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Abstract—Hierarchical wireless overlay networks have been
proposed as an attractive alternative and extension of cellular
network architectures to provide the necessary cell capacities to
effectively support next-generation wireless data applications. In
addition, they allow for flexible mobility management strategies
and quality-of-service differentiation. One of the crucial problems
in hierarchical overlay networks is the assignment of wireless
data users to the different layers of the overlay architecture. In
this paper, we present a framework and several analytical results
pertaining to the performance of two assignment strategies based
on the user’s velocity and the amount of data to be transmitted.
The main contribution is to prove that the minimum average
number of users in the system, as well as the minimum expected
system load for an incoming user, are the same under both
assignment strategies. We provide explicit analytical expressions
as well as unique characterizations of the optimal thresholds on
the velocity and amount of data to be transmitted. These results
are very general and hold for any distribution of user profiles and
any call arrival rates. We also show that intelligent assignment
strategies yield significant gains over strategies that are oblivious
to the user profiles. Adaptive and on-line strategies are derived
that do not require any a priori knowledge of the user population
and the network parameters. Extensive simulations are conducted
to support the theoretical results presented and conclude that
the on-line strategies achieve near-optimal performance when
compared with off-line strategies.

Index Terms—Adaptive control, assignment strategy, decision
threshold, hierarchical wireless networks, macrocell, microcell.

I. INTRODUCTION

THE GROWTH in next-generation wireless networks is
driven by the ever increasing popularity of wireless data

applications. In addition to supporting voice services, future
mobile networks are envisioned to be truly multimedia net-
works, which integrate a variety of different applications. Their
success depends on the ability of future network architectures
to provide the necessary capacities to support high data rate
services, while at the same time dealing with the different mo-
bility patterns of the users. To this effect, hierarchical network
architectures with different cell layers have been proposed [3],

Manuscript received May 30, 2003; revised November 11, 2003. This paper
was presented in part at the 2003 Conference on Information Sciences and
Systems (CISS 2003), The Johns Hopkins University, Baltimore, MD, March
2003 [1] and in part at the IEEE 2003 Global Communications Conference
(GLOBECOM 2003), San Francisco, CA, December 2003 [2].

The authors are with the Wireless Research Laboratory, Bell Laboratories-
Lucent Technologies, Murray Hill, NJ 07974 USA (e-mail: tek@lucent.com;
sjhan@lucent.com).

Digital Object Identifier 10.1109/JSAC.2004.826922

[4]. Different layers are distinguished by their respective cell
sizes, their maximum throughput, and the number of support-
able users. For simplicity, we only consider two layers of cells,
generically called the macrocell and the microcell layers. In
such schemes, macrocells are typically designed for universal
coverage of the geographical region, while microcells provide
high throughputs in local hot spots. In order to maximize the
system performance, the assignment of users to the different
layers of the architecture (i.e., to the different base stations),
as well as the potential switching between layers during the
operation of the network, is of crucial importance. The problem
is of course only relevant to users with multiple connection
choices.

In traditional cellular voice networks, the cell selection
problem in the area with multiple cell coverage has been
studied mostly around the concept of “directed retry” [5]–[8].
In this approach, a mobile station compares the channel con-
dition of the cells that it can reach, and initiates a call setup
request to a cell with the best channel quality. If the selected
cell has a free channel, the request is accepted, but if it does
not, the cell provides that user with a list of neighboring cells.
The mobile station then sends a retry message to the cell, which
has the best channel condition among the list. If the channel
quality of all cells in the list is below the acceptable level or no
cell has an available channel, the call setup request is rejected.
As an enhancement, load balancing can be applied to the basic
scheme. That is, when the number of users in a cell exceeds
a certain threshold, the new users and/or the already existing
users are advised to switch to an adequate neighboring cell.
This approach is not suitable to data applications because (non-
real-time) data applications do not require a fixed amount of
resources and, therefore, a cell cannot make a simple decision
whether to accept or reject a data connection request.

Another approach is the “velocity-sensitive” cell selection
method. In this approach, the cell assignment decision is made
based on the mobile’s estimated velocity, so that slow mobiles
can be assigned to microcells, while fast mobiles are assigned
to macrocells. In [9], all newly arrived users are assigned to a
microcell by default. When a user moves out of the coverage of
his/her current cell, the cell dwell time is compared with a pre-
determined threshold. If a user is slowly moving (i.e., if the cell
dwell time is larger than the threshold), the user is handed over to
a neighboring microcell. Otherwise, the user is handed up to the
macrocell. In [10], the channel condition information is utilized
in conjunction with mobile velocity information. Essentially, the
cell selection is done by comparing the signal strength of the
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microcell and the macrocell, so that the cell with the stronger
signal is selected. A certain negative offset is applied to the
signal strength of the microcell, which becomes effective when
the mobile enters the coverage of microcells and is reduced over
time. Due to this negative offset, mobiles are more likely to
select the macrocell at first, if the signal strengths of macro-
cells and microcells are comparable. However, as the offset de-
creases, more mobiles select the microcell if they remain in the
coverage of microcells. As a result, slow mobiles would choose
microcells, while the fast mobiles choose the macrocell. In [11],
a systematic method to determine the threshold of mobile ve-
locity for assignment decision is proposed. It probably is closest
to our approach in that it uses the threshold-based method for
optimal user assignment. That work, however, is aimed at cel-
lular voice networks, focusing on minimizing the call blocking
probability, which may not be the most relevant metric for data
users. Other literature on velocity-based handoff techniques in-
cludes [12]–[14]. A comparative study is given in [15].

There exists a broad range of literature on the channel man-
agement problem in cellular networks. The reader is referred to
[4] for an extensive survey of the literature. This issue, however,
is not directly related to the problem that we tackle in this paper.
The channel planning is more of a network planning problem,
rather than a run-time user assignment problem. Nevertheless,
both problems share the common goal of maximizing system
efficiency in hierarchical wireless networks.

In a broad sense, our solution approach is somewhat similar to
the optimal load balancing algorithms for distributed computer
systems [16]. The contribution of our paper is the derivation
of load balancing metrics which optimize certain system goals
for hierarchical wireless data networks. In a narrower sense,
our scheme can be classified as a form of optimal queue con-
trol [17]. [18] proposes a greedy run-time user assignment al-
gorithm for wireless networks. In this myopic approach, users
are assigned to a cell with minimum load without conducting
repacking. It is different from our approach in that it requires
continuous tracking of current actual load conditions of each
cell, whereas our approach derives an optimal threshold from
the user profile distribution and applies the same threshold un-
less the user population changes substantially.

The main contribution of this paper is to develop an analytical
framework to evaluate the performance of assignment strategies
for nonreal-time data users in hierarchical and other overlay net-
works. By nonreal-time users, we mean users who have a fixed
amount of data to transmit and remain connected to the system
until all of the data is transmitted to the intended receiver. In
other words, the user connection time depends on the feasible
transmission rate and the capacity awarded to each user, as well
as the assignment strategy employed. Such a model is for ex-
ample applicable to e-mail applications or file transfers, but
would not apply to voice communications or video streaming
for example. We analytically show that two schemes based on
velocity and amount of data to be transmitted achieve the same
system performance (in terms of the average number of users in
the system and the expected system load seen by an incoming
new user), and also yield the same stability region of call arrival
rates. The optimal threshold values on velocity and data amount
are calculated explicitly. Our results are very general and do not

depend on the statistical description of the users’ profiles or the
underlying link-layer technologies. Unique characterizations of
the optimal decision thresholds are derived and used to devise
adaptive and on-line assignment strategies that do not require
any a priori knowledge of the user profiles, the cell capacities
or the call arrival rates.

The remainder of this paper is organized as follows. In
Section II, we present a general description of our model and
the set of assumptions made throughout the paper. The two
assignment strategies based on velocity and amount of data
are presented in Section III. In Section IV, the main theoretical
results of this paper are derived. Numerical results obtained
through simulations are shown in Section V. Conclusions
follow in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

In this section, we describe our hierarchical network model
of macrocell and microcell layers and state the general assump-
tions made throughout the paper. This setup might correspond to
a macro-micro or a micro-pico cellular network context. How-
ever, the proposed strategy and the corresponding results are
more general and may very well be extended to multitiered ar-
chitectures. The proposed framework may equally well model
the integration of different network technologies, such as, for
example, a -802.11 integrated network [19]. We assume that
the network topology and the layout of the macrocells and mi-
crocells is fixed and known to the decision process. The micro-
cells geographically underlie a macrocell but do not necessarily
cover the entire macrocell. We also assume that an underlying
control structure, instructing users to connect to the macrocells
or the microcells, is available. Mobile devices may transmit (and
receive) to (from) either the macrocell or the microcell (but not
simultaneously).

The users’ behavior is modeled by several stochastic pro-
cesses that facilitate the analysis of the proposed assignment
strategies. First of all, the aggregate data traffic is modeled as
two Poisson call arrival1 processes in the coverage region of the
microcells and the macrocells, of rates and , respectively.
In general, and may be different and allow us to model
hot spots with high call volumes in the geographical region of
the microcell. At this point, we note that a call may originate
in the micro coverage region, but still be assigned to the macro-
cell (if this is deemed to increase the system-wide performance).
Thus, and are not the actual arrival rates (after assign-
ment) to the microcells and macrocells. The mobility of user
is measured by its average velocity . It is recognized that the
instantaneous speed of mobiles changes continuously, but only
the average speed (calculated over an appropriate time horizon)
should influence the assignment decision. A choice of a small
time horizon induces frequent reassignments and switching be-
tween layers, leading to excessive signaling overhead, potential
handoff failures, and instability. The amount of data (in bits) that
user wants to transmit is exponentially distributed with mean

. Both and are random variables and each user’s ve-
locity-data profile is chosen according to the joint probability

1Even though we consider the context of data users, we refer to the beginning
of a data session as a call arrival.
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density function (pdf) , defined on the two-dimen-
sional (2-D) velocity and data amount plane and assumed to be
continuous and differentiable. The maximum velocity and data
amount are denoted by and . Without loss of gener-
ality, the respective minimum values are set to and

. (in bits per second) is the maximum feasible
transmission rate for each user. is independent of the users’
profiles, but depends on the number of users at each layer in the
system and the underlying technologies and influences the con-
nection time of the users. Indeed the time required to transmit
the amount of data of user is exponentially distributed with
mean (and, thus, with rate ).

We identify the state of the system ( , ) as the number of
users in the microcell and macrocell.2 The system remains in
a certain state until either a call in the microcell or the macro-
cell is completed (meaning all the data for that user has been
transmitted), a new call comes in or there is a mobility-induced
handoff between macrocells and microcells. The call termina-
tion process now is the superposition of multiple Poisson pro-
cesses and is, therefore, again a Poisson process. For example,
the rate of the call termination process out of the macrocell is
the sum of the rates of the corresponding users in state ( , ),
namely . It is immediately seen that this
rate depends on the set of users in the state (and not just on
the number of these users). We do not model this fine granu-
larity of the system and, therefore, are not able to distinguish
between different combinations of users assigned to the cell. As
an approximation for our theoretical calculations, we identify
each user with the average behavior among all the users and
further approximate the call duration as an exponentially dis-
tributed random variable with mean , where is the av-
erage data size, averaged over the user profiles. This approxi-
mation is acceptable for the numerical values considered for the
typical range of and , and becomes more accurate as the
average time required to transmit the data becomes smaller, i.e.,
as increases or as decreases. We continue to make this
approximation in order to derive our theoretical results. The va-
lidity of this approximation is assessed in the simulations which
show a close match between the theoretical results and those of
the simulations (conducted without this approximation). Thus,
from now on, we assume that the call termination process (when

users are in the macrocell) is modeled as a Poisson process of
rate

(1)

where is the average amount of data to be transmitted by
users in the macrocell (averaged over the corresponding pro-
files). Similarly, the call termination rate out of the microcell
with users is

(2)

2The state (i, j) actually denotes the number of ongoing sessions in the micro-
cell and the macrocell. We allow users to simultaneously open multiple sessions
and treat multiple sessions of the same user as different users. With a slight abuse
of notation, we continue to refer to (i, j) as the number of users in the given state.

Fig. 1. Markov chain model for dynamic behavior of macrocell-microcell
assignment schemes.

and are the maximum per user transmission
rates of the macrocell and microcell with and users, respec-
tively, and depend on the physical- and link-layer technologies
(e.g., available bandwidth, multiaccess protocol, scheduling al-
gorithms, power constraints). We are now in the position to con-
clude that the dynamic behavior of the system can be analyzed
by a 2-D Markov chain with an infinite number of states in each
dimension, a generic step of which is shown in Fig. 1. The tran-
sition probabilities are related to the call arrival, call holding and
mobility parameters. They also critically depend on the assign-
ment schemes. Let and denote the call arrival rates to the
macrocell and microcell. is the mean outgoing handoff rate
per calling mobile from a microcell. Similar to [11], we assume
that the handoff process is Poisson and approximate the handoff
rate by the mean boundary crossing rate

where is the average velocity of users with microcell profiles
and is the radius of the microcell (assumed to be circular for
convenience). We point out that , , , , and all
depend on the assignment strategy under consideration.

We emphasize the crucial distinction between the user’s loca-
tion, the profile, and the assignment. The user’s location refers
to the geographical position of the user and is independent of
the assignment strategy. On the other hand, a user has a macro-
cell/microcell profile if its characteristic is consistent
with the requirements for assignment to the macrocell or the mi-
crocell with respect to the assignment scheme under considera-
tion. The profile refers to the preferred assignment of the user.
Finally, the user’s assignment refers to the outcome of the deci-
sion process (i.e., the actual assignment). The subtle distinction
is especially important when the macrocell is not fully covered
by microcells. In this case, users with micro profiles who are not
in the coverage of the microcells are assigned to the macrocell.
In other words, a user is only assigned to the microcell if it has
a micro profile and is in the coverage region of the microcell.
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Otherwise, the user is always assigned to the macrocell. Denote
by and the probabilities that a given user has a macrocell,
respectively, a microcell profile. Of course, and also de-
pend on the assignment strategy. Then, the probabilities that a
user is assigned to the macrocell, respectively, the microcell are
given as

(3)

(4)

Therefore, the call arrival rates to the macrocell and the mi-
crocell can be computed as follows:

(5)

(6)

In the proof of Theorem 1, we show how and are
computed as functions of the assignment strategies. The calcu-
lation of involves the same logical steps.

III. ASSIGNMENT STRATEGIES

We now introduce the two assignment strategies considered
in this paper. An assignment strategy is a rule to divide the en-
tire user population into two subsets (in the case of a two-tiered
architecture). In general, the user population has to be divided
in as many subsets as there are layers in the architecture. For
ease of exposition, we restrict our attention to two-tiered archi-
tectures, but we emphasize that all the concepts and results natu-
rally extend to more general architectures as well. In this paper,
we only consider assignment strategies that depend on one of
the parameters of the user’s profile, either the velocity or the
data size, but not on the joint profile information. Intuitively it
makes sense to consider threshold-based assignment strategies
and in fact, in Section IV, we show the optimality of such as-
signment strategies.

The first strategy is a velocity-based assignment strategy
(VAS), characterized by a velocity threshold : users with av-
erage velocity have a macro (micro) profile.
The rationale behind this scheme is that assigning fast-moving
users to macrocells and slower users to microcells reduces the
number of required handoffs. Rather than basing the decision
on full instantaneous knowledge (position, instantaneous
velocity, direction of movement) of the wireless network, the
decision depends solely on the average velocity of the users.
The velocity of the users can be estimated from the cell sojourn
times [11]. Other methods include measuring the propagation
delay periodically, estimating the maximum Doppler spread
[20], estimating the velocity based on higher order crossings
[21], level crossing and zero crossing rates [22], or based on a
covariance approximation [22], [23]. The profile probabilities

and can now be computed as

The second assignment strategy, called the data-based
assignment strategy (DAS), is based on the average amount
of data to be transmitted by the user. One would envision
a strategy that assigns users with small data amounts to the
macrocells, while users with large data amounts are assigned to
the microcells. The rationale behind this strategy comes from
the fact that the inherent capacity of microcells is typically
larger than that of macrocells. Instead of a velocity threshold,
we now consider a threshold on the average amount of
data. Users, whose amount of data is larger (smaller) than
the threshold, have a micro (macro) profile. The macro/micro
profile probabilities are now computed as

Note that the profile probabilities only depend on the mar-
ginal profile distributions and not on the joint distribution (even
when the velocity and the data size are not assumed to be in-
dependent of each other). The main objective of the paper is to
determined the optimal decision thresholds and for two
different system-wide objectives.

IV. ANALYTICAL RESULTS

We now derive some analytical results pertaining to the per-
formances of the VAS and DAS strategies. In particular, our
main theorem shows that the minimum average number of users
in the system is the same under the optimal VAS and DAS
schemes, and the optimal thresholds and are explic-
itly computed. Similarly, we also show that the same qualita-
tive conclusion holds when the objective is to minimize the ex-
pected system load seen by an incoming new user. We then de-
rive unique characterizations of the optimal decision thresholds
which are used to devise adaptive and on-line assignment strate-
gies. As opposed to the optimal off-line strategies, these on-line
strategies do not require any a priori knowledge of the statis-
tical description of the user population, the call arrival rates
or the cell capacities. In order to derive the theoretical results
in this section, we need to make the following additional as-
sumptions. Our simulation results in Section V, however, show
that the qualitative results presented here hold true even without
these assumptions.

Assumption 1: There are no handoffs between macrocells
and microcells.

Assumption 2: The cell capacities at the macro and micro-
layers are constant and independent of the number of users. In
other words, and , .

Assumption 1 is reasonable when the user mobility is limited
with respect to the data transmission time. Assumption 2 is rea-
sonable for systems in which a fixed air-link capacity is shared
evenly between the users. This assumption may not hold for sys-
tems that exploit multiuser diversity.
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A. Minimum Average Number of Users in Systems

In this first section, the objective is to assign the users to
the different layers in the hierarchical architecture so as to
minimize the total average number of users in the system.
More efficient assignment strategies allow admitted users to
depart quicker, thereby freeing available resources for the
remaining users, which then depart from the system faster
than under nonoptimal assignment strategies. Minimizing the
average number of users in the system is, therefore, a desirable
objective as it allows for maximum utilization of the available
resources and, therefore, maximizes the network capacity (in
terms of the maximum number of subscribers that can stably be
supported by the network). Let and be the av-
erage number of users in the macro, respectively, the microcell
under a given assignment strategy, parameterized by or .

denotes the total average number
of users in the hierarchical network. The following theorem is
the main result of this section.

Theorem 1: Under assumptions 1 and 2, the minimum av-
erage number of users in the system is the same under the op-
timal DAS and VAS strategies. We distinguish three cases.

Case 1) When ,
the objective is monotonically decreasing in and
monotonically increasing in . Thus, the optimal
thresholds are and and the
corresponding minimum average number of users in
the system is

Case 2) When
, the objective is monotonically in-

creasing in and monotonically decreasing in
. Thus, the optimal thresholds are and

, leading to a minimum average number
of users in the system of

Case 3) Otherwise, there exist optimal thresholds given as
the solution of the following integral equations

(7)

(8)

The minimum average number of users in the system
is then determined as

Proof: The details of the proof are found in the Appendix.
However, we note that the minimum average number of users
only depends on the cell capacities, the call arrival rates, and
the average data size, but does not depend explicitly on the user
profile distribution, although the optimal thresholds do depend
on the profile distribution.3

Proposition 1: Threshold-based assignment strategies are
optimal in the sense that they achieve the minimum total
average number of users in the system for the DAS and the
VAS assignment strategies.

Proof: The proof is obtained along the same lines as that
of Theorem 1 by considering multiple division points in the in-
tervals and , and showing that the optimal
system performance coincides with that of threshold-based as-
signment strategies.

Proposition 2: Under the optimal decision thresholds
and , load balancing is achieved between the macrocells and
microcells such that

(9)

(10)

where and . This balancing metric
uniquely characterizes the optimal decision thresholds.

Proof: The proof of this result is obtained as an interme-
diate step of the proof of Theorem 1. Note that this result only
applies to the third case as described in Theorem 1, i.e., when
the optimal thresholds are not equal to the minimum or max-
imum permissible values.

The above proposition implicitly defines the balancing
metric when the objective is to minimize the average
number of users in the system. In other words, the balancing
metric at the macrocells and microcells are calculated as

and . It
is noteworthy that, even though the objective is to minimize the
average number of users in the system, the balancing metric is
in general not equal to the number of users at the macro and
microlayers. Indeed, one could have expected that the optimal
decision thresholds would aim at equalizing the number of
users in each layer of the architecture. This simpler rule is
easily implemented and would simply compare the number of

3We also point out that the results of Theorem 1 can be used for dimen-
sioning and provisioning of the network. In some of today’s systems [19], users
would always be assigned to the microcell whenever they are in the coverage
region of the microcell. This corresponds to choosingD = 0, or equivalently,
V = V . The result of Theorem 1, especially the characterization of
Case 2) can be used to determine the region of cell capacities and/or arrival
rates for which this strategy is optimal. Such information is important for service
providers when deploying and dimensioning their networks for a given traffic
load and call arrival rates (and equivalently for call admission control for given
network provisioning and cell capacities).
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users in each cell and require that the threshold be adjusted in
order to ensure that . Proposition 2 shows that
such a rule is in general suboptimal, unless the cell capacities
at the macro and microlayers are equal. However, we will see
in Section IV-B that this is the optimal balancing metric and
the characterization of the optimal decision thresholds when
the objective is to minimize the expected system load.

Proposition 3: The set of arrival rates for which the
system (i.e., the Markov chains) is stable can be explicitly deter-
mined and only depends on the cell capacities and the average
data size to be transmitted. We distinguish two cases.

Case 1) If

Case 2) If

Proof: The result of this proposition is relatively straight-
forward to derive by considering the three different cases given
in Theorem 1, and ensuring that the denominators in each of the
expressions for the average number of users in the system re-
mains positive. These latter conditions correspond of course to
the stability condition in chains.

Note that the stability region is convex as it is determined by
two linear constraints on and . The two constraints, how-
ever, are not symmetric and, therefore, the stability region is not
symmetric in and . This could be expected, as the arrival
rates to the macrocells and microcells (i.e., the arrival rates in
the two Markov chains, and ) are not symmetric in
and . This follows from the fact that a user is only assigned
to the microcell if it is in the micro coverage region and if it
has a micro profile. Some of the arrivals from the micro cov-
erage region may be “overflown” to the macrocell through the
intelligent choice of the thresholds (i.e., through the characteri-
zation of macro and micro profiles), whereas the reverse is not
possible.

B. Minimum Expected System Load

We now consider a different objective and show very similar
results to the ones derived in Section IV-A. Indeed in this sec-
tion, the objective of the assignment strategies is to minimize
the expected system load seen by an incoming new user. While
minimizing the average number of users in the system can be
viewed as a network-wide objective, the expected system load
seen by an incoming user is a user-centric objective. The ex-
pected system load is defined as the average number of bits in
the system awaiting transmission when a new call arrives, and
is mathematically calculated as

where and are the probabilities that a user is as-
signed to the macrocell, respectively, the microcell. and

are the average amounts of data to be transmitted by users as-
signed to the macrocell, respectively, the microcell. and

are the average numbers of users in the macrocell and
the microcell. The following theorem is the main result of this
section and the equivalent of Theorem 1. It is important to point
out that, while the optimal performance of the VAS and DAS
strategies are the same, the optimal thresholds are computed ac-
cording to different integral equations, depending on the objec-
tive function under consideration.

Theorem 2: Under assumptions 1 and 2, the minimum ex-
pected system load seen by an incoming new user is the same
under the optimal DAS and VAS strategies. We distinguish two
cases.

Case 1) When , the optimal thresholds are
and , leading to an expected

system load of

Case 2) When , we have that

The optimal velocity and data thresholds are computed as solu-
tions to the following integral equations

Proof: The proof follows the same logical steps as for
Theorem 1 and is omitted here.

The following propositions are easily obtained as corollaries
of the proof of the above theorem.

Proposition 4: Under the optimal decision thresholds
and , load balancing is achieved between the macrocells and
microcells such that .

Proof: The result of the corollary follows directly from an
intermediate step of the proof of Theorem 2 and the fact that
the average number of users in the macrocells and microcells
are given, respectively, by and

. Accordingly, when the system ob-
jective is to minimize the expected system load, the balancing
metric is chosen as and , where and

are the number of users in the macro, respectively, the mi-
crocell, and are averaged over an appropriate time horizon.

Proposition 5: The set of arrival rates for which the
system is stable can be explicitly determined and only depends
on the cell capacities and the average data size to be transmitted
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C. Adaptive Assignment Strategies

The main results of the previous subsections show that the
optimal performances (both in terms of minimizing the average
number of users in the system and of minimizing the expected
system load) are the same for both VAS and DAS. The op-
timal thresholds are explicitly computed as solutions of integral
equations. This derivation, however, requires knowledge of the
macrocell and microcell capacities, the profile distribution of
velocity and data amount across the user population, and the call
arrival rates. Unfortunately in practical systems, this knowledge
may not be available and, thus, would have to be estimated and
is typically time varying. Therefore, the need arises for on-line
strategies that do not require such a priori knowledge, but still
achieve the same performance as if this knowledge were avail-
able. Equally important is the development of adaptive strate-
gies that adjust the decision thresholds to the network condi-
tions and the user behavior. In Propositions 2 and 4, we have
identified unique characterizations of the system that are only
achieved when the optimal thresholds are selected. These char-
acterizations are now used to adapt the decision thresholds and
compute them in an on-line fashion.

Consider an update interval of length . The thresholds
are held constant during an update interval and updated only at
the beginning of each update interval. Let and be
the measured or estimated values of the balancing metric at the
macrocells and microcells at the beginning of the th update in-
terval, as defined in Propositions 2 and 4. The decision thresh-
olds are then updated proportionally to the imbalance between

and . Specifically, the velocity threshold is updated
according to the following rule:

(11)

where the update magnitude parameter is a parameter to be
tuned in order to regulate the speed of convergence of the al-
gorithm. is the time discounting factor, which results in the
algorithm making smaller adjustments as the number of updates
performed is increased (and, hence, as the velocity threshold be-
comes closer to the intended value). The updated value of the
velocity threshold is of course constrained to be in the interval

. The rationale for this rule is as follows: If
, then there are too many users assigned to the macrocell

resulting in an imbalance in favor of the microcell. Hence, the
threshold should be adjusted in such a way as to increase the
number of users in the microcell, i.e., should be increased.4

Similarly, if , should be decreased. A draw-
back of the above method is that it is very reactive to the mea-
surements in the last update interval. A somewhat smoother up-
date rule considers the exponentially weighted moving average
of the difference in the balancing metric to update the threshold.
Let

(12)

4We implicitly assume here that the balancing metric at the macro, respec-
tively, the microcell, is an increasing function of the number of users assigned
to the macro, respectively, the microcell. This assumption is indeed verified for
the balancing metrics derived in this paper.

with and a smoothing factor that can be
tuned to give more or less weight to the past measurements. The
update is then performed according to the rule

(13)

Note that the two update rules coincide when . It
is obviously seen that, when the algorithm converges,

, leading to as desired. The term
is needed in order to guarantee convergence of the update al-
gorithm and to avoid limit cycles, by making the incremental
change of the velocity threshold smaller. Another objective of
our algorithm is to react to changes in the arrival rate or the
user profile distribution. Such changes are indirectly detected
by an imbalance of the balancing metric, which leads to larger
values of , which in return trigger an update of the velocity
threshold. However, in order to allow the algorithm to react rel-
atively quickly to such changes, we need to avoid small incre-
mental updates. This is accomplished by periodically resetting
the value of to 1. Let be the number of update steps of the
algorithm before is reset to 1. Ideally, we would like to reset
right before a change in the optimal/target velocity threshold is
warranted. In a completely on-line and adaptive solution, these
changes are unpredictable and one solution is to periodically
reset . Another solution would be to reset to 1 whenever the
difference between and becomes very small. This
latter method is preferred in our simulations.

We now provide a similar update rule for the data threshold in
the context of DAS assignment strategies, which mirrors the up-
date rule for VAS

(14)

with
and . , , and are parameters to be tuned (and
which a priori should be different from , and ). Note that
the only difference with the update rule for is the minus sign.
This difference comes from the fact that, in order to increase the
number of users in the microcell, the data threshold should
be decreased (whereas the velocity threshold should be in-
creased). All of the comments, especially related to the resetting
of and the role of the different parameters, equally well apply
here.

V. NUMERICAL RESULTS

In this section, we present some simulation results to support
the statements of the main theorems of this paper, even when
assumptions 1 and 2 are not made. For the sake of brevity of
the paper and to avoid unnecessary duplication, we choose to
concentrate on the objective of minimizing the average number
of users in the system. Very similar results can be obtained for
the second objective, but they do not add any further insight into
the performance of the assignment strategies.

A. Fixed Cell Capacities

We first present some numerical results to demonstrate that
the achieved performance and the optimal thresholds are ac-
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TABLE I
PERFORMANCE OF VAS AND DAS FOR FIXED CELL CAPACITIES. THE FIRST

VALUE IN EACH TABLE ENTRY IS THE VALUE OF THE DECISION THRESHOLD.
THE SECOND VALUE IN PARENTHESES IS THE ACHIEVED AVERAGE NUMBER

OF USERS, I.E., THE VALUE OF THE OBJECTIVE FUNCTION

curately predicted by our theorem and propositions and match
those obtained by our simulations. They also serve to verify that
indeed the system performances achieved by the VAS and DAS
schemes are the same and that the adaptive strategies converge
to the optimal off-line strategies. In this first part, we continue to
assume that the macrocell and microcell capacities are fixed and
independent of the number of users and their locations. We also
assume that the amounts of data to be transmitted (or equiva-
lently the data transmission times) are exponentially distributed.
The analytical results derived in this paper are valid for any joint
probability density function of the users’ profiles of velocity
and average data size. However, in order to illustrate the results
without unnecessarily burdening the computational complexity,
we assume that the user profiles are uniformly distributed be-
tween 0 and m/s and between 0 and Mb
and that the cell capacities are fixed at Mb/s and

Mb/s.

The reader is referred to [1] for additional results with dif-
ferent cell capacities and for several plots showing the average
number of users in the system as functions of the thresholds
and . Table I summarizes the VAS and DAS performance
results for different arrival rates (expressed in calls/s) and com-
pares the theoretical performance with that obtained by simu-
lations. The optimal threshold value for the simulations is ob-
tained by exhaustive search over 40 different threshold values
in the intervals , respectively, . This quantiza-
tion to 40 possible thresholds explains part of the difference be-
tween the theoretical and the simulation results. The table shows
the velocity threshold (in m/s), respectively, the data threshold
(in Mb) and, in parentheses, the achieved average number of
users in the system. We also include the performance results of
the adaptive assignment strategies.

In Fig. 2, we show the performance of the adaptive VAS
rule over time, for different values of the arrival rates. It is
observed that the velocity threshold converges very quickly
to its final value (which coincides with the optimal threshold,
obtained both by exhaustive search over the set of possible
thresholds and by our theoretical calculations). Fig. 3 shows
a similar plot for the adaptive DAS rule. The initial values of
the adaptive rules are chosen as m/s and

Mb and the tunable parameters are chosen
as s, , m/s,

Mb, and .

Fig. 2. Evolution of the adaptive velocity threshold under the adaptive VAS
strategy for different arrival rates.

Fig. 3. Evolution of the adaptive data threshold under the adaptive DAS
strategy for different arrival rates.

So far, we have only demonstrated the on-line behavior of our
schemes. We now focus on a truly adaptive scenario and assume
that the arrival rates change over time. We also fix the arrival
rate in the macro-only region to and consider
three different values for . The arrival rate is assumed to be
constant at , then switch to ,
further decrease to , before increasing again to

, and finally returning to its original value
. The arrival rate is assumed to remain constant at each

value for 5000 s. In Fig. 4, we show the performance of the
adaptive VAS rule under this dynamic scenario. We observe that
the adaptive rule reacts quickly to changes in the arrival rate and
converges to the new desired value of the decision threshold,
even in this scenario when the changes in the arrival rate are
instantaneous and quite significant. A similar graph is obtained
for the adaptive DAS strategy and the conclusions mirror those
of the VAS strategy. We observe that similar results to those
presented here can be obtained if the arrival rate or if both
and are varied. Although not reported here, the rules equally
well adjust the decision thresholds if the profile distribution of
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Fig. 4. Dynamic behavior of the adaptive VAS strategy under time-varying
arrival rate � .

velocity and data amount is changed over time, or when the cell
capacities are changed over time.

B. Variable Cell Capacities and Multiuser Diversity

Next, we study the performance of threshold based assign-
ment strategies under more realistic user behavior and system
assumptions. We consider that the amount of data to be trans-
mitted is distributed according to a log-normal distribution [24]
with average data size Kb and truncated at

Mb. Further, we implement a data queue for each user and de-
crease the remaining amount of data to be transmitted at every
time slot by the actual transmission rate (time slots are normal-
ized to have unit length). Similarly, we consider that the velocity
distribution is piecewise uniform with 40% of the users having
uniform velocity less than 3.6 m/s and 60% having uniform ve-
locity between 3.6 and 20 m/s. This situation might correspond
to an urban environment with a large stationary or slow-moving
population of users.

Further, we suppose that the cell capacities (and, thus, the
feasible transmission rates) depend on the number of users in
each cell and that both the macrocells and the microcells exploit
multiuser diversity through opportunistic scheduling techniques
(such as the well-known proportional fair scheduling algorithm
implemented in the HDR system or 1X-EV-DO [25]). We take
this scheduler as an example to illustrate the system-wide per-
formance of the assignment strategies and emphasize that our
methods are applicable to other scheduling disciplines as well
and the qualitative (if not the quantitative) results remain valid.
In any given time slot, only one user is allowed to transmit for
each cell. The transmission rate of the selected user depends
on the user’s location (and, thus, the user’s channel condition)
and is taken from the discrete set of allowable rates for HDR
[26]. The initial user location is chosen uniformly across the ge-
ographical region with a uniformly selected direction of move-
ment at the speed corresponding to the user’s profile. The radii
of the macrocell and microcell are, respectively, m
and m. All rates are possible when a user is trans-
mitting in the macrocell. However, we assume that only rates
larger than 614.4 Kb/s are used in the microcell. This is consis-
tent with the fact that the inherent microcell capacity is larger

than that of the macrocell and that the microcell has smaller cov-
erage region.

Our objective is to show that the general qualitative conclu-
sions remain valid in these very realistic scenarios. It is recog-
nized that the derived Markov chain results are no longer valid
and, therefore, the theoretical calculations in Section IV can no
longer be applied. The optimal thresholds have to be determined
through exhaustive search over 40 different threshold values in
the intervals , respectively, . Further, even in
this more general situation, we continue to adapt the decision
thresholds according to the rules in (13) and (14). In Table II, we
report the performance results under the optimal and the adap-
tive VAS and DAS strategies for different arrival rates. We con-
sider two adaptive strategies based on two different balancing
metrics. “Adaptive” refers to the “ideal” balancing metric in (9)
and (10), whereas “Adaptive ” refers to a simpler and intuitive
metric of balancing the number of users in each cell. Finally, we
also present the results of the simple strategy that would always
assign a user to the microcell, whenever the user is in the cov-
erage region of the microcell.

The main conclusions to be drawn from these experiments are
the following.

1) The performances achieved by the VAS and DAS strate-
gies are equal or indeed very close to each other, even in
these more general and realistic scenarios when assump-
tions 1 and 2 are no longer applicable.

2) The adaptive and on-line strategies also achieve close-to
optimal performance without any a priori knowledge of
the system parameters and quickly adapt to changes in
these parameters and the resulting target (i.e., the optimal)
decision thresholds.

3) The adaptive assignment strategies based on the statis-
tical description of the user’s profiles and behavior lead
to increased system performance when compared with
a simple strategy that would always assign users to the
microcell when they are in the coverage region of the mi-
crocell. This result clearly demonstrates the effectiveness
of intelligent assignment strategies that explicitly take
into account the user’s profile and behavior. While the
“always-micro” policy seems intuitively appealing and
may be simpler to implement, our results show a perfor-
mance degradation of up to 230% compared with the op-
timal intelligent assignment schemes. The performance
improvement is especially significant when the arrival
rate in the macro-only region is small compared with the
micro region. If the average number of users in the system
is smaller, each user can be allocated more bandwidth and
achieve greater throughput. Therefore, under an efficient
assignment strategy, the service completion time required
until all the user’s data is transmitted is reduced.

4) The adaptive strategy based on the simpler metric of bal-
ancing the number of users in each cell achieves slightly
better performance than the one based on the optimal
balancing metric in (9) (at least in the case when an HDR
scheduler is implemented). This is somewhat surprising
as the metric in (9) corresponds to the characterization of
the optimal thresholds in Theorem 1 (and in fact achieves
the optimal performance when the cell capacities are
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TABLE II
PERFORMANCE COMPARISON FOR VAS AND DAS WITH VARIABLE CELL CAPACITIES AND MULTIUSER DIVERSITY.
THE FIRST VALUE IN EACH TABLE ENTRY IS THE VALUE OF THE DECISION THRESHOLD. THE SECOND VALUE IN

PARENTHESES IS THE ACHIEVED AVERAGE NUMBER OF USERS, I.E., THE VALUE OF THE OBJECTIVE FUNCTION

fixed). We, therefore, attribute the performance degra-
dation to the fact that the cell capacities are no longer
fixed quantities, but depend on the number of users in
the system and their locations. Thus, the performance
of the adaptive rule depends on how the cell capacities
are estimated in the calculation of the balancing metric.
The assignment strategy “Adaptive ” does not suffer
from this caveat as it only needs to calculate the average
number of users in each cell for the calculation of its
simplified balancing metric.

C. Influence of System Parameters on Performance of
Adaptive Rules

In this final section, we investigate the impact of some of the
tunable system parameters on the performance of the adaptive
assignment strategies. These parameters influence the speed of
convergence of the algorithms and determine how quickly the
algorithms react to changes in the user behavior, if the algo-
rithms are rather sluggish or very reactive, whether there are
any oscillations around the target thresholds before the algo-
rithms settle on the optimal values, and how large such oscil-
lations might be. For the sake of brevity of the paper, we limit
ourselves to exclusively study the influence of the parameters
for the adaptive VAS assignment strategy defined in (9). Similar
results and conclusions hold true for the adaptive DAS strategy.
Furthermore, we consider the scenario when the cell capacities
are fixed to Mb/s and Mb/s, as the HDR
scheduler does not add any further insight into the role of the
algorithm parameters, and fix the arrival rates at
and . Note that the parameters have to be set in-
dependently of the arrival rates and the cell capacities, as these
quantities may not be known a priori or may be time-varying in
a real system.

In Fig. 5, we show the evolution of the velocity threshold as a
function of time for different values of . In particular,
it is observed that, as becomes larger, the algorithm
takes longer to converge to the optimal threshold. This is ex-
pected, as in that case, updates are performed less frequently.
Making large leads to sluggish behavior of the adap-
tive rule. However, making small is not desirable either,
as the adaptive rule now becomes too reactive to instantaneous
changes that may not reflect a corresponding change in system

Fig. 5. Evolution of the velocity decision threshold for different values of the
update interval T .

Fig. 6. Evolution of the velocity decision threshold for different values of the
weighting factor � .

parameters or profile distribution. In Fig. 6, we show the con-
vergence of the velocity threshold for different values of . It
is observed that if is larger, more weight is put on the past
measured values in the exponential smoothing of the balancing
metric. Or equivalently, less weight is placed on the most re-
cent value of the balancing metric. This implies that the adaptive
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Fig. 7. Evolution of the velocity decision threshold for different values of the
update magnitude parameter � .

Fig. 8. Evolution of the velocity decision threshold for different values of the
time discounting factor 
 .

rule is less reactive to changes in the balancing metric and, thus,
the updating of the decision threshold and the convergence of
the algorithm is slower. This is clearly observed in Fig. 6. The
above argument would suggest making very small. If is
too small, however, the exponential smoothing is ineffective and
the history of the measurements of the balancing metric is not
taken into account. The update mechanism becomes very (too)
aggressive and very (too) reactive to instantaneous changes in
the balancing metric that may not be representative of the gen-
eral call arrival patterns and user profiles. Fig. 7 shows the evo-
lution of the velocity threshold for different values of the update
magnitude parameter . The graphs confirm the following in-
terpretation of the role of . If is chosen to be very large, the
magnitude of the update step is large, leading to large changes
in the decision thresholds if an imbalance is detected in the bal-
ancing metric. Therefore, the update mechanism and its con-
vergence to the optimal thresholds is faster if is larger. On
the other hand, if is too large, the change in the value of the
decision threshold could be too large, leading to potential over-
shoot of the optimal threshold. The resulting effect is that oscil-
lations around the optimal value may occur, which may hamper
the speed of convergence. Finally, in Fig. 8, we show the evo-

lution of the velocity threshold for different values of the time
discounting factor . The interpretation of the role of into
the convergence of the adaptive rule is very similar (but oppo-
site) to that of .

VI. CONCLUSION

In this paper, we have considered assignment strategies for
mobile data users based on their velocity and the amount of
data to be transmitted by each user. The main contributions of
the paper are to show analytically that the minimum average
number of users in the system and the expected system load are
the same under both strategies. The optimal thresholds are ex-
plicitly calculated and unique characterizations of the thresholds
are provided. These characterizations are then used to devise
adaptive and on-line assignment strategies that achieve the same
performance as the optimal off-line strategies. Extensive simu-
lation results are presented to support these statements. In this
paper, we have exclusively investigated nonreal-time data users
with a fixed amount of data to transmit. A second study within
the same framework considers real-time users with a fixed con-
nection time. Throughput maximizing assignment strategies for
real-time data users have been examined in [28]. The objective
of future research would be to study a system in which both
real-time and nonreal-time users are competing for the available
resources.

APPENDIX

PROOF OF THEOREM 1

In this appendix, we provide the proof of Theorem 1. We
first compute the performance of the DAS strategy for a given
threshold and then we minimize the average number of users
to obtain the optimal threshold. The first step involves the calcu-
lation of the conditional average data amount, given that a user is
assigned to the macro, respectively, the microcell. Using Bayes’
rule to calculate the conditional probabilities and

, we compute the conditional mean data sizes as

Following these preliminaries, we now turn to the heart of
the proof of the theorem. Assumptions 1 and 2 are equivalent
to saying that the 2-D Markov chain can be decoupled into
two independent 1 chains. It is well known [27] that
the average number of users in an 1 system is given by

, where is the “service rate” of
the M/M/1 chain. In our case, . Similarly, we
have that with . As a
reminder, the call arrival rates to the macrocells and microcells
are computed as and . In order to
simplify the derivations, we introduce the following notation:

(15)
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(16)

The average number of users in the system is, therefore, de-
termined by the expression

To find stationary points of the objective function, we take
the first order derivative and set it to zero. It is straightforward
to obtain that

(17)

where we have used the fact that, for any ,
. This is directly obtained from the

definition of and in (15) and (16). Furthermore
is a probability density function and, therefore, nonnega-

tive. We may now determine stationary points of the objective
function by setting the first order derivative to 0, using the
definitions in (15) and (16) and solving for the corresponding
data threshold. Assuming that the profile distribution is in
fact positive, we obtain the following integral equation for the
stationary data thresholds:

(18)

Note that the threshold is restricted to be contained in
the interval . Hence, the above integral equation only
yields an acceptable threshold value if the right-hand side of
the equation lies in the interval . We distinguish two
special cases when this is not verified. Specifically, it is easily
shown that when the right-hand side of (18) is greater than

, then the first order derivative of the objective function in
(17) is negative, implying that the objective function is mono-
tonically decreasing as a function of . Thus, the minimum
is achieved when . The required condition can be
translated into the following requirement that:

In this case, we immediately obtain that:
and . The corresponding minimum av-

erage number of users is obtained upon substitution of these
quantities. Note that, in general, we expect that
and that this special case does not apply. Similarly, when the
right-hand side of (18) is less than 0, it is straightforward to show
that the first order derivative in (17) is positive, and the objective
is an increasing function of . Thus, the optimal threshold is

and correspondingly we have that:

and . The related condition on the system
parameters is obtained by enforcing that the right-hand side of
(18) be less than 0

We now return to the general (and more interesting) case
when the right-hand side of (18) is in the interval ,
leading to a nontrivial value of the data threshold. We now show
that (18) has a unique solution which is a global minimum.
Taking the derivative with respect to in (17) and evaluating
it at a stationary point, i.e., at a solution of (18), yields

(19)

Assuming that and that , we conclude
that we have a local minimum. This second condition can in
general be guaranteed if for any .
Therefore, we have shown that any solution to the integral equa-
tion is a local minimum. We now show that under the same con-
ditions, the integral equation has only a single solution. How-
ever, this last statement follows immediately from the fact that
the profile distribution is assumed to be positive and, there-
fore, is a positive, monotonically in-
creasing function of with .
Since the right-hand side of (18) is in the interval ,
we conclude that the integral equation as a unique solution .
Hence, the corresponding local minimum is in fact a global
minimum of the objective function. Finally, the optimal value
of the objective function can be computed upon substitution of
the optimal values of and . This concludes the
proof to compute the data threshold that minimizes the average
number of users in the system. When a velocity-based assign-
ment strategy is used, the proof follows the same steps and is
omitted here for the sake of brevity of the paper. However, we
note that we again need to distinguish three cases, depending
on the relative values of the arrival rates, the average data size,
and the cell capacities. The minimum average number of users
is given by the same expressions as for DAS, proving that the
optimal VAS and DAS strategies achieve the same system per-
formance.
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