
Assigning Trust to Wikipedia Content∗

B. Thomas Adler1 Krishnendu Chatterjee2 Luca de Alfaro2

Marco Faella3 Ian Pye1 Vishwanath Raman1

1Computer Science Dept.
UC Santa Cruz, CA, USA

{thumper, ipye,
vraman}@ucsc.edu

2Computer Engineering Dept.
UC Santa Cruz, CA, USA

{c_krish,luca}@soe.ucsc.edu

3Computer Science Division
Dept. of Physics

University of Naples, Italy
mfaella@na.infn.it

ABSTRACT
The Wikipedia is a collaborative encyclopedia: anyone can con-
tribute to its articles simply by clicking on an “edit” button. The
open nature of the Wikipedia has been key to its success, but has
also created a challenge: how can readers develop an informed opin-
ion on its reliability? We propose a system that computes quanti-
tative values of trust for the text in Wikipedia articles; these trust
values provide an indication of text reliability.

The system uses as input the revision history of each article, as
well as information about thereputationof the contributing authors,
as provided by a reputation system. The trust of a word in an arti-
cle is computed on the basis of the reputation of the originalau-
thor of the word, as well as the reputation of all authors who edited
text near the word. The algorithm computes word trust valuesthat
vary smoothly across the text; the trust values can be visualized us-
ing varying text-background colors. The algorithm ensuresthat all
changes to an article’s text are reflected in the trust values, prevent-
ing surreptitious content changes.

We have implemented the proposed system, and we have used it
to compute and display the trust of the text of thousands of articles
of the English Wikipedia. To validate our trust-computation algo-
rithms, we show that text labeled as low-trust has a significantly
higher probability of being edited in the future than text labeled as
high-trust.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces—Computer-supported cooperative work,
Web-based interaction; K.4.3 [Computers and Society]: Organi-
zational Impacts—Computer-supported collaborative work

∗A preliminary version of this work is available as the Technical
Report UCSC-CRL-07-09, School of Engineering, Universityof
California, Santa Cruz, CA, USA, November 2007. This research
has been partially supported by the CITRIS: Center for Information
Technology Research in the Interest of Society.
Copyright ACM, 2008. This is the authors’ version of the work. It
is posted here by permission of the ACM for your personal use.Not
for redistribution. The definitive version was published inProceed-
ings of WikiSym 2008.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’08,September 8–10, Porto, Portugal.
Copyright 2008 ACM 978-1-60558-128-3/08/09 ...$5.00.

1. INTRODUCTION
Wikipedia is an online encyclopedia who grew in the span of a

few years to become one of the most widely used sources of in-
formation on the web. Wikipedia owes its growth and breadth of
coverage to its ability to harness the contributions of millions of
individuals, ranging from casual visitors, to domain experts, to ded-
icated editors. On the other hand, the open process that gives rise
to Wikipedia content makes it difficult for visitors to form an idea
of the reliability of the content. Wikipedia articles are constantly
changing, and the contributors range from domain experts, to van-
dals, to dedicated editors, to superficial contributors notfully aware
of the quality standards the Wikipedia aspires to attain. Wikipedia
visitors are presented with the latest version of each article they
visit: this latest version does not offer them any simple insight into
how the article content has evolved into its most current form, nor
does it offer a measure of how much the content can be relied upon.
These considerations generated interest in algorithmic systems for
estimating the trust of Wikipedia content [21, 34].

We introduce atrust systemfor Wikipedia that computes, and
displays, a value oftrust for each word of each article version of
Wikipedia. The trust value of a word is computed according tothe
degree in which the word, and the immediately surrounding text,
has been revised by previous authors and editors. The computation
takes into account both the amount of revision, and thereputationof
the people performing the revision, as computed by a separate rep-
utation system [1]. The resulting trust values are displayed via dif-
ferent colors for the text background, providing an intuitive guide to
the reliability of the content. The trust values allow visitors to easily
spot new, unchecked content, as well as any content modification,
including malicious attempts at corrupting information. An exam-
ple of coloring produced by our system is given in Figure 1; the
tampering with the prime minister’s last name is clearly indicated
by the trust values.

Our emphasis on word-level trust reflects our goal of provid-
ing guidance to Wikipedia visitors over which portions of anar-
ticle can be relied upon, and which others instead require closer
scrutiny. This contrasts with approaches that assign a single, global
value of trust or quality for an entire article [18, 7, 35, 23]. Such a
global trust value is useful in many applications, including applica-
tions whereselectingarticles is important. We instead assume that
a reader is interested in a given article, and we tackle the goal of
providing an estimate of how much the different assertions in the
article can be trusted.

A novel feature of our trust system is that it is resistant to tam-
pering. Text that is deleted by vandalism, and then re-inserted, con-
serves its original trust, so that malicious users cannot lower the
trust of text simply by deleting and re-inserting it. More impor-
tantly, users cannot tamper with the system and cause text oftheir

(a) Immediately before the modification (revi-
sion id 77625823).

(b) Immediately after the modification (revi-
sion id 77692452).

Figure 1: Trust coloring resulting from an attempt to modify the
spelling of the Danish Prime Minister’s last name, from Fogh,
to Fjogh (in Danish, a fjog is a fool). The text background is
a shade of orange that is the darker, the lower the trust of the
text. The sequence consists of two consecutive revisions. Notice
how the trust coloring highlights the information that has not
yet been sufficiently reviewed. Subtle changes such as the above
can be hard for Wikipedia visitors to spot without the help of a
trust coloring.

choice to gain extra trust. Another novel feature of the proposed
system is that it relies entirely on automatic content analysis. Both
the reputation system [1], and the trust system, rely on an analysis
of the evolution of the content of wiki articles, and requireno user
input. Consequently, our systems are applicable to any wiki. This is
in contrast to previous approaches, which relied on a classification
of users according to their Wikipedia role [21, 34]: such previous
approaches were applicable only to wikis that developed a stratified
classification of contributors.

1.1 The Trust Assignment Algorithm
The goal of our trust system is to convey information on the de-

gree with which the text has been revised, and to flag any recent
unchecked content modifications. We rely on a simple idea: the
trust of text should depend on the reliability of the author,and on
the reliability of the people who subsequently revised, checked, and
edited the text [21, 34].

As a measure of author and revisor quality, we take theauthor
reputationcomputed by the author reputation system of [1]. That
reputation system, like the trust system described in this paper, is
content-driven:it relies on content analysis, rather than user-to-user
feedback. Users who contribute long-lived content gain reputation,
while users who contribute content that is quickly removed lose rep-
utation. The resulting author reputation was shown to correlate well
with the quality of the author’s future contributions, justifying its
use in the computation of text trust. Furthermore, gaining repu-

tation requires effort, and this will enable us to make the system
resistant to tampering, as we will discuss in Section 2.4.

We compute the trust of the revisionsv1, v2, v3, . . . of a wiki ar-
ticle by analyzing how each revision is obtained from the previous
one. When an authorA edits revisionvk, obtaining revisionvk+1,
we compare the text ofvk andvk+1, tracking the blocks of text that
have been inserted, deleted, and copied. Text that is new invk+1 is
given a trust proportional toA’s reputation: the rationale is that au-
thors of high reputation are likely to provide good quality,accurate
contributions. We choose the proportionality constant so that even
text by top-reputation authors does not initially have fulltrust: full
trust requires the consensus of multiple authors. The text that used
to be present invk, but has been deleted, is tracked as “dead text”,
so that if it is reinserted in a later revisionvk+m, for m > 1, it can
be assigned the trust it had invk. Tracking deleted text enables us
to attribute text to its original author, and it ensures thatvandalism
has no lasting effect, and is not gratifying to the vandals.

If author A rearranged the order of blocks of text in producing
revisionvk+1 from vk, we assign the end-points of the rearranged
blocks the same trust value we assign to new text. Indeed, themean-
ing of the text may have changed due to the cut-and-paste, andit is
no more reliable than other text inserted by authorA. The trust of
the block interior is instead inherited from the trust of thecorre-
sponding text invk. A consequence of this rule is that when text
is deleted, the margins of the “wound” where the text has beencut
are highlighted with low trust, as they correspond to end-points of
rearranged text blocks. Thus, our system makes it hard to surrepti-
tiously tamper with the content of Wikipedia articles: every change,
including text rearrangements and deletions, leaves a low-trust mark
that is prominently displayed via the trust coloring.

Once all the text of revisionvk+1 is assigned a preliminary value
of trust as described above, we perform one additional step,in
which we may raise the trust of the text to account for the factthat
it has been reviewed by authorA. The idea is that authorA, by
leaving text unchanged fromvk to vk+1, has given an implicit vote
of confidence in the text. Thus, we raise the trust of the text in pro-
portion toA’s reputation, and in proportion to the attention thatA
is likely to have paid to each portion of text. To ensure that asingle
author cannot cause the trust of an article to raise more thandue by
performing repeated small edits, we keep track, for each word, of
the list of the lastn authors who raised the word’s trust. An author
can cause a word to raise in trust only if she does not appear inthis
list. This ensures that text can only raise in trust if revised by mul-
tiple authors, preventing authors from single-handedly raising the
trust of portions of text of their choice. We show (in Section2.4)
that this also ensures robustness against Sybil (or “sock-puppet”)
attacks, in which attackers use multiple identities [6, 17,3, 26].

We would like to point out some techniques and factors that we
have chosennot to consider in computing text trust. We chose not
to perform semantic analysis of the sentences affected by the edits.
Undoubtedly, such an analysis would yield additional information.
On the other hand, our methods have the advantage of simplicity,
and they are suited to most languages with no adaptation required
(as long as the text can be split into individual words); thus, we
believe it is of interest to characterize how well trust can be associ-
ated with text without requiring semantic analysis. We alsochose to
consider all words equally, disregarding for instance the distinction
between common words, and rarer ones. The meaning of a sentence
can be drastically affected by changing common words, such as an
“and” into a “not”, and we did not wish to build into the algorithm
preconceived ideas of what changes were important.

1.2 Trust Quality Metrics
The trust values are computed from the past history of text, and

reflect the degree with which text has been edited and revised. Ide-
ally, we would like to show that high trust text conveys with high
probability correct information. However, correctness isvery diffi-
cult to define and measure. As a substitute, we study the correlation
between trust, and future text stability, in the hypothesisthat cor-
rect (or high-quality) content is less likely to be revised [34]. The
quality metrics will also provide quantitative performance indices
that will be useful in fine-tuning the behavior of the algorithms. We
note that the quality metrics capture only in part the intentunderly-
ing our trust system: in particular, the goals of predictingfuture text
stability, and warning readers about recent modifications,do not al-
ways coincide, as we will see in more detail later. Nevertheless, the
metrics offer valuable insight in the performance of the system.

The first two metrics consider the precision and recall of low-trust
with respect to immediate deletions. Let the possible rangeof trust
values be the interval[0, Tmax].

• Recall of deletions.For ρ ∈ [0, Tmax], theρ-recall of dele-
tionsis the percentage of deleted text that had trust lower than
ρ in the revision preceding its deletion.

• Precision of deletions.For ρ ∈ [0, Tmax], theρ-precision of
deletionsis the percentage of text with trust lower thanρ that
is deleted in the immediately subsequent revision.

• Trust of average vs. deleted text.We consider the average and
median trust of all the text, compared with the average and
median trust that deleted text possesses immediately priorto
deletion.

• Trust as a predictor of lifespan.We select words uniformly at
random, and we consider the statistical correlation between
the trust of the word at the moment of sampling, and the fu-
ture lifespan of the word. Forρ ∈ [0, Tmax], theρ-trust aver-
age lifespanof text is the average number of future revisions
in which a word of trustρ at sampling appears. We remark
that this is a proper test, since the trust at the time of sampling
depends only on the history of the word prior to sampling.

1.3 Implementation and Evaluation
We have implemented the trust system using, as a source of au-

thor reputation, thecontent-drivenreputation system of [1]. The
code of the reputation and trust systems has been made available in
open-source format [29]; the code can be readily applied to wikis
other than the Wikipedia.

The trust system has been used to process all the text of the En-
glish Wikipedia, as of February 2007. The resulting trust assign-
ments can be viewed in a live demo, in which text is displayed with
a background color that depends on its trust: white background for
fully trusted text, and shades of orange that are the darker,the lower
the text trust [29]. The demo provides information on both text trust
and text provenance: when visitors click on a word in an article,
they are redirected to the version of the article where the word was
first introduced. The trust and provenance information complement
each other: visitors are made aware of the less trusted portions of
text by the coloring, and can then investigate the origin of such text
via the text origin redirection.

The evaluation results can be summarized as follows (see Sec-
tion 5 for the details):

• Recall of deletions.We show that text in the lowest 50% of
trust values constitutes only 3.4% of the text of articles, yet
corresponds to 66% of the text that is deleted from one ver-
sion to the next.

• Precision of deletions.We show that text that is in the bottom
half of trust values has a probability of 33% of being deleted
in the very next version, in contrast with the 1.9% probability
for general text. The deletion probability raises to 62% for
text in the bottom 20% of trust values.

• Trust of average vs. deleted text.We show that 90% of the
text overall had trust at least 76%, while the average trust for
deleted text was 33%.

• Trust as a predictor of lifespan.We show that words with the
highest trust have an expected future lifespan that is 4.5 times
longer than words with no trust.

The above results were obtained by analyzing 1,000 articlesselected
randomly from the Wikipedia articles with at least 200 revisions.

The current implementation of the trust system relies onbatch
processing: the code examines all the content, and computesthe
trust value of each word of each article revision. We are currently
working on anon-line implementation, in which new revisions of
Wikipedia articles are colored according to trust in real-time, as they
are created by users. No change in the basic trust (or reputation)
algorithms is required for such an implementation; only theway the
algorithms are applied to revisions changes.

1.4 Related Work
The problem of the reliability of Wikipedia content has often

emerged both in the press (see, e.g., [27, 12]) and in scientific jour-
nals [8]. The idea of assigning trust to specific sections of text of
Wikipedia articles as a guide to readers has been previouslypro-
posed in [21, 4, 34], as well as in white papers [14] and blogs [20];
these papers also contain the idea of using text background color to
visualize trust values.

The work most closely related to ours is [34], where the trustof
a piece of text is computed from the Wikipedia roles (anonymous,
registered user, or editor) of the original author, and of the authors
who subsequently revised the article. The Wikipedia roles of au-
thors are thus used in lieu of author reputation; as a consequence,
the algorithm can only be applied to wikis where authors are or-
ganized in a well-defined hierarchy. Text analysis is performed at
the granularity level of sentences; all sentences introduced in the
same revision form afragment,and share the same trust. A change
anywhere in a sentence causes the whole sentence to be considered
new, and the position of the change in the sentence is not flagged
via the trust labeling. The cut-and-paste edges of text deletions and
reorderings are also not flagged via the trust labeling. Furthermore,
deleted text is not tracked: when text is deleted, and then re-inserted,
it is counted as new. Among other things, this creates an incentive
to vandalism: blanking an article suffices to reset its entire trust
assignment. To validate the trust assignment, [34] computes the
correlation between the trust of a fragment, and the probability that
the fragment appears in the most recent version of the article. We
refine this criterion into one of our evaluation criteria, namely, the
predictive power of trust with respect to word longevity.

In [21], the trust of authors and fragments is computed on the
basis of the author-to-fragment and fragment-of-article graphs, to-
gether with thelink ratio of article titles. Thelink ratio is the ratio
of the number of times an article title appears as a link in other arti-
cles, and the number of times the title appears as normal text. The
work provides trust values for some articles, but no comprehensive
evaluation.

The white paper [14] focuses on the user interface aspects ofdis-
playing information related to trust and author contributions; we
hope to include some of the suggestions in future versions ofour

system. Related work that relies on an analysis of revision infor-
mation to infer trust has been performed in the context of software,
where logs are mined in order to find revision patterns that point to
possible software defects and weak points (see, e.g., [19]).

Other studies have focused on trust as article-level, rather than
word-level, information. These studies can be used to answer the
question of whether an article is of good quality, or reliable overall,
but cannot be used to locate in an article which portions of text de-
serve the most careful scrutiny, as our approach can. In [35], which
inspired [34], the revision history of a Wikipedia article is used to
compute a trust value for the entire article. In [7, 23], metrics de-
rived via natural language processing are used to classify articles
according to their quality. In [18], the number of edits and unique
editors are used to estimate article quality. The use of revert times
for quality estimation has been proposed in [30], where a visual-
ization of the Wikipedia editing process is presented; an approach
based on edit frequency and dynamics is discussed in [33]. There is
a fast-growing body of literature reporting on statisticalstudies of
the evolution of Wikipedia content, including [30, 31, 24];we refer
to [24] for an insightful overview of this line of work.

The notion of trust has been very widely studied in more general
contexts (see, e.g., [2, 10]), as well as in e-commerce and social
networks (see e.g. [15, 25, 5, 13, 11, 9]); these notions of trust
however are generally based on user-to-user feedback, rather than
on an algorithmic analysis of content evolution.

2. TEXT TRUST ALGORITHMS
We compute the trust of Wikipedia text on the basis of an al-

gorithmic analysis of how the content of Wikipedia articlesevolve
across revisions. We assume that, in addition to the text of all ar-
ticle revisions, we have access to a reputation system that,at every
point in time, can give us a value of reputation for each author; we
assume that reputations take values in a fixed interval[0, Tmax], for
someTmax > 0. Our goal consists in associating a value of trust
in the interval[0, Tmax] to every word of every article revision. We
rely on the reputation system of [1], which also computes reputation
values based on an analysis of content evolution: thus, the whole
system is content-driven.

We present our algorithm for trust assignment in three steps.
First, we will illustrate the basic idea via a simplified algorithm that
does not cope with reversions, nor in general, with the situation
when text is deleted, and later re-inserted. Next, we present an im-
proved algorithm for assigning trust to Wikipedia content that deals
with removed-and-reinserted text, and that also contains atuned
model of user attention during the process of article revision. Fi-
nally, we discuss the modifications to the algorithm that we intro-
duced to make the trust system robust to tampering.

2.1 Notation
We denote the sequence of revisions of a Wikipedia article by

v0, v1, v2, Versionv0 is empty, and versionvi, for i > 0, is
obtained by authorai performing an editei = vi−1 vi. When
editing a versioned document, authors often save intermediate re-
sults, thus performing multiple consecutive edits. Beforeprocess-
ing the versions, we filter them, keeping only the last of consecutive
versions by the same author; we assume thus that for1 ≤ i < n
we haveai 6= ai+1. Every versionvi, for 0 ≤ i ≤ n, consists
of a sequence[wi

1, . . . , w
i
mi

] of words,wheremi is the number of
words ofvi; we havem0 = 0. Our system works at the level of the
Mediawiki markup language in which authors write article content,
rather than at the level of the HTML produced by the wiki engine;
a word is a whitespace-delimited alphanumerical string in the Me-
diawiki markup language.

2.2 A simplified text-trust algorithm
Our trust algorithms will assign a trust value in the interval

[0, Tmax] for each word of each article revision. Given an edit
ei = vi−1 vi, a trust valuet1, t2, . . . , tmi−1

for each word of
vi−1, and a valuer ∈ [0, Tmax] for the reputation of the authorai

of the revision, the algorithm computes trust valuest̂1, t̂2, . . . , t̂mi

for all words ofvi. The algorithm first computes anedit list Li de-
tailing howvi is obtained fromvi−1 [28]. The edit listLi consists
of one or more of the following elements:

• I(j, n): n words are inserted at positionj of vi (i.e., words
of indices fromj to j + n − 1 are new invi);

• R(j, n): n words are deleted at positionj of vi−1;

• M(j, j′, n): n words are moved from positionj in vi−1 to
positionj′ in vi (it may bej = j′).

Each word invi is part of exactly one of the aboveI(·) or M(·)
elements, and the algorithm to generate edit lists tries to maximize
text block matches [1]. The trust computation algorithm uses the
following constants:

• 0 ≤ cl < 1 is thetrust inheritance constant:it specifies how
much trust should a word inherit from the reputation of its
author.

• 0 ≤ cr < 1 is therevision constant:it specifies how much
trust does the author reputation confer to the text of the article.

• ce > 0 is theedge effect constant:when blocks of text are
displaced, this constant specifies how far into the blocks isthe
trust of the text affected by the move.

The values of these constants are obtained via optimizationtech-
niques that will be described later. We first compute preliminary
trust valuest′0, t

′

1, . . . , t
′

mi
by considering all elements in the edit

list Li:

1. Insertions. If I(j, n) ∈ Li, thent′k := cl · r for all j ≤
k < j + n: thus, inserted text is assigned a trust value equal
to the reputation of the author inserting it, multiplied by the
trust inheritance constant.

2. Block moves.If M(j, j′, n) ∈ Li, then for all0 ≤ k <
n, k is the distance of thek-th word in the block from the
beginning of the block, and̄k = n−1−k is the distance from
the end of the block. We apply anedge effect,whereby the
text at the block boundary acquires the same trust as new text;
this edge effect weakens exponentially towards the interior
of the block. The edge effect is not applied to block move
boundaries that remain at the beginning or end of the article.
Precisely:

(a) If j 6= 0 or j′ 6= 0 then the left endpoint of the block
has changed context, and we let:

t′′j′+k = tj+k + (cl · r − tj+k) · e−cek

Otherwise, ifj = 0 andj′ = 0, we lett′′j′+k = tj+k.

(b) If j+n 6= mi−1 or j′+n 6= mi, then the right endpoint
has changed context, and we let:

t′j′+k = t′′j′+k + (cl · r − t′′j′+k) · e−cek̄

Otherwise, ifj + n = mi−1 andj′ + n = mi, we let
t′j′+k = t′′j′+k.

Figure 2: Update process for text trust. The text is shown be-
fore (top) and after (bottom) an edit, together with its trust. In
the bottom figure, the new values of trust (continuous line) are
obtained from the inherited values of trust (dashed line) asfol-
lows: 1: Trust value for newly inserted text (E). 2: Edge effect:
the text at the edge of blocks has the same trust as newly in-
serted text. 3: Revision effect: old text may increase in trust, if
the author reputation is higher than the old text trust. 4: The
edge effect is applied at the beginning and end of the articleonly
if text changes there (which is not the case here).

If R(j, n) ∈ Li, then the text is deleted, and there is no trust assign-
ment to be made (the edge effect of adjacent blocks toR(j, n) will
take care of flagging the deletion in the new version). Once all ele-
ments of the edit listLi have been processed, we have preliminary
trust valuest′1, t

′

2, . . . , t
′

mi
which take into account of insertions,

block moves, and edge effects. The final trust valuest̂0, t̂1, . . . , t̂mi

of the words ofvi are then computed by accounting for the fact that
the authorai lends some of her reputationr to the revisionvi she
just performed. For0 ≤ k < mi, we let:

t̂k =



t′k if t′k ≥ r

t′k + (r − t′k) · cr if t′k < r
(1)

The trust update process is illustrated in Figure 2. The trust la-
beling computed by the algorithm is such that high trust requires
consensus: only text that survives scrutiny by multiple authors can
gain high trust. The trust labeling also provides a warning when
text is deleted or reordered. However, this simplified algorithm has
a fatal flaw: it does not cope with text that is deleted in a revi-
sion, only to be reinserted in a later one. Deletion and reinsertion
is a common phenomenon in the evolution of Wikipedia articles: it
occurs in many disputes about article content, and even moredev-
astatingly, it occurs when visitors deface articles by removing part
or all of their text. If this algorithm were applied to the Wikipedia,
a vandal would simply need to delete, and then re-insert, existing
text in order to reset its trust to zero. Thus, it would be extremely
easy for vandals to destroy trust information and deface thecoloring
provided by the trust system.

2.3 An improved text-trust algorithm
We describe now an improved text-trust algorithm, which keeps

track not only of the trust of the text present in an article, but also of
the trust of the text that used to be present, but that has subsequently
been deleted. The algorithm also models the attention focusof the
author performing an edit, raising by a larger amount the trust of the
text that is most likely to have been read by the author in the course
of the edit.

2.3.1 Tracking deleted text.
We track deleted text by representing each article versionvi, for

1 ≤ i ≤ n, as a non-empty listCi = [ci
0, c

i
1, . . . , c

i
hi

] of chunks,
where each chunkci

k, for 0 ≤ k ≤ hi, is a sequence of words.
The live chunkci

0 corresponds to the words that are present invi;
the dead chunksci

1, . . . , ci
hi

, if present, correspond to contigu-
ous portions of text that used to be present in some prior version
v0, . . . , vi−1 of the article, but have been deleted. The chunksCi

are computed from the chunksCi−1 = [ci−1
0 , ci−1

1 , . . . , ci−1
hi−1

] for
vi−1 as described in [1]. Specifically, we match the text ofvi with
the text of all the chunks inCi−1, looking for the longest possi-
ble matches of contiguous sequences of words. We break ties in
favor of matches betweenvi and the textci−1

0 that was present in
vi−1, thus preferring matches betweenvi and the live text invi−1,
to matches betweenvi and the textci−1

1 , . . . , ci−1
hi−1

that was present
beforevi−1 but is “dead” invi−1. Furthermore, we allow the text
in Ci−1 to be matched multiple times, modeling the fact that an
author can replicate existing text; the text invi can be matched at
most once. The portions of unmatched text inCi−1 go on to form
the new dead chunks[ci−1

1 , . . . , ci−1
hi−1

] for vi. In this matching pro-
cess, lower bounds on the length of acceptable matches ensure that
common sequence of words (such as “the” or “in fact”) appearing
in new contexts are not considered as copied or re-introduced text.

We update the trust of deleted and reinserted text as follows.

• For text that is moved from the live chunkci−1
0 to some dead

chunkci
h′ , h′ > 0, we multiply the trust of the text bye−rck .

The idea is that when text is deleted, its trust is decreased in
proportion to the reputationr of the author deleting the text.
In particular, text does not lose trust when deleted by anony-
mous users or novices (r = 0). This ensures that when van-
dals remove all text of an article, once the text is re-inserted
it has the same trust as before the vandalism occurred. In our
implementation, we have takenck = (log 2)/Tmax, so that
the trust of a word is halved when deleted by an author of
maximum reputation.

• For text that is moved from a dead chunkci−1
h , h > 0, to

another dead chunkci
h′ , h′ > 0, we simply copy the trust.

• For text that is moved from a dead chunkci−1
h , h > 0, to

the live chunkci
0, we update the trust in a manner completely

equivalent to the one used for block movesM(j, j′, n) in the
previous section, applying the edge effect to both text end-
points.

2.3.2 Modeling author attention.
In equation (1) of the previous algorithm, we increase the trust

of the text uniformly — this assumes that the author of the revi-
sion pays equal attention to the entire text being revised. This as-
sumption is unlikely to be correct, as authors are more likely to pay
greater attention to text that is closer to their edits; raising the trust
of all the text in the article may impart too much trust to textthat
has not been the focus of author attention. We decided therefore
to experiment with a variation of the algorithm that models author
attention in a rudimentary fashion.

When parsing the text of the revisionvi, we split it into para-
graphs, where section titles, items in a bulleted or numbered list,
image captions, and table cell entries also count as “paragraphs”.
Our algorithm then follows the simple idea that authors are likely
to pay more attention to the text in the same paragraph as the edits
they are performing. To this end, we mark asmodifiedall para-
graphs where (a) either new text has been inserted (corresponding
to anI element in the edit list), or (b) the paragraph contains the
endpoint of a block move (elementsM in the edit list) to which the
edge effect applies. For modified paragraphs we apply, after(1), the

following update:

t̂k :=



t̂k if t̂k ≥ r

t̂k + (r − t̂k) · cp otherwise,
(2)

where0 ≤ cp < 1 is theparagraph constant: it specifies how much
additional trust the author reputation confers to the paragraph of the
article she modified. Thus, text in modified paragraphs receives an
additional trust increment.

2.4 Robust trust
The current implementation of the trust system is a batch one,

in which the wiki revision history is analyzed off-line. Ourgoal,
however, is to develop algorithms that are suited for on-line imple-
mentation and deployment on live wikis. If the trust system is de-
ployed on a high-traffic, and high-visibility wiki, it most likely will
come under attack. We consider two types of attacks:vandalismat-
tacks, aimed at destroying the trust information, andtamperingat-
tacks, aimed at causing the text to increase unduly in trust,perhaps
to mask malicious changes. We present here methods that make
the trust system robust to such attacks. In making the trust system
robust to attacks, we assume that the reputation system itself is re-
liable, in the sense that it is hard for authors to gain reputation in
a short time, without strong justification. Thus, we deal with the
robustness problem in modular fashion: this paper concernsitself
with a robust trust system, while the problem of implementing a
robust reputation system will be dealt with elsewhere.

2.4.1 Vandalism
The algorithms for text trust that we have presented so far are al-

ready robust with respect to vandalism attacks in which portions of
text are deleted. Deleted text is tracked by the system, as described
in Section 2.3.1. Since vandals typically have a reputationclose
to 0, the trust of the text is lowered by a small amount when the
deletion occurs, as the multiplicative factore−rck is very close to 1.
When the deleted text is re-inserted, its trust value will beessentially
unchanged. In a more malicious version of this attack, vandals can
perform extensive text re-arrangements, causing much textto be as-
signed the low trust value used for block-move endpoints (see the
edge effect in Figure 2). To defend against this attack, the on-line
system we are developing compares the text of revisionvk with the
text of revisionsvk−m, vk−m+1, . . . ,vk−1; special data structures
make this comparison efficient even for values ofm that range up
to 50 or more. We then identify the past revisionvj that is closest,
in edit distance, tovk. The trust assigned to each word ofvk is then
equal to thelargestof these two trust values:

• the trust value resulting from the editvk−1 vk;

• the trust value computed as if the editvj vk occurred (thus
short-circuiting revisionsvj+1, . . . ,vk−1).

In this fashion, as long as vandalism is reverted within a small num-
ber of revisions (no larger thanm), the original trust of the text is
restored.

2.4.2 Tampering
The above vandalism attacks have the aim of lowering the trust

value of text in an article. The attacks can cause visual distractions
for the readers of the article, as much text is labeled and colored
as low trust, until the vandalism is corrected. Nevertheless, these
attacks never cause text to be labeled with too high a trust value.
A more malicious type of attack, which we calltampering attack,
aims instead at raising the trust value of the text of an article, in

spite of the fact that the text has not been properly revised by the
wiki community of authors.

The algorithms described in Sections 2.2–2.3 are not robustwith
respect to tampering attacks by high-reputation users. According to
the algorithms presented so far, new text inserted by an author A of
reputationr ∈ [0, Tmax] initially has the value of trust

clr + (r − clr)cr +
“

r −
`

clr + (r − clr)cr

´

cp

”

< r .

However, if the authorA performs multiple small edits on an unre-
lated portion of the same article, the trust of this text grows, until
it approachesr. Thus, authorA could first add arbitrary text to
one portion of the article, and then perform multiple small edits to
another portion of the article. After such sequence of edits, the ar-
bitrary text would have trust very close tor.

To defend against this type of attack, we allow authors to increase
the trust of a word only if they have not already done so recently.
Precisely, for each word, we keep track of the list of the lastm
authors who have increased the trust of the word. When an author
A performs a revision, for each wordw of the new revision, we first
check whether steps (1) (of Section 2.2) and (2) (of Section 2.3.2)
would lead to a trust increase forw. If so, we proceed as follows:

• If A appears in the listl associated withw, we leave the trust
of the wordw unchanged.

• If A does not appear the listl associated withw, we insertA
at the beginning ofl and, if the resulting list is longer thanm,
we truncate the list to the firstm elements.

This scheme ensures that, after an author raises the trust ofa word,
at leastm different authors need to raise the trust of the word before
A can do so again.

The scheme obviously prevents the simple attack in whichA tries
to raise the trust of the word by editing the article frequently. More
subtly, the scheme also preventsA from raising the trust of a word
via Sybil (or sock-puppet) attacks [6, 17, 3, 26]. In these attacks,A
uses multiple identities (all under her control) to try to raise the trust
of the wordw. To see this, consider the situation afterA raises a
first time the trust ofw to the valuet. After this happens, authors (or
sock-puppets) can raise the trust ofw further only if their reputation
is abovet. Since we assume that it is difficult for an author or
sock-puppet to acquire reputation, it will be difficult forA to have a
sufficient number of high-reputation sock-puppets to causethe trust
of A to raise.

We prefer to associate the list of past revisors with each word,
rather than with an entire page. All our algorithms are word-based,
so this choice leads to a more uniform setting. Moreover, we believe
that the word-level accounting we use leads to a more natural, and
fairer, setting. For instance, consider the case whereA raises the
trust of a versionv of an article, and shortly afterwards, an author
B of lower reputation inserts some text in the article. IfA edits
the page immediately afterB, our word-level accounting enables
A to raise the trust of the text inserted byB, while preventingA
from raising twice the trust of the text that was already present in
v. Indeed, there would be no reason to disallowA from raising the
trust of the text inserted byB. The revisor lists can be stored in
more compact form via hashing.

We call the trust computed with the help of the anti-tampering
algorithm abovetamper-resistanttrust, to contrast it with thenon
tamper-resistanttrust described in Sections 2.2–2.3.

3. TRUST QUALITY METRICS
We present trust quality metrics that quantify the ability of trust

values to predict the future stability of text. The idea is that higher-
trust text should be less likely to be revised in the future [34].

We remark that the ability of trust to predict future text stability
provides only a partial assessment of the effectiveness of the trust
labeling. In fact, the trust labeling is meant both to assesshow well
text has been revised, and to highlight recent content modifications.
These two goals sometimes cannot be reconciled. As an example,
consider the case of an author removing a sentence from a para-
graph. Our trust labeling will label low-trust both the end of the
sentence preceding the removal, and the beginning of the sentence
immediately following the removal. This low-trust labeling, and the
resulting orange coloring, is used to make readers aware that some
edit has occurred — that text was removed. However, the sentences
that precede and follow the removal are unlikely to be themselves
deleted, so that labeling them low-trust lowers our measured quality
of the trust labeling.

Even with these limitations, the quality metrics will be useful
to us, providing an estimate of the predictive value of the trust we
compute, and offering quantitative data for the optimization of the
algorithms.

3.1 Low trust as a predictor of deletions
Two of our quality metrics measure the precision recall of low-

trust with respect to text deletions. For each trust valuet ∈
[0, Tmax], we consider the fact of a wordw having trusttw ≤ t
as a “warning bell”, and we ask what is the recall, and the preci-
sion, of this warning bell with respect to the event of the word being
deleted in the next revision. The recallrecl(t) measures the fraction
of deleted text that had trust smaller than or equal tot immediately
prior to deletion; the precisionprec(t) measures the fraction of text
with trust smaller than or equal tot which is deleted in the next
revision. More formally, let:

• W
≤

i,p(t) be the number of words in versioni of articlep that
have trust no larger thant;

• D
≤

i,p(t) be the number of words in versioni of articlep that
have trust no larger thant and which are deleted in the revi-
sion from versioni to i + 1;

• Di,p = D
≤

i,p(Tmax) be the number of words in versioni of
articlep which are deleted in the revision from versioni to
i + 1.

Then, we have:

recl (t) =
P

i,p D
≤

i,p(t)
‹

P

i,p Di,p (3)

prec(t) =
P

i,p D
≤

i,p(t)
‹

P

i,p W
≤

i,p(t) , (4)

where the summation is taken for all versions of all articlesthat are
used to evaluate the quality of the trust labeling.

While recall and precision of low-trust are good indicators, they
suffer from the fact that text can be deleted by vandals, onlyto be
re-added in the next revision. This source of error can be signifi-
cant: while people intent on improving an article often delete small
amounts of text at a time, vandals often delete the entire text of an
article. To obtain better metrics, we would like to give moreweight
to deletions that happen due to well-thought-out editorialconcerns,
rather than vandalism. To this end, we employ the notion ofedit
longevitydeveloped in [1]. The edit longevityαi,p ∈ [−1, 1] is a
measure of how long-lived is the changeei = vi−1 vi for ar-
ticle p. In particular, ifαi,p is −1, then the changeei is reverted

immediately, and ifei is a deletion, then practically this should not
be considered as a valid deletion. On the other hand, ifαi,p is close
to 1, the change will live through many subsequent revisions, and if
ei is a deletion, then it should be considered as a valid deletion [1].
We use theedit qualityqi,p = (αi,p +1)/2 to weigh the data points
in (5)–(6), thus giving weight close to 1 to deletions that happen
due to authoritative revisions, and no weight to deletions performed
by vandals (which have longevity−1). We thus define thequality-
weighedrecall and precision of low-trust with respect to deletions
as follows:

w_recl (t) =

P

i,p qi,p D
≤

i,p(t)
P

i,p qi,p Di,p
(5)

w_prec(t) =

P

i,p qi,p D
≤

i,p(t)
P

i,p qi,p W
≤

i,p(t)
. (6)

3.2 Trust distribution of general vs. deleted
text

Another quality metric for trust labelings is obtained by compar-
ing the trust value distribution of all text, and of deleted text. Recall
that, in our system, we display the text of revisions with a back-
ground color that reflects text trust, and which ranges from white
for fully trusted text, to orange for text with trust 0. Site visitors are
going to use the orange background as an indication that the infor-
mation may be unreliable. If too much text on an article has orange
background, the alert loses effectiveness, as visitors habituate to the
constant flagging of text. Thus, we prefer trust labeling in which
text, on average, is as trusted as possible. On the other hand, we
clearly want text to be flagged as low-trust when it is about tobe
deleted.

To make these notions precise, we define the following quantities.
Given a functionf : [0, Tmax] 7→ IR with

R Tmax

0
f(t) dt < ∞, and

ρ ∈ [0, 1], we define theρ-medianof f the quantitya satisfying
Z a

0

f(t) dt = ρ

Z Tmax

0

f(t) dt .

We also denote withW
=

i,p(t) the amount of text having trustt in
versioni of article p, and we denote withD

=

i,p(t) the amount of
text in versioni of articlep having trustt which will be deleted in
versioni + 1. We define the following notations:

tot_txt(t) =
X

i,p

W
=

i,p(t)

del_txt(t) =
X

i,p

D
=

i,p(t)

w_del_txt(t) =
X

i,p

qi,pD
=

i,p(t) .

We assess the quality of a trust labeling via the following quantities,
for ρ ∈ [0, 1]:

• Theρ-white pointis theρ-median oftot_txt(t).

• The weighed orange averageis the average value oft for
w_del_txt(t).

We will useW0.9 andOrg
avg

to denote the0.9-white point and
weighed orange average, respectively. Again, the weighingused
in the definition of orange average is used to give more weightto
deletions that occur in the course of higher-quality revisions.

3.3 Trust as predictor of text life-span
Our final quality metric for the trust labeling consists in quantify-

ing the predictive value of word trust with respect to the subsequent
life-span of the word. To measure this predictive value, we sample
word occurrences from all versions uniformly at random (applying
the algorithm to all words would be computationally very expen-
sive), and we observe for how many consecutive article versions the
words are present after their sampled occurrence.1

The simplest approach consists in studying the correlationbe-
tween the trustt of the word at the moment it is sampled, with the
life-spanl of the word, measured as the number of consecutive sub-
sequent versions in which the word is present. However, sucha
measurement would be biased by thehorizon effectinduced by the
fact that we have only a finite sequencev0, v1, . . . , vn of versions to
analyze. Words sampled in a versionvi, and that are still present in
the last versionvn, have a life-span ofn − i + 1, even though they
may live much longer once the wiki evolves and versions beyond
vn are introduced. This horizon effect causes us to under-estimate
the true life-span of high-longevity words sampled close tothe last
existing version of an article.

To obtain a measurement that is unaffected by this horizon effect,
we model the life-span of a word as a memoryless decay process, in
which the word has a constant probability (dependent on the word,
but not on its past life-span) of being deleted at every revision. Thus,
we assume that the probability that a word that is alive atvi is still
alive at vk, for k ≥ i, is e−(k−i)/λ, whereλ is the half-life of
the word under infinite-horizon. Our task is then to estimatethe
correlation between the trustt that the word has invi and the half-
life λ of the word. Note that this definition of half-life eliminates
the horizon effect due to the finite number of versions.

For every word sampled atvi, and last present invk, with i ≤
k ≤ n, we output a triple(t, l, h) consisting of the trustt of the
word invi, the life-spanl = k − i + 1, and the observation horizon
h = n − i + 1. To estimateλ, we use the following observation:
if l < h, then the word would have lived forl even under infinite
horizon; if l = h, then the word has an average life-span ofl + λ
under infinite horizon, since the distribution is memoryless. LetA
be the set of triples sampled for a trust levelt. Let:

• m be the number of samples inA with l < h;

• M =
P

{l | l < h ∧ (t, l, h) ∈ A};

• k be the number of samples inA with l = h;

• K =
P

{l | l = h ∧ (t, l, h) ∈ A}.

We can estimateλ via

λ =
M + K + k · λ

m + k

which yields

λ =
M + K

m
.

A trust labeling will have high predictive value for life-span if larger
values for the trust of the word invi correspond to larger values of
λ.

1As we have seen in Section 2.3.1, a word in a version can corre-
spond to multiple occurrences in the next version, when textis du-
plicated. When tracking a word to measure its life-span, whenever
the word is duplicated, we track all occurrences separately.

4. IMPLEMENTATION
We have implemented a trust tool that computes text trust and

provenance for the Wikipedia. The trust tool takes as input an XML
dump containing all the text of all the revisions of the Wikipedia;
such dumps are periodically made available from the Wikimedia
Foundation. The trust tool is written in Ocaml [16]; we chosethis
language for its combination of speed and excellent memory man-
agement. On an Intel Core 2 Duo 2 GHz CPU, our tool is capable
of assigning trust to versions of Wikipedia articles2 at over 15 ver-
sions/second, or roughly 1.5 millions versions per day, an edit rate
much higher than the one of the on-line Wikipedia [32]. We have
run the trust tool over the entire English Wikipedia, as of its Febru-
ary 6, 2007 dump; the results can be viewed on a live demo [29].To
save disk space on the server, the demo contains only the last100
versions of each article, but all versions were considered in trust
computation.

The current implementation of the tool is a batch one. The first
step consists in computing thereputation historyof all Wikipedia
authors. When the trust system examines a revisionvk vk+1

performed by an authorA, it looks up the value of trust of authorA
in the reputation history ofA, corresponding to the timetk+1 when
vk+1 was created. The trust system uses the reputation ofA at time
tk+1, rather than the “final” or “average” reputation ofA, in order
to mimick faithfully the trust computation that is used in the on-line
system we are developing.

The reputation histories are computed using the content-driven
reputation system for Wikipedia authors proposed in [1]. Inthis
system, authors of contributions which prove long-lastinggain in
reputation, while authors whose contributions are reverted lose rep-
utation. Specifically, whenever an authorA edits an article that had
been previously edited by another authorB, a change in reputation
is generated forB: the reputation ofB increases ifA preserves
B’s contribution, and decreases ifA undoesB’s contribution. The
reputation system is thuschronological: the reputation is computed
from the chronological sequence of increments received by authors.
The reputation system is such thatTmax = 9.

Once the reputation histories of all users have been computed,
we feed the reputation histories, and the Wikipedia XML dump, to
the trust tool. The tool produces as output acolorizedXML dump,
containing the original text annotated with the computed trust and
provenance information. The colorized dump is in the same format
as the input XML dump, except that two additional markup tagsare
intersepsed in the text:

• the tag{{#t:x}} indicates that the subsequent text has trust
x ∈ {0, 1, . . . , 9} (trust is rounded to the nearest integer for
display purposes);

• the tag{{to:i}} indicates that the subsequent text was first
inserted in versioni (Mediawiki assigns to each version a
global integer identifier).

To save storage, these tags are not added for each word, but only
when the information changes from one word to the next.

The colorized XML dump can be loaded in a Mediawiki instal-
lation using the standard tools made available as part of Mediawiki
(Mediawiki [22] is the software package responsible for implement-
ing the wiki behind Wikipedia). The additional tags are theninter-
preted by a Mediawiki extension we developed, following theMe-
diawiki extension framework. We display the trust of each word by
coloring the background of the word: white for fully trustedwords,
and increasingly intense gradations of orange for progressively less
2Measured on a randomly-selected subset of articles with at least
200 versions each.

trusted text. For text origin, our extension defines a on-click action
in JavaScript. When a user clicks on a word, the user is sent tothe
article version where the word was first inserted. The two types of
information, trust and origin, augment each other, and together pro-
vide Wikipedia visitors with effective tools to judge the accuracy of
article content.

Towards an on-line implementation
We are currently working on anon-line implementation of the
trust system, capable of coloring the revisions of Wikipedia arti-
cles as they are created. The on-line system will be suited toany
Mediawiki-based wiki, and indeed to any wiki, via minor adapta-
tions.

While in the batch system the computation of author reputation
histories, and the computation of text trust, happen in two sepa-
rate passes, in the on-line system author reputations and trust are
updated in real-time, every time a new article revision is created.
When a revision is created, the on-line system first analyzesthe text
difference between the revision and the previous article revisions.
This information is passed to the reputation system, which updates
the reputation of the authors of previous article revisions: past au-
thors whose contributions are preserved in the latest revision gain
reputation, while authors whose contributions have been undone
lose reputation [1]. The information on text tracking is then passed
to the trust system, which updates word trust according to the algo-
rithms of Section 2. Consequently, in the on-line implementation,
every new revision causes both reputation and trust updates.

We note that this on-line system, and the batch system we have
used for evaluation purposes, compute the same values, due to our
use of author reputation histories to compute trust values.Thus, the
performance figures that we report for the batch system are repre-
sentative of the on-line system.

5. EVALUATION
Our first step in the performance evaluation of the trust labeling

consisted in choosing values for the constants appearing inthe trust
labeling algorithm.

Choosing values for the constants involves seeking a balance
between the opposite goals of alerting visitors to as much unreli-
able content as possile, and avoiding visual clutter and informa-
tion overload. We found it helpful to reason about how “white” a
mature article should be on average, and about how “orange” the
deleted text should be: thus, we performed the optimizationusing
the white point and orange average, as defined in Section 3. Welet
W ′

0.9 = W0.9/Tmax ∈ [0, 1] be the normalized 90%-white-point,
and we letOrg ′

avg
= (Tmax − Org

avg
)/Tmax ∈ [0, 1] be the nor-

malized weighed orange average, whereTmax = 9 for our system.
We wanted to find parameter values that would make the article,
overall, as white as possible (maximizeW ′

0.9), while ensuring the
deleted text was as orange as possible (maximizeOrg ′

avg
). To this

end, we used linear search on the space of the parameters to opti-
mize the value of theweighed harmonic meanof W ′

0.9 andOrg ′

avg
,

i.e., we optimize

F (W ′

0.9, Org
′

avg
) =

2 · W ′

0.9 · Org ′

avg

W ′

0.9 + Org ′

avg

,

for a set of 100 articles used for training. We use the weighed
harmonic function since it weighs both of its arguments evenly.
This led to the following values for the parameters, for non tamper-
resistant trust:

cr = 0.2 cl = 0.4 ce = 2 cp = 0.2 ck = (log 2)/Tmax .
(7)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

Trust

TR_w_prec
TR_w_recl

NR_w_prec
NR_w_recl

Figure 3: Low-trust as a predictor of deletions: quality
weighted precision and recall. Lines prefaced TR are produced
by tamper resistant algorithms. Those prefaced by NR are not
tamper resistant. w_prec and w_recl are weighted precisionand
recall, respectively.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

Trust

TR_recl
TR_w_recl

NR_recl
NR_w_recl

Figure 4: Comparison of recall and weighed recall. w_recl,recl
is the weighted,un-weighted recall.

For the tamper-resistant trust, we choosem = 3, so that an author
needs to wait until three other authors of similar reputation raise
the trust of a word, before being able to raise it herself again. As
tamper-resistant trust yields slighty lower trust (as authors are occa-
sionally prevented from raising the trust of words), we compensate
by takingcr = 0.3, which yields essentially the same values for
the white point and orange average; the other coefficients are as
in (7). With this choice, the results we obtained for normal trust,
and for tamper-resistant trust, are quite similar. In the figures, we
indicate withNR the non tamper-resistant trust, and withTR the
tamper-resistant trust.

We proceeded to evaluate the performance of the trust coloring
on a set of 1,000 articles selected uniformly at random amongthe
articles with at least 200 revisions; the articles comprised 544,250
versions all together, for a total of 13.7 GB of text. We focused on
articles with long revision histories for two reasons. Froma tech-
nical point of view, the long revision history enables us to better
estimate the predictive power of trust with respect to text stabil-
ity. From a user-interface point of view, our trust is especially use-
ful for mature articles: it is relatively easy for visitors to conclude
that incomplete articles, with short revision history, cannot (yet) be
trusted.

Figure 3 gives the quality-weighted precision and recall oflow

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

T
ex

t C
ol

or
 [%

]

Trust

TR_tot_txt
TR_w_del_txt

NR_tot_txt
NR_w_del_txt

Figure 5: Color of general and deleted text. tot_text shows
the percent of all text in each trust bin. w_del_text shows the
weighed trust of deleted text only.

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8 9

E
xp

ec
te

d
lif

e-
sp

an

Trust

TR_expected_life_span
NR_expected_life_span

Figure 6: Expected future life-spanλ of words.

trust with respect to text deletions. We see that the recall is always
at 60% or above; in practice, a mid-range orange background,which
is sure to attract a reader’s attention, is able to warn the reader to 2/3
of the text that will be deleted in the next revision. We believe that
this is a good performance figure, given that text can be deleted for
many reasons other than poor quality, such as rewording: thus, some
deletions are never likely to be anticipated by low trust. The preci-
sion figures give the probability that text marked as low-trust will
be deleted in the very next revision; low precision figures would be
a sign of excessive warnings to visitors. We see that text with trust 0
has a 2/3 probability of being deleted in the next revision, and text
with mid-level trust has a 1/3 probability of deletion; we consider
this to be an acceptable level, especially since not all textthat will
be deleted is going to be deleted in the very next revision. InFig-
ure 4 we compare weighed and unweighed recalls: as we see, if
we also include deletions due to vandalism (recl), our recall drops,
reflecting the fact that such vandalistic deletions are hardto predict.

The color profiles of general and deleted text are compared in
Figure 5. We can see that deleted text, on average, is much lower in
trust: indeed, the average trust of deleted text was 2.96, while 90%
of text had a trust above 7.60 (out of a maximum ofTmax = 9).

Figure 6 depicts the correlation between the trust of a word oc-
currence, and the subsequent life-span of the word. The datais
obtained by random sampling of word occurrences, and tracing the
future of the word from the sampling point. We note that the trust
is the trust of theword occurrence:over the subsequent life-span,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

W
ei

gh
ed

 P
re

ci
si

on

Trust

TR_w_prec (with reputation)
NR_w_prec (without reputation)

Figure 7: The weighed precision with and without reputation
systems.

the word trust may well vary (and typically increases, as thearticle
is revised). We see that there is a clear correlation: highertrust cor-
responds to a longer expected life-span. We also see that there is
a sharp increase in expected life-span as we go from words labeled
with trust 0 to words labeled with trust 1. This can be explained by
the high “early mortality” of words with trust 0: over 60% of them,
as indicated by the recall graph in Figure 3, do not make it to the
next version.

We also evaluated the magnitude performance improvement due
to the use of the author attention modeling presented in Sec-
tion 2.3.2. To our surprise, we discovered that the author attention
modeling does not appreciably improve the results, in spiteof in-
troducing additional degrees of freedom in the trust algorithms. We
believe this is due to the fact that authors usually edit the sections
of an article that have received the most recent edits. Thus,out-
side of the paragraph being edited, there is not much text which can
benefit from a trust increase, and distinguishing between edited and
non-edited paragraphs has little effect.

5.1 Trust quality in absence of a reputation
system

The reputation system provides two key benefits to our trust sys-
tem: it provides information on the quality of the authors, and (most
importantly) it enables us to obtain a system that is resistant to tam-
pering. The present evaluation, however, is performed on past data,
where tampering cannot have occurred, as authors were unaware
even of the proposal for such a system. This provides us with the
opportunity to evaluate the quality improvement of the trust system
that can be ascribed to the use of a reputation system.

To this end, we compared the performance to the regular trust
system, with the performance of a modified trust system that does
not rely on a reputation system, and instead assigns everybody, from
anonymous visitors to well-established editors, the maximum value
of trust. Fresh text, as well as block-move edges, received initially
trust 0,3 and the trust of text would then increase according to the al-
gorithms of Section 2 (no change was made to the trust algorithms).
We note that this is in fact equivalent to using theageof text, mea-
sured in number of revisions, to compute the trust. We chose coef-
ficients for the trust computation that would yield a weighedorange
average similar to the one obtained using a reputation system.

The trust labeling computed without the aid of a reputation sys-
tem performed worse than the one that made use of the reputation

3Had we used a trust value greater than 0 as initial value, no text
would ever get trust 0.

system of [1]. The performance gap was most noticeable with re-
spect to the precision, as illustrated in Figure 7: for trust4, for
instance, the precision was nearly double (33%) with the reputation
system than without (17.5%). The gap for recall was narrower: for
trust 4, the quality-weighed recall was 66% using a reputation sys-
tem, and 72.5% without. Furthermore, while deleted text hadsimi-
lar colors, the average text was noticeably more orange in the tests
not using the reputation system: the 90% white point went from 7.6
using reputation, to 5.43 when reputation was not used.

This performance difference can be explained as follows. One
of the benefits of using a reputation system is that text whichis
inserted or moved by high-reputation authors receives a non-zero
initial value of trust (in our system,0.616 · 9 ≈ 5.5). This reflects
the fact that high-reputation authors are statistically more likely to
perform good contributions [1]. If we do without a reputation sys-
tem, all newly inserted or rearranged text instead has trust0 initially.
This makes the text lower-trust overall (thus the lower 90% white
point), and this decreases precision, since among the low-trust text
is plenty of text that is due to authors who are statisticallylikely to
perform good contributions.

5.2 Discussion
The results on precision and recall, word longevity prediction,

and trust distribution overall indicate that the trust we compute has
indeed a predictive value with respect to future text stability. As
mentioned in the introduction, this is an indication that the trust
system provides valuable information; the visitors to our on-line
demo seemed, in anedoctical fashion, to corroborate this finding.

A natural question is whether a similar performance could be
obtained more simply by considering the “age” of text in articles.
To answer this question, first consider how “age” can be measured.
There are two natural choices: to measure text age via the number
of revisions, or via the amount of time, for which the text survived.

Consider first the case of age measured via the number of re-
visions for which text survived. This is the scenario described in
Section 5.1 above, and as indicated there, it leads to somewhat infe-
rior performance. The biggest drawback of this approach, however,
is that it would lead to a trust system that is extremely susceptible
to tampering: to raise the trust of a portion of text, all an authour
would need to do is to edit the article multiple times, perhaps with
the help of sock puppets.

Measuring age as the amount of time for which text survived, on
the other hand, would lead to problems due to the varying rateat
which Wikipedia articles are edited. Choosing a fast time-constant
for trust increase would most likely work well for popular articles,
but would enable text in seldom-visited, seldom-edited pages to
quickly gain trust in thee near absence of actual revision. Choos-
ing a slow time-constant, on the other hand, would prevent text on
topical articles, subject to frequent edits, from gaining much trust.

Furthermore, we note that a trust system based on text age would
not be markedly more computationally efficient than the present
one. In terms of efficiency, the main challenge in the trust system, as
in the reputation system of [1], consists in parsing and tracking the
text across revisions. This parsing and tracking would be required
even if some notion of age was adopted as a trust metric.

In conclusion, we believe that the trust system we proposed pro-
vides a good balance between implementation complexity, perfor-
mance, and resistance to tampering.

Acknowledgements.
We would like to thank Jason Benterou for implementing the

Javascript that made the display of provenance informationpossi-
ble.

6. REFERENCES
[1] B.T. Adler and L. de Alfaro. A content-driven reputation

system for the Wikipedia. InProc. of the 16th Intl. World
Wide Web Conf. (WWW 2007). ACM Press, 2007.

[2] C. Castelfranchi and eds. Y. Tan.Trust and Deception in
Virtual Societies. Kluwer Academic Publishers, 2001.

[3] A. Cheng and E. Friedman. Sybilproof reputation
mechanisms. InProc. of the ACM SIGCOMM workshop on
Economics of peer-to-peer systems. ACM Press, 2005.

[4] T. Cross. Puppy smoothies: Improving the reliability ofopen,
collaborative wikis.First Monday, 11(9), September 2006.

[5] C. Dellarocas. The digitization of word-of-mouth: Promises
and challenges of online reputation systems.Management
Science, October 2003.

[6] J.R. Douceur. The sybil attack. InPeer-to-Peer Systems: First
Intl. Workshop, volume 2429 ofLect. Notes in Comp. Sci.,
pages 251–260, 2002.

[7] W. Emigh and S. Herring. Collaborative authoring on the
Web. InProc. of HSCC, 2005.

[8] J. Giles. Internet encyclopaedias go head to head.Nature,
pages 900–901, December 2005.

[9] J.A. Golbeck.Computing and Applying Trust in Web-Based
Social Networks. PhD thesis, University of Maryland, 2005.

[10] T. Grandison and M. Sloman. A survey of trust in internet
application.IEEE Comm. Surveys Tutorials, 3(4), 2000.

[11] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins.
Propagation of trust and distrust. InProc. of the 13th Intl.
Conf. on World Wide Web, pages 403–412. ACM Press, 2004.

[12] M. Hickman and G. Roberts. Wikipedia — separating fact
from fiction.The New Zealand Herald, Feb. 13 2006.

[13] S.D. Kamvar, M.T. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in p2p
networks. InProc. of the 12th Intl. Conf. on World Wide Web,
pages 640–651. ACM Press, 2003.

[14] R. King. Contributor ranking system, 2007. White paper
available from
http://trust.cse.ucsc.edu/Related_Work.

[15] J.M. Kleinberg. Authoritative sources in a hyperlinked
environment.J. ACM, 46(5):604–632, 1999.

[16] Xavier Leroy. Objective caml.
http://caml.inria.fr/ocaml/index.en.html.

[17] B.N. Levine, C. Shields, and N.B. Margolin. A survey of
solutions to the sybil attack. Technical Report Technical
Report 2006-052, Univ. of Massachussets Amherst, 2006.

[18] A. Lih. Wikipedia as participatory journalism. InProc. 5th
International Symposium on Online Journalism, 2004.

[19] V.B. Livshits and T. Zimmerman. Dynamine: Finding
common error patterns by mining software revision histories.
In ESEC/FSE, pages 296–305, 2005.

[20] P. Massa. Wikipedia trust network, 2007.
http://www.gnuband.org/2007/06/26/
wikipedia_trust_network/.

[21] D.L. McGuinness, H. Zeng, P.P. da Silva, L. Ding,
D. Narayanan, and M. Bhaowal. Investigation into trust for
collaborative information repositories: A Wikipedia case
study. InProceedings of the Workshop on Models of Trust for
the Web, 2006.

[22] http://www.mediawiki.org/.
[23] B. Mingus, T. Pincock, and L. Rassbach. Using natural

language processing to determine the quality of Wikipedia
articles. InWikimania, Taipei, Taiwan, 2007.

http://wikimania2007.wikimedia.org/wiki/
Proceedings:BM1.

[24] F. Ortega and J.M. Gonzales-Barahona. Quantitative analysis
of the Wikipedia community of users. InProc. of Wikisym.
ACM Press, 2007.

[25] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kiwabara.
Reputation systems.Comm. ACM, 43(12):45–48, 2000.

[26] J.-M. Seigneur, A. Gray, and C.D. Jensen. Trust transfer:
Encouraging self-recommendations without sybil attack. In
Trust Management, volume 3477 ofLect. Notes in Comp. Sci.
Springer-Verlag, 2005.

[27] R. Stross. Anonymous source is not the same as open source.
The New York Times, Mar. 12, 2006.

[28] W.F. Tichy. The string-to-string correction problem with
block move.ACM Trans. on Computer Systems, 2(4), 1984.

[29] The ucsc wikipedia trust project, 2007.
http://trust.cse.ucsc.edu.

[30] F. Viégas, M. Wattenberg, and K. Dave. Studying cooperation
and conflict between authors with history flow visualizations.
In Proc. of the SIGCHI Conf. on Human Factors in
Computing Systems, pages 575–582, 2004.

[31] J. Voss. Measuring Wikipedia. InProc. of ISSI, 2005.
[32] http://stats.wikimedia.org/EN/TablesDatabaseEdits.htm.
[33] D. Wilkinson and B. Huberman. Cooperation and quality in

Wikipedia. InProc. of WikiSym. ACM Press, 2007.
[34] H. Zeng, M. Alhossaini, R. Fikes, and D.L. McGuinness.

Mining revision history to assess trustworthiness of article
fragments. InProc. of the 2nd Intl. Conf. on Collaborative
Computing: Networking, Applications, and Worksharing
(COLLABORATECOM), 2006.

[35] H. Zeng, M.A. Alhoussaini, L. Ding, R. Fikes, and D.L.
McGuinness. Computing trust from revision history. InIntl.
Conf. on Privacy, Security and Trust, 2006.

