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Automated methods for assigning peptides to observed tandem mass spectra typically return a list of

peptide-spectrum matches, ranked according to an arbitrary score. In this article, we describe methods

for converting these arbitrary scores into more useful statistical significance measures. These methods

employ a decoy sequence database as a model of the null hypothesis, and use false discovery rate

(FDR) analysis to correct for multiple testing. We first describe a simple FDR inference method and

then describe how estimating and taking into account the percentage of incorrectly identified spectra

in the entire data set can lead to increased statistical power.
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Introduction

The core problem in the analysis of tandem mass spectra is

to identify the peptide that gave rise to an observed fragmenta-

tion spectrum. The most commonly used tools for solving this

problem, such as SEQUEST,1 Mascot,2 or X!Tandem,3 search a

given sequence database for the peptide whose theoretical

spectrum best matches the observed spectrum. The output of

this stage of the analysis is a collection of peptide-spectrum

matches (PSMs), each with an associated score (Table 1). The

natural subsequent question is, “Which of these PSMs are

correct?”

While these algorithms are very powerful, the problem is that

there is substantial overlap between the scores for correct and

incorrect peptide identifications. This limits the identification

to either eliminating a large number of true positive identifica-

tions to minimize the false positives or allowing a large number

of false positive identifications to maximize the number of true

positive identifications.

The purpose of this article is to describe how well-established

statistical methods for significance analysis can be applied to

peptides identified via tandem mass spectrometry. We assume

that we have a peptide identification method that takes as input

a set of spectra and a protein sequence database and produces

as output a list of PSMs ranked by some score. The score could

be a cross-correlation, a probability, or any arbitrary similarity

measure. Our goal is to convert these scores into a more useful

set of significance measures.

As an example, we use a collection of 34 499 doubly charged

tandem mass spectra generated from a yeast whole cell lysate.4

These spectra were searched against the predicted yeast open

reading frames using SEQUEST, and the resulting PSMs were

ranked according to the SEQUEST cross-correlation score

(XCorr). Figure 1 shows the number of peptide-spectrum

matches exceeding a given XCorr threshold.

The Decoy Database As a Model of the Null Hypothesis

The most commonly used significance measure in statistics

is the p-value. Defining “p-value” requires that we first define

the notion of a null hypothesis. Put simply, the null hypothesis

is the condition that we are not interested in. For example,

when we are assigning a significance measure to a match

between a peptide sequence and a tandem mass spectrum, the

null hypothesis is that the peptide was not identified by the

mass spectrometer. The p-value is then defined as the prob-

ability of obtaining a result at least as extreme as the observa-

tion at hand, assuming the null hypothesis is correct. Therefore,

a low p-value means that the probability is small that these

data would occur by chance when the null hypothesis is true.

* To whom correspondence should be addressed. E-mail: noble@
gs.washington.edu.

† Department of Genome Sciences, University of Washington.
‡ Department of Biostatistics, University of Washington.
§ Department of Computer Science and Engineering, University of

Washington.

Table 1. Terminology

PSM A peptide-spectrum match, with an

associated score

target PSM A PSM created by searching the original peptide

database

decoy database A shuffled or reversed version of the peptide

database

decoy PSM A PSM created by searching a decoy peptide

database

accepted PSM A PSM whose score is above some user-defined

threshold

correct PSM A PSM whose peptide corresponds to the actual

peptide that generated the observed spectrum

PIT Percentage of target PSMs that are incorrect

(also known as π0
5 or p0

6

FDR False discovery ratesthe percentage of

accepted PSMs that are incorrect
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Now consider that we want to compute p-values for our

collection of 34 499 ranked PSMs. A commonly used model of

the null hypothesis is to search the original set of spectra

against a decoy database. A decoy database is a database of

amino acid sequences that is derived from the original protein

database (called the target database) by reversing the target

sequences,7 shuffling the target sequences,8 or generating the

decoy sequences at random using a Markov model with

parameters derived from the target sequences.9 There is no

clear consensus in the literature as to which method for

generating a decoy database is best. For our purposes, what

matters is that the decoy database contains peptide-like amino

acid sequences that are not in the target database. Therefore,

if we search against the decoy database, we can be quite sure

that the resulting protein identification is incorrect; that is, the

identification is an instance of the null hypothesis being correct.

Figure 2 shows the distributions of XCorr values for PSMs

derived from the target and decoy databases. The distributions

are similar in shape, except that the distribution of target PSM

scores has a heavier tail to the right. If the distribution of scores

generated by searching the decoy database is an accurate

representation of the null distribution, then this tail to the right

should reflect the scores corresponding to correct PSMs.

Once the spectra have been searched against the target and

the decoy databases, computing p-values is straightforward.

For a given target PSM with score s, we simply compute the

percentage of decoy PSMs that receive score s or higher. In

our example, a target PSM with XCorr 3.0 is assigned a p-value

of 0.0063 because 219 out of 34 492 decoy PSMs receive scores

greater than or equal to 3.0. The dashed line in Figure 3 plots

the p-value as a function of XCorr. At a p-value threshold of

0.01, we accept 4190 PSMs. When a p-value threshold of 0.01

is used, there is a 1% chance that a null peptide-spectrum

match will be called correct. In practice, the decoy database is

usually the same size as the target database; however, this is

not necessary. Using a larger decoy database leads to more

accurate p-value estimates at the expense of more computation.

Using a good model of the null distribution is extremely

important. In general, if the null is inaccurate, for example, if

the data contains dependencies that are not taken into account

in the null, then all of the resulting significance estimates will

be inaccurate. Furthermore, if a perfect null model is unavail-

able, then it is preferable to use a conservative null model. Such

a model will yield conservative estimates of significance,

meaning that a p-value of 0.01 may actually mean that there

is a less than 1% chance that a null PSM will be called correct.

We discuss below a technique for evaluating the accuracy of a

given null model, and we provide evidence that the simple null

we use here (a shuffled protein database) is conservative.

Multiple Testing Correction Using the False Discovery
Rate

Unfortunately, the preceding analysis is incomplete. Using

a p-value threshold is inadequate because we have performed

our statistical test so many times. Our ranked list contains

34 499 PSMs, and so we expect to observe 0.01 × 34 499 ) 345

PSMs with p-values less than 0.01 simply by chance. We need

to perform what statisticians call multiple testing correction.

In a study such as ours, in which we perform many statistical

tests and in which we expect many of the tests to be positive

Figure 1. Identifying peptides using SEQUEST’s XCorr. The

number of peptide-spectrum matches exceeding the XCorr

threshold. A collection of 34 499 2+ charged tandem mass

spectra derived from a yeast whole-cell lysate was searched

against the predict yeast open reading frames using SEQUEST.

Figure 2. Distribution of XCorr values for target and decoy PSMs.

The distribution of XCorr values for the target PSMs (solid line)

and decoy PSMs (dashed line).

Figure 3. Mapping from XCorr to p- and q-values. A plot of the

p-value (dashed line) and q-value (solid line) as a function of

XCorr.
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(i.e, many of the PSMs are correct), the accepted method for

multiple testing correction is to estimate the false discovery rate

(FDR).10,11 Storey and Tibshirani12 provide a description of FDR

methods that is accessible to nonstatisticians and that includes

more recent developments. In our case, the FDR associated

with a particular score threshold is defined as the expected

percentage of accepted PSMs that are incorrect, where an

“accepted PSM” is one that scores above the threshold (Many

proteomics papers incorrectly refer to this quantity as the “false

positive rate.”) However, other scientific fields define the false

positive rate as the fraction of true null tests that are called

significant,13–17 whereas the false discovery rate is defined as

the fraction of true null tests among all of those that are called

significant). For example, at an FDR of 1%, if we accept 500

PSMs, then we expect five of those matches to be incorrect.

The simplest way to calculate the FDR is analogous to the

calculation of p-values, above. For a given score threshold, we

count the number of decoy PSMs above the threshold and the

number of target PSMs above the threshold. We can now

estimate the FDR by simply computing the ratio of these two

values. For example, at a score threshold of 3.0, we observe

3849 accepted target PSMs and 219 accepted decoy PSMs,

yielding an estimated FDR of 5.7%. Figure 4 plots the number

of accepted PSMs as a function of the estimated FDR, and the

series labeled “Simple FDR” was computed using the ratio of

accepted decoys versus accepted targets.

Estimating the Percentage of Incorrect Target PSMs

A slightly more sophisticated method for calculating the FDR

takes into account the observation that, whereas all decoy PSMs

are incorrect by construction, not all target PSMs are correct.

Ideally, the presence of these incorrect target PSMs should be

factored into the FDR calculation. For example, suppose that

among 10 000 target PSMs, 8000 are incorrect and 2000 are

correct. We would like to know the 8000 quantity so that we

can adjust our FDR estimates.

Figure 2 shows that the distributions of scores assigned to

target and decoy PSMs are similar, except that the target PSM

score distribution has a heavier tail to the right. This tail arises

because the set of target PSMs is comprised of a mixture of

correct and incorrect PSMs. Figure 5 shows simulated distribu-

tions that illustrate the underlying phenomenon. For this

simulation, we assume that our PSM score function follows a

normal distribution, and we set the standard deviation to 0.7

(The assumption of normality is for the purposes of illustration

only; the methods we describe here do not require any

particular form of distribution, nor do we assume that XCorr

is normally distributed). For incorrect PSMs, we set the mean

of the distribution to 1.0, and for correct PSMs, we change the

mean to 3.0. Our simulated data set contains 10 000 decoy

PSMs, 8000 incorrect target PSMs, and 2000 correct target

PSMs. The figure shows the resulting decoy score distribution

(black line), the target score distribution (blue line), and its two

component distributions (dotted and dashed blue lines). In this

simulated data set, the percentage of incorrect targets (PIT) is

80%. This PIT is equivalent to the ratio of the area under the

dotted black line (the incorrect target PSMs) to the area under

the solid black line (the decoy PSMs).

The PIT is important because it allows us to reduce the

estimated FDR associated with a given set of accepted target

PSMs. In our simulation, if we accept X decoy PSMs with scores

above a certain threshold, then we expect to find 0.8X incorrect

target PSMs above the same theshold. A more accurate estimate

of the FDR, therefore, is to multiply the previous estimate—the

Figure 4. Mapping from the number of identified PSMs to the estimated false discovery rate. (A) The figure plots the number of PSMs

above the threshold as a function of the estimated false discovery rate. Two different methods for computing the FDR are plotted, with

and without an estimate of the percentage of incorrect target PSMs (PIT). The vertical line corresponds to an XCorr of 3.0. (B) A zoomed-

in version of panel A, with the estimated FDR shown as a dotted line and the q-value shown as a solid line.

Figure 5. Simulated target and decoy PSM score distributions.
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ratio of the number of decoy PSMs versus target PSMs above

a threshold—by the PIT.

Employing this more accurate FDR estimate requires that

we estimate the PIT from the observed score distributions. If

we accept all PSMs with XCorr g 0 (or, equivalently, accept all

PSMs with p-value e 1), then the PIT is defined as the ratio of

the number of false discoveries to the total number of PSMs.

The numerator in this ratio is unknown but can be conserva-

tively estimated by considering PSMs with scores close to zero

and calculating the ratio of the number of target PSMs to the

number of decoy PSMs within that set.5 The rationale behind

this estimate is that the majority of target PSMs with small

values should correspond to incorrect target PSMs. For ex-

ample, if 8000 out of 10 000 target PSMs are incorrect, then

for PSMs with scores close to zero, we expect most target PSMs

to come from this 8000. The decoy PSMs are constructed under

the scenario that all 10 000 are incorrect. Therefore, the ratio

of target PSMs to decoy PSMs should be about 80%. In

expectation, the ratio is slightly greater than 80% because there

will be a few correct target PSMs with low scores.

For a concrete example of this estimation procedure, con-

sider all PSMs with XCorr e 3, corresponding to the vertical

red line in Figure 4A. This interval contains 34 499 - 3849 )

30 650 target PSMs and 34 499 - 219 ) 34 280 decoy PSMs,

yielding a ratio of 89%. A similar estimate can be formed for

all XCorr intervals of the form [0, c], not just [0, 3]. As the

interval is made larger, the PIT estimate becomes more

conservative and the variance decreases.12 Therefore, a variety

of methods exist for averaging information across the various

choices of intervals to balance this bias-variance tradeoff.5,12,18–21

Figure 6 illustrates how the estimated PIT varies as we

change the XCorr interval (or, equivalently, the p-value thresh-

old). In Figure 6A, we use the simulated data described

previously. As the p-value threshold increases, that is, as we

restrict our attention to PSMs with lower and lower scores, the

estimated PIT decreases. One simple estimation procedure is

to fit a straight line (shown in red) to these estimates, which

yields an estimated PIT of 0.81. This estimate is slightly

conservative with respect to the true PIT of 0.80.

Figure 6B shows what happens when we repeat the estima-

tion procedure using real data. The increasing trend in the plot

is evidence of a conservative null model. Apparently, there is

an enrichment of target PSMs with very low scores, which likely

correspond to poor quality spectra. A significant avenue for

future research is finding a better null model that does not yield

this type of artifact. In this particular case, using the method

of Storey,5 we estimate the PIT at 0.86; that is, we estimate that

14% of our target PSMs are correct. The series labeled “FDR

with PIT” in Figure 4A shows the results of applying the PIT as

a multiplicative factor. At the threshold considered previously,

our estimated FDR is 0.86 × 219/3849 ) 4.9%, which is lower

than the previous estimate of 5.2%.

From the mass spectrometrist’s perspective, incorporating

an estimate of the PIT adds significant value because it leads

to a much larger number of peptide identifications for a given

FDR. For example, at an FDR of 1%, the simple estimation

procedure yields 2123 accepted target PSMs. After estimating

the PIT, the number of accepted target PSMs increases by 9.3%

to 2320. A similar effect has been observed in several genomics

applications.

q-Values

Unfortunately, as shown in Figure 4B, the FDR has the

somewhat counterintuitive property that it is not a function of

the underlying score: two different scores can lead to the same

FDR. In our case, a score threshold of 4.14 yields 4 decoy PSMs

and 919 target PSMs, implying an FDR of 0.35%, whereas a

threshold of 3.98 yields a larger set of accepted PSMs (4 decoys

and 1294 targets) but a smaller estimated FDR (0.27%). This

property makes it difficult to apply an FDR threshold to a given

data set.

To address this problem, Storey and Tibshirani12 propose a

new metric, the q-value, which in our case is defined as the

minimal FDR threshold at which a given PSM is accepted

(Note that the q-value is not related to the Qscore7). The

solid line in Figure 4B shows the q-value as a function of score.

In the above example, a q-value threshold of 0.27% unambigu-

ously yields 1294 identifications. The primary distinction

between the FDR and the q-value is that the former is a

property of a set PSMs, whereas the latter is a property of a

single PSM. We can therefore associate a unique q-value with

every target PSM in our data set.

The q-value is intended to be analogous to the p-value, but

taking into account multiple testing correction. Figure 3

Figure 6. Estimation of percentage of incorrect target PSMs. Each panel plots the estimated PIT as a function of the p-value threshold

for (A) simulated data and (B) yeast data. For each PIT estimate, only those PSMs with p-values greater than the given threshold are

considered.
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illustrates the relationship between p-values and q-values for

our example data set. In general, the q-value associated with a

given XCorr threshold is higher than the corresponding p-value,

except when the XCorr threshold is quite low.

We performed a simple simulation to illustrate the ac-

curacy of the q-values estimated via the procedure described

above. We used the simulated data shown in Figure 5: 10 000

target PSMs and 10 000 decoy PSMs, with the PIT set at 80%.

Figure 7 plots the estimated q-value as a function of the true

q-value when repeating the experiment 200 times. Reassur-

ingly, the points lie symmetrically close to the line y ) x:

96% of the estimated q-values in the range of 0 – 0.1 are

within a factor of 2 of the actual q-value. Thus, the plot

demonstrates that this method of estimating q-values is

accurate.

Discussion

We have described a method for assigning significance

measures—in particular, q-values—to a ranked list of PSMs by

exploiting a null model derived from a decoy protein database.

Although we have used the SEQUEST XCorr score throughout,

the method described here is quite general and can be used

for essentially any PSM scoring routine.

Many research groups routinely use FDR calculations based

on a target-decoy search strategy,7,22–25 though most of these

approaches use the “simple FDR” estimation procedure shown

in Figure 4A. We have demonstrated that taking into account

the percentage of incorrect target PSMs increases the number

of accepted target PSMs at a fixed FDR. In the future, as mass

spectrometry technology and PSM scoring schemes improve,

the PIT is likely to decrease, making this type of FDR calculation

even more valuable.

Methods for estimating FDRs and q-values, similar to the

methods we propose, have been described and validated

extensively in the statistical literature.5,11,12 However, these

techniques all require that the true null distribution has been

used, or at the very least a conservative version of the true null

distribution. Effects from hidden covariates, when not taken

into account, have been shown to warp the null distribution

in multiple testing situations.26–30 Also, it should be noted that

each spectrum results in the formation of a target PSM and a

decoy PSM. However, the decoy PSMs are pooled together and

used to evaluate the significance of the set of target PSMs. It is

not yet well-understood what assumptions are required to treat

the set of decoy PSMs in this exchangeable fashion, and it may

be the case that the decoy PSM derived from one spectrum is

not representative of the null PSM distribution of a different

spectrum. The important point is that several issues affect our

ability to obtain the correct null distribution, and these have

to be considered carefully.

The procedure that we have described involves searching

spectra against target sequences and decoy sequences sepa-

rately. The methods could be extended to estimate significance

for peptide identifications obtained by searching the spectra

once against a merged database containing both target and

decoy sequences. However, computing valid significance es-

timates when using this strategy is difficult, because one must

ensure that the distribution of decoy PSM scores accurately

represents the target null distribution. For example, it is

important to compensate for the fact that target-decoy com-

petition yields more target PSMs than decoy PSMs. Failure to

compensate for this effect could lead to a general underestima-

tion of FDRs.

Note that, ideally, significance measures should also be

assigned to proteins as well as PSMs. The methods that we

describe here could be applied at the level of protein identifica-

tions, but doing so requires an appropriate protein-level scoring

scheme.
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