of states of
each sub-domain are possible.

It follows that a split leading to concurrency must be related to a decomposition of the
domain into independently behaving sub-domains. In such a split, for the process to
continue, at least one sub-domain must be unstable with respect to its (projected) law.
If all these sub-domains are in unstable states for all states in the split, then this is a
parallel split. Otherwise, several possibilities exist, depending on the number of the
unstable sub-domains (see [12][11]). In particular, if exactly one sub-domain can be
in an unstable state, then, based on Definition 10, this is an exclusive choice.

Definition 12: Ssp is a parallel split iff there exist at least two sub-domains such that
at Ssp each sub-domain becomes independent and is in an unstable state.

20 P. Soffer, M. Kaner, and Y. Wand

For example, in the process discussed above, once products are ready, the process
domain can be decomposed into two independent sub-domains: one where shipment
is arranged and one where the products are transferred into the warehouse. These two
sub-domains are independent and in an unstable state, thus they operate concurrently.
A decomposable domain may entail different types of merge points (see [12][11]). In
particular, a simple merge - where the completion of action of any sub-domain causes
the process to proceed. Here we define a synchronizing merge, where process
continuation requires that all active sub-domains complete their tasks. Consider a set
of states in a merge point. These states should be unstable to enable the process to
continue. They should be reachable from the split, hence their projection in each sub-
domain should be reachable from the split for the sub-domain. In a synchronizing
merge, each sub-domain becomes stable (“waiting” for the other sub-domains). Once
all the sub-domains reach the merge, the process can continue. Formally:

Definition 13: Let Dk⊂D, k=1...n be independent sub-domains operating concurrently
following a split point Ssp. Let Sme be a set of unstable states in D, reachable from Ssp.
Sme is a synchronizing merge iff ∀s∈ Sme , ∀k, s/Dk is stable.

Finally, the explicit representation of process goal in GPM supports the analysis of
process models for goal reachability. A process whose design ensures its goal will
always be achieved under a certain set of triggering events (which are external to the
domain) is termed valid [11] with respect to this set of events.

3 GPM – Petri-Net Mapping

3.1 Petri-Nets and Workflow Nets

This section provides some definitions of Petri-nets in general and Workflow-nets in
particular, and their properties which are relevant for our discussion.

A Petri-net is a directed bipartite graph with two node types called places (circles)
and transitions (rectangles), connected by arcs. Connections between two nodes of the
same type are not allowed.

Definition 14: A Petri-net is a triple (P, T, F):

- P is a finite set of places;
- T is a finite set of transitions (P∩T = ∅)
- F⊆(PxT)∪(TxP) is a set of arcs.

At any time a place contains zero or more tokens (black dots), and the state of the net
is the distribution of tokens over places. The notations •t, t•, •p, p• indicate the sets of
input and output places of transition t and the sets of transitions of which p is an input

and output place, respectively. Given two states M1 and Mn, M1 Mn denotes that Mn
is reachable from M1 through a firing sequence σ.

Some Petri-nets properties, relevant for our discussion, are defined below.

Definition 15: A Petri net is bounded iff for each place p there is a natural number n
such that for every reachable state the number of tokens in p is less than n.

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 21

Definition 16: A Petri net is a free choice Petri net iff, for every two transitions t1 and
t2, •t1∩•t2≠∅ implies •t1=•t2.

A Petri net which is not free-choice usually involves a mixture of choice and
parallelism, which is hard to analyze and considered inappropriate. Most of the
mathematically-based properties identified and analyzed with respect to Petri nets
relate to free-choice Petri nets only.

A specific form of Petri net, often used with respect to workflow modeling is
Workflow net (WF net).

Definition 17: A Petri net (P, T, F) is a Workflow net (WF-net) iff:

(i) There is one source place i∈P such that •i=∅.
(ii) There is one sink place o∈P such that o•=∅.
(iii) Every node x∈P∪T is on a path from i to o.

A WF-net represents the life-cycle of a single workflow case in isolation. It has an
initial state following the generation of a case, where only one token exists in place i,
and a final state o after which the case is deleted. The property which is ultimately
sought and verified for WF nets is soundness.

Definition 18: A procedure modeled by a WF-net PN= (P, T, F) is sound iff:

(i) For every state M reachable from state i, there exists a firing sequence
leading from state M to state o.

(ii) o is the only state reachable from state i with at least one token in place o.
(iii) There are no dead transitions in (PN, i).

Soundness means that the modeled procedure will terminate eventually, and properly
(i.e. no further transition will occur). Soundness can be verified in polynomial time
for free-choice WF-nets. Another property, closely related to soundness, is well-
structuredness. In a well-structured WF-net a splitting point and a merging point
which correspond to each other are of the same type, namely, a split at a place
(transition) corresponds to a merge at a place (transition).

 3.2 Mapping Workflow-Nets to GPM

Table 1 presents the GPM interpretation of WF-net basic constructs and combinations
which form control-flow basic building blocks. We focus our discussion on WF-nets,
since these have a distinct termination place, which may correspond to GPM’s goal
concept. Nevertheless, most of the discussion is applicable to Petri nets in general. As
shown in Table 1, every basic WF net construct and building block can be assigned a
GPM-based interpretation. We do not attempt to do a reverse mapping, namely
interpret GPM terms using WF nets, since GPM addresses issues beyond the control
flow of the process, which are not in the scope of WF nets. Nevertheless, considering
the proposed control flow mapping, this interpretation assumes certain domain
semantics assigned to the places and transitions of a WF net. This semantics poses
requirements which do not exist in the WF net syntax. If these requirements are not
met, a WF net cannot be transformed into a meaningful GPM specification. It can
thus be claimed that the expressive power of WF nets exceeds the expressive power
of GPM with respect to control flow. Alternatively, it can be argued that WF net

22 P. Soffer, M. Kaner, and Y. Wand

Table 1. GPM interpretation of WF-Net constructs and basic building blocks

WF-net construct / building block GPM interpretation
Place p A set of states of a sub-domain (the projection

of a set of states over a sub-domain)
Transition t A transformation in a sub-domain
Arc An unstable state leading to a transformation.

A transformation leads to a state.
Initial place i The initial set of states I

Final place o The goal set G

Sequence t1 is a transformation in a sub-domain, from a
set of states p1 into a set of states p2

A parallel split t1 is a transformation after which the domain
becomes decomposable, where p1 and p2 are
state projections over different sub-domains

A synchronizing
merge

t1 is a transformation whose initial set of states
is p1∩p2

1

An exclusive
choice

p1 is a set of states in which one of two sub-
domain transformations is possible

A simple
merge

p1 is a set of states reachable by two
transformations, t1 and t2, separately

syntax, being anchored in mathematical semantics of graphical symbols, allows
structures which are not necessarily possible in reality.

4 Mapping-Based Modeling

4.1 Modeling Requirements

Assigning a GPM meaning to WF-nets imposes additional requirements on the use of
WF-nets for process modeling. In particular, we will use the goal concept of GPM to
form these requirements with respect to WF-nets.

Definition 19: A WF-net is a well-mapped domain representation iff it can be
mapped to a GPM specification.

To make this concept operational, we derive necessary conditions for a WF-net to be
a well-mapped domain representation in the sense of this definition. First, every place
in the net should represent a set of states of some defined sub-domain (xi..xk).

Necessary condition 1: ∀pk∈P, ∃Dk⊆D such that pk is active iff Dk is in a given set of
states S ⊆S(Dk).

We denote the sub-domain as Dpk , its state variables as Xpk and the set of states by
Spk. Spk can be specified by a predicate C(Xpk). pk is active iff C(Xpk) is TRUE.

Regarding condition 1, consider the meaning of several tokens in a place. The
predicate C can be some composite expression, which may assume the value TRUE in

1 GPM merge relates to the states, while Petri-net relates to the transition that follows the states.

t1

t2

t1

i

t1
p2 p1

p1
p2

p1

o

p1

t1 p2

p1 t1

t2

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 23

more than one situation (each applicable to a subset of states of the sub-domain). In
particular, if the predicate is of the form <Expression OR Expression>, then it may
assume the value TRUE when each of the expressions becomes TRUE. In this case,
each atomic expression may stand for a token. As an example, consider an order
delivery process, where the customer orders several items which can be manufactured
concurrently, and each item is delivered once it is ready. This can be modeled by a
single place prior to delivery, whose predicate would be ((Item A=ready) OR (Item
B=ready) OR…). The arrival of each item is modeled as adding a token to that place,
triggering the delivery transition. The maximal number of tokens in a place is the
number of atomic expressions related by an OR in the predicate that defines it. If the
predicate cannot be decomposed to the form <Expression OR Expression>, then the
maximal number of tokens allowed in that place is 1.

Lemma 2: A WF-net which is a well-mapped domain representation is bounded.

Proof: Directly from the token interpretation. It is not possible to formulate a
predicate composed of an infinite number of expressions.

As a second requirement, every transition should transform the state of a defined sub-
domain (based on its input places). To continue, it must place a new sub-domain in an
unstable state. Hence, the domains that correspond to the set of output places of a
transition should have some common state variables with the domain corresponding
to each of its input places. We denote the sub-domain transformed by transition t as
Dt, and its set of state variables is Xt.

Necessary condition 2: ∀t∈T, pj∈•t, pk∈t•, it must be that Xt⊆∪jX
pj; Xt∩Xpk ≠∅.

In other words, for every transition, the state variables of the sub-domain in which
the transition occurs, should: (a) be a subset of the state variables of all sub-domains
represented by the input places (leading to it), and (b) include some state variable of
every sub-domain represented by places preceding it. For example: assume the
transition represents manufacturing a product. The transition should “use” only state
variables from its inputs (e.g., raw materials and resources), and must affect the state
which triggers the next activity (e.g. packaging or shipping the ready product).

Third, for a transition to act within a sub-domain, the sub-domain law must be
independent (for the set of states represented by the transition’s input place).

Necessary condition 3: ∀t∈T, ∀p∈P, if p=•t then Dt is independent at p.
Fourth, concurrently operating threads operate over sub-domains that do not share

state variables. Note that this is necessary, but not sufficient to guarantee that these
sub-domains behave independently.

Necessary condition 4: Every two transitions t1 and t2 that may operate concurrently,
satisfy Xt1∩Xt2=∅.

In particular, the following two cases can be specified:

Parallel split: Let ts be a transition where a parallel split occurs, so ts•={p1, p2}, and
consider t1=p1• and t2=p2•. Then Xt1∩Xt2=∅.
Synchronizing merge: Let tm be a transition where a synchronizing merge occurs, so
•tm={p1, p2}, and consider t1=•p1 and t2=•p2. Then Xt1∩Xt2=∅.

24 P. Soffer, M. Kaner, and Y. Wand

Note that while necessary condition 4 addresses concurrency situations, we make
no similar requirement with respect to choice-related splits. Since these may relate to
both decomposable and non-decomposable domains, no strict rules can be formed
here. Choice-related splits lead the domain in one of several possible paths, which, in
turn, put the domain in one of possible (alternative) states. As opposed to the path
definition in Petri nets, which relates to any sequence of connected elements, we
relate to domain paths (D-paths), which correspond to selected sequences of states of
the domain. The difference between these terms can be seen with respect to parallel
splits, where the domain is decomposed into independently transforming sub-
domains. In the graphical Petri net representation the sequence of elements in each
sub-domain forms a different “path”. However, since no choice (decision) is made,
we do not address these as separate D-paths.

GPM defines a path as a set of states the domain goes through via a sequence of
transitions determined by the law and by external events. Petri nets (and specifically,
WF-nets) do not explicitly address external events, assuming they will occur as
expected. In a WF-net, considering a sub-domain D, its state is the distribution of
tokens at a given moment in all the places pj that satisfy Xpj⊆ XD. We denote the state
of sub-domain D by MD.

Definition 20: Let D be a sub-domain in a WF-net. A domain path (D-path) of D is a
sequence of states of D <MD

1, M
D

2,…MD
K>, such that a sequence of transitions <t1,

t2,…tk-1> exists that satisfies MD
i MD

i+1 … MD
k, for 1 ≤ i ≤ k-1.

For clarity, we hereafter relate to domain paths as D-paths and to “ordinary” (or
“traditional”) Petri net paths simply as paths.

Fig. 1. D-paths example

D-paths are demonstrated with respect to the Petri net in Fig. 1, which includes
four D-paths: (1) p1→ p6→ p7, (2) p1→ p2+p3→ p4+p5→ p7, (3) p1→ p2+p3→
p2+p5→ p4+p5→ p7, and (4) p1→ p2+p3→ p3+p4→ p4+p5→ p7. These are not
equivalent to the three “ordinary” paths of the net. When examining the four D-paths,
it is clear that three of them (D-paths 2, 3, and 4) relate to different orderings in which
the concurrent transitions can be performed, while D-path 1 specifies a different way
for reaching p7. This can be formalized in the following definition:

Definition 21: Let Ac be the set of places that become active in D-path C. Two D-
paths C1 and C2 are termed distinct iff Ac1-Ac2≠∅ and Ac2-Ac1≠∅.

One of the basic properties of Petri nets is free-choice, which is associated with
“desirable” mathematical properties of nets. Non free-choice Petri nets are associated
with situations of confusion between choice and parallelism, and are considered

p1 p2

p3

p4

p5

p6

p7

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 25

improper (albeit syntactically possible). We do not require that Petri nets would be
free choice to be well-mapped domain representations. Instead, we have a more
relaxed requirement, which we term relaxed free-choice, specified as Necessary
condition 5. In a free-choice Petri net, if two transitions share input places, then all
their input places must be the same (namely, they have exactly the same triggering
conditions). In contrast, the relaxed free-choice requirement is for the two transitions
to share the same set of inputs (sub-domain state variables), but not necessarily at the
same values (places). In other words, each of them may trigger on different
combinations of values of the same set of state variables. We denote by D•t the
domain of all input places of a transition t: X•t= ∪{Xpk |pk∈•t}.

Necessary Condition 5 (Relaxed free choice): For every two transitions t1, t2, if
•t1∩•t2≠∅ then D•t1=D•t2.

The relaxed free choice requirement is a result of Necessary conditions 2 and 3.
Condition 2 requires Dt to be included in D•t, while condition 3 requires Dt1 and Dt2 to

be independent. If Dt1 and Dt2 partly overlap (since •t1∩•t2≠∅), then they cannot be
independent of each other. In other words, at a given place a sub-domain can either
transform independently or dependently of other sub-domains, both are not possible.

One of the basic concepts in GPM is the goal of a process, which we relate to the
sink place o of a WF-net.

Necessary condition 6: The sink place in a WF net o marks a set of stable states of the
entire process domain.

Two notes should be made. First, this set of stable states must be in the process goal.
Second, a well mapped WF net is constructed so that once o is reached no other part
of the domain can still be active. A particularly interesting case is when concurrent
paths are merged by a simple merge. This structure is in violation of the well-
structuredness property, yet we allow it. When concurrent paths are joined by a
simple merge, the merge place may hold more than one token. The next transition
may have other input places, so it may not be fired even when the merge place has
tokens. For example, consider a process where two teams work concurrently to find a
solution to a problem. When one team finds a solution, the process can continue. The
solution found by the other team is not used. In this process model, the place
representing that a solution exists may have two tokens, but only one token is used by
the following transition. In the final state of the process, the entire domain is in a
stable state. Nevertheless, for one sub-domain there might still be a solution “waiting”
to be used, namely, to trigger additional action. For the entire domain to be stable
with certainty, some action is required to “notify” the unstable sub-domain that no
further transitions will take place. Technically, this can be accomplished by adding a
transition from such nodes to the final place (in our example such transition may
stand for archiving or discarding the “losing” solution).

Another result of Necessary condition 6 is that the net cannot include loops which
action continues in parallel to the continuation of the process, namely, loops whose
exit point is a parallel split, as formulated in Lemma 3.

26 P. Soffer, M. Kaner, and Y. Wand

Lemma 3: Let a WF-net be a well-mapped domain representation, and consider a
transition t and three places p1, p2, and p3, such that p1=•t, •p2=•p3=t. Then p1 is not
reachable from p2 or from p3.

Proof: Assume p1 is reachable from p2. When t fires, p2 and p3 become active, and
while p3 may lead to o, p2 will lead infinitely to the sequence that activates t. This
means that o may be reached while the loop sub-domain is unstable, in contradiction
to Necessary condition 6.

Fig. 2. A complaint processing process

To demonstrate how the necessary conditions can be used, let us examine the example
given in Fig. 2 (taken from [1]). The WF-net representing complaint processing is not a
well-mapped domain representation, for the following reason. The predicate that can be
assigned to c5 is (Questionnaire_status=time_out Xor Questionnaire_status=processed)
Or Complaint_status=processed. It follows that c5 is defined over a sub-domain which
includes at least the Questionnaire_status and the Complaint_status state variables. c5
and c7 are input places of the transition process_complaint (a synchronizing merge),
which transforms the status of a complaint. Such merge violates Necessary condition 4,
which requires the sub-domains joined by a synchronizing merge to be disjoint. The
modified model (Fig. 3) defines c5 over a sub-domain which does not include the
complaint status, thus it is a well-mapped domain representation.

Fig. 3. A modified model of the complaint processing process

i

c2

c4

c7 c9 c10
c11

o

c6

c1 c3

c5

register

send_questionnaire

process_questionnaire

time_out

process_complaint

evaluate

no_processing

processing_required

check_processing processing_OK

processing_NOK

archive_processed

archive_non_processed

i

c2
c4

c7 c8 c9

o

c6

c1 c3

c5

register

send_questionnaire

process_questionnaire

time_out

process_complaint

evaluate

no_processing

processing_required

check_processing
processing_OK

processing_NOK

archive

c8

processing_possible

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 27

4.2 Process Validity Considerations

Validity of a process model can only be assessed with respect to a set of expected
external events and to a defined goal [11]. How these are determined is outside the
scope of the current analysis. We consider only the reachability of the process
termination state, assuming that it represents the process goal. Assuming that all the
expected external events occur, validity relates to completeness of the internal law
definition (which relates to internal events) and to its consistency with the goal
definition.

Incompleteness reflects potential deadlock situations. Following [6], a process
instance is in deadlock iff it is not in the goal and no transition is enabled. GPM also
allows for a process execution “hanging” when external events fail to occur, but we
assume here no such failure happens. Thus, deadlock means that the process is in a
state for which the law is not defined. In a well mapped domain representation this
may occur when a transition has more than one required input place (i.e., it is a
synchronizing merge which joins different sub-domains) and not all of them are
enabled. Two situations are possible:

(1) Not all sub-domains have been activated at the split point.
(2) At least one of the sub-domains took a D-path which does not lead to the

input place of the merge transition.

We will specify modeling rules to avoid each of these cases. Case (1) is possible if an
exclusive choice is followed by a synchronizing merge. According to [12], such
structure should not appear in a valid process. It also does not appear in a well-
structured WF-net [1], where an exclusive choice is matched by a simple merge and a
parallel split is matched by a synchronizing merge. As discussed above, we do not
require well-structuredness. Instead, we only require that every synchronizing merge
be preceded by a parallel split, leaving the simple merge unconstrained as to the type
of split it should be preceded by. Since in Petri nets a synchronizing merge is in a
transition, it should correspond to a transition in the split point (parallel split). This is
formalized in Modeling rule 1.

Modeling rule (MR)1: Let x and y be two elements (i.e., places or transitions) in a
well-mapped domain representation WF-net, connected by two different elementary
paths leading from x to y. If x is a place then y should be a place too. If y is a
transition then x should be a transition too.

To avoid the second case, the modeler needs to make sure that if two sub-domains
that have alternative distinct D-paths need to synchronize, then every possible
combination of these D-paths has a merging transition defined for it. To illustrate the
idea, consider the examples of Fig. 4.

In Fig. 4(a), the process domain is split in t1 to two concurrently active sub-
domains, and both these sub-domains have different D-paths that can be selected. The
process may clearly deadlock, if one sub-domain takes a D-path leading to p7 while
the other reaches p10, or if one sub-domain reaches p8 while the other takes a D-path
that leads to p9. There are more combinations of D-paths that can be taken than
combinations that lead to the goal of the process. The sub-domain on the left side
has two distinct D-paths: (1) p2→p7, and (2) p2→p8. The sub-domain on the right

28 P. Soffer, M. Kaner, and Y. Wand

Fig. 4. D-path combinations

side has four distinct D-paths: (1)p3→p4→p6→p9, (2) p3→p4→p6→p10, (3)
p3→p5→p6→p9, and (4) p3→p5→p6→p10. To eliminate the possible deadlock, we
need to define action in every possible situation the process may reach. We may look
for a place which is reached from all D-paths. Considering the right side sub-domain,
p6 is reachable in all the distinct D-paths. Hence, it is guaranteed to be reached. Let us
examine a possible correction, where p6 is connected to t11. Then t6, t7, and t11
would share p6 as an input place, while t11 is also preceded by p8 (whose domain is
different). This is in contradiction to Necessary condition 5 (relaxed free choice),
which proscribes a sub-domain from being both independently transforming and
merging at a given place. Following this analysis, p9 and p10, which are reachable in
two distinct D-paths each and together “cover” all the four D-paths, do not represent
states where the sub-domain is independent (since they lead to a merge). A complete
solution, addressing every possible situation, requires the net to include a transition
defined for every possible combination of non-independent places in the two sub-
domains, namely, (p7, p8)x(p9, p10), as shown in Fig. 4(b).

The above analysis is formalized in Modeling rule (MR) 2 that requires that if a
transition depends on a combination of states of two sub-domains, and that
combination is not guaranteed to happen, there must be other transitions specified for
every other possible state combination.

Modeling rule (MR) 2: Let D1, D2 be two sub-domains, and t1 a transition such that
•t1={p1,p2}, where p1∈D1 and p2∈D2. Let PM1 and PM2 be sets of places such that the
domain of each place in PM1 or in PM2 is not independent and for every distinct D-
path in Dk there is a place in PMk, k=1,2. Then for every pair of places pj∈PM1 and
pk∈PM2, there must be a transition t such that •t={pj,pk}.

Note: D1 and D2 can be identified by backtracking paths from p1 and p2 until the first
transition which is included in both paths. For example, it is easily seen that the model
in Fig. 3 is in compliance to MR2.

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 29

Inconsistency between the law and the goal definition relates to infinite loops. In
WF-nets, since every element must be on a path from i to o, loops must have (at least
one) exit points. These may be parallel splits or exclusive choice splits. According to
Lemma 3, parallel splits cannot be exit points of loops in a well-mapped domain
representation WF-net. We shall hence examine the possible structures in which loops
whose exit point is an exclusive choice may become infinite. When a loop has an
exclusive choice as an exit point at place p, two cases are possible:

(1) The next transition has only one input place (•t={p}). Then the exit depends
on one sub-domain only. Structurally, this is not an infinite loop, and the exit
from the loop depends on the decision criteria defined by the analyst.

(2) The next transition has more than one input place (i.e., it merges a number of
concurrent sub-domains). In this case, if the merge deadlocks, the loop will
continue infinitely. However, merging deadlocks can be eliminated by using
modeling rules 1 and 2. Hence, if the modeling rules are used in a well-
mapped domain representation WF-net, it does not include infinite loops.

Theorem 1: A well-mapped domain representation WF-net which satisfies Modeling
rules 1 and 2 is sound.

Proof: soundness has three requirements. (ii) proper termination – follows directly
from Necessary condition 6, and (iii) no dead transitions – follows from Necessary
condition 2. To prove (i), namely that o is reachable from every state reachable from
i, we will show that for any state M reachable from i there is a transition t that can be
fired. Since all the elements in a WF-net are on a path from i to o and no infinite loops
are possible, if any arbitrary state M transforms, o will be reached.

We will show that in a given state M every transition is either (a) within an
independent sub-domain, or (b) a result of a merge between two (or more) sub-
domains. In the first case, a transition will be fired with certainty. In the second case,
by MR1, all the required sub-domains should be active, and by MR2 there is a
transition defined for every possible combination of D-paths of the sub-domains.
Hence a transition will be fired.

Formally: Let P(M) be the set of active places in M, and consider a place p1∈P(M)
and a transition t1∈p1•. Two cases are possible: (1) •t1⊆P(M), then t1 fires at M. (2)
•t1∩P(M)≠∅, •t1⊄P(M). Then t1 cannot fire at M, but we will show that there exists a
transition t2 that can fire at M. Having more than one input place, t1 merges two or
more independent sub-domains Di. Assume •t1={p1,p2}, where p1 is the projection of
M over Dj, and p2∉P(M). We assume p2 is the projection of some state M’ over a sub-
domain Dk (k≠j). Since, by MR1, Dk is active at M, we denote the projection of M
over Dk by p3 (p3∈P(M)). According to MR2 there exist a transition t2 and a place p4,
such that •t2={p1,p4}, Dp4⊆Dk, and p4 is on a D-path that includes M/Dk. Three cases
should be checked: (1) p3→p4. Then M→M’, thus t2 can fire. (2) p3=p4. Then t2 can
fire. (3) p4→p3.This is impossible due to Necessary condition 5 (relaxed free choice).

In summary, following the necessary conditions and modeling rules, it is possible
to construct a sound WF-net.

30 P. Soffer, M. Kaner, and Y. Wand

5 Conclusion

This paper proposed to use the ontologically-based GPM semantics for existing
constructs of process modeling languages. We demonstrated how this can be done for
WF-nets. We also showed how modeling guidelines, based on this semantics, can
assist in avoiding process modeling problems that traditionally could only be detected
by verification of the completed models. Existing verification algorithms for WF-nets
can analyze in polynomial time only specific classes of models (free-choice or well-
structured). The modeling rules suggested here can lead to sound WF-nets which are
not necessarily free-choice or well-structured. Note that the modeling rules do not
constitute a verification approach. Rather, they form a construction approach, which
yields sound models when applied.

The essence of the analysis is in mapping common situations that can occur when a
domain undergoes state transitions, into a WF-net representation. For a process to be
guaranteed to reach its goal, its definition should fulfill three conditions: (1) no
situations should arise where it “hangs”, (2) completeness: all possible states should
have defined transitions, and (3) no infinite loops. Process “hanging” can happen
when several conditions need to be fulfilled for the process to continue – i.e. in merge
situations. Merges occur because a split has occurred earlier in the process. By
choosing only appropriate combinations of splits and merges, the process can be
guaranteed to proceed. This was the purpose of Modeling Rule 1. Completeness
requires that the process model will specify continuation for all possible states – this
was the purpose of Modeling Rule 2. Both rules and the goal definition ensure the
absence of infinite loops. Constructing models that conform to these two rules,
therefore assures that the process, when executed, can always complete (in the sense
of reaching its goal). It is important to note that the rules guide the actual construction
of process model, rather than being applicable only to complete models.

As GPM concepts are generic, they can be applied to other modeling languages.
We intend to do this in future research. This application would require mapping of
these languages to GPM and deriving appropriate restrictions and modeling rules. In
addition, we plan to empirically investigate the effectiveness of the propositions made
here in contributing to the quality of models produced by modelers. Finally, we will
develop a modeling tool to support the application of the modeling rules when
constructing a model.

References

[1] van der Aalst, W.M.P.: Formalization and Verification of Event-Driven Process Chains.
Information and Software Technology 41(10), 639–650 (1999)

[2] van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Using Petri-
Net-Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

[3] van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

[4] Bunge, M.: Treatise on Basic Philosophy. In: Ontology I: The Furniture of the World,
vol. 3. Reidel, Boston (1977)

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 31

[5] Bunge, M.: Treatise on Basic Philosophy. In: Ontology II: A World of Systems, vol. 4,
Reidel, Boston (1979)

[6] Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of control
flow in workflows. Acta Informatica 39(3), 143–209 (2003)

[7] Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models, PhD
thesis, Vienna University of Economics and Business Administration (2007)

[8] Object Management Group (OMG), Business Process Modeling Notation Specification
(2006), http://www.bpmn.org

[9] Rosemann, M., Recker, J., Indulska, M., Green, P.: A Study of the Evolution of the
Representational Capabilities of Process Modeling Grammars. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006)

[10] Sadiq, W., Orlowska, M.E.: On Correctness Issues in Conceptual Modeling of
Workflows. In: Proceedings of the 5th European Conference on Information Systems,
Cork, Ireland, pp. 943–964 (1997)

[11] Soffer, P., Wand, Y.: Goal-Driven Multi-Process Analysis. Journal of the Association of
Information Systems 8(3), 175–203 (2007)

[12] Soffer, P., Wand, Y., Kaner, M.: Semantic Analysis of Flow Patterns in Business Process
Modeling. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 400–407. Springer, Heidelberg (2007)

[13] Wand, Y., Weber, R.: On the Ontological Expressiveness of Information Systems
Analysis and Design Grammars. Journal of Information Systems (3), 217–237 (1993)

[14] Wand, Y., Weber, R.: Towards a Theory of Deep Structure of Information Systems.
Journal of Information Systems 5(3), 203–223 (1995)

	Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets
	Introduction
	The Generic Process Model (GPM)
	GPM – Petri-Net Mapping
	Petri-Nets and Workflow Nets
	Mapping Workflow-Nets to GPM

	Mapping-Based Modeling
	Modeling Requirements
	Process Validity Considerations

	Conclusion
	References

