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Assignment of Eigenvalues in a Disc D (c, r) of Complex Plane 
with Application of the Gerschgorin Theorem
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Abstract: This paper is concerned with the problem of designing discrete-time control systems with 
closed-loop eigenvalues in a prescribed region of stability. First, we obtain a state feedback matrix which 
assigns all the eigenvalues to zero and then by elementary similarity operations and using the Gerschgorin 
theorem we find a state feedback which assigns the eigenvalues inside a circle with center c and radius r.
This new algorithm can also be used for the placement of closed-loop eigenvalues in a specified disc in 
z-plane and can be employed for large-scale discrete-time linear control systems. Some illustrative
examples are presented to show the advantages of this new technique.
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INTRODUCTION

In many applications, mere stability of the
controlled object is not enough and it is required that 
the poles of the closed-loop system should lie in a 
certain restricted region of stability. Several design
methods have been reported which utilize the LQ
technique to achieve the desired pole allocation Amin 
[1] derived an improved result in which the optimality 
of the closed-loop system is assured. Furuta and Kim 
[2] obtained a method for assigning the closed loop 
poles in a specified disk based on gain and phase
margins which is named -stability margin. They
considered the case, when the perturbations are
unknown gains as a diagonal form. Yuan and Achenie 
and Jiang [3] addressed the problem of linear quadratic
regulator (LQR) synthesis with regional closed-loop
pole constraints. Figueroa and Romagnoli [4] presented 
a method for designing controllers which attempt to 
place the roots of a characteristic polynomial of an 
uncertain system inside some prescribed regions. The 
analysis is based on the transfer function of a
characteristic polynomial. Chou [5] described another 
pole assignment method with a spectral radius and 
proposed a pulse transfer function. The procedure is 
simple, but it is used only for checking the positions of 
closed loop poles, not for designing the controller.
Benner et al. [6] presented the method for partial
stabilization of large-scale discrete-time linear control 
systems. Recently, Grammont and Largillier [7]
employed an approach to localize matrix eigenvalues in 

the sense that they build a sufficiently small
neighborhood for each eigenvalue (or for a cluster).

A well-known desired region for discrete systems 
is a disc D (c, r) centered at (c, 0) with radius r, in 
which   |c|+r<1, as shown in Fig. 1. In this paper, the 
aim is to present a method for localization of
eigenvalues in small specified region of complex plane 
by state feedback control for large-scale discrete-time
linear control systems. 

PROBLEM STATEMENT

The problem of localization of eigenvalues in a 
small specified region has been the subject of many 
investigators in the last decade [6, 7]. Consider a
controllable linear time-invariant system defined by the 
state equation 

( ) ( ) ( )x t Ax t Bu t= + (1)

or its discrete-time version

( ) ( ) ( )x t 1 Ax t Bu t+ = + (2)

where x (t)∈ℜn, u (t)∈ℜm and the matrices A and B are 
real constant matrices of dimensions n×n and n×m
respectively, with rank (B) = m. The aim of eigenvalue 
assignment in a specified region is to design a state 
feedback controller, K, producing a closed-loop system 
with a satisfactory response by shifting controllable
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Fig. 1: A specified disc D (c, r) 

poles from undesirable to desirable locations. Karbassi 
and Bell [8, 9], have introduced an algorithm for
obtaining an explicit parametric controller matrix K by
performing similarity operations on the controllable
pair (B, A). In fact, K is chosen such that the closed-
loop system eigenvalues

Γ = A + BK (3)

lie in the self conjugate eigenvalue spectrum
Λ = {λ1, λ2,…,λn}. Recently, Karbassi and 

Tehrani [10] extended the previous results as to 
obtain an explicit formula involving nonlinear
parameters in the control law. The stabilization problem 
consists in finding a feedback matrix K∈ℜm×n such that 
the input uk = Kxk, k = 0, 1, 2,… yields a stable closed 
loop system 

k 1 k kx (A BK)x x , k 0,1,2,...+ = + = Γ = (4)

In case the spectrum (or set of eigenvalues) of the 
closed-loop matrix, denoted by Λ (Γ), is contained in 
the open unit disk we say that Γ is (Schur) stable or 
convergent (in other words, |λi|<1 for all λi∈Λ (Γ)). The 
stabilization problem arises in control problem such as, 
the computation of an initial approximate solution in 
Newton’s method for solving discrete-time algebraic 
Riccati equations, simple synthesis methods to design 
controllers. Large-scale problems occur whenever the 
linear system results from some sort of a partial
differential equation or from delay systems. There, the 
number of states is often a couple of thousands.

The stabilization problem can in principal be
solved as a pole assignment problem. Pole assignment 

methods compute a feedback matrix such that the
closed-loop matrix of system (3) has a specified
spectrum. In this paper, we present an efficient
approach for localization of eigenvalues in small
specified regions for large-scale linear discrete-time
systems. Our assignment procedure is composed of two 
stages. We first obtain a primary state feedback matrix 
Fp which assigns all the eigenvalues of closed-loop
system to zero, then produce a state feedback matrix K
which assigns all the closed-loop system eigenvalues in 
a small specified disc or discs.

SYNTHESIS

Consider the state transformation

( ) ( )x t T x t=  (5)

where T can be obtained by elementary similarity
operations as described in [8]. In this way,

1A T AT−= and 1B T B−=  are in a compact canonical 
form known as vector companion form:

0 0

n m n m m n m m

G B
A _____________ B _______

I 0 0− − × − ×

   
   = =   
      

 



(6)

Here G0 is an m×n matrix and B0 is an m×m upper
triangular matrix. Note that if the Kronecker invariants 
of the pair (B, A) are regular, then A  and B are always 
in the above form [8]. In the case of irregular
Kronecker invariants, some rows of In−m in A  are 
displaced [9]. It may also be concluded that if the



World Appl. Sci. J., 5 (5): 576-581, 2008

578

vector companion form of A  obtained from
similarity operations has the above structure, then 
the Kronecker invariants associated with the pair (B, A)
are regular [8]. 

The state feedback matrix which assigns all the 
eigenvalues to zero, for the transformed pair(B,A) , is 
then chosen as 

1
0 0u B G x Fx−= − =   (7)

which results in the primary state feedback matrix for 
the pair (B, A) defined as 

1
pF FT−=  (8)

The transformed closed-loop matrix 0 A BFΓ = +  

assumes a compact Jordan form with zero eigenvalues 

m n

0

n m n m m

0
_____________
I 0

×

− − ×

 
 Γ =  
  





(9)

Then consider the n×n matrix H with form:

11 12 13 1r 1r 1

21 22

32 33

r r 1 r r

r 1r s m s r 1r 1

H H H H H
H H 0 0 0
0 H H 0 0

H

0 0 0 H H 0
0 0 0 0 H 0 H

+

−

+ × − + +

 
 
 
 

=  
 
 
 
  







     
(10)

where H1j, j = 1,…,r  are m×m matrices and H1r+1 is an 
m×s matrix and Hij, i = 2,…, r, j = 1,…, r and Hii, i = 
2,…r are diagonal  m×m matrices and Hr+1r, Hr+1r+1 are
diagonal s×s matrices, i.e,

1 , ( j 1 ) m 1 1 , ( j 1 ) m 2 1,jm

2 , ( j 1 ) m 1 2 , ( j 1 ) m 2 2,jm
1J

m , ( j 1 ) m 1 m , ( j 1 ) m 2 m,jm

h h h
h h h

H j 1,...,r

h h h

− + − +

− + − +

− + − +

 
 
 = = 
 
  





   



(11)

1,rm 1 1,rm 2 1,rm s

2 , r m 1 2,rm 2 2 , r m s
1r 1

m , r m 1 m,rm 2 m , r m s

h h h
h h h

H

h h h

+ + +

+ + +
+

+ + +

 
 
 =  
 
  





   



(12)

( i 1 ) m 1 , ( i 1 ) m 1

( i 1 ) m 2 , ( i 1 ) m 2
ii

im,im

h 0 0
0 h 0

H i 2,...,r

0 0 h

− + − +

− + − +

 
 
 = = 
 
  





   



(13)

rm 1,rm 1

r m 2 , r m 2
r 1,r 1

rm s,rm s

h 0 0
0 h 0

H

0 0 h

+ +

+ +
+ +

+ +

 
 
 =  
 
  





   



(14)

( i 1 ) m 1 , ( i 2 ) m 1

( i 1 ) m 2 , ( i 2 ) m 2
i , i 1

i m , ( i 1 )m

h 0 0
0 h 0

H i 2,...,r

0 0 h

− + − +

− + − +
−

−

 
 
 = = 
 
  





   



(15)

rm 1,(r 1)m 1

rm 2,(r 1 ) m 2
r 1,r

rm s , ( r 1 ) m s

h 0 0
0 h 0

H

0 0 h

+ − +

+ − +
+

+ − +

 
 
 =  
 
  





   



(16)

We chose the elements of principal diameter H11
and Hii, i = 2,3,…,r+1inside interval c – r, c+r) by:

iih r*random(0,1) c i 1,...,n= ± + = (17)

where hii≠0 and chose the elements Hi,i-1,
i = 2,…,r+1 by :

m i , i ii ii
1h {min( c r h , c r h )} i 1,...,n m+ = − − + − = −
α

(18)

where hii is the corresponding diameter element of
column ith of matrix H and α is arbitrary such that 
|1/α|<1 and hm+1,i≠0.

Now we take the nonzero elements of remainder 
H1i, i = 2,…,r+1 such that:

n

i j jj jj
i 1
i j

h min( c r h , c r h )
=
≠

≤ − − + −∑ (19)

Then H can be obtained from H by performing 
elementary similarity operations [7] on H. The matrix 
H  thus obtained will be in primary vector companion 
form such that 

0

n m n m,m

HH
I , 0− −

 
 =
 
 

 (20)

where H0 is an m×n matrix.
Because of similarity operation, the eigenvalues of 

the matrix H are the same as the eigenvalues of H. Now 
the feedback matrix of the pair (A,B)   is defined by:

1 1
0 0 0 0 0K F B H B ( G H )− −= + = − +  (21)
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Theorem: The state feedback matrix K assigns the 
eigenvalues of closed-loop matrix A BKΓ = +   inside a 
circle with center c and radius r.

Proof: Let 

0

n m n m , m

0 1
0 0 0

n m , m

G
A BK

I 0

B
B ( G H )

0

− −

−

−

 
Γ = + =  

 
 

 + − +  
 

  

(22)

1 1
0 0 0 0 0 0 0

n m n m , m

0

n m n m , m

G B B G B B H
I 0

H
I 0

− −

− −

− −

 − +
Γ =  

  
 

=  
 



(23)

Clearly HΓ =  , since H  is similar to the matrix H
and the eigenvalues of matrix H are the same as that of 
matrix H and elementary similarity operations do not 
change the eigenvalues, according to the Gerschgorin
theorem in the columns matrix H, we define Cj, j = 
1,…,n a circle with center hjj and radius 

∑
≠
=

=
n

ji
i

jij hr
1

The definition the matrix H involve that all
Cj, j = 1,…,n fall inside a circle with center c and radius 

r, thus 
n

j
j 1

C
=
  is inside the disc D (c, r). Therefore the 

eigenvalues of matrix H are inside he disc D (c, r).
Then the eigenvalues of closed-loop matrix A BKΓ = +  

also fall inside a circle with center c and radius r.

Remark: Since K  assigns the eigenvalues of the
closed-loop matrix A BKΓ = +   inside a circle with
center c and radius r it is obvious that the state feedback 
controller matrix, 1 1 1

0 0 0K KT B ( G H )T− − −= = − +  also
assigns the eigenvalues of the closed-loop matrix
Γ = A+BK inside a circle with center c and radius r too.

An algorithm for assignment of eigenvalues in a 
disc D (c, r) 

In this section we first give an algorithm for
finding a state feedback matrix which assigns zero 
eigenvalues to the closed-loop system. Then we
determine a gain matrix which assigns the
closed-loop eigenvalues in a circle with real center c
and radius r.

Input: The controllable pair (A, B), the primary state 
feedback Fp, 1

0B− and T−1 which are calculated by the 
algorithm proposed by Karbassi and Bell [8, 9], the real 
valued center c and radius r of the target circle.

Step 1: Construct the block diagonal matrix H in
the form (10), for assigning eigenvalues in a circle 
with the real valued circle c and radius r we
choose iih r*random(0,1) c= ± + for i = 1, 2,…,n where
hii≠0 i =  1,…,n

m i, i ii ii
1

h {min(c r h , c r h )}+ = − − + −
α

for i =  1,2,…,n-m where hm+1,i≠0 and |1/α|<1
We choose the nonzero elements of column

jth, j = 1,…,n such that:

n

i j jj jj
i 1
i j

h min( c r h , c r h ) j 1,....,n
=
≠

≤ − − + − =∑

Step 2: Transform H to primary vector companion form 
H as in (20) using elementary similarity operations as 
specified in [8].

Step 3: Now compute K = Fp+B0
−1H0T−1 the required 

state feedback matrix

ILLUSTRATIVE EXAMPLES

Example 1:Consider a discrete-time system given by 

x (t+1) = Ax(t)+Bu(t)

Where A and B are random matrices as follows:

9 8 8 9 9 0
2 7 4 7 9 3

A B
6 4 6 1 4 8
4 0 7 4 8 0

   
   
   = =
   
   
   

The open-loop eigenvalues of the system are found 
to be as follows: {21.4707, 1.1178±4.5139i, 2.2938}

It is desired to obtain a state feedback
controller witch assigns the closed-loop eigenvalues
in the disc D (-0.2, 0.3), We perform the above
algorithm with α = 10. First, the primary state feedback 
matrix which locates all the eigenvalues of the
closed-loop system to the origin of the complex plane is 
found to be:
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p

0.1607 0.4627 0.4682 0.7418
F

2.0522 0.9423 1.2194 0.1640
− − − − 

=  − − − − 

By using the algorithm, the state feedback matrix 
we obtain is:

0.1589 0.4784 0.4611 0.7500
K

2.1438 0.8449 1.3188 0.1171
− − − − 

=  − − − − 

The closed-loop eigenvalues are: {-0.0021, -
0.2561±0.0092i,-0.1512}, all of which are inside the
disc D (-0.2, 0.3).

Example 2: Consider a large discrete-time system
given by x (t+1) = Ax(t)+Bu(t)
where A and B are randomly generated with n = 10 and 
m = 6.

9 6 0 0 8 1 4 7 7 1 5 2 4 2 6 4
2 7 3 7 0 6 8 3 9 0 4 3 3 6 2 0
6 9 8 4 6 3 8 8 5 8 5 7 8 3 8 0
4 7 0 9 3 5 6 5 8 1 3 6 0 9 6 3
8 1 1 4 8 1 8 3 1 2 4 4 7 7 1 0

A B
7 4 2 4 5 6 6 7 9 6 2 5 9 4 2 3
4 9 1 8 7 3 3 5 2 2 5 7 9 7 6 6
0 9 6 5 4 8 2 4 2 4 7 0 7 2 6 0
8 4 2 2 3 8 3 6 8 0 5 6 4 4 3 0
4 8 1 6 1 5 5 6 7 9 6 0 4 9 5 6

  
  
  
 
 
 
 
 = =
 
 
 
 
 
 
   





 
 
 
 
 
 
 
 
 
 
 
 

The open loop eigenvalues are: {7.6677±5.2510i, 3.9208±0.6461i, -2.2069±1.6298i, -1.2318, -3.9311, 10.9532, 
46.4465}

which are widely spread in the complex plane. In order to locate them in small discs inside the unit circle, we 
employ the above algorithm step by step and chose α = 100. First, the primary state feedback matrix which locates 
all the eigenvalues of the closed-loop system to the origin of the complex plane is found to be:

p

1.4865 0.5547 0.4419 0.3630 1.2907 0.9842 1.7726 1.2960 3.1981 0.5510
0.9816 0.7597 1.4466 0.0136 2.5560 1.4522 0.4522 0.8020 1.7824 3.5008
2.1839 0.5442 0.1709 0.3888 1.8402 0.6415 1.3561 1.2853 1.8854 0.6550

F
3.037

− −
− − −
− − − − − − −

=
0 2.7784 3.4762 1.8626 7.3590 5.8022 0.3900 1.8946 5.3964 6.6379

2.3524 0.6276 1.4215 0.1697 5.2022 3.6383 2.0661 0.1840 1.4889 2.7943
0.6951 0.5421 0.4148 0.3413 1.4439 2.3124 1.8808 0.5139 1.3333 0.4415







− − − − − − − −
− − −

− − − − − −









 
 

Now we consider the following different cases:
a) It is desired to locate the closed-loop eigenvalues inside the unit circle centered at origin. By using the 

algorithm, the state feedback matrix we obtain would be:

1.3677 0.5498 0.4314 0.3507 1.0324 0.9896 1.8708 1.3300 3.3051 0.7243
0.9863 0.7427 1.5808 0.0161 2.6969 1.6707 0.1811 0.8594 1.5988 3.7565
2.0035 0.4943 0.1204 0.4396 1.7066 0.6107 1.3921 1.2272 1.9633 0.7423

K
2.8519

− −
− −
− − − − − − −

=
−2.8267 3.5311 1.9467 7.1805 5.6905 0.3573 1.8914 5.1682 6.5178

2.1349 0.6142 1.3835 0.2780 5.0338 3.5955 2.0849 0.2157 1.3051 2.6373
0.7983 0.4743 0.5137 0.3688 1.6459 2.4838 1.8728 0.5620 1.4714 0.5170







− − − − − − −
− − −


− − − − − −











The closed-loop eigenvalues are {-0.0464±0.2182i, 0.8747, -0.9505, 0.6838, -0.7770, 0.6368, 0.4227, 0.1476, -
0.1156} clearly all are inside the unit circle. 
b) In this case, we find the state feedback matrix which assigns the closed-loop eigenvalues in the disc D (0.6, 0.2).

By using the algorithm, the state feedback matrix we obtain would be:

1.4720 0.5420 0.4008 0.1275 1.3466 0.4759 2.1575 1.2437 3.3304 0.6142
0.7866 0.7387 1.3256 0.0501 2.3021 1.2374 0.6798 0.7984 1.7609 3.1993
2.0614 0.4590 0.0972 0.4599 1.7638 0.2516 1.6376 1.2082 1.9089 0.6898

K
2.5381

− −
− −
− − − − − − −

=
−2.6416 3.2510 1.9229 6.8329 5.4821 0.5860 1.9354 5.1848 6.1922

2.0237 0.6094 1.3652 0.3408 4.9501 3.5863 2.1053 0.2323 1.2055 2.5557
0.6475 0.5810 0.3595 0.3310 1.3399 2.2427 1.9033 0.4861 1.2585 0.4023







− − − − − − −
− − −


− − − − − −













World Appl. Sci. J., 5 (5): 576-581, 2008

581

The closed-loop eigenvalues are {0.6555±0.0060i,
0.5151±0.0232i, 0.795, 0.4088, 0.6337, 0.7569, 0.5538,
0.4122} all of which are inside the disc D (0.6, 0.2).

CONCLUSION

A simple algorithm has been given for localization 
of eigenvalues in small specified regions of complex 
plane by state feedback control. This method has been 
achieved by implementing properties of vector
companion forms. The merit of this approach is that it 
can be achieved by elementary similarity operations 
and the Gereschgorin theorem which is significantly 
simpler to realize computationally than the existing
methods. Also this method can be used for large-scale
discrete-time linear control systems as well. It is
claimed that the transformations obtained by similarity 
operations reduce accuracy of the computations [6],
however, other methods such as LQR methods [3] are 
more complicated. 
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