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This paper presents an overview of assignment and sequencing models that are used in
the scheduling of process operations with mathematical programming techniques. Although
scheduling models are problem specific, there are common features which translate into
similar types of constraints. Two major categories of scheduling models are identified:
single-unit assignment models in which the assignment of tasks to units is known a priori,
and multiple-unit assignment models in which several machines compete for the processing
of products. The most critical modeling issues are the time domain representation and net-
work structure of the processing plant. Furthermore, a summary of the major features of the
scheduling model is presented along with computational experience, as well as a discussion
on their strengths and limitations.

1. Introduction

Scheduling is one of the core areas of process operations. It is also an active and
challenging area of research that is of practical importance. In general, scheduling
deals with the allocation of available resources over time to perform a collection of
tasks. Scheduling problems arise in many fields of engineering, operations research
and computer science. In the context of process systems, scheduling refers to the
strategies of allocating equipment and utility or manpower resources over time to
execute processing tasks required to manufacture one or several products. There has
been a pronounced increase in the development of optimization scheduling models in
the chemical engineering literature over the past decade. Despite the substantial
progress that has been made, combinatorics and time representation remain major
challenges in the area. This has created a rather diverse collection of scheduling models
in which there often appears to be a lack of commonalities. In an attempt to provide
some unification of the models, we present a survey of the main assignment and
sequencing models for process scheduling problems within the mathematical program-
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ming framework. We primarily focus on the modeling aspects regarding the plant
structure and representation of the time domain. As will be shown, these models exhibit
some differences to the ones commonly reported in the operations research literature.

Rippin [22] addresses the general status of batch processing systems engineering
with emphasis on design, planning and scheduling. Reklaitis [19,20] presents a com-
prehensive review of scheduling and planning of batch process operations. His main
focus was to describe the basic components of the scheduling problem and review the
existing solution methods. Pekny and Zentner [15] summarize the basic scheduling
technology with association to the advances in computer technology. Grossmann et
al. [9] provide an overview of mixed integer optimization techniques for the design
and scheduling of batch processes, with emphasis on general purpose methods for
mixed integer linear (MILP) and mixed integer nonlinear (MINLP) problems. Many
scheduling and planning problems can be posed as MILP problems since the corre-
sponding mathematical optimization models involve both discrete and continuous
variables that must satisfy a set of linear equality and inequality constraints. In fact,
scheduling problems can be viewed as optimization problems subject to constraints,
namely problems in allocation and sequencing [1].

Although there is no absolute general model for the scheduling of process
systems, three major components are always present [20]. These are: assignment of
tasks to equipment, sequencing of activities and timing of utilization of equipment
and resources by these processing tasks. Another important aspect is the presence of
sequence dependent changeovers. Some formulations include sequence-dependent
decisions as additional constraints, while others embed it in the underlying model
representation. Also, in some instances, material balances are required to deal
explicitly with both resources and inventories.

It is the purpose of this paper to provide a unified overview of the assignment
and sequencing models for chemical process scheduling. We first present a road-map
for classifying scheduling problems for process systems. The bulk of the paper then
concentrates on the allocation and timing constraints which constitute the basis of the
mathematical optimization models. Based on the proposed classification of problems,
we first present the single-unit assignment models, developed mainly for multistage
plants with one unit per stage. Next, we concentrate on describing multiple-unit assign-
ment models. These can be broadly divided into two major categories: models based
on time slots, aimed primarily to multistage serial plants with parallel units, and models
based on time events focused on plants with arbitrary network structure. Finally, we
present a summary of computational experience.

2. Classification of scheduling problems

Figure 1 presents a road-map for classifying scheduling problems and which
should help in obtaining a better understanding of the models that are covered in the
following sections. Equipment similarity and unit connectivity define the topology of
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Figure 1. Road-map for scheduling problems.

the plant. In serial plants, products follow the same production path, therefore it is
possible to recognize a specific direction in the plant floor. Networks of arbitrary
topology tend to occur when products have low recipe similarity andyor when equip-
ment is interconnected. Most methods do not handle mass balances explicitly; instead,
production is represented by batches (or lots). Products follow a series of tasks, which
are collections of elementary chemical and physical processing operations. Note the
close relationship between the plant topology and the sequence of tasks for products:
if all products follow the same sequence of tasks it is usually possible to define
processing stages in the plant, defined as processing equipment that can perform the
same operations. Moreover, lot sizes can be variables, such as in the case of the lot-
sizing problem, or fixed parameters.
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The fundamental issue in assignment and sequencing decisions concerns the time
domain representation. A common feature among scheduling models is the definition
of time slots, i.e., time intervals for unit allocation. In a continuous time domain
representation, time slots have variable length. Moreover, they can be either associated
with units or defined globally, in which case they are often denoted as time events. If
a discrete representation is adopted, slots have equal and fixed duration. The length of
the time interval is taken to be the greatest common factor of the processing times
involved in the problem. Figure 2 illustrates the definition of time slots. The total

Unit NU

.

.

.

Task

Time

slot

Task

Time

events

Task

Time

(a) Slots defined for units

(b) Global time slots or time events

(c) Uniformly discretized time slots

Figure 2. Time domain representation.

number of time slots also depends on the time representation adopted. When time is
discretized, there is in general the need to use a sufficiently large number of slots in
order to have a suitable approximation of the original problem. Note, however, that
the number of slots is fixed. In continuous time formulations, it is usually possible to
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postulate a much smaller number of time slots. However, it is important to select the
time slots in such a way that the number of events to be executed can be accommodated
within the given time horizon. In simpler cases (e.g., no parallel units), the number of
slots is equal to the number of batches to be produced.

Another major issue in plant scheduling deals with the presence of intermediate
storage. There are four different transfer policies: Zero-Wait (ZW), No-Intermediate-
Storage (NIS), Finite-Intermediate-Storage (FIS) and Unlimited-Intermediate-Storage
(UIS) [12]. It is important to note that FIS corresponds to the most general case.
Nevertheless, the main advantage of the remaining three cases is that there is no need
to model inventory levels.

In the scheduling of a process plant, processing tasks require utilities and man-
power. Utilities may include, for example, steam, electricity, cooling water, etc. In
some scheduling applications, apart from equipment, finite resources that are limited
are required for these process tasks. Resource constrained scheduling problems are
inherently difficult, due to the fact that, besides the efficient allocation of units to meet
product demands, it is also necessary to consider the feasible grouping of simul-
taneously executed tasks so as to utilize resources within their availability limits. In
general, scheduling problems are concerned with renewable resources (manpower,
energy), while planning problems handle non-renewable resources (raw material,
capital). Moreover, renewable resources may be discrete, i.e., consumed at a constant
level throughout the processing of the product, or continuous, in which the demand
for the resource varies with the processing time.

The short-term scheduling is relevant to plants that must satisfy individual
customer orders with little similarity between demand patterns in different planning
periods. In this case, product requirements are given as a set of orders, where each
order has associated with it a certain product, the amount and a due date. In contrast,
cyclic scheduling is relevant for plants operating with a stable market in which the
product demands are given as constant rates. This allows a more simplified plant
operation in which the same production sequence is executed repeatedly with a fixed
frequency. It should also be noted that cyclic scheduling is often considered in longer
range planning studies. In both short-term and cyclic scheduling, it is important to
define the inventory policy, which in turn might also require allocation of the produc-
tion to inventory build-up.

When switching between products, or even after one or more batches of the same
product, units may require cleaning and setup for safety andyor product quality.
Changeover requirements depend on the nature of the units and the products in the
plant. Sequence-dependent changeovers represent the most general situation, in which
every pair of consecutive operations may give rise to different time andyor cost
requirements. A simpler situation occurs when changeovers are family dependent,
i.e., products are divided into disjoint families and changeovers only occur between
products of different families. Moreover, the need for unit setup may be expressed in
terms of the frequency of utilization. For instance, a changeover may be needed after
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every batch or after a certain number of batches, regardless of the nature of the
products. Time-dependent cleaning can also be considered. In this case, there is a
maximum time interval during which a unit may be utilized.

2.1. Single-unit assignment models

This class of models involve situations in which the assignment of orders or
tasks to units is known. In other words, each product processing task is identified with
one single unit. In this case, although it might in principle be convenient to use the
concept of time slots, their application is not strictly necessary. The simplest structure
corresponds to the sequential multiproduct plant which consists of multiple stages
with one unit per stage and where all products are processed sequentially at each stage.
This type of plant is normally referred to as the flowshop plant in the operations
research literature [7]. These plants process products with a high degree of similarity
that requires the same sequence of tasks. Interestingly, two other important models
with fixed single-unit assignments that are extensively studied in the operations
research literature are the single-machine scheduling problem, which corresponds to
the single-stage case, and the classical jobshop scheduling problem, in which the
sequence of processing tasks is not the same for different products. The fundamental
problem for scheduling in both cases is to determine the sequence of operations for
given production requirements. Nevertheless, in all cases the allocation of jobs to
machines is known a priori.

Birewar and Grossmann [3, 4], Voudouris and Grossmann [29] and Pinto and
Grossmann [16] considered the multistage case and assumed that each stage involves
one processing unit. Additionally, they imposed the condition that all the products
follow the same processing sequence. The scheduling problem corresponds to the
permutation flowshop of operations research. By introducing the binary variables Xik

to denote the processing of product i in time slot k, the mathematical representation of
the assignment and sequencing constraints is

X k

X i
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Constraints (1a) enforce that exactly one product i is assigned to every time slot
k and constraints (1b) enforce that every product i is assigned to exactly one time slot
k. Note that in this case, each unit corresponds to a different stage. Moreover, as the
processing sequence in all units is the same, it can be determined globally. In this
case, there is a one-to-one correspondence between products and time slots. Figure
3(a) illustrates a permutation flowshop schedule of a multistage plant with one unit
per stage.
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For sequence dependent changeovers, let Zii ′k be a 0–1 transition variable that
denotes the processing of product i at slot k immediately before processing of product
i ′. The transition variable Zii ′k has to be linked to the assignment variables in such a
way that Zii ′k is activated when both Xik and Xi ′k+1 are one. One way of enforcing this
condition is as follows:

stage 
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D C 

B A D C 

(a)

(b)

Figure 3. (a) Permutation flowshop schedule. (b) Sequential jobshop schedule.

Z X X i i k K kii k ik i k′ ′ +≥ + − ∀ ′ −∈1 1 , , { }, (2a)

where k is the last element of the set of time slots K. Another way of enforcing the
same condition in (2a) is to use the following set of constraints:
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According to (2b), one transition from product i to product i ′ occurs if and only
if i ′ is produced in the subsequent time slot. Also, from (2c), exactly one transition
from i to i ′ occurs if and only if i is produced at time slot k. Constraints (2b)– (2c)
were originally introduced by Sahinidis and Grossmann [23] for the single-stage plant
with parallel lines; appendix I illustrates the procedure for deriving constraints
(2b)– (2c) from nonlinear integer constraints. It is important to note that constraints
(2) apply to non-cyclic schedules; for the cyclic case, the indices k + 1 are replaced by
the “++ 1” cyclic operator (see Pinto and Grossmann [16]).

Furthermore, the models include timing constraints, which involve the deter-
mination of the specific start and completion times for each of the tasks undergoing
scheduling. Extra variables are required to model the times associated with each unit.
These are Tsjk , the time at which processing in slot k of unit j is started and Tejk , the
time at which processing in slot k of unit j is completed. When time slots are defined
for each unit, no overlap is allowed. Given the processing times Tij  of product i in unit
j and assuming no sequence-dependent changeovers, the time variables are related in
terms of the assignment variables Xik by the equation

Te Ts X T j kjk jk ik i j
i I

= + ∀
∈
∑ , . (3a)

Additionally, the start time of slot k + 1 at every unit  j  requires that the processing
of slot k be finished. That is,

Te Ts j k K kjk jk≤ ∀ −+ ∈1 , { }. (3b)

Note that sequence-independent changeovers are trivially treated by adding the
setups to Tij  in (3a). When we consider sequence-dependent changeovers, the binary
variable Zii ′k replaces Xik . Introducing the transition time τ ii ′ j from product i to i ′ in
the timing constraint yields

(3c)

As for time relations in two successive stages, these depend on the sequencing
policy, as described in the introduction. For the Zero-Wait (ZW) policy, where no
intermediate storage is available and no idle times are allowed for processing between
stages, the start time of unit j + 1 has to match exactly the completion time in unit j :

Te Ts j J j kjk j k= ∀ −+ ∈1 { }, . (3d)

For the Unlimited-Intermediate-Storage (UIS) policy, where it is possible to store
the batch produced in unit j, the start time in unit j + 1 can be performed any time
after the completion of unit j :

Te Ts j J j kjk j k≤ ∀ −+ ∈1 { }, . (3e)

Te Ts Z T j kjk jk ii k i j ii j
i Ii I

= + + ∀′ ′
′∈∈
∑∑ ( ) , .τ
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An alternative representation for multiproduct or flowshop problems relies on
the use of the binary variable X′ii ′, to denote the processing of batch of product i
immediately before batch of product i ′. In this case, the assignment constraints for
scheduling correspond to the structure of the Traveling Salesman Problem (TSP) as
shown by Gupta [10]:
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Equations (4a) and (4b) guarantee that all batches have exactly one predecessor
and one successor. Note that the assignment constraints corresponding to (4a) and
(4b) possess the same structure of (1a) and (1b) and do not involve the definition of
slots. However, this representation requires the addition of the subtour elimination
constraints (4c), which ensures that a single closed cycle is obtained. The advantage
of the above constraints is that changeovers can easily be handled since they can be
directly expressed in terms of the variables X′ii ′. However, the drawback is that the
number of subtour elimination constraints can be extremely large, and therefore
a relaxation strategy must normally be used. Fortunately, when changeovers are
sequence-dependent this gives rise to an asymmetric TSP, which yields very tight
bounds when the subtour elimination constraints are excluded (see Pekny and Miller
[14]). Birewar and Grossmann [4] considered an aggregated form of the constraints in
(4a)–(4b) with which the problem can be solved in the space of products rather than
in the space of batches. Provided the number of products is not very large, it is possible
to handle problems with an arbitrary number of batches with this formulation.

If there is still one processing unit per stage, but we relax the assumption that
each product follows the same sequence in each stage (e.g., the sequential jobshop
problem), it becomes convenient to define slots for each unit. This is particularly
important for sequential multipurpose plants, i.e., plants in which it is possible to
recognize a specific direction followed by the production paths of all products but
with units being skipped by some products. Figure 3b shows a schedule of a sequential
multipurpose plant with five processing stages; note that the batch processed first in
stage two skips stages one and three and is the second to be processed in stage five.
Defining Wijk as the assignment of product i in slot k of unit j, the assignment con-
straints become
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where I j is the set of products to be processed in unit j and Ji is the set of units in
which product i has to go through. Note also that in this case, the number of slots can
be defined for each unit using the set Kj , according to the number of jobs to be assigned
to it. Timing constraints similar to the ones in (3) must be defined for the above
problem.

The scheduling and sequencing of a multipurpose plant has also been addressed
by Rich and Prokopakis [21] as a jobshop problem by considering that each product
must be processed through a sequence of tasks that are assigned to a processing unit.
This gives rise to a disjunctive programming problem. The fundamental constraints
must enforce that two tasks i and i ′ in potential conflict, i.e., two operations that require
the same processing unit j and with no specified precedence relationship, cannot be
processed simultaneously. These disjunctive constraints can be represented in mixed
integer form with the binary variables X″ii ′ that are activated if task i precedes i ′ and
the continuous variables Tsii that denote the start time of operation i, as follows:

Tsi Tsi U X T i I i I j

Tsi Tsi U X T i I i I j

i i ii i j j

i i ii i j j

′ ′

′ ′ ′

− + − ′′ ≥ ∀ ′

− + ′′ ≥ ∀ ′

∈ ∈
∈ ∈

( ) , , ,

, , ,

1 (6a)

(6b)

where U is some valid upper bound. Equations (6) are “either-or” (disjunctive) con-
straints. The interpretation is that either i precedes i ′ (when X″ii ′ is one) or i ′ precedes
i (when X″ii ′ is zero). Note that, in this model, the start and end times for each product
can be interpreted as event times.

2.2. Multiple-unit assignment – models based on time slots

When several units in parallel compete for processing orders, i.e., a task can be
performed in more than one unit, there is the need to decide the assignment of products
to machines. One approach is to define a certain number of time slots for each of the
units. This is particularly suitable for sequential plants.

A simpler situation occurs when there is only one production stage. In addition
to being of interest in themselves (e.g., parallel machines), single-stage problems
often apply to more complex problems, either because a single (“bottleneck”) stage
dominates or because multiple-stage problems can be decomposed (exactly or approxi-
mately) into independent or loosely coupled single-stage problems. In this case,
there is a one-to-one correspondence between task and order. If a continuous time
representation is used, Pinto and Grossmann [17] suggest that the assignment and
sequencing constraints be written as follows. Let Wijk represent a binary variable for
assigning order i in time slot k of unit j. Since for all orders exactly one time slot k of
one unit j is allotted

j J
i j k

k Ki j

W i
∈ ∈
∑ ∑ = ∀1 . (7a)
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Note that constraint (7a) accounts only for the units j ∈Ji in which order i is
allowed to be processed. Moreover, time slots are unit dependent. Also, since at most
one order can be assigned to each time slot of a unit,

W j k Ki jk
i I

j

j

≤ ∀
∈
∑ ∈1 , . (7b)

Some time slots may be empty, due to an overestimation on their total number.
Sahinidis and Grossmann [23] considered that for the case of single-stage continuous
multiproduct plants, products can be assigned to consecutive time slots and to more
than one unit. Therefore, constraint (7a) is dropped and (7b) becomes an equality
constraint, i.e., all the slots are occupied.

If changeovers are relevant to the problem, the equations (2b)– (2c) by Sahinidis
and Grossmann [23] can be easily extended by introducing variables Zii ′ jk that
explicitly account for sequence-dependent transitions. The constraints that relate the
assignment variables Wijk and the transition variables Zii ′ jk can be written as
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As a result of constraint (8a), exactly one transition from a product i to the given
product i ′ occurs in the end of any time slot if and only if i ′ is produced during the
subsequent time slot. According to (8b), a transition from i to exactly one i ′ occurs at
the end of any time slot if and only if i is being produced during that time slot.
Appendix I illustrates that in fact constraints (8a) and (8b) can be obtained from the
linearization of nonlinear integer constraints. As previously mentioned for equations
(2), constraints (8) apply to the non-cyclic case.

Time variables model the start and completion times of the slots in the units,
namely Tsjk and Tejk . As in equations (3) of the single-unit assignment models, when
time slots are defined for each unit, no overlap is allowed. In other words, the start
time of slot k + 1 at every unit j requires that the processing of slot k be finished:

Te Ts j k K kjk jk j j≤ ∀ −+ ∈1 , { }. (9a)

Also, the start and completion times in the slots are related as follows:

Te Ts W T j k Kjk jk i j k i j
i I

j

j

= + ∀
∈
∑ ∈, . (9b)

When we consider sequence-dependent changeovers following a similar reason-
ing as in (3c), the binary variable Zii ′ jk replaces Wijk by introducing the transition time
from product i to i ′ in constraint (9b), yielding the timing constraint (9c),
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By defining binary variables X′ii ′ j to denote if product i precedes product i ′ in
unit  j, it is possible to derive a model with a similar structure to the TSP model for
the scheduling of single-stage plants with parallel units [5]. The assignment and
sequencing constraints could be seen as a generalization of (4), combined with the
fact that products are assigned to exactly one processing unit j.

Gooding et al. [8] introduce an alternative formulation based on a uniform time
discretization that considers sequence-dependent assignments explicitly with the
binary variables Zii ′ jk that were previously introduced in equations (8). The assign-
ment constraints (10) force each job to be assigned to a unique successor, a unique
predecessor and a unique time slot,

Te Ts Z T j k Kjk jk ii j k
i I

i j
i I

ii j j
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In this approach, although time is uniformly discretized, each unit may have its
own interval length since products are not allowed in all units. Interval sizes are
selected based on the greatest common denominator of the processing times of jobs
that may be processed in unit j, given by the set I j . Also, “dummy” jobs are assigned
to the initial and to the final slots of each unit. The following constraint states that if
job i is processed on line j in slot k, no job can begin production during the next
Tij + τ ii ′ j – 1 slots associated with the production of i and transition from product i
to i ′ :

  r I s I k

T

r s j k k i j ii j ii j k i i j

j j

i j ii j
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It is important to note that for discrete time models, a key assumption is that any
event occurs at interval boundaries. Moreover, as previously mentioned, time slots
have fixed duration. Therefore, timing of events such as non-overlapping of tasks is
done explicitly with the assignment constraints. Nevertheless, it is possible to enforce
certain timing restrictions using the assignment variables. For instance, Gooding et al.
[8] consider the following constraints:

  

Z Z i i j J J k Ki s j k T ii j k
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Constraint (12) enforces that the units are always busy, except for changeovers.
It states that if job i begins production on line j in slot k with successor i ′, then job i ′
must begin in line j in time slot k + Tij + τ ii ′ j .

It is interesting to note that constraints (10c) and (11) are analogous to constraints
(23a) and (23b) by Kondili et al. [11], to be defined later in the paper. It is possible to
define an equivalent representation, which is based on a backward aggregation of
time and similar to constraints (24) developed by Shah et al. [27]. The equivalent
representation is given by

i I i I k k T

k

ii j k k j

j j i j ii j

Z j k K
∈ ′∈ ′= − − +

′ + ′∑ ∑ ∑
′

≤ ∀ ∈
τ 1

1, , . (13)

A detailed proof of equivalence of constraints (10c)– (11) and (13) is given in
appendix II. Following a similar treatment as in the comparison between constraints
(23) and (24) of the STN model presented later in the paper, it is also shown in
appendix II that (13) is not only tighter than (10c)– (11), but is also a more compact
representation.

The multistage flowshop problem with units in parallel is studied in Pinto and
Grossmann [17,18]. In this case, product i goes through several stages and each of the
stages l is assigned to time slots k of units j, as several parallel units may correspond
to a single processing stage, given by the set Jl :

  

j J J
i j k l

k K
i

i I l L L
i j kl j

i l j

j i j

W i l L

W j k K

∈ ∈

∈ ∈

∑ ∑

∑ ∑

= ∀

≤ ∀

∈

∈
( )

( )

, ,

, .

>

>

1

1

(14a)

(14b)

Equation (14a) represents the fact that for all orders and in all stages, exactly
one time slot of one piece of equipment is allotted. Also, not necessarily all processing
stages are involved in the production of i ; the stages actually included in the process-
ing of i are defined in Li . Moreover, only a subset of the units in which stage l of order
i (set Ji > Jl ) can be processed is considered in the summation. The extension to
sequence-dependent changeovers is analogous to the single stage case (see equa-
tions (8)).

Pinto and Grossmann [17] suggest a time-matching approach. When stage l of
order i is assigned to slot k of unit  j  matching takes place by enforcing equality of the
start and end times of these coordinates through mixed integer constraints (see equation
(15)). Binary variables Wijkl  are used to model the potential assignment of stage l of
order i to time slot k of unit j. When order i is assigned to unit j (Wijkl = 1), the start
times in both coordinates are enforced to be the same. Otherwise, the constraints are
relaxed:

  
− − ≤ − ∀ ∈ ∈ ∈U W Tsi Ts i j J J k K l Li jkl il j k i l j i( ) , ( ), , ,1 > (15a)
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Another way of enforcing the time-matching is as follows. Consider equation
(16) that imposes the same condition of (15a) and (15b) which, however, is in nonlinear
form:

(15b)

(16)

Constraint (16) can be linearized, as shown in appendix I of Pinto and Grossmann
[17]. Extra continuous variables are introduced to the problem, namely θi jkl and γ jk,
which represent disaggregated variables for the start times. The linearized form relies
on the use of the multiple-choice assignment constraints (14a) and (14b). The re-
formulated time-matching constraints are as follows:

(17a)

(17b)

(17c)

(17d)

where yjk is a slack 0 –1 variable for time slot k of unit j ( yjk is one if the slot is empty;
zero otherwise). An important feature of representing the time-matching equations
(17a) – (17d) is that fewer constraints are necessary, although there is an increase in
the number of continuous variables. Also, a tighter upper bound than the ones in (15)
can be used in this representation. Note that the variables θi jk l  are bounded by Tsiil as
seen in equation (17a). Therefore, upper bounds on the start times of the orders U il

can be used in (17c), which produces a tighter LP relaxation than the constraints
in (15).

Another major issue in scheduling plants with multiple stages deals with the
presence of intermediate storage. Timing constraints relating consecutive stages
depend on the storage assumptions. For instance, if ZW or NIS are used, the following
constraints should be imposed:

Tei Tsi i l L lil il i i= ∀ −+ ∈1 , { }. (18)

The above constraint states that the start time of order i in stage l + 1 should
coincide with its completion time in stage l. When UIS is assumed, constraint (18)
can be relaxed to

Tei Tsi i l L lil il i i≤ ∀ −+ ∈1 , { }. (19)

Moreover, neglecting sequence-dependent changeovers, the start and completion
times of stage l of order i are related in terms of the variables Wijkl  for ZW and UIS
policies as follows:
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  ( ) , ( ), , .Tsi Ts W i j J J k K l Lil j k i j k l i l j i− = ∀ ∈ ∈ ∈0 >

  U W Tsi Ts i j J J k K l Li jkl il j k i l j i( ) , ( ), , .1 − ≥ − ∀ ∈ ∈ ∈>
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As NIS allows storing of intermediates in the units after their processing is done,
equation (20) can be relaxed to represent this policy:

  

Tei Tsi W T i l Lil il
j J J

i j k l i j
k K

i

i l j

= + ∀
∈ ∈
∑ ∑ ∈

( )

, .
>

(20)

  

Tei Tsi W T i l Lil il
j J J

i j k l i j
k K

i

i l j

≥ + ∀
∈ ∈
∑ ∑ ∈

( )

, .
>

(21)

As for the FIS policy, two approaches can be taken. The first one is to consider
intermediate storage as another processing stage. Another approach is to model inter-
mediate storage explicitly such as in Pinto and Grossmann [16], who considered a
multistage continuous multiproduct plant with one unit per stage. Models based on
time discretization, such as the STN network model, handle the modeling of finite
inventory with greater ease.

Voudouris and Grossmann [30] developed a model for the sequential multi-
purpose plants with equipment in parallel. Their approach is to enumerate all the
production paths for the products. In this case, the assignment variables are yh that
denote whether path h exists and y ′hh′ j that denote whether path h precedes path h′ in
unit j. The assignment and sequencing constraints are

(22a)

(22b)

(22c)

The sets of constraints (22a)–(22c) enforce that if paths h and h ′ are selected,
then a precedence relationship between the paths has to be established in unit  j, which
is a common unit for both paths. Otherwise, the condition is relaxed. Moreover, timing
constraints similar to the inequalities in (6) are defined. By defining variables Tshj as
the start time of the operation of path h in unit j and parameters Thj as the processing
time of the operation of h in unit j yields

  

Ts Ts U y T h h j J J

Ts Ts U y T h h j J J

h j hj hh j hj h h

hj h j hh j h j h h

′ ′ ′

′ ′ ′ ′

− + − ′ ≥ ∀ ′

− + ′ ≥ ∀ ′

∈
∈

( ) , , ( ),

( ) , , ( ).

1 >

>

(22d)

(22e)

An alternative formulation relies on incorporating the assignment constraints
(22a)–(22c) in (22d) and (22e), yielding

  

Ts Ts U y y y T h h j J J

Ts Ts U y y y T h h j J J

h j hj hh j h h hj h h
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(22f)

(22g)
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The two formulations (22a)– (22e) and (22f)– (22g) generate the same integer
solutions, although they exhibit significant differences in computational performance.
Constraint set (22f)– (22g) relies on a smaller number of integer variables and con-
straints; however, its LP relaxation is looser. Note that when the paths are fixed, both
formulations reduce to the equations (6) of Rich and Prokopakis [21].

2.3. Multiple-unit assignment – models based on event times

Another approach is to define global time slots, i.e., not associated with units
but with events, as shown in figure 2. In general, scheduling models for networks of
arbitrary topology are based on this representation of time that was suggested by
Kondili et al. [11]. These formulations rely on discretization of time by considering
time intervals of uniform size. Continuous time formulations can also be developed,
as will be discussed later. Additionally, mass balance equations are key elements of
these models thereby allowing a rather general treatment of batches.

The State Task Network (STN) representation introduced by Kondili et al. [11]
relies on the representation of the process recipes as transformations of states
(material) through a series of tasks in a process network. It is interesting to note that
the STN readily handles multipurpose plants, but unlike the job shop case (see equa-
tions (6) from Rich and Prokopakis [21]), tasks are not pre-assigned to units. An STN
representation for a simple multipurpose plant that processes three products, taken
from Barbosa-Póvoa [2], is shown in figure 4(a). The STN contains the following
original assignment and sequencing constraints [11]:

W j k

W U W i I j k

ijk
i I

i I k k

k T

i jk ij i jk j

j

j

i j

≤ ∀

− ≤ − ∀

∈

′∈ ′=

+ −

′ ′

∑

∑ ∑ ∈

1

1 1
1

, ,

( ) , , .

(23a)

(23b)

Constraints (23a) enforce that at any time k, an idle piece of equipment j can
start at most one task i. Moreover, constraints (23b) state that if the item j does start
performing a given task i, then it cannot start any other task until the current one is
finished after Tij  time slots. Shah et al. [27] found an equivalent representation for the
assignment and sequencing constraints in (23):

i I k k

k T

ijk

j

ij

W j k
∈ ′=

− +

′∑ ∑ ≤ ∀
1

1 , . (24)

The above equations correspond to the tightest formulation, which is based on a
full backward aggregation of time. Constraints (24) ensure the same conditions of
(23a) and (23b); the proof of equivalence is shown in Grossmann et al. [9]. Interest-
ingly, constraint (24) not only yields a much tighter representation, but it also involves
far fewer inequalities than equations (23a) and (23b).
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In the STN formulation, the treatment of sequence-dependent events can be
rather complex. Kondili et al. [11] proposed sequence-dependent constraints based on
families of products and defined additional transition tasks i f f ′ that are activated
according to the following constraints:

F1

F2

I1

I2

I3

P1

P2

P3

Separation

React_1

React_3

React_2

R1_clean R1_dirty

React_1

React_3

Clean_1

Clean_3

(a)

Figure 4. (a) Example of a State Task Network.
(b) Example of a Unit STN (Reactor 1).

(b)

(25)

Constraints (25) enforce that if unit j starts a task of family f at time k and a task
of family f ′ at time k′, without starting any other task between this interval, then the
transition task i f f ′ is activated. A less restrictive constraint can be applied to sequence-
dependent changeovers which, however, does not attempt to define the timing of the
cleaning operation or take into account any demands for resources. As shown by
Kondili et al. [11] and Shah [26], this yields a more aggregated constraint for the
STN:

(26)
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Constraint (26) states that if unit j starts processing any task of family f at time
k, then no task of family f ′ could have started for at least τ f f ′ units before the start of
this task. Note that this formulation does not rely on extra transition tasks and has
fewer constraints.

Crooks [6] addresses sequence-dependent changeovers that account for both
tasks and units by introducing the Unit-STN. The representation comprises the states
in which a unit can exist and the changes that occur when a task is carried out. Tasks
that perform changeovers, such as cleaning and maintenance, are incorporated in the
set of processing tasks defined. An example of a Unit-STN, taken from Barbosa-Póvoa
[2], is shown in figure 4(b), in which a reactor R1 can exist in two states: R1_clean
and R1_dirty. Two reactions (React_1 and React_3) can be performed in the reactor
and both lead to the R1_dirty state. Two cleaning tasks (Clean_1 and Clean_3) drive
it to the R1_clean state. Additional binary variables  Wjkt

̂ denote the states t of unit j at
time k. In this formulation, the following constraints apply: (a) at any time k, unit j
can exist in exactly one of the states t; (b) a unit j can start processing a task i only if
the unit-state allows the operation; (c) if no task starts at time k, the unit-state remains
unchanged at k + 1; (d) a task i that starts at k modifies the unit to a unique unit-state
at k + 1. The conditions (a)– (d), as described in Barbosa-Póvoa [2], were formulated
as

(27a)

(27b)

(27c)

(27d)

where Sj is the set of allowed states for unit j and I jt t ′ is the set of tasks which cause
transition from state t to state t ′ in unit j.

Consecutive processing stages are connected in the STN representation by the
state nodes. Continuous variables Ssk and Bijk are introduced to denote the amount of
material stored in state s at the beginning of time k and the amount of material that
starts task i in unit j at time k, respectively. In addition, variables Dsk and Fsk represent
the sales and purchases of state s at the beginning of time k. A mass balance in these
nodes is given by
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In (28), ρis and ρis are constants that represent for task i the proportions of input
and output material in state s, respectively. The amount of material that can perform
a task is limited by equipment size Vj :

0 ≤ ≤ ∀ ∈B V W i I j kijk j i jk j , , . (29a)

The STN representation allows a general treatment of intermediate storage.
Capacity limits Cs are defined for storage of each state:

0 ≤ ≤ ∀S C k ssk s , . (29b)

If UIS is imposed, then Cs is unbounded. NIS is obtained with Cs = 0. Zero-Wait
policy can be imposed by adding constraints that specify that task i ′ follows task i,
that is,

W W k K k T kijk i j k T
j Jj J

i jij

ii

= ∀ − − + …′ +
∈∈

′∑∑ ∈, { , , }.1 (29c)

Pantelides [13] introduced a very concise representation for scheduling problems
based on an extension of the STN framework, namely the Resource Task Network
(RTN). The basic motivation is to describe processing equipment, storage, material
transfer and utilities uniformly as resources, which are consumed and generated during
the plant operation. Two variables represent the operation of task i at time k, the integer
variables Nik and the continuous variables ξ ik that determine the demands that the
tasks place on the various resources. The following equations express the available
resource balances Rrk:

R R N k r

R R k r

rk rk
i I

irk
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i k k irk i k k rk
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= + + + ∀

≤ ≤ ∀

−
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′
′=

− ′ ′ − ′∑ ∑1
0

0

( ) , ,

, .

, ,µ ν ξ Π (30a)

(30b)

In constraints (30a), µirk and νirk are known constants that may be positive if
the resource is produced or negative if it is consumed. Moreover, Πrk is the amount of
resource r available from external sources at time k. The continuous variables ξik may
be related to the integer variables Nik to impose operational constraints. Constraints
(30b) simply bound the resources. Interestingly, Pantelides [13] showed that con-
straints (30a) correspond to the general case of the STN unit allocation constraints
(26). Also, equations (30a) have the same form and can be easily reduced to the STN
equations (28).

Xueya and Sargent [33] have developed continuous time formulations that are
based on the STN and the RTN. The basic approach is to divide the time horizon into
a sequence of event times of variable length Tk. In order to track all the operations, the
start and completion of each task are mapped to the event times. Furthermore, they
partition the processing time of each task in several transfer times to represent changes
in operating conditions. Since the main concern is with scheduling problems, we
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restrict the analysis to a single processing time. In Xueya and Sargent’s formulation,
binary assignment variables Wijk are activated if the task starts at Tk in unit j and binary
timing variables Xijkk ′ are activated if the task starts at instant Tk in unit j and is
completed at Tk ′. Therefore, constraints (31a) enforce that if task i starts in unit j at Tk,
it will finish one and only one later time Tk ′, k ′ > k:

(31a)

Moreover, the following constraints ensure that at each time k′, a unit must be
occupied by at most one task:

W X i I j kijk ijkk
k k

j= ∀′
′ >
∑ ∈ , , .

i I
i jkk

k kj

X j k
∈

′
≤ ′

∑ ∑ ≤ ∀ ′1 , . (31b)

As mentioned before, Xueya and Sargent [33] rely on time-events Tk, which are
postulated in strictly ascending order. Therefore, the following constraint is imposed:

T T kk k− ≥ ∀ −−1 1ε { }. (32)

In (32), the strict inequality is enforced by introducing the small parameter ε on
the right-hand side. In order to define the sequence of events, the actual task processing
time is identified with one of the event times Tk ′. This is achieved by time constraints
as follows:

t X T T i I j kijk ijkk k k
k k

j= − ∀′ ′
′ >
∑ ∈( ) , , . (33a)

Note that equation (33a) is in nonlinear form. A linearization procedure leads to
constraints (33b), which are in fact very similar to the time-matching constraints (15).
These are

− − ≤ − − ≤ − ∀ ′ ≥′ ′ ′ ∈U X T T t U X i I j k k kijkk k k ijk ijkk j( ) ( ) , , , ,1 1 (33b)

where U represent bounds on the time differences. A disaggregation procedure of
variables ti jk (analogous to the one developed for the time-matching constraints (15)–
(17)) can be performed for the constraints in (33a):

t X T T i I j k k kijkk ijkk k k j′ ′ ′= − ∀ ′ ≥∈( ) , , , . (34a)

Similarly, equation (34a) is nonlinear. Applying linearization to (34a) yields
constraints (34b) and (34c):

(34b)

(34c)

Constraint set (34b)– (34c) is tighter than (33b). For instance, if the binary timing
variable Xijkk ′ is zero, it implies from equation (34b) that the time variable ti jkk ′ is
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also zero. However, this is not the case in (33b). Nevertheless, the representation in
(34b)– (34c) yields more constraints and variables.

As for changeovers, Xueya [34] introduces measures of usability Ujku that
denote the usability u of a task in unit j at time k. The basic idea is to propose a
formulation that comprises sequence-dependent changeovers as well as frequency-
and time-dependent transitions. Parameters, based on precedence relations, are as
follows: α i ju and β i ju reflect how the processing of a task affects the unit usability,
while γ i ju represents the threshold usability of a task. Constraint (35a) relates the
measures of usability in consecutive time events through assignment variables:

U U W j k uj k u iju ijku iju ijk
i Ij

, , ( ) , , ,+
∈

= + ∀∑1 α β (35a)

while constraint (35b) is a feasibility condition for use of unit j for processing order i :

U W j k ujku iju ijk
i Ij

≥ ∀
∈
∑ γ , , , (35b)

and constraints (35c)– (35d) represent the disaggregation of the measures of usability:

U U j k ujku ijku
i Ij

= ∀
∈
∑ , , , (35c)

Since there is no straightforward procedure to determine the set of parameters
α i ju , β i ju and γ i ju (in fact, there is more than one feasible set), the simplest way of
illustrating the concept of usability is through a small example. Consider the reactor
R1, whose Unit-STN representation is presented in figure 4(b) and which was also
used to illustrate changeovers defined by Crooks [6] for the STN in (27). Table 1
illustrates the set of precedence relations as well as the usability parameters involved.

0 ≤ ≤ ∀U U W i j k uijku ju ijk
max , , , . (35d)

Table 1

Xueya’s [34] usability parameters.

Task i Precedence sets α i ju

R–1 {R –1, C–1, C–3} 0
R–3 {R –3, C–1, C–3} 0
C–1 {R –1} 0
C–3 {R –3} 0

Task i βi jUR–1 βi jUR–3 βi jUC–1 βi jUC–3 γ i jUR–1 γ i jUR–3 γ i jUC–1 γ i jUC–3

R–1 1 0 1 0 1 0 0 0
R–3 0 1 0 1 0 1 0 0
C–1 1 1 0 0 0 0 1 0
C–3 1 1 0 0 0 0 0 1
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According to the sets of precedence relations, task R_3 is the only one that cannot
immediately precede task R_1; moreover, the only task that can precede C_3 is R_3. In
this small problem, the usabilities are: u ∈{UR_1, UR_3, UC_1, UC_3}. Parameters
α i ju  are all zero, since all tasks change the unit usability after the processing. Note
that parameters β i ju reflect the precedence relations. As for the feasibility parameters
γ i ju , they are chosen in such a way that a task can be assigned to a unit only if the
usability of the same task is one.

3. Computational experience

The objective of this section is not to present a detailed computational compari-
son among the various scheduling models. The idea is simply to provide a general
description of the specific methods and summarize results for the largest scheduling
problems reported.

Table 2 provides a summary of the main features of the process scheduling
models. Note that the entries correspond to the items discussed in the road-map of
figure 1, as well as the optimization objectives used in the models. The models follow
the same order of presentation used in the previous sections. The first five entries are
single-unit assignment models, while the remaining are based on multiple-unit assign-
ments. The complete model by Birewar and Grossmann is presented in [3] and a
specialized aggregation procedure for Zero-Wait transfer is developed in [4]. Pinto
and Grossmann [16] and Sahinidis and Grossmann [23] developed models for continu-
ous multiproduct plants (in which processing times are variables); the former models
a multistage plant with one unit per stage, while the latter deals with a single-stage
parallel-unit plant. Also, the entry of the model by Shah et al. [28] corresponds to the
extension of the short term model of Kondili et al. [11] and Shah et al. [27] to cyclic
scheduling. Although it was not mentioned explicitly in the previous sections, it relies
on the STN representation; the constraints are modified to accommodate the periodic
mode of operation. The entry corresponding to the model by Schilling et al. [25] can
be regarded in terms of assignment and sequencing as somewhat similar to the model
by Xueya and Sargent [33] in the sense that it relies on continuous time represented
by events.

Single-unit assignment models search through a much smaller integer space and
are, therefore, in principle able to solve larger problems. Moreover, simpler model
structures facilitate the development of specialized solution methods. For instance,
Pekny and Miller [14] developed a special purpose code for solving asymmetric TSP
problems for the case of Zero-Wait transfer. Also, Birewar and Grossmann [4] were
able to develop an aggregated LP model by transforming a Zero-Wait model from the
space of batches to the space of products. Another example is the work by Gooding
et al. [8], in which they were able to transform their single-stage, parallel unit model
with sequence-dependent changeovers into a member of the TSP problems, namely
the Branch Office TSP. On the other hand, models based on process networks provide
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Table 3

Largest scheduling problems reported.

   Largest problem reported

Model Margin of Discrete Continuous Constraints CPU time
Features

optimality variables variables

Birewar and Grossmann1) 50 productsy9 units
0.028 2500 2500 2610

24.2 CPU min
2392 batches GAMSyZOOM

Microvax II

48.8 CPU min

Pinto and Grossmann 8 productsy3 stages 0.00 448 1920 3002
GAMSyOSL
DICOPT++
HP 9000-730

Pekny and Miller2) 500 batchesy1 line 0.00 ≈ 2.5× 105 – 1000 + 4.78 CPU sec
3 equal units subtour SunSparc 2

Rich and Prokopakis
12 batches 0.00 16 22 48 1.83 CPU min
43 units LINDO–IBM PC

22 CPU min
GAMSyMPSX

Sahinidis and Grossmann 26 products 0.02 780 23,000 3200
Minos3 parallel units
IBM 3090

2.38 CPU min
Cerdá et al.

20 orders
0.00 122 61 288 Sciconic

4 units
IBM RS6000

Gooding et al.3) 36 batches
0.003 ≈ 900 – > 1800

2.5 CPU h
3 parallel units HP 9000-730

4.15 CPU h
Pinto and Grossmann

50 ordersy5 stages
0.00 1050 47,917 48,843 GAMSyOSL

25 units
HP 9000-730

16 CPU sec
Voudouris and Grossmann

3 productsy5 paths
0.00 24 82 141 GAMSySciconic

96 batchesy7 units
IBM RS6000

12 statesy6 tasks
Kondili et al. 6 unitsy3 weeks 0.01 1173 2193 1446

15.5 CPU min

horizony6 h int.
SunSparc I

Shah et al.
11 statesy9 tasks

0.05 552 775 753
94 CPU sec

9 unitsy24 h cycle SunSparc 2

Pantelides5) 6 unitsy36 h
0.01 648 1368 2377

26.2 CPU min
horizony1 h int. SunSparc 10

Schilling et al.6) 3 productsy12 states
n.a. 266 502 1124

n.a.
8 tasksy2 units Sciconic

25 statesy22 tasks 18.1 CPU min
Xueya and Sargent 11 units 0.07 1318 4555 4801 Cplex

120 h horizon SunSparc 10y41

1) ZW aggregated model in space of products. Reported in Birewar and Grossmann [4].
2) Asymmetric TSP. No continuous variables. Number of binary variables ≈ (number of jobs)2.
3) Branch office TSP. No continuous variables. 1800 constraints reported for problem with 30 batches.
4) Results reported in Shah et al. [27].
5) Results reported in Wilkinson et al. [31].
6) No information; no report on CPU resources, 3527 nodes searched.
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a very general structure for scheduling. The foremost example is the State Task Net-
work developed by Kondili et al. [11] and Shah et al. [27], which has been extended
to produce a number of formulations covering many process scheduling problems.
However, many instances of problems resulting from larger industrial applications
are not solvable, due to the size of the mixed integer programming problems.

Another very important aspect is the diversity in scheduling models with respect
to time domain representation. As shown in table 2, continuous time models have
typically been applied to simpler structures such as sequential plants, while discrete
time models have shown the capability of representing complex task networks.
Moreover, discrete time representations handle resource constraints naturally. Never-
theless, Xueya and Sargent [33] recently developed a continuous time model with the
capability of dealing with network structures as well as resource constraints. The
computational requirements, however, are quite expensive.

It can also be observed that the objectives are in general explicit cost functions.
In these cases, demands are normally specified as lower bounds rather than amounts
to be exactly met. In the case of fixed demands, time based objective functions are
usually adopted; however, even in these situations, cost minimization is indirectly
implied, such as the minimization of cycle timeymakespan and minimization of
earlinessytardiness, which implicitly enforce minimization of inventory costs. All
problems are formulated as MILP models, with the exception of Sahinidis and
Grossmann [23] and Pinto and Grossmann [16], which are MINLPs. Also, Xueya and
Sargent [33] model the problem originally as an MINLP with bilinear constraints,
which are then linearized exactly for solving the example problems.

Table 3 contains the largest instances reported for the various scheduling prob-
lems in a variety of computer platforms. It is important to note that only results
corresponding to scheduling problems were included. For instance, both Birewar and
Grossmann [3] and Voudouris and Grossmann [30] consider simultaneous design and
scheduling; nevertheless, examples corresponding to the simultaneous cases were
excluded. Most solution methods rely on commercial LP-based branch and bound
codes. Although not all the problems in table 3 were solved to optimality, it can be
seen that in a number of cases, the computation time and size of the problems are
becoming of industrial significance. Also, in most cases, the size of the MILP models
is becoming rather large, although the number of binary variables for unstructured
mixed integer problems is limited to less than 1,500. It will be interesting to see in the
next few years the extent to which larger and more general problems can be tackled.

4. Concluding remarks

Given the diversity of optimization models developed for the scheduling of
process systems over the last decade, the major goal of this paper has been to provide
a  classification of problems and a unified overview of models. The major classifica-
tion adopted in this paper closely follows the combinatorics implied by the various
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scheduling problems, largely in terms of the complexity of the plant structure. It has
been shown that the most significant factor that distinguishes the models is whether
tasks are assigned to units or not. The major emphasis has also been to review the
specific equations of the various assignment and sequencing models to show both
their similarities and differences, particularly with regard to the general problem
classification. It is clear that to have an increased impact in practice, the research
effort should be directed to address more complex plant structures, as well as larger
instances.

5. Notation

Indices

f, f ′ product families,
h, h′ production paths,
i, i ′ products (orders, tasks, batches),
j units,
j last processing unit,

k, k ′ time slots or time event points,
k last time slot,
kj last time slot defined for unit j,
l, l ′ production stages,
li stage at which order i is withdrawn,
r resources,
s states,
t unit-states,
u task usability.

Sets

I set of orders (tasks),
I j set of orders (tasks) which can be processed in unit j (Ij # I ),
I j t t ′ set of tasks which cause transition from state t to t ′ in unit j,
Ir set of tasks that utilize resource r (Ir # I ),
Is set of tasks that receive material from state s (Is # I ),
Is set of tasks that receive material from state s (Is # I ),
Is set of tasks that produce material for state s   ( ),I Is #

J set of units,
Ji set of units which can process order i (Ji # J),
Jl set of units which belong to stage l (Jl # J),
K set of time slots,
Kj set of time slots postulated for unit j (Kj # K),
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L set of stages,
Li stages involved in the production of i (Li # L),
Lj stage corresponding to unit j (Lj # L),
Sj set of allowed states for unit j.

Parameters

Cs capacity of storage of state s,
L lower bound on time differences,
Tij processing time of product i in unit j,
U upper bound on time differences,
Uil upper bound on start times for order i in stage l,
α i ju usability parameter,
β i ju usability parameter,
γ i ju threshold usability parameter,
µ irk consumption (production) of resource r by task i at time k,
νirk consumption (production) of resource r by task i at time k,
ρ is proportion input to task i  from state s,
ρis proportion output of task i for state s,
τ ii ′ j transition time from product i to product i ′ in unit j.

Variables

Bi jk amount of material for task i in unit j  at time k,
Dsk amount from sales of state s at time k,
Fsk amount from purchases of state s at time k,
Nik discrete variable associated with task i at time k,
Rrk available resource r at time k,
Ssk amount of material in state s at time k,
ti jk processing time of task i in unit j  for time slot k,
Tk event time k,
Tejk completion time in unit j  for time slot k,
Teiil completion time for product i in stage l,
Tshj starting time of path h in unit j,
Tsjk starting time in unit j  for time slot k,
Tsii starting time for operation i,
Tsiil starting time for product i in stage l,
Ujku measure of usability u in unit j at time k,
Uijku measure of usability u for task i in unit j at time k,
Wijk binary variable that assigns product i to time slot k of unit j,
Wijkl binary variable that assigns stage l of order i to time slot k of unit j,
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  Wjkt
̂ binary variable that denotes the state t of unit j at time k,
Xik binary variable that assigns product i to slot k,
X ′ii ′ binary variable that denotes the processing of product i immediately before

product i ′,
Xijkk ′ binary timing variable that is activated if operation j of product i starts at Tk

and ends at Tk ′,
yh binary variable that denotes the existence of path h,
y ′hh′ j binary variable that denotes the whether path h precedes path h′ in unit j,
yjk slack variable that denotes empty slot k at unit j ; see equations (14b) and

(17d),
Zii ′k binary transition variable that is activated if product i is assigned at the

beginning of time slot k to be followed by product i ′,
Zii ′ jk binary transition variable that is activated if product i is assigned at the

beginning of time slot k in unit j to be followed by product i ′,
θi jkl start time of stage l of product i in slot k unit j,
γ jk slack time variable for slot k of unit j,
Πrk available resource r at time k,

ξ ik continuous variable associated with task i at time k.

Appendix I: Derivation by linearization of sequence dependent constraints (8)

Transition variables Zii ′ jk have to be linked to assignment variables Wijk in such
a way that

  W W Z i I i I k K kijk i j k ii jk j j j j∧ ′ + ′⇒ ∀ ′ −∈ ∈ ∈, , , { }.1 (I.1)

Sahinidis and Grossmann [23] compared two formulations that enforce proposi-
tion (I.1). The following constraint (I.2) can be obtained directly from propositional
calculus [32]:

Z W W i I i I j k K kii jk ijk i j k j j j j′ ′ +≥ + − ∀ ′ −∈ ∈ ∈, , , , { }.1 1 (I.2)

Another formulation proposed is the one corresponding to constraints (8):

(8a)

(8b)

Sahinidis and Grossmann [23] showed that constraints (8) in conjunction with
the constraint

W j k Kijk
i I

j

j

= ∀
∈
∑ ∈1 , (I.3)

Z W i I j k K k

Z W i I j k K k

ii jk
i I

i j k j j j

ii k ijk
i I

j j j

j

j

′
∈

′ +

′
′∈

∑

∑

= ∀ ′ −

= ∀ −

∈ ∈

∈ ∈

, , , { },

, , { }.

1
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and the integrality of the assignment variables Wijk have the unique solution

Z W W i I i I j k K kii jk ijk i j k j j j j′ ′ += ∀ ′ −∈ ∈ ∈, , , , { }.1 (I.4)

In fact, (I.4) is the algebraic equivalent of (I.1). We show here that constraints
(8) can be obtained by linearization. Adding (I.4) over i and adding (I.4) over i ′ yields
(I.5a) and (I.5b), respectively:

(I.5a)

(I.5b)

As Wi ′j,k+1 does not depend on i in (I.5a) and Wijk does not depend on i ′ in (I.5b),
they can be removed from the summation terms. Using (I.3) yields

Z W W i I j k K k

Z W W i I j k K k

ii jk ijk i j k
i Ii I

j j j

ii jk ijk i j k
i Ii I

j j j

jj

jj

′ ′ +
∈∈

′ ′ +
′ ∈′ ∈

= ∀ ′ −

= ∀ −

∑∑

∑∑

∈ ∈

∈ ∈

,

,

, , { },

, , { }.

1

1

Z W i I j k K k

Z W i I j k K k

ii jk i j k
i I

j j j

ii jk ijk
i I

j j j

j

j

′ ′ +
∈

′
′ ∈

= ∀ ′ −

= ∀ −

∑

∑

∈ ∈

∈ ∈

, , , { },

, , { }.

1 (8a)

(8b)

Appendix II: On the equivalence of the allocation constraints for the discrete-
time parallel-line scheduling model by Gooding et al. [8]

The proof of equivalence of constraints (10c) and (11) with constraint (13)
follows the same development as in Grossmann et al. [9]. Index sets are omitted for
clarity of presentation. Sahinidis and Grossmann [24] proposed a reformulated allo-
cation constraint by using a disaggregated form of (23b),

W W i i j k k k k Tijk i jk i j+ ≤ ∀ ′ ′ = − … + −′ ′ ′1 1 1, , , , , , . (II.1)

The demonstration is then based on the equivalence of constraints (II.1) and
constraints (24) by Shah et al. [27]. It relies on a backward time aggregation and on
the following

Lemma (Grossmann et al. [9]). The integer constraint

  
y y y yk k1 2 1 1+ + + + ≤+L (II.2)

is equivalent to and sharper than the set of integer constraints:

(II.3)

(II.4-1)

  

y y y

y y

y y

y y

k

k

k

k k

1 2

1 1

2 1

1

1

1

1

1

+ + + ≤
+ ≤

+ ≤

+ ≤

+

+

+

L

L

,

,

,

.

(II.4-2)

(II.4-k)
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Proof. First we note that (II.2) can easily be seen to be equivalent to the constraints
(II.4-1) to (II.4-k) since in these, at most one variable can take an integer value of 1.
Multiplying constraint (II.3) by (k – 1) and adding it to the constraints in (II.4-1)–
(II.4-k) yields

    

k y y y y k k

y y y y k k

k k

k k

( ) ,

( ) .

1 2 1

1 2 1

1

1 1

+ + + + ≤ − +

+ + + ≤ + −
+

+

L

L y

Since yi = {0, 1}, the right-handside can be rounded down to obtain the inequality

  
y y y yk k1 2 1 1+ + + ≤+L .

u

Proof of constraint (13).First we present a disaggregated form of equation (11), which
is in fact similar to equation (II.1) and states the fact that if job i is processed on unit
j in slot k, no job can begin production during the next Tij + τii ′ j – 1 slots associated
with the production of i and the transition from i to i ′:

Z Z i i i j k k k k Tii jk i i jk
i

i j ii j′′ ′ ′′′ ′
′′′

′′+ ≤ ∀ ′ ′′ ′ = + … + + −∑ 1 1 1, , , , , , , .τ

We know, from (10c),

i
ii jk

i

Z j k∑ ∑ ′′
′′

≤ ∀1 , , (10c)

which in expanded form yields

    
Z Z Z j ki i jk i i jk i I i jk

iii
1 2 1′′ ′′ ′′

′′′′′′

+ + + ≤ ∀∑∑∑ L | | , .

If Ti1j + τ i1i2j > 1,

    

Z Z j k

Z Z j k

Z Z j k

i i jk i i jk
i

i i jk i i jk
i

i i jk i I i jk
i

1 2 1 1

1 2 1 2

1 2 1

1

1

1

− ′′
′′

− ′′
′′

− ′′
′′

+ ≤ ∀

+ ≤ ∀

+ ≤ ∀

∑

∑

∑

, ,

, ,

, .

L

| |

From the lemma, we obtain

    
Z Z Z Z j ki i jk i i jk i i jk i I i jk

iii
1 2 1 1 2 1− ′′ ′′ ′′

′′′′′′

+ + + + ≤ ∀∑∑∑ L | | , .

If Ti1j + τ i1i3j > 1,

Z Z j ki i jk i i jk
i

1 3 1 1 1− ′′
′′

+ ≤ ∀∑ , ,
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Also,
    

Z Z j k

Z Z j k

i i jk i i jk
i

i i jk i I i jk
i

1 2 1 2

1 3 1

1

1
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+ ≤ ∀
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, ,
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| |

Z Z j ki i jk i i jk1 2 1 1 3 1 1− −+ ≤ ∀ , .
This leads to

    
Z Z Z Z Z j ki i jk i i jk i i jk i i jk i I i jk

iii
1 3 1 1 2 1 1 2 1− − ′′ ′′ ′′

′′′′′′

+ + + + + ≤ ∀∑∑∑ L | | , .

Repeat for all i, i ′ ≠ i for which Ti j + τ ii ′ j > 1 to get

    
Z Z Z Z j ki i jk i I i jk i i jk i I i jk

iiii
1 1 1 1 1′′ − ′′ − ′′ ′′

′′′′′′′′

+ + + + + ≤ ∀∑∑∑∑ L L| | | | , .

Now, if Ti1j + τ i1i2j > 2,

    

Z Z j k

Z Z j k

Z Z j k

Z Z j k

i i jk i i jk
i

i i jk i i jk
i

i i jk i I i jk
i

i i jk i i jk
i

1 2 2 1 1

1 2 2 2 1

1 2 2 1

1 2 2 1

1

1

1

1

− ′′ −
′′

− ′′ −
′′

− ′′ −
′′

− ′′
′′

+ ≤ ∀

+ ≤ ∀

+ ≤ ∀

+ ≤ ∀

∑

∑

∑

∑

, ,

, ,

, ,

, ,

L

| |

ZZ Z j k

Z Z j k

i i jk i i jk
i

i i jk i I i jk
i

1 2 2 2

1 2 2

1

1

− ′′
′′

− ′′
′′

+ ≤ ∀

+ ≤ ∀

∑

∑

, ,

, .

L

| |

From the lemma,

    
Z Z Z Z Z j ki i jk i i jk i I i jk i i jk i I i jk

iiii
1 2 1 1 1 1 1′′ − ′′ − ′′ − ′′ ′′

′′′′′′′′

+ + + + + + ≤ ∀∑∑∑∑ L L| | | | , .

Repeat for all Zii ′jk–2 for Ti j + τ ii ′ j > 2.

Repeat for all Zii ′ jk–3 for Ti j + τ ii ′ j > 3.
…

Repeat for all Zii ′ jk–k ′+1 for Tij  + τ ii ′ j > k ′ – 1.
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Summing over all i ′:

Finally, we obtain

Grouping terms in the above inequality yields

    

Z Z Z

Z Z Z

Z

i i j k T i i j k i i j k

i i j k T i i j k i i j k

i i I j k

i j i i j

i j i i j

1 2 1 1 2 1 1 2

1 3 1 1 3 1 1 3

1

1 1 2

1 1 3

, , , , , , , , ,

, , , , , , , , ,

, , ,

− − + −

− − + −

−

+ + + +
+ + + +

+

τ

τ

L

L

L

| | TT i i I j k i i I j k

i I i j k T i I i j k i I i j k

i I

i j i i I j

i I j i I i j

Z Z

Z Z Z

Z

1 1

1

1 1 1 1

1 1 1 1 1

− + −

− − + −

+ + + +
+

+ + + +
+

τ

τ

| |

| | | |

| | | |

| | | | | |

| |

L

L

L

L

, , , , , ,

, , , , , , , , ,

,, , , , , , , , ,   , .i I j k T i I i I j k i I i I j ki I j i I i I j
Z Z j k| | | | | | | | | || | | | | |− − − + − − −−

+ + + ≤ ∀1 1 1 1 11
1τ L

    

′ = − − +
′

′ = − − +
′

′ = − − +
′

′ = −

∑ ∑

∑

+

+ +

+ +

k k T

k

i i j k
k k T

k

i i j k

k k T

k

i i I j k

k k T

i j i i j i j i i j

i j i i I j

i I j

Z Z

Z

1 1 2 1 1 3

1 1

1
1 2

1
1 3

1
1

τ τ

τ

, , , , , ,

, , ,     

     

L

L

| |

| |

| |

−− +
′

′ = − − +
′

′ = − − +
− ′

∑ ∑

∑

+

+ + ≤
−

τ τ

τ

i I i j i I j i I i j

i I j i I i I j

k

i I i j k
k k T

k

i I i j k

k k T

k

i I i I j k

Z Z

Z

| | | | | |

| | | | | |

| | | |

| | | |

1 2

1

1
1

1
2

1
1 1

, , , , , ,

, , ,        L ∀∀j k, .

    ′ ′ = − − +
′ ′

′ ′ = − − +
′ ′∑ ∑ ∑ ∑

′ ′

+ + ≤ ∀
i k k T

k

i i j k
i k k T

k

i I i j k

i j i i j i I j i I i j

Z Z j k
1 1 1

1
1

1
τ τ

, , , , , ,   , .L

| | | |
| |

Further summing over all i, we obtain constraint (13):

i i k k T

k

i i j k

ij ii j

Z j k∑ ∑ ∑
′ ′ = − − +

′ ′
′

≤ ∀
τ 1

1, , ,    , . (13)

u
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