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Abstract

We describe a method that adds long-read sequencing to a mix of technologies used to assemble a highly complex

cattle rumen microbial community, and provide a comparison to short read-based methods. Long-read alignments

and Hi-C linkage between contigs support the identification of 188 novel virus-host associations and the determination

of phage life cycle states in the rumen microbial community. The long-read assembly also identifies 94 antimicrobial

resistance genes, compared to only seven alleles in the short-read assembly. We demonstrate novel techniques that

work synergistically to improve characterization of biological features in a highly complex rumen microbial community.
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Background
Microbial genome assembly from metagenomic se-

quence of complex communities produces large num-

bers of genome fragments, rather than complete circular

genomes, despite continuous improvements in method-

ology [1, 2]. Assembly is complicated by sequences that

may occur repeatedly within strains (“repeats”) or shared

among similar strains of bacterial and archaeal species,

creating “branches” in the assembly graph that precludes

accurate representation of individual component ge-

nomes, particularly when multiple closely related strains

of a species are present in the environment [3]. Repeti-

tive content contributes to difficulty in multicellular

Eukaryotic genome assembly as well [4], but the prob-

lem becomes more complicated in metagenome

assembly [5] due to the wide range of abundance among

bacterial species and strains, and the presence of other

environmental DNA (e.g., plants, protists).

The application of long-read sequencing appears to be

a potential solution to many of the difficulties inherent

to metagenomic assembly. Read lengths that exceed the

size of highly repetitive sequences, such as ribosomal

RNA gene clusters, have been shown to improve contig

lengths in the initial assembly [6, 7]. However, longer re-

petitive regions are only capable of being completely re-

solved by long reads of equal or greater size to the

repeat, which makes input DNA quality a priority in se-

quence library construction. This can present a problem

in metagenomic samples as material-adherent bacterial

populations produce tough extracellular capsules that re-

quire vigorous mechanical stress for lysis, resulting in

substantial DNA fragmentation and single-strand nicks

[8]. Long-read sequencing technologies have been previ-

ously used in the assembly of the skin microbiome [9],

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: tim.smith2@usda.gov
†Derek M. Bickhart, Mick Watson and Sergey Koren contributed equally to

this work.
12USDA-ARS U.S. Meat Animal Research Center, Clay Center, NE 68933, USA

Full list of author information is available at the end of the article

Bickhart et al. Genome Biology          (2019) 20:153 

https://doi.org/10.1186/s13059-019-1760-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1760-x&domain=pdf
http://orcid.org/0000-0003-2223-9285
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:tim.smith2@usda.gov


in several environmental metagenomes [10], and in the

binning of contigs from a biogas reactor [11]; however,

each of these projects has relied on additional coverage

from short-read data to compensate for lower long-read

coverage. Additionally, higher depths of coverage of long

reads from current generation sequencing technologies

are necessary to overcome high, relative error rates that

can impact assembly quality and influence functional

genomic annotation [12]. Still, there is a substantial

interest in generating assemblies derived from longer

reads to enable better characterization of environmental

and complex metagenomic communities [10]. Metagen-

ome WGS assemblies consisting entirely of long reads

have yet to be fully characterized, particularly those from

complex, multi-kingdom symbiotic communities.

The bovine rumen is an organ that serves as the site

of symbiosis between the cow and microbial species

from all three taxonomic superkingdoms of life that are

dedicated to the degradation of highly recalcitrant plant

polymers [13]. With efficiency unrivaled by most abiotic

industrial processes, the protists, archaea, bacteria, and

fungi that make up the rumen microbial community are

able to process cellulose and other plant biopolymers

into byproducts, such as volatile fatty acids (VFA), that

can be utilized by the host. This process is supplemented

by relatively minimal energy inputs, such as the basal

body temperature of the host cow and the energy-

efficient mastication of digesting plant material. The

presence of organisms from all major superkingdoms in

varying degrees of abundance makes the rumen an ex-

cellent model for a complex, partially characterized

metagenome system. Assessments of rumen microbial

presence and abundance have generally been limited to

16S rRNA amplicon sequencing [14–16]; however, re-

cent genome assemblies of metagenomic samples [17,

18] or isolates [19] derived from the rumen provide suit-

able standards for the comparison of new assembly

methods and techniques.

In this study, we compare and contrast several differ-

ent technologies that are suitable for metagenome as-

sembly and binning, and we highlight distinct biological

features that each technology is able to best resolve. We

show that contigs generated using longer-read sequen-

cing tend to be larger than those generated by shorter-

read sequencing methods, long reads assemble more

full-length genes and antimicrobial resistance gene al-

leles, and that long reads can be suitable for identifying

the host specificity of assembled viruses/prophages in a

metagenomic community. We also highlight novel virus-

host associations and the potential horizontal transfer of

antimicrobial resistance genes (ARG) in rumen micro-

bial species using a combination of long reads and Hi-C

intercontig link data. Our data suggests that future

metagenomic surveys should include a combination of

different sequencing and conformational capture tech-

nologies in order to fully assess the diversity and bio-

logical functionality of a sample.

Results

Sample extraction quality and de novo genome assemblies

We extracted high molecular weight DNA from a com-

bined rumen fluid and solid sample taken from a single,

multiparous, cannulated cow and sequenced that sample

using a short-read and a long-read DNA sequencing tech-

nology (see the “Methods” section; Fig. 1a). The short-

read and long-read data were assembled separately and

generated de novo assemblies with contig N100K counts

(the number of contigs with lengths greater than 100 kbp)

of 88 and 384, respectively (Table 1). Both assemblies were

generated with a minimum contig length cutoff of 1000

bp. While the short-read assembly contained fivefold more

assembled bases (5.1 gigabases vs 1.0 gigabases), the long-

read assembly was mostly comprised of larger contigs. We

also observed a slight bias in the guanine-cytosine (GC)

content of assembled contigs, with the short-read assem-

bly having a larger sampling of different, average GC con-

tent tranches than the long-read assembly in observed,

assembled contigs (Fig. 1b). Interestingly, the average GC

content of the error-corrected long reads indicated a bi-

modal distribution at the 0.5 and 0.25 ratios (Fig. 1b) that

is less pronounced in the GC statistics of the raw short

reads and both sets of assembly contigs. There are several

possibilities for this discrepancy; however, it is possible

that this lower GC content range belongs to unassembled

protist or anaerobic fungi genomes which are known to

be highly repetitive and have low GC content [20, 21].

We noticed a slight discrepancy in the superkingdom-

specific contig lengths that suggests that many of our con-

tigs of potential Eukaryotic origins are shorter than those

of the Bacteria and Archaea, which coincided with our ob-

servation of GC content bias in the assembly (Fig. 1c). To

assess the bias in GC content in our assembly of the long-

read data, we calculated the overlap of raw long reads with

our long-read assembly contigs. Density estimates of long

reads that were not included in the long-read assembly

(zero overlaps) mirrored the bimodal distribution of GC

content in the raw long reads previously observed, sug-

gesting that a larger proportion of lower GC content reads

had insufficient coverage to be assembled (Additional file 1:

Figure S1). Furthermore, we note that the error-corrected

long reads were filtered based on intra-dataset overlaps,

resulting in a further reduction of bases compared with

the starting, raw long reads. The correction step removed

10% of the total reads for being singleton observations

(zero overlaps with any other read) and trimmed the ends

of 26% of the reads for having less than 2 overlaps. This

may have also impacted the assembly of low abundance or

highly complex genomes in the sample by removing rare
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Fig. 1 Assembly workflow and sampling bias estimates show GC% discrepancies in long-read vs short-read assemblies. Using the same sample

from a cannulated cow, (a) we extracted DNA using a modified bead beating protocol that still preserved a large proportion of high molecular weight

DNA strands. This DNA extraction was sequenced on a short-read sequencer (Illumina; dark green) and a long-read sequencer (PacBio RSII and Sequel;

dark orange), with each sequence source assembled separately. Assessments of read- and contig-level GC% bias (b) revealed that a substantial

proportion of sampled low GC DNA was not incorporated into either assembly. c Assembly contigs were annotated for likely superkingdoms of origin

and were compared for overall contig lengths. The long-read assembly tended to have longer average contigs for each assembled superkingdom

compared to the short-read assembly
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observations of DNA sequence. We attempted to combine

both the short-read and long-read datasets into a hybrid

assembly; however, all attempts using currently available

software were unsuccessful as currently available tools had

prohibitive memory or runtime requirements due to the

size of our input assemblies. We also investigated the use

of long reads in multiple-datasource scaffolding programs

and found only minor improvements in assembly size that

were achieved through the inclusion of a high number of

ambiguous base pairs (Additional file 1: Supplementary

methods).

Comparing binning performance and statistics

We applied computational (MetaBat) [22] and conform-

ational capture methods (ProxiMeta Hi-C) [23] in order to

bin assembled contigs into clusters that closely resembled

the actual genomic content of unique species of rumen mi-

crobes (Additional file 1: Supplementary methods). The

number of contigs per bin varied based on the binning

method; however, the long-read assembly bins had nearly

an order of magnitude fewer contigs per bin than the

short-read assembly regardless of the method (Fig. 2a). We

also saw a clear discrepancy between binning methods,

with ProxiMeta preferably binning smaller (< 2,500 bp)

contigs with higher GC (> 42%) than MetaBat (chi-squared

test of independence p < 0.001; Additional file 1: Figure S2).

We further assessed bin quality and removed redun-

dant contig-bin assignments between methods, using the

single-copy gene (SCG) metrics of cluster contamination

and completeness from the DAS_Tool [24] package

(Fig. 2c, d; Additional files 2 and 3). We then sorted the

revised DAS_Tool bins into a set of high-quality draft

(HQ) bins and medium-quality draft (MQ) bins accord-

ing to the standards of Bowers et al. [25] (Fig. 2b;

Table 2). Since DAS_Tool assesses bin quality using bac-

terial and archaeal SCG metrics, we note that many

Eukaryotic-origin bins are underrepresented in our fil-

tered datasets. We also note a discrepancy in bin quality

metrics between DAS_Tool dereplicated bins and assess-

ments made with CheckM [26] (see the “Methods” sec-

tion). Our HQ bin dataset contains 42 and 10 draft

microbial genomes in the short-read and long-read data-

sets, respectively, with at least a 90% SCG completeness

estimate and with less than 5% SCG redundancy (Fig. 2e;

Additional files 4 and 5). We note that only 19 and 9 of

our short-read and long-read HQ bins, respectively,

meet the additional requirements of the presence of 16S,

23S, 5S and at least 18 tRNA genes per the Bowers et al.

[25] standards (Additional files 4 and 5). The MQ binset

contained 325 and 103 short-read and long-read consoli-

dated bins, respectively.

Taxonomic classification reveals assembly bias

Taxonomic classification of the HQ bin and MQ binsets

revealed a heavy preference towards the assembly of

contigs of bacterial origin vs archaeal and eukaryotic ori-

gin (Fig. 3c; Additional file 1: Figure S3, S4), as expected

from other surveys of the rumen [13]. Both the short-

and long-read HQ bins each contain only one bin of

archaeal-origin sequence. The short-read archaeal HQ

bin was best classified as being a high-quality draft from

the Thermoplasmatales order; however, the long-read ar-

chaeal bin was identified as belonging to the genus

Methanobrevibacter from the family Methanobacteria-

ceae. Contig taxonomic assignment generated by the

BlobTools [27] workflow varied greatly among the short-

read HQ bins, with an average of 5 different phyla as-

signments per contig per bin compared to an average of

2.6 different assignments for the contigs in the long-read

HQ bins (Additional files 6 and 7). We identified 14 full-

length (> 1500 bp) predicted 16S rDNA genes in the

long-read HQ bins, and only fragmentary (< 1500 bp)

16S genes in the short-read assembly (Additional file 8).

The long-read MQ bins contained 64 full-length 16S

genes, and all but 5 of the genes matched the original

superkingdom taxonomic classification of the bin that

contained the gene. Of these five discrepancies, four

contigs were classified as “Eukaryotic” in origin, yet con-

tained a predicted archaeal 16S gene.

Comparison to other datasets reveals novel sequence

Contig novelty was assessed via direct overlap with other

rumen metagenomic assemblies and via alignment with

WGS reads from other publically accessible sources

(Fig. 3a, b). We identified many contigs in our short-

read and long-read assemblies that did not have analo-

gous alignments to the recently published Stewart et al.

[18] and Hungate 1000 [19] assemblies. From our HQ

bins, 3650 and 22 contigs from the short- and long-read

assemblies, respectively, did not align to any sequence in

these two datasets, consisting of 25.4 Mbp and 317 kbp

of assembled sequence that was missing from the previ-

ous, high quality, reference datasets for the rumen

microbiome (Additional files 9 and 10). Expanding the

comparison to the MQ binset, we identified 45,396 (179

Mbp) and 1254 contigs (16.1 Mbp) in the short- and

long-read assemblies, respectively, that did not have ana-

logs in the previous rumen datasets (Fig. 3a, b). From

the MQ bins with no alignments to other published

datasets, we identified 27,120 and 20 contigs in the

short- and long-read MQ binsets, respectively, that did

Table 1 Assembly statistics

Assembly Contigs Total assembly length (bp) Contig N100K1

Illumina 2,182,263 5,111,042,186 88

PacBio 77,670 1,076,426,244 384

1The contig N100K is defined as the total number of contigs that are greater

than 100 kbp in length in the entire assembly
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Fig. 2 (See legend on next page.)
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not have analogous alignments to the other respective

dataset (e.g., short read vs long read). This represented

87.8Mbp of the exclusive sequence in the short-read

dataset not contained in our long-read dataset. However,

we also identified 137 kbp that was novel to the long-

read MQ bins despite the coverage disparity between the

two datasets. Contigs that were exclusive to the long-

read dataset were primarily of Firmicutes origin and had

a higher median GC% value than other contigs in the

long-read dataset (Kolmogorov-Smirnov p = 4.99 × 10−4).

We wanted to compare the short-read sequence of our

sample against other published rumen WGS datasets to

see if there were differences in sample community com-

position that may have accounted for a novel assembled

sequence in our dataset (Additional file 1: Supplemen-

tary methods; Table S2; Additional file 11). Our WGS

reads were enriched for fungal and protist genomes

compared to the selected public rumen WGS datasets

(hypergeometric p value < 1 × 10−7 in all cases).

Increased long-read contiguity results in more predicted

ORFs per contig

We sought to assess whether the increased contiguity of

the long-read assembly contigs provided tangible bene-

fits in the annotation and classification of open reading

frames (ORFs) in our MQ bin dataset. From Prodigal

[28] annotation of the MQ bins from both assemblies,

we identified 356,468 and 175,161 complete ORFs in the

short-read and long-read assemblies, respectively

(Additional files 12 and 13). We found a higher fraction

of identified partial ORFs in the short-read MQ bins

(142,434 partial; 28.5% of the complete ORF count)

compared to the long-read MQ bins (9944 partial ORFs;

5.3% of the complete ORF count). This would suggest

that, despite a lower total count of total ORFs identified,

the long-read bins more frequently contained complete

ORFs than did the short-read bins. We also found a

higher mean count of ORFs per contig in the long-read

MQ bins (mean 22.35) than the short-read bins (mean

3.75). This difference in average counts was found to be

significant (Kolmogorov-Smirnov test p value < 0.001).

In order to determine if this difference was due primarily

to contig lengths, we divided all MQ bin contigs into

quartiles by length and tested the average counts of

complete ORFs in respective technology groups. We

found only the bottom quartile (contig lengths less than

1705 bp) did not have significantly higher average counts

after correction for multiple hypothesis testing (Kolmogo-

rov-Smirnov test p = 0.022; Bonferroni-corrected α = 0.01);

however, this may have been due to smaller sampling in

the long-read dataset (only 17 contigs in this quartile)

compared to the short-read dataset (20,555 contigs). All

partial ORF predictions occur within the first and last 50

bp of contigs in the short-read and long-read MQ bins,

suggesting that ORFs were prematurely terminated by

contig breaks. In the short-read MQ bins, a surprising

proportion of ORFs missing both a start and stop codon

(4238 ORFs; 3.0% of the total count of partial ORFs) occur

near the beginning of the contig compared to the long-

read bin set (3 ORFs). However, we identified a slight dis-

crepancy in ORF length between the short-read (median

758 bp) and long-read (median ORF length 653 bp)

(See figure on previous page.)

Fig. 2 Identification of high-quality bins in comparative assemblies highlights the need for dereplication of different binning methods. a Binning

performed by Metabat (light blue) and Proximeta Hi-C binning (Hi-C; blue) revealed that the long-read assembly consistently had fewer, longer

contigs per bin than a short-read assembly. b Bin set division into medium-quality draft (MQ) and high-quality draft (HQ) bins was based on

DAS_Tool single-copy gene (SCG) redundancy and completeness. Assessment of SCG completeness and redundancy revealed 10 and 42 high-

quality bins in the long-read (c) and short-read (d) assemblies, respectively. The Proximeta Hi-C binning method performed better in terms of

SCG metrics in the long-read assembly. e Plots of all of identified bins in the long-read (triangle) and short-read (circle) assemblies revealed a

wide range of chimeric bins containing high SCG redundancy. Bins highlighted in the blue rectangle correspond to the MQ bins identified by

the DAS_tool algorithm while the red rectangle corresponds to the HQ bin set

Table 2 Assembly bin taxonomic assignment and gene content

Assembled sequence taxonomic affiliation (kbp)1

Assembly Bin set Avg # complete ORFs per contig2 Archaea Bacteria Eukaryota Viruses No-hits

Illumina Unbinned 1.31 46,405 3,419,539 125,885 6287 1,019,041

MQ 3.39 4543 393,630 3906 71 14,113

HQ 7.66 1056 75,467 575 4 523

PacBio Unbinned 14.6 10,686 854,468 7707 2290 26,804

MQ 20.8 885 149,168 811 50 501

HQ 48.2 1809 20,711 512 0 17

1superkingdom taxonomic affiliation was based on contig-level assignments derived from the BlobTools/DIAMOND workflow
2Complete ORFs were defined as Prodigal predictions that had a “partial” status of “00,” which indicates the presence of a start and stop codon for the ORF
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Fig. 3 (See legend on next page.)

Bickhart et al. Genome Biology          (2019) 20:153 Page 7 of 18



assemblies, with the former containing longer predicted

ORFs than the long-read assembly. We did notice a small

(linear model coefficient = 0.593), but significant (F test

p value < 0.001), effect of the average short-read coverage

of a contig on the length of predicted ORFs in the long-

read assembly. We also observed a large reduction in me-

dian ORF lengths within 50 bp of the long-read contig

ends (470-bp median length) compared to ORFs internal

to the contig (668 bp), where short-read coverage was

typically highest. This suggests that short-read coverage

was still necessary to correct for some INDELs in the

ORFs of the long-read assembly and that lower short-read

coverage near the ends of contigs could have resulted in

this discrepancy.

Host-prophage association and CRISPR array identification

Longer reads have the potential to provide direct

sequence-level confirmation of prophage insertion into

assembled genomes by spanning direct repeats that typ-

ically flank insertion sites [29]. To identify candidate

host specificity for assembled prophage genomes, we

used a heuristic alignment strategy with our error-

corrected long-reads (Additional file 1: Supplementary

methods) and Hi-C intercontig link density calculations.

PacBio sequence data have a known propensity for chi-

merism [30]; however, we assumed that identical,

chimeric PacBio reads would be unlikely to be seen

more than once in our dataset. Similarly, we filtered Hi-

C read alignments to identify virus-host contig pairs with

higher link counts to identify virus-host associations in

each assembly (Additional file 1: Supplementary

Methods). Several viral contigs in the long-read assembly

had substantial associations with contig groups affiliated

with more than one genus (a maximum of 11 distinct

genus-level classifications for one viral contig from the

Myoviridae), suggesting a wide host specificity for these

species (Fig. 4a). Long-read assembly viral contigs with

multiple candidate host associations were identified as be-

longing to the Podoviridae, Myoviridae, and Siphoviridae

families, which are viral families typically encountered in

bovine rumen microbial samples [31]. Viral contigs from

the short-read assembly were associated with fewer candi-

date host genus OTUs (four distinct associations at max-

imum; Fig. 4b). It is possible that the shorter length of

Illumina assembly viral contigs (average size 4140 bp,

standard deviation (sd) 5376 bp) compared with the long-

(See figure on previous page.)

Fig. 3 Dataset novelty compared to other rumen metagenome assemblies. Chord diagrams showing the contig alignment overlap (by base pair)

of the short-read (a) and long-read (b) contigs to the Hungate1000 and Stewart et al. [18] rumen microbial assemblies. The “Both” category consists of

alignments of the short-read and long-read contigs that have alignments to both Stewart et al. [18] and the Hungate1000 datasets. c A dendrogram

comparison of dataset sampling completeness compared to 16S V4 amplicon sequence data analysis. The outer rings of the dendrogram indicate the

presence (blue) or absence (red) of the particular phylotype in each dataset. Datasets are represented in the following order (from the outer edge to the

internal edge): (1) the short-read assembly contigs, (2) the long-read assembly contigs, and (3) 16S V4 amplicon sequence data. The internal dendrogram

represents each phylum in a different color (see legend), with individual tiers corresponding to the different levels of taxonomic affiliation. The outermost

edge of the dendrogram consists of the genus-level affiliation

Fig. 4 Network analysis of long-read alignments and Hi-C intercontig links identifies hosts for assembled viral contigs. In order to identify putative

hosts for viral contigs, PacBio read alignments (light blue edges) and Hi-C intercontig link alignments (dark blue edges) were counted between

viral contigs (hexagons) and non-viral contigs (circles) in the long-read assembly (a) and the short-read assembly (b). Instances where both PacBio

reads and Hi-C intercontig links supported a virus-host assignment are also labeled (red edges). The long-read assembly enabled the detection of

more virus-host associations in addition to several cases where viral contigs may display cross-species infectivity. We identified several viral

contigs that infect important species in the rumen, including those from the genus Sutterella, and several species that metabolize sulfur. In

addition, we identified a candidate viral association with a novel genus of rumen microbes identified in this study
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read assembly contigs (average 20,178 bp, sd 19,334 bp)

may have reduced the ability to identify host-phage associ-

ations in this case. Having identified read alignments be-

tween viral contigs and non-viral contigs, we sought to

leverage conformational capture via Hi-C to see if we

could confirm the virus-host associations.

We found that our Hi-C link analysis and PacBio read

alignment analysis had very little overlap; however, we

identified a tendency for each method to favor a differ-

ent class of virus-host association which suggested that

the methods were complementary rather than antagonis-

tic (Additional file 14). Approximately 10% (short-read 6

out of 109; long-read 19 out of 188 pairs) of the host-

viral contig associations had supporting evidence from

both PacBio read alignments and Hi-C intercontig links.

In nearly all highly connected viral contig pairs (greater

than two additional contig associations), we observed

evidence of host specificity from both methods even if it

was for different host contigs. We also identified a bias

in the virus-host family associations, where putative

hosts for the Myoviridae were more likely to be identi-

fied via Hi-C than other viral families (Fig. 4a). Myoviri-

dae family viral specificity for the sulfur-reducing

Desulfovibrio and the sulfur-oxidizing Sulfurovum genera

were primarily identified through Hi-C contig links

(Fig. 4a, box: “Sulfur-degrading”). However, viral associa-

tions between the Sutterella and previously unreported

genera of rumen bacteria were primarily identified via

PacBio read alignments and had little Hi-C intercontig

link support.

We also tested the ability of longer read sequence data

to resolve highly repetitive bacterial defense system tar-

get motif arrays, such as those produced by the CRISPR-

Cas system, in our dataset. Despite having less than one

third of the coverage of the short-read dataset, our long-

read assembly contained two of the three large CRISPR

arrays (consisting of 105 and 115 spacers, respectively)

in our combined assembly dataset (Fig. 5a). The short-

read dataset (597 CRISPR arrays) contained approxi-

mately fivefold more identifiable CRISPR arrays than the

long-read dataset (122 arrays), which is commensurate

with the difference in the size of each assembly (5 Gbp

vs 1 Gbp, respectively).

Antimicrobial resistance gene detection

Due to the frequent use of antibiotics in livestock pro-

duction systems to treat disease and improve produc-

tion, we wanted to assess the utility of longer reads in

detecting novel ARG alleles in assembled microbial ge-

nomes (Fig. 5b). The long-read assembly (ARG allele

count 94) was found to contain over an order of magni-

tude more identifiable ARG alleles than the short-read

assembly (ARG allele count 7), despite the major cover-

age discrepancies between the two datasets. The major

contributor to this discrepancy was found in the tetra-

cycline resistance gene class, as the long-read assembly

contained 80 ribosomal protection and 3 efflux ARGs

that are predicted to confer tetracycline resistance. Se-

quence similarity of ARG alleles in the long-read assem-

bly followed a pattern consistent with ARG class,

though we noted a cluster of tetQ and tetW alleles with

less than 97% sequence similarity to other alleles of the

same resistance class (Additional file 16). By contrast, a

β-lactamase, lincosamide nucleotidyltransferase, and two

tetracycline ARGs were identified in the short-read as-

sembly and all four short-read ARGs had 99.02–100%

sequence identity to equivalent ARG orthologs in the

long-read assembly. Using the contigs containing these

ARG alleles as anchors in our alignment of Hi-C read

pairs, we attempted to identify horizontal transfer of

these alleles using Hi-C intercontig link signal (Add-

itional file 1: Supplementary Methods). We identified

clusters of Prevotella bins and clusters of bins from the

Clostridiales and Bacteroidales that higher contig link

density with ARG allele contigs in our dataset (Add-

itional file 1: Figure S5; Additional file 15). These associ-

ations may represent potential horizontal transfer of

these alleles; however, we note that intercontig link

density was relatively low in our comparisons (average

alignments density was less than 2 reads per pair) and

that ambiguous alignment to orthologous sequence

could present false-positive signal in this analysis.

Discussion

Whole metagenome shotgun sequencing and assembly

has often relied exclusively on short-read technologies

due to the cost-effectiveness of the methods and the

higher throughput that they provide. While such strat-

egies are often able to efficiently generate sufficient read

depth coverage to assemble fragments of organisms in

the community, we demonstrate that biases inherent in

singular technologies suitable for metagenome assembly

result in an incomplete or incorrect assembly/binning of

the actual community. For example, we assembled a

member of the archaeal order Thermoplasmatales in our

short-read HQ bin dataset and a member of the archaeal

genus Methanobrevibacter in the long-read HQ bins.

Several taxonomic studies using short-read 16S-based

methods have shown that the CO2-reducing Methano-

brevibacter are one of the most abundant genera of

methanogenic Archaea in the rumen [31], which was

not reflected in our short-read HQ bins despite higher

depths of coverage. Comparisons of both short- and

long-read alignments suggest both Archaea are present

in each respective dataset; however, errors incorporated

in assembly and binning likely prevented an assembly or

proper binning of the Methanobrevibacter genus in the

short-read dataset. Conversely, we found that the short-
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Fig. 5 CRISPR array identification and ARG allele class counts were influenced by assembly quality. a The long-read assembly (dark orange) contigs

had fewer identified CRISPR arrays than the short-read contigs (dark green); however, the CRISPR arrays with the largest count of spacers were

overrepresented in the long-read assembly. b The long-read assembly had 13-fold higher antimicrobial resistance gene (ARG) alleles than the short-

read assembly despite having 5-fold less sequence data coverage. The macrolide, lincosamide, and tetracycline ARG classes were particularly enriched

in the long-read assembly compared to alleles identified in the short-read assembly
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read assembly contained more contigs assigned to the

Eukaryotic superkingdom, which were relatively under-

represented in the long-read assembly. Given that we se-

quenced the same biological sample in all of our

analyses, these discrepancies suggest that each technol-

ogy samples different portions of the rumen microbial

community. We acknowledge that differences in library

preparation, DNA size fractionation, and other inherent

biases in each technology prevent perfect comparisons

between them. Additionally, comparisons of the content

and composition of our short-read and long-read data-

sets must be tempered by the fact that they are sampling

different depths (~ 170 Gbp vs ~ 50 Gbp, respectively)

and fragments (~ 1133 million vs ~ 6 million reads) of

the community. Still, our data suggest that each technol-

ogy likely has a unique purview that can be attributed to

compositional differences of the genomes among taxo-

nomic superkingdoms (Fig. 1c), genomic GC% (Fig. 1b),

and the presence of mobile DNA (Fig. 4, Additional file 1:

Figure S6).

We identified a GC% bias in our short-read data relative

to our long-read reads; however, this relative bias was re-

versed in comparisons of the GC content of the final as-

semblies, where our short-read assembly had more—albeit

shorter—assembled contigs in lower GC% tranches

(Fig. 1b). These differences are most likely due to the dif-

ferent error rates and degrees of coverage of reads from

the two sequencing technologies and the algorithms used

by the different assembly programs to correct for errors.

Paradoxically, the short-read assembly sampled propor-

tionally fewer reads at higher and lower GC tranches, but

was able to incorporate even fragmentary information

from these tranches into smaller contigs. The long-read

assembly, by contrast, required sufficient coverage of reads

to appropriately correct for errors and this meant that

many lower GC% reads were discarded due to assembly

constraints, as we demonstrate in our read alignment

overlap analysis (Additional file 1: Figure S1). Protists may

represent a large proportion of this lower GC% commu-

nity, and their genomes likely consist of highly repetitive

sequence that would require higher depths of long-read

coverage to sufficiently traverse [21]. The use of improved

error-correction methods or circular-consensus sequence

reads [11, 32] is likely to provide substantial benefits for

downstream annotation and may enable the assembly of

the low-abundance, low-GC% species that were poorly

represented in our long-read assembly. However, we ac-

knowledge that size selection for longer fragments to

sequence on our long-read dataset may have added add-

itional bias. Comparisons of coverage between the two

datasets on each respective assembly suggest that such

bias may have a slight effect on sampled community com-

position (Additional file 1: Figure S6, S7; Supplementary

Methods). This is a potential complication in using

the long-read sequencing platform used in this study,

as size selection is often required to improve subread

N50 lengths.

We identified many biological features in our sample

that would be missed if only a single technology/method

was used for each step of the assembly, binning and ana-

lysis of our dataset. Larger contigs in the long-read data-

set also resulted in a higher average count of annotated

ORFs per contig than the short-read dataset by a factor

of seven. This contiguity of gene regions is particularly

important in bacterial classification, where functional

genes of particular classes can be arranged in complete

and phased operons. It is highly likely that this increase

in contiguity contributed to the massive discrepancy in

ARG allele identification between the two assemblies;

however, we also note that the high percent identity of

ARG allele orthologs may have contributed to this issue.

Similar to how longer reads are able to resolve large re-

petitive clusters in Eukaryotic genome assembly [6, 7],

reads that are longer than the highly repetitive ARG al-

leles may have resulted in increased detection in the

long-read assembly, whereas the short-read assembly

would have generated a contig break. We noted a signifi-

cant increase in detected tetracycline resistance alleles in

our long-read assembly of a rumen metagenome from a

concentrate-fed animal, which contradicts previous work

using short-read assemblies that found that animals fed

concentrates should have few tetracycline resistance

alleles [33]. Calves in the sampled research herd

(UW-Madison, Dairy Forage Research Center) are given

chlortetracycline during inclement weather and tetracyc-

line is applied topically to heel warts on adult animals. It

is possible that incidental/early exposure to this anti-

biotic has enabled the proliferation of tetracycline resist-

ance alleles in the rumen community, and this

proliferation was only detected in our long-read assem-

bly. Previous studies have demonstrated the benefit of

using longer reads in ARG allele-associated satellite

DNA tracking [34] and ARG allele amplicon sequencing

[35]. To our knowledge, this is the first survey to identify

the benefits of long reads in de novo assembly of ARG

alleles from a complex metagenomic sample.

We also identified discrepancies between our selected

computational (MetaBat) and proximity ligation

(ProxiMeta Hi-C) binning methods that suggest that a

combination of binning techniques is needed to identify

all complete MAGs in a metagenomic sample. We note

that Hi-C linkage data is dependent on the density of se-

lected restriction sites in the genomes of the community

and the protein-DNA interactions that are selectively

enriched during library preparation (Additional file 1:

Supplementary methods). This difference in sampling

composition from our short-read WGS read dataset

means that it is difficult to distinguish between the
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biases of each method and real biological signal, so our

comparisons are limited to the observed content of bins

from each technology on the same dataset. Results from

the short-read and long-read assemblies are concordant,

which suggests that the general output of the binning

programs is agnostic to the sequencing technology in

our dataset. Contig binning comparisons suggest that

MetaBat successfully binned contigs from the low-GC%

contig tranches; however, it failed to incorporate the same

proportion of smaller contigs in bins from the short-read

(< 2500 bp) or long-read (< 10,000 bp) assemblies as the

ProxiMeta method. Smaller contigs most likely result

from low-sequencing coverage regions or high copy

orthologous genomic segments in a metagenomic sample.

Both of these problems may have confounded the tetranu-

cleotide frequency and coverage depth estimates used by

MetaBat to bin our contigs, resulting in their lower fre-

quencies in that binset. We did note some issues in DAS_

tool dereplication of our dataset, where DAS_tool may

have aggressively pruned contigs from MetaBat bins.

However, our data suggests that MetaBat may have

included far more contamination due to cross-Kingdom

SCGs, thereby resulting in this aggressive filtration (for

more details, please see the “Genome assembly and

binning” section of the “Methods” section).

In order to identify the horizontal transfer of mobile

DNA in the rumen, we exploited two technologies to

identify candidate hosts for transferred ARG alleles and

assembled viral contigs. We observed intercontig link as-

sociations between ARG allele contigs and bins that con-

sisted of species from the Clostridiales and Bacteroidales.

Evidence of identical ARG allele orthologs belonging to

both classes was previously found in human colon sam-

ples [36]; however, we note that our analysis shows only a

precursory association of the context of identified ARG al-

leles and prospective host bins. We were unable to identify

the exact vector that may enable the cross-species transfer

of several of these alleles, but we suspect that lateral trans-

fer of ARG alleles may be an adaptation of rumen bacter-

ial species against antibiotic challenge as noted above.

Direct evidence of the horizontal transfer of mobile ele-

ments was observed in identified novel virus-host associa-

tions that we detected by using a combination of PacBio

long-read alignments and Hi-C intercontig link analysis.

Proximity ligation has been previously used to detect

virus-host associations [37]; however, our combination of

technologies potentially reveals new insights in the biology

of the interaction between host and phage. We found a

clear preference between the two methods in the detec-

tion of viral family classes, with Hi-C intercontig links

preferring the Myoviridae viral family and our PacBio read

alignments preferring all other viral families. This prefer-

ence may reflect the nature of the activity of these viruses,

as some genera of the Myoviridae family are known to

have short lytic cycles [38] as opposed to long-term lyso-

genic life cycles found in other viral families. We also

identified virus-host association with several contigs

within bins identified as belonging to the Desulfovibrio

and Sulfurovum genera. Viral auxiliary metabolic genes re-

lated to sulfur metabolism were previously identified in

the assembly of rumen viral populations [39], and our

study may provide a link to the putative origins of these

auxiliary genes in host genomes that are known to

metabolize sulfur compounds. We identified two ORFs an-

notated as 3′-phosphoadenosine-5′-phosphosulfate (PAPS)

genes in a viral contig in the long-read assembly that was

associated with host contigs assigned to the Dehalococ-

coides. We did not detect any auxiliary metabolic genes in

the short-read assembly. Additionally, the short-read as-

sembly served as the basis of fewer virus-host contig associ-

ations in both Hi-C and PacBio read analyses, suggesting

that assembled short-read viral contigs may have been too

small or redundant to provide a useful foundation for

alignment-based associations.

We recommend that future surveys of complex meta-

genomic communities include a combination of different

DNA sequencing technologies and conformational cap-

ture techniques (i.e., Hi-C) in order to best resolve the

unique biological features of the community. If our ana-

lysis was restricted to the use of the short-read WGS

data and one computational binning technique (Meta-

Bat), we would have missed 139 out of 250 of the top

dereplicated DAS_Tool short-read bins contributed by

ProxiMeta binning. Our long-read dataset further con-

tributed 7886 complete ORFS, 97 ARG alleles, and 188

virus-host associations, with Hi-C signal providing fur-

ther evidence of virus-host associations. We demon-

strate that even a small proportion of long-reads can

contribute high-quality metagenome bins and that the

long-read data provided by the technology is suitable for

uncovering candidate mobile DNA in the sample. We

also note that the inclusion of a computational binning

method (Metabat) with a physical binning technique

(ProxiMeta; Hi-C) further increased our count of high-

quality, DAS_Tool dereplicated bins, likely due to each

method sampling a different pool of organisms. There-

fore, the DAS_Tool dereplication of both sets of bins

increased our final counts of high-quality (> 80% com-

pletion) bins by 30–60% in the long-read and short-read

assemblies. If a metagenomic WGS survey is cost-

constrained, our data suggests that a computational

method, such as MetaBat, currently cannot fully com-

pensate for the sampling bias and repetitive, orthologous

DNA issues that could reduce the completeness of a

downstream short-read assembly. Still, we suspect that

such projects will be able to assemble and characterize

the abundant, moderate-GC portion of the metagenome

community sufficiently for analysis.
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Further refinements could improve characterization of

the rumen microbial community and other complex

metagenomic communities in general. We note that the

majority of our HQ bins are already present in other

rumen metagenome assemblies, suggesting that the

highly abundant, “core” bacterial community has been

sufficiently assembled in other surveys [18, 19]. How-

ever, microbes present in low abundance (or transient

species) still represent a challenge to all of the technolo-

gies used in our survey. A sample fractionation method

similar to one used by Solden et al. [40] would enable

better, targeted coverage of these communities in future

surveys while losing the ability to determine relative

abundance estimates for strains. In the absence of tar-

geted sample enrichment, co-assembly with other sam-

pled datasets [18], low-error rate long reads [32], or

real-time, selective read sequencing [41] would enable

sampling of lower abundant strains. Additionally, there

is a need for a rigorous method to combine and/or scaf-

fold metagenome assemblies with high-error long reads.

Our attempts to combine our short-read and long-read

datasets using existing scaffolding and assembly software

failed to produce a significant improvement in assembly

contiguity and quality. The complexity of the data will

likely require a specialized solution that can also resolve

issues that result from excessive strain heterogeneity.

Conclusions
We demonstrate the benefits of using multiple sequen-

cing technologies and proximity ligation in identifying

unique biological facets of the cattle rumen metagen-

ome, and we present data that suggests that each has a

unique niche in downstream analysis. Our comparison

identified biases in the sampling of different portions of

the community by each sequencing technology, suggest-

ing that a single DNA sequencing technology is insuffi-

cient to characterize complex metagenomic samples.

Using a combination of long-read alignments and prox-

imity ligation, we identified putative hosts for assembled

bacteriophage at a resolution previously unreported in

other rumen surveys. These host-phage assignments

support previous work that revealed increased viral pre-

dation of sulfur-metabolizing bacterial species; however,

we were able to provide a higher resolution of this asso-

ciation, identify potential auxiliary metabolic genes re-

lated to sulfur metabolism, and identify phage that may

target a diverse range of different bacterial species.

Furthermore, we found evidence to support that these

viruses have a lytic life cycle due to a higher proportion

of Hi-C intercontig link association data in our analysis.

Finally, it appears that there may be a high degree of

mobile DNA that was heretofore uncharacterized in the

rumen and that this mobile DNA may be shuttling anti-

microbial resistance gene alleles among distantly related

species. These unique characteristics of the rumen mi-

crobial community would be difficult to detect without

the use of several different methods and techniques that

we have refined in this study, and we recommend that

future surveys incorporate these techniques to further

characterize complex metagenomic communities.

Methods

Sample selection, DNA extraction, and Hi-C library

preparation

Rumen contents from one multiparous Holstein cow

housed at the University of Wisconsin, Madison, campus

were sampled via rumen cannula as previously described

[42] under a registered Institutional Animal Care and

Use Committee protocol: A005902. The sampled cow

was in a later period of lactation and was being fed a

total mixed ration. Rumen solids and liquids were com-

bined in a 1:1 volume mix, and then were agitated using

a blender with carbon dioxide gas infusion as previously

described [42]. DNA was extracted via the protocols of

Yu and Morrison [43] albeit with several modifications

to the protocol to increase yield. To improve DNA pre-

cipitation, an increased volume of 10M ammonium

acetate (20% of the supernatant volume) was added.

Additionally, DNA pellets were not vacuum dried so as

to reduce the potential for single-strand nicking due to

dehydration. DNA quality was assessed via Fragment

Analyzer spectra and spectrophotometric assays.

Portions of the rumen content samples were fixed by a

low concentration formaldehyde solution before DNA ex-

traction as previously described [44]. Fixed samples were

subject to the same DNA extraction protocol as listed

above, processed by Phase Genomics (Seattle, WA) and

sequenced on a HiSeq 2000.

Long-read and short-read DNA sequencing

Tru-seq libraries were created from whole DNA preps

for the sample as previously described [45]. Samples

were run on a single Illumina NextSeq500 flowcell

using a 300 cycle SBS kit to produce 1.14 billion, 150 bp

by 150 bp paired-end reads. The total amount of se-

quenced bases for the short-read dataset was 171 Gbp

(Additional file 1: Table S1). Hi-C libraries were created

as previously described [44], and sequenced on an Illu-

mina Hiseq 2000 to generate 80 × 80 paired-end reads. A

total of 40,889,499 and 22,487,509 reads for the Sau3AI

and MluCI libraries were generated, respectively.

DNA samples from each cow were size selected to a

6-kb fragment length cutoff using a Blue Pippen (Sage

Science; Beverly, MA). Libraries for SMRT sequencing

were created as previously described [6] from the size-

selected DNA samples. We generated 6.7 and 45.35 Gbp

of PacBio uncorrected reads using the PacBio RSII (8

cells) and PacBio Sequel (21 cells), respectively. Different
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DNA extraction methods can result in substantial ob-

served differences in strain- and species-level assign-

ments depending on the recalcitrance of the cell wall of

individual cells [8]. However, contemporary long-read se-

quencing platforms require input DNA to be devoid of

single-strand nicks in order to maximize sequence read

lengths [46]. Indeed, our observed, average subread length

for the long-read dataset was almost half (7823 bp RSII;

6449 bp Sequel) the size of our original Fragment

Analyzer spectra peaks (~ 14,651 bp), suggesting that the

bacterial cell lysis still impacted DNA molecule integrity

(Additional file 1: Figure S8). Regardless, a total of 52Gbp

of subread bases were generated on all samples using Pac-

Bio sequencers (Additional file 1: Table S1).

Genome assembly and binning

PacBio raw reads were assembled by Canu v1.6+101

changes (r8513). We ran five rounds of correction to try to

recover lower-coverage reads for assembly using the pa-

rameters “-correct corMinCoverage=0 genomeSize=5m

corOutCoverage=all corMhapSensitivity=high”. The input

for each subsequent round was the corrected reads from

the previous step. Finally, the assembly was generated via

the parameters “-trim-assemble genomeSize=5m oeaMem-

ory=32 redMemory=32 correctedErrorRate=0.035”. The

assembly was successively polished twice with Illumina

data using Pilon restricted to fix indel errors using the “-fix

indels” and “-nostrays” parameters. Pilon correction was

automated using the slurmPilonCorrectionPipeline.py

script available at the following repository: https://github.

com/njdbickhart/RumenLongReadASM. We generated a

second set of PacBio corrected reads for the viral associ-

ation and GC-read overlap analyses using the options

“-correct corMinCoverage=0 genomeSize=5m corOut-

Coverage=all corMhapSensitivity=high corMaxEvidence-

CoverageLocal=10 corMaxEvidenceCoverageGlobal=10”

to restrict the global filter to avoid over-smashing similar

sequences during correction. Illumina reads were assem-

bled using MegaHit v1.1.2 using parameters --continue

--kmin-1pass -m 15e+10 --presets meta-large --min-contig-

len 1000 -t 16 and otherwise default settings.

Reads from other rumenWGS datasets (Additional file 1:

Table S2) were aligned to assembled contigs from both as-

semblies with BWA MEM [47] and were used in Meta-

bat2 binning [22]. Metabat2 was run with default settings

using the coverage estimates from all rumen WGS data-

sets (Additional file 1: Supplementary methods). Hi-C

reads were aligned to assembled contigs from both assem-

blies using BWA MEM [47] with options -5S, and contigs

were clustered using these alignments in the Phase

Genomics ProxiMeta analysis suite [44]. We noted a dif-

ference in bin contamination between the two methods,

where Metabat tended to have more bins with greater

than 10% CheckM [26] Contamination (76 out of 1347

short-read bins) compared to the ProxiMeta bins (29 out

of 3664 bins; chi-squared p < 0.001). We also briefly

assessed the utility of Hi-C links against the use of short-

read WGS, PE links on our dataset using the mmgenome2

R package [48] (Additional file 1: Figure S9, S10;

Additional file 1: Supplementary methods). The quality of

Hi-C library preparation was assessed by the proximity of

read alignments to the motifs of each respective res-

triction endonuclease used to fragment the library

(Additional file 1: Figure S11).

Using the ProxiMeta and MetaBat bin assignments as

a seed, we consolidated assembly bins for each assembly

using the DAS_Tool pipeline [24]. The dereplication al-

gorithm of DAS_Tool modifies input bin composition in

an iterative, but deterministic, fashion, so we also vali-

dated the quality of our input bins by using CheckM

[26] quality metrics in addition to the DAS_Tool SCG

metrics (Fig. 2c, d). We noted some discrepancies in the

CheckM quality metrics and those estimated by DAS_

Tool for our input and dereplicated MetaBat bins, re-

spectively (Additional file 1: Figure S13, S14). CheckM

tended to overestimate the quality of MetaBat input bins

and dereplicated bins in each assembly, which may have

due to the inclusion of proportionally more cross-

Kingdom SCGs in the MetaBat bins as assessed by

DAS_Tool. As a result, DAS_Tool dereplication was far

more permissive at removing bins from our MetaBat

dataset (average 69 ± 204 contigs removed per bin) than

our ProxiMeta dataset (average 23 ± 30 contigs) in our

short-read dataset. For further details on assembly bin-

ning and bin dereplication, please see Additional file 1:

Supplementary methods. Finally, we assessed the pro-

portion of short-read WGS reads that aligned to the bins

that were generated by DAS_tool and found that the

HQ bins comprised ~ 1.2% of the total short-read WGS

alignments (Additional file 1: Figure S12).

Assembly statistics and contaminant identification

General contig classification and dataset statistics were

assessed using the Blobtools pipeline [27]. To generate

read coverage data for contig classification, paired-end

short-read datasets from 16 SRA datasets and the Illumina

sequence data from this study were aligned to each contig

and used in subsequent binning and contaminant identifi-

cation screens. For a full list of datasets and accessions

used in the cross-genome comparison alignments, please

see Additional file 1: Table S2. Assembly coverage and

contig classifications were visually inspected using Blob-

tools [27]. Comparisons between assembled contigs and

other cattle-associated WGS metagenomic datasets were

performed by using MASH [49] sketch profile operations

and minimap2 [50] alignments. Datasets were sketched in

MASH by using a kmer size (-k) of 21 with a sketch size

of 10,000 (-s). Minmap2 alignments were performed using
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the “asm5” preset configuration. DIAMOND [51] align-

ment using the Uniprot reference proteomes database (re-

lease: 2017_07) was used to identify potential taxonomic

affiliation of contigs through the Blobtools metagenome

analysis workflow [27]. MAGpy [52] was also used to sug-

gest putative names for the short- and long-read bins.

CheckM [26] version 1.0.11 was used to assess bin con-

tamination and completeness separately from the DAS_

Tool SCG quality metrics.

ORF prediction, gene annotation, and taxonomic affiliation

Open reading frames were identified by Prodigal [28] (v

2.6.3) as part of the DAS_Tool pipeline. Gene ontology

(GO) term assignment was performed using the Eggnog-

mapper pipeline [53] using the same DIAMOND input

alignments used in the Blobtools analysis. Assembly bin

functional classification was determined using the

FAPROTAX workflow [54], using the Uniprot/DIA-

MOND/Blobtools-derived taxonomy of each contig. In

order to deal with uncertain species-level classifications

for previously unassembled strains, taxonomic affilia-

tions were agglomerated at the genus level for dendro-

gram construction. The reference tree was created from

NCBI Common Tree (https://www.ncbi.nlm.nih.gov/

Taxonomy/CommonTree/wwwcmt.cgi) and plotted in

the R package ggtree [55].

Virus-host association prediction and Hi-C intercontig link

analysis

In order to identify potential virus-host links, we used a

direct long-read alignment strategy (PacBio alignment)

and a Hi-C intercontig link analysis (Hi-C). Briefly, contigs

identified as being primarily viral in origin from the Blob-

tools workflow were isolated from the short-read and

long-read assemblies. These contigs were then used as the

references in an alignment of the error-corrected PacBio

reads generated in our second round of Canu correction

(please see the “Genome assembly and binning” section

above). We used Minimap2 to align the PacBio dataset to

the viral contigs from both datasets using the “map-pb”

alignment preset. Resulting alignment files (“paf”) were

subsequently filtered using the “selectLikelyViralOver-

hangs.pl” script, to selectively identify PacBio read align-

ments that extend beyond the contig’s borders. We then

used the trimmed, unaligned portions of these reads in a

second alignment to the entire assembly to identify puta-

tive host contigs (Additional file 1: Supplementary

methods). A virus-host contig pair was only identified if

two or more separate reads aligned to the same viral/non-

viral contig pair in any orientation.

Hi-C intercontig link associations were identified from

read alignments of the Hi-C data to each respective as-

sembly. BAM files generated from BWA alignments of

Hi-C reads to the assemblies were reduced to a bipartite,

undirected graph of intercontig alignment counts. The

graph was filtered to identify only intercontig links that

involved viral contigs and that had greater than 20 or 10

observations in the long-read and short-read assembly,

respectively. The information from both methods was

combined in a qualitative fashion using custom scripts

(Additional file 1: Supplementary methods). The result-

ing dataset was visualized using Cytoscape [56] with the

default layout settings, or the “attribute circle” layout op-

tion depending on the degrees of viral-contig associa-

tions that needed to be visually represented.

CRISPR-CAS spacer detection and ARG detection

ARG homologues were identified using BLASTN with the

nucleotide sequences extracted from the Prodigal ORF lo-

cations as a query against the transferrable ARG ResFinder

database [57]. Hits with a minimum 95% nucleotide se-

quence identity and 90% ARG sequence coverage were

retained as candidate ARGs. Hi-C linker analysis identify-

ing ARG gene contig associations was derived from Proxi-

meta bin data and Hi-C read alignments by counting the

number of read pairs connecting contigs in each bin to

each ARG. The procedure for identifying these associations

was similar to the protocol used to identify Hi-C-based,

virus-host associations. Briefly, a bipartite, undirected

graph of intercontig alignment counts was filtered to con-

tain only associations originating from contigs that con-

tained ARG alleles and had hits to non-ARG-containing

contigs. This graph was then converted into a matrix of

raw association counts, which were then analyzed using

the R statistical language (version 3.4.4). Taxonomic affilia-

tions of contigs were derived from Blobtools, whereas the

taxonomic affiliations of AN bins were derived from Proxi-

Meta MASH [49] and CheckM [26] analysis.

Additional files

Additional file 1: Supplementary figures and methods. Contains all

supplementary figures and two supplementary tables. Additionally,

contains a brief listing of additional methods and command line code for

replicating analysis. (DOCX 3839 kb)

Additional file 2: Short-read assembly bins. A tab-delimited text file

containing contig ID names, contig lengths, bin assignment, and read

depth coverage for the short-read assembly MQ bins. (GZ 13035 kb)

Additional file 3: Long-read assembly bins. A tab-delimited text file

containing contig ID names, contig lengths, bin assignment, and read

depth coverage for the long-read assembly MQ bins. (GZ 731 kb)

Additional file 4: Short-read assembly HQ bins. A tab-delimited text file

listing the number of contigs, total sizes, and summary statistics for

short-read assembly HQ bins. (TAB 4 kb)

Additional file 5: Long-read assembly HQ bins. A tab-delimited text file

listing the number of contigs, total sizes, and summary statistics for

long-read assembly HQ bins. (TAB 1 kb)

Additional file 6: Short-read assembly MQ bin taxonomy. A tab-delimited

text file that lists the taxonomic assignment of short-read assembly MQ

bins as determined by the Blobtools/DIAMOND alignment pipeline.

(GZ 49157 kb)
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Additional file 7: Long-read assembly MQ bin taxonomy. A tab-delimited

text file that lists the taxonomic assignment of long-read assembly MQ bins

as determined by the Blobtools/DIAMOND alignment pipeline. (GZ 6453 kb)

Additional file 8: 16S small subunit alignments in HQ bins.

Identification and summary statistics on identified 16S fragment/full-

length sequences in the HQ dataset. (XLSX 15 kb)

Additional file 9: Short-read unique rumen assembly sequence. A

listing of the short-read contigs that did not have reciprocal alignments

to the Hungate1000 or Stewart et al. rumen microbial assemblies.

(GZ 17072 kb)

Additional file 10: Long-read unique rumen assembly sequence. A

listing of the long-read contigs that did not have reciprocal alignments

to the Hungate1000 or Stewart et al. rumen microbial assemblies.

(GZ 9 kb)

Additional file 11: Hypergeometric test of contig alignment depth.

These are the results of an enrichment test designed to identify differences

in community abundance/composition between several public rumen

datasets (see Additional file 1: Supplementary methods). The short-read

assembly and long-read assembly results are listed on separate tabs.

Enrichment was determined by the Hypergeometric mean test using a

Benjamini-Hochberg-corrected alpha. (XLSX 224 kb)

Additional file 12: Short-read assembly Prodigal ORF predictions. This

file contains all Prodigal ORF predictions for the short-read MQ bins.

(GZ 87178 kb)

Additional file 13: Long-read assembly Prodigal ORF predictions.

This file contains all Prodigal ORF predictions for the long-read MQ bins.

(GZ 18904 kb)

Additional file 14: Virus-host associations. A listing of all associations

(Hi-C linkage or long-read alignment) between predicted viral contigs

and non-viral contigs. (XLSX 24 kb)

Additional file 15: ARG allele predictions. A listing of all predicted

candidate antibiotic resistance gene (ARG) alleles in the short- and

long-read assemblies. (XLSX 17 kb)

Additional file 16: Long-read assembly ARG allele similarities. A percent

identity matrix of detected ARG alleles to show high degrees of similarity

between alleles. (XLSX 37 kb)
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