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Assignment methods, which use genetic information to
ascertainpopulationmembershipof individualsorgroups
of individuals, have been used in recent years to study
a wide range of evolutionary and ecological processes.
In applied studies, the first step of articulating the bio-
logical question(s) to be addressed should be followed
by selection of the method(s) best suited for the analysis.
However, this first step often receives less attention
than it should, and the recent proliferation of assign-
ment methods has made the selection step challenging.
Here, we review assignment methods and discuss how
to match the appropriate methods with the underlying
biological questions for several common problems in
ecology and conservation (assessing population struc-
ture; measuring dispersal and hybridization; and foren-
sics and mixture analysis). We also identify several
topics for future research that should ensure that this
field remains dynamic and productive.

Biologists are becoming increasingly interested in using
population genetic approaches to answer questions of eco-
logical, evolutionary, or conservation relevance (e.g. ‘What
proportion of individuals captured in population A are
immigrants from population B?’; ‘Is this individual an
endangered species or a hybrid?’) that involve the con-
temporary dynamics of natural populations. By contrast,
most traditional population genetic models are based on
equilibrium assumptions; that is, they attempt to charac-
terize long-term genetic processes that have achieved a
stable balance between opposing evolutionary forces.
Events occurring on much shorter (ecological) timescales,
which are the focus of much current interest, are typically
considered ‘noise’ in equilibrium models.

Contemporary events can be studied using a variety of
genetic approaches that collectively can be called assign-
ment methods (AMs) (see Glossary). AMs use genetic
information to ascertain population membership of indi-
viduals or groups of individuals. One approach, the
‘assignment test’ (AT; Box 1), has seen widespread use
over the past decade [1–7]. More recent advances enable
one to address questions such as, ‘How many populations
exist in my study area?’ and ‘Is this individual a migrant?’

Glossary

Admixture: a composite genepool inwhich at least some individuals (F1, F2,. Fx
and/or backcross) can trace ancestry to more than one population.
Assignment index: the expected frequency of the multilocus genotype of an
individual in the population from which it was sampled. Individuals with a
relatively low assignment index have genotypes that are unlikely for that
population and, thus, are potential immigrants.
Assignment method (AM): any of several related statistical methods that use
genetic information to ascertain population membership of individuals or
groups of individuals (Table 1).
Assignment test (AT): a statistical test of the hypothesis that the multilocus
genotype of an individual in question arose from a particular population (Box 1).
Bayesian analysis: a method of statistical analysis that begins with prior
distributions for the model parameters and updates these based on observed
data to arrive at a posterior probability distribution.
Classification: a method for assigning individuals to predefined categories,
based on a suite of characters (e.g. multilocus genotype) measured for the
individual and for samples from each category (e.g. potential source
populations).
Clustering: a method for decomposing a mixture into its component parts
(e.g. gene pools or populations) in the absence of information to characterize
the units a priori.
Discriminant function: a linear combination of variables that maximizes the
contrast among different groups of interest. Unknowns (e.g. individuals) are
classified into one of the groups (e.g. populations) based on their score on the
discriminant function. An AT is a type of discriminant function.
Frequentist methods: statistical methods that test hypotheses about an event
based on the expected frequency of that event happening over a large number
of trials (frequency distribution). If no such information is available (e.g. from
a theoretical frequency distribution), randomization techniques are used to
generate an empirical frequency distribution.
Likelihood: the probability of obtaining the observed data under a certain
model or hypothesis. The assignment index can be viewed as the likelihood
of an individual occurring in the population in which it was sampled. An ML
approach finds or approximates the parameter values that maximize the
likelihood.
Linkage disequilibrium: the non-random association of alleles at different gene
loci. A standard index of linkage disequilibrium, D, is defined as the difference
between observed and expected frequencies of a two-locus gamete. If the two
loci are independent, the expected frequency of a gamete is the product of the
frequencies of the two alleles.
MarkovChainMonte Carlo (MCMC): a simulation technique to generate samples
from a probability distribution of interest. MCMC can estimate complex multi-
variate distributions that cannot be generated by standard simulations
methods. It has also been used to approximate likelihood surfaces in the
context of ML methods.
Mixture: a group of F0 individuals originating in different populations.
Mixture analysis: estimation of the proportion of individuals that different
source populations contribute to a genetic mixture or admixture. This is typically
done using classification models (Box 2) when data for potential source popu-
lations are available, but clustering models can be used when such data are
not available.
Parentage analysis: a classification method for determining the parents of an
individual or group of individuals (Box 3).
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Although these approaches hold great promise, the recent
proliferation of publications on assignment problems
has left researchers with a sometimes bewildering array
of potential methods to assess. Furthermore, with the
availability of sophisticated new computer programs, it is

easy for researchers to apply methods without adequately
considering the underlying biological questions.

Here, we consider biological questions that are com-
monly asked by researchers interested in AMs and attempt
to match the most appropriate method(s) with each

Box 1. Principles of traditional assignment tests

ATs address classification problems and attempt to ‘assign’ unknown
individuals to their population of origin, based on the multilocus
genotype of an individual and the expected probabilities of that geno-
type occurring in each of the potential sources. In the original formu-
lation [1], expected genotypic probabilities are computed from samples
from each potential source population, and genotypes are assigned
to the population in which that genotype is most likely to occur.
Fundamental assumptions are that all potential source populations
are defined in advance, sampled randomly, and are in Hardy–
Weinberg and linkage equilibrium.

Each AT has an exclusion-method counterpart, which provides a
measure of the confidence associated with individual assignments
[12]. For each potential source population, a distribution of genotypes
is generated by Monte Carlo simulations based on the sample allele
frequencies. By repeating this procedure many times (e.g. 10 000), one
obtains the expected distribution of genotypes in that population,
which, in turn, is used to generate a distribution of genotypic
likelihood values. The likelihood of a particular genotype of interest
is then compared to the empirical distribution for each candidate
population. If the likelihood of the genotype falls in the tail of the

distribution (e.g. less than a critical value such as aZ0.01 or 0.001),
one can exclude that population as the origin of the individual. If all
but one population are excluded, the individual is assigned to the
non-excluded population. Exclusion methods thus provide a check of
the standard AT assumption that the true population of origin has
been sampled.

ATs combined with exclusion methods can have an important role
in conservation; for example, in ensuring broodstock integrity of cap-
tive propagation programs. When a hatchery program for endangered
winter-run Chinook salmon in the Sacramento River in California was
at risk of contamination from a nearby spring-run population (the
population names refer to the season in which adults enter fresh water
to begin their spawning migration), the AT software WHICHRUN [51]
was developed to enable real-time screening of maturing adults based
on microsatellite data from fin clips. Genetic differences between the
two populations were sufficient to enable managers to exclude
O99.9% of spring-run fish from broodstock collection while excluding
only 1% of fish that were winter run [20].

Various AT programs are available from http://www.bio.ulaval.ca/
louisbernatchez/links_fr.htm.

Box 2. Genetic mixture analysis

Many fish species migrate extensively and, as a result, harvests often
include numerous different populations or stocks. Shapingmixed-stock
fisheries to take advantage of abundant populations without imposing
excessive risks on less abundant and productive populations is one of
the most difficult challenges of fisherymanagement. Here, the question
of interest is not the origin of individual fish, but rather the stock
composition of a fishery and how it changes in space and time.

Figure I shows contrasting results of genetic mixture analysis using
two different classification methods. Both start by calculating the
likelihood of each individual originating from each potential source,
based on genetic data from the fishery as well as from all potential
source populations (Figure Ia). Next, ATs (Figure Ib) classify each
individual to the population with the highest likelihood (individual 1 to
source B and individual 2 to source C), and estimated mixture
proportions are the sum of the individual assignments. However,
this approach ignores information regarding the uncertainty of indi-
vidual assignments. During the late 1970s, maximum likelihood (ML)
methods for genetic stock identification (GSI) were developed to
estimate directly both the mixture proportions and the posterior
source probabilities for each individual. In a procedure analogous to
fractional paternity assessments (Box 3), each individual is ‘carved up’
and allocated to each source in proportion to these posterior
probabilities (Figure Ic). Mixture proportions are estimated as the
sum of all fractional assignments; this is done iteratively, with the
posterior probability of population membership at each iteration
being used as the prior for the next iteration. In this way, genetic
mixture analysis is performed jointly on all unknown individuals,
rather than independently as in ATs. The few direct empirical com-
parisons of the two methods have demonstrated greater accuracy of
GSI [20,52], although performance of ATs is comparable if genetic
differences among populations are large and individual assignments
can be made with confidence [53].

The first GSI approaches [49,54] used a conditional ML model that
assumed that source population allele frequencies were known
without error and that all potential sources had been sampled.
These assumptions were relaxed in an unconditional ML model [50]
that treated source population data as estimates and allowed for the
possibility of unsampled sources. The unconditional model, which
takes advantage of information about source population allele
frequencies from individuals in the mixture, shares attributes of the

classification and clustering approaches and presaged some features
of later AM models (e.g. [17]). Statistical aspects of GSI have recently
been reviewed [55]. A recent ML implementation (SPAM; [56]) is
available from http://www.cf.adfg.state.ak.us/geninfo/research/
genetics/software/spampage.php, and a Bayesian analysis (BAYES;
[18]) from ftp://ftp.afsc.noaa.gov/sida/mixture-analysis/bayes/.
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question. We use the term ‘assignment method’ broadly
to include genetic mixture analysis (Box 2) and parentage
analysis (Box 3), because they use the same basic principles
and are also active fields of research.

What types of problems can AMs address?
AMs can address two basic types of problem: classification
and clustering (Table 1). Which formulation is more
appropriate depends on how much prior information one
has about the categories of interest (e.g. family, population
and species).

In classification problems, individuals are assigned to
predefined categories. A standard approach is to compute
a discriminant function based on samples from potential

sources and then classify unknowns to the group with the
highest discriminant score. In the case of AMs, the dis-
criminant function is the expected genotypic frequency
distribution under the assumption of Hardy–Weinberg
and linkage equilibrium in each source population. AMs
that use classification at least in part include ATs, genetic
mixture analysis, and parentage analysis.

Clustering problems [8] are more challenging because
the categories are not predefined; instead, they must
themselves be constructed from the data. In the absence of
source population data to guide classification, clustering
methods rely on the presence of linkage disequilibrium,
which occurs in a mixture of individuals from different
populations [9,10] even if all contributing populations are

Box 3. Parentage analysis

Parentage analysis, which involves identifying the parents of specific
individuals [57,58], is a particular case of ATs and is affected by many
of the same statistical issues as ATs are [59]. Ideally, all potential
parents are genotyped and all but one pair can be excluded cate-
gorically, based on the multilocus genotype of the progeny. When this
is not possible, fractional parentage assignments (analogous to the
method for analyzing genetic mixtures, Box 2) can be made, based on
the relative likelihoods of different potential parents [60]. In some
cases, it is possible to reconstruct genotypes of unknown parents
[58,61]. Blouin [62] recently reviewed DNA-based methods for the
related field of kinship analysis.

The methods described elsewhere in this paper all depend on some
degree of genetic differentiation among candidate source populations.
In some cases, it is possible to address the same types of question
using parentage analysis, even when the groups in question do not
differ genetically in any systematic way. This can be accomplished by
genetically identifying parents of each individual (i.e. ‘assigning’ each

individual to its two parents) and then grouping the parents (and their
respective numbers of offspring) according to the trait of interest, such
as size or time of reproduction [63] or hatchery versus wild origin [64].
This type of analysis has also been used to study male selection
gradients in plants [65], and recent modifications [66] have been used
to estimate pollen dispersal curves.

In the study of mating systems, one might also be interested in
different questions, such as whether a family is a mixture of indi-
viduals descended from more than two parents, whether mating is
random or assortative, or whether males and females have the same
number of mates. Parentage analysis has often provided novel and
surprising insights into mating structure and behavioural ecology
of the studied species [57]. Typically, this involves measuring the
contribution of different males to the offspring of a single female.
A recent variation is designed to detect subfamilies within a single
batch of offspring, based on the presence of linkage disequilibrium
caused by a mixture of progeny groups [67].

Table 1. Characterization of the principal assignment methods in relation to the biological question addresseda

Statistical methodb

Approach Assignment Estimate of
allele freq.c

Distinctive features of method Questionsd Refs

Classification
Assignment test ML Freq First formulation of an AT; for codominant markers O [1]
(AT) ML Freq AT for dominant markers O [48]

ML – Freq Bay AT allowing identification of migrants O,D [4]
Freq Freq Exclusion tests O,D [12]

Genetic mixture
analysis

ML Freq Assumes all sources sampled and gene frequencies known
without error

M [49]

ML ML Allows for unsampled sources and estimation of source gene
frequencies

M [50]

Bay Bay Bayesian implementation M [18]
Bay Bay For studying colonization processes M [16]

Methods for Bay Bay Estimates migration rates D [30]
answering specific
questions

Bay Bay Identifies hybrid individuals H [47]

Clustering
Methods for
delineation of
populations

Bay Bay First method for the identification of populations. Inference
about number of populations requires trying different values of
this parameter

O,S,D,H [17]

Bay Bay As above, but allows for linked loci O,S,D,H [15]
Bay Bay Number of populations is estimated and the range of plausible

values for this parameter has the number of sampled
individuals as upper boundary

O,S,D,H [14]

Bay Bay The range of plausible values for the number of populations
has the number of observed subpopulations as upper
boundary

O,S,D [13]

aThe list is not exhaustive and presents only the latest or most widely used methods in the literature; methods of parentage analysis have been recently reviewed elsewhere
[58] and were not included.
bAbbreviations indicate method used in each step: Bay, Bayesian; Freq, frequentist; ML, maximum likelihood.
cFor allele frequency estimation in each population. ‘Freq’ indicates that the method uses sample allele frequencies.
dAbbreviations: D, dispersal; H, hybridization; M, genetic mixture analysis; O, origin of specific individuals; S, population delineation and structure.
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in linkage equilibrium. The magnitude of disequilibrium
depends on the mixture fractions and the genetic distance
between populations [11]. Clustering methods attempt to
decompose the mixture by creating groups of individuals
within which linkage disequilibrium is minimized; these
groups can be considered to be populations or gene pools.
Thus, clustering methods can simultaneously delineate
clusters of individuals based on their multilocus genotypes
and assign individuals to the identified clusters, typically
using a Markov chain Monte Carlo (MCMC) approach.
Clustering methods are particularly useful when genetic
data for potential source populations are not available,
population boundaries are uncertain, or when some (but
perhaps not all) potential sources have been sampled.

What statistical methods are used with AMs?
AMs have been implemented using frequentist and/or
likelihood methods [either maximum likelihood (ML) or
Bayesian analysis] (Table 1). Frequentist approaches use
statistical hypothesis testing and give a p-value derived
from a predefined or simulated frequency distribution
[12]. Likelihood methods assume that observed data arose
from a probabilistic model with unknown parameters;
their objective is to use the data to estimate parameters of
the model, and to assess the degree of uncertainty
associated with these estimates. ML methods produce
point estimates of model parameters that maximise the
likelihood function, whereas Bayesian methods produce
posterior distributions for model parameters; both use
numerical integration methods, such as MCMC. Most
recent progress in assignment problems has been made
within a Bayesian framework [13–18].

Key biological questions
We now consider biological questions commonly asked by
users of AMs and identify the method(s) best suited for
each question.

What is the origin of a specific individual?
ATs provide the most direct method to determine the
population of origin of target individuals. ATs can
facilitate detection of illegal harvests and trade routes,
help in the management of captive-breeding programs by
excluding non-target individuals [19,20], and help to
develop control mechanisms for bioinfestation [21]. As in
all classification problems, potential source populations
must be defined in advance, so bias can result if the true
source is not among those sampled. To confirm that the
individual truly belongs to the population, Cornuet et al.
[12] suggest using an exclusion-based AT (Box 1).

The combination of classic AT and exclusion method
was used effectively to detect fraud in a fishing compe-
tition in Finland [22], where the largest fish presented was
a 5.5-kg salmon. Based on data for seven microsatellite
loci, the competition location was excluded as a plausible
source and, faced with this evidence, the offender con-
fessed to purchasing the ‘winning’ fish at a local market.

Population structure
Evaluating population structure is of considerable inte-
rest to biologists because it is a precursor to answering

many other types of question (e.g., estimating migration
and identifying conservation units).

Identification of populations Species are commonly
subdivided into local breeding populations or less well
defined genetic neighbourhoods. In some cases, this struc-
turing is easy to infer from the geographical location of
individuals, and standard statistical methods (e.g. a con-
tingency c2 or randomization test [23]) provide a direct
means of testing the null hypothesis that multiple samples
come from a single panmictic population. ATs are an
alternative means of testing panmixia: if all samples have
come from the same global population, individuals will be
no more likely to be ‘assigned’ to their collection locality
than to any other locality. If the proportion of correct
assignments is significantly higher than the random
expectation, it can be concluded that population structure
exists. We are not aware, however, of any studies that
have systematically evaluated whether ATs provide
increased power to detect population structure compared
with standard statistical methods.

For many species, demarcation of geographical popu-
lations is problematical and, in this case, clustering
methods [13–15,17] provide the best solution. The method
of Pritchard et al. [STRUCTURE; 17] infers the number of
clusters (populations) by comparing the posterior prob-
ability for different numbers of putative populations speci-
fied by the user. Cegelski et al. [24] used STRUCTURE to
delineate populations in wolverines Gulo gulo, with the
objective of identifying the appropriate scale for conserva-
tion andmanagement. Based on data for tenmicrosatellite
loci, they showed that Montana wolverines are not
panmictic, in spite of their geographical proximity (within
300 km) and dispersal capability. Recent human disturb-
ances might be responsible for this apparent frag-
mentation, and results have helped focus attention on
the importance of identifying continuous areas of undis-
turbed habitat to protect this species. Falush et al. [15]
extended the method of Pritchard et al. [17] by allowing
for physical linkage between loci, illustrated with studies
of admixture in African-Americans, recombination in
Helicabacter pylori, and drift in Drosophila melanogaster.

In contrast to the above approaches [15,17], the
methods of Corander et al. [13] and Dawson and Belkhir
[14] directly estimate the number of populations but differ
in the range of possible values for this parameter. For
Corander et al. [13], the maximum number of populations
allowed is the number of locations sampled, whereas for
Dawson and Belkhir [14], it is the total number of
individuals. The method of Corander et al. [13] cannot,
therefore, detect substructuring if it occurs within each
location. No study has yet compared the performance of all
these methods on either a simulated or empirical data set.
All methods based on cluster analysis involve considerable
uncertainty unless the true populations are strongly
divergent. For example, the number of estimated popu-
lations can be affected by model assumptions and cryptic
relatedness [15], and results for a specific individual or
group can also vary depending on which other individuals
are included as unknowns.

When geographical locations of individuals are known
but population limits are unclear, methods other than

Review TRENDS in Ecology and Evolution Vol.20 No.3 March 2005 139

www.sciencedirect.com

http://www.sciencedirect.com


AMs that enable one to identify genetic boundaries [25] or
to find the best partition of the overall sample based
on AMOVA and geographical coordinates [26] are more
suitable. For species in which individuals are continu-
ously distributed, spatial autocorrelation [27] or regres-
sion methods are more appropriate because they do not
assume a spatial structuring of populations.

Population differentiation Once populations have been
defined, a common question is, ‘How different are they?’
Traditionally, this is addressed using measures of genetic
similarity, such as FST and genetic distance. Recently, ATs
have been used to provide a measure of population dif-
ferentiation by calculating the proportion of individuals
assigned to the population in which they were sampled. In
general, however, ATs merely confirm what we suspected
from other measures of genetic differentiation: the per-
centage of correct assignment increases with larger FST or
genetic distance [2,28,29]. For example, Waits et al. [28]
used FST and ATs to analyze genetic structure in four
populations of Swedish brown bears Ursus arctos. All
pairwise FST comparisons indicated differentiation
between subpopulations, as did the AT results.

A major shortcoming of ATs for evaluating the mag-
nitude of population differentiation is that the probability
of correct assignment depends on not only the degree of
population differentiation, but also the sample sizes of
individuals and loci, and their level of polymorphism
[12,19]. As a result, it is difficult to establish a general
scale for evaluating results. Standard measures of popu-
lation differentiation (e.g. genetic distances and FST),
which are less affected by these factors, thus remain a
better way of quantifying levels and patterns of genetic
differentiation. Within a given data set, however, the pro-
portion of individuals correctly assigned to each popu-
lation can provide useful insights regarding the relative
patterns of population genetic structure.

Dispersal
What is the rate of dispersal or gene flow? Many
researchers want to study dispersal at current (ecological)
timescales, and AMs have the potential to provide this
real-time information. The original AT [1] has been refined
to develop a statistical framework for identifying indivi-
duals with immigrant ancestry up to two generations in
the past [4] (Box 1). The clustering method of Pritchard
et al. [17] can also be used as a classification method to
identify immigrants. A study of dispersal in the grand
skinkOligosoma grande in New Zealand [7] demonstrated
the high accuracy of the methods of Rannala and
Mountain [4] and Pritchard et al. [17] in identifying
dispersers with known natal origin.

The methods of Rannala and Mountain [4] and
Pritchard et al. [17] do not explicitly estimate migration
rates; however, a rough point estimate can be obtained by
dividing the number of individuals identified as migrants
by the sample size. A recently developed method [30] is
specifically designed to estimate immigration rates; more-
over, it relaxes the assumption of Hardy–Weinberg
equilibrium made by all previous methods, by estimating
a separate inbreeding coefficient for each population. This
method provides measures of uncertainty about the

migration rate estimates and, therefore, is preferable to
the point estimate approach.

An important limitation of AMs is that their power to
detect migrants is greatest when populations are genetic-
ally divergent, but, in that case, gene flow is generally rare
and even large samples might not detect a migration
event. A recent empirical evaluation [6] suggests that low
levels of population differentiation can be counteracted to
some extent by larger samples and additional gene loci,
resulting (in some cases at least) in reasonable power to
detect migrants.

What are the patterns of dispersal and gene flow? Once
identified, migrants can be grouped according to traits
(sex, age, dispersal distance [31], etc.) to provide infor-
mation about evolutionary and conservation relevance. In
a study of the shrew Crocidura russula, Favre et al. [32]
calculated a sex-specific assignment index and found that
it was significantly lower in females than in males, sug-
gesting female-biased dispersal, which is an unusual
pattern in mammals. A recent analysis [33] shows that
the assignment index performs best when dispersal is very
low (!10%). In other cases, information from maternally
inherited mitochondrial DNA and Y-chromosome markers
can provide insights into sex-biased dispersal [34].

Genetic mixture and admixture analysis
Sometimes, the interest is not in individual assignments
per se but rather in the overall composition of a mixture
(of individuals from different populations) or an admixture
(which results from interbreeding among populations).
The linkage disequilibrium generated by the mixing or
admixing of individuals from different populations can be
used to address two related questions.

What proportion of individuals in a mixture come from
each source population? This question is a central one for
fisheries management (Box 2), but it also arises in the
study of natural processes, such as colonization [35]. In
the northwestern USA, genetic stock identification (Box 2)
has been used to help manage populations of endangered
Chinook salmon Oncorhynchus tshawytscha from the
upper Columbia and Snake Rivers that are harvested in
mixed-stock fisheries in the lower river [36]. Weekly
samples can be processed rapidly to provide real-time
estimates of stock composition of the fishery, which targets
relatively abundant, early-returning fish from the nearby
Willamette River. The fishery can be closed when genetic
results indicate that endangered upriver populations
begin to appear in the harvest.

What proportion of genes in an admixture come from
each source? Analysis of admixture is common, particu-
larly for human populations. For recent admixture (within
a few generations), residual linkage disequilibrium
revealed in multilocus genotypes can provide a means of
identifying admixed individuals. For example, Beaumont
et al. [37] used admixture analysis [17] to clarify the status
of wildcat Felis sylvestris populations in Scotland. They
found strong evidence for a unique group that is different
from domestic cats and that probably represents remnants
of the native gene pool.

If loci are physically linked, insights might be possible
for older admixture events, provided the recombination
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rate is known [15]. However, if admixture is old enough that
recombination has obscured parental gene associations,
single-locus models are more appropriate for obtaining
information about overall admixture proportions [38]. More
recently, several coalescent methods have been proposed to
take advantage of genealogical information [39–41].

Hybridization
Identification of hybrid individuals is often a necessary
first step in the implementation of management stra-
tegies, such as breeding or translocation programs for
threatened species, [42,43], and the standard AT has been
applied to this problem [44]. A hypothetical hybrid taxon
is created by combining randomly sampled alleles from
the two parental taxa, and each individual is then
assigned to one of three potential sources (two parental
taxa and the hybrid taxon). This somewhat ad hoc process
enables one to identify only first-generation hybrids.
A modification [4] performs significance tests for each
individual and each degree of relationship (up to the F2

generation), but does not provide an overall significance
for multiple individuals.

When parental taxa are not defined or characterized
a priori, clustering methods must be used. The program
STRUCTURE [15,17] assigns gene copies probabilistically
to potential sources; individuals with genes assigned with
non-trivial probabilities to two sources are potential
hybrids. This method has been used to study hybrids in
the wild for several species [45,46]; for example, Randi and
Lucchini [45] used it to confirm the introgression of
domestic dog genes into the Italian wolf. Although
ordination and tree-based methods could not detect
introgression, STRUCTURE clearly identified as a hybrid
one wolf that was also a suspected hybrid based on
morphology (unusually dark fur).

Anderson and Thompson [47] developed a method
designed specifically to detect hybrids. Unlike methods
that estimate the proportion of an individual genome that
originated from each taxon [15,17], this approach dis-
tinguishes various hybrid classes (F1, F2 and various
backcrosses). To date, performance of the two types of
method has not been compared. Both are appropriate for
identifying purebred individuals; however, if distinguish-
ing various hybrid classes is important, the method of
Anderson and Thompson [47] would be more useful.

Conclusions and future directions
AMs have already demonstrated an impressive capacity to
provide insights into contemporary ecological and evolu-
tionary processes. Nevertheless, they share with other
contemporary methods, such as mark–recapture, the
limitation that (for example) migration rates observed
during a short study might not accurately reflect long-
term patterns of gene flow. In general, therefore, AMs
should be viewed as an important complement to, rather
than a replacement of, equilibrium models.

In spite of some recent efforts to evaluate the power and
sensitivity of AMs (e.g. [6,12]), comparative analyses of
performance of the various methods are lacking in most
cases. Consequently, it is currently often not possible to
say with certainty which of various competing methods

performs best and under which conditions. A variety of
other problems also merit attention, including:

What is a population? Without consistent criteria for
how different gene pools must be to be considered
‘populations,’ it will be difficult to achieve clarity about
the number of population units and relationships
among them.

How well do clustering methods perform when
genetic differentiation is modest (FST%0.05)?

Under what realistic conditions can AMs detect
contemporary migration, given that power is highest
whenmigration events are rare and, therefore, unlikely
to be observed?

How do unsampled sources affect analyses based on
ATs?

How reliably can AMs detect hybrids and various
backcrosses beyond the F1 generation?

What are the effects of selection, linked loci and
genotyping errors on results obtained using AMs?

This list of potential research topics indicates that the
next decade should produce new developments as exciting
as those of the recent past.
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