
Assignments for Applicative Languages∗

Vipin Swarup†

The MITRE Corporation
Burlington Road

Bedford, MA 01730.
E-mail: swarup@mitre.org

Uday S. Reddy‡

Dept. of Computer Science
University of Illinois

at Urbana-Champaign
Urbana, IL 61801.

E-mail: reddy@cs.uiuc.edu

Evan Ireland

School of Information Sciences
Massey University
Palmerston North

New Zealand.
E-mail: E.Ireland@massey.ac.nz

Abstract

We propose a theoretical framework for adding as-
signments and dynamic data to functional languages
without violating their semantic properties. This dif-
fers from semi-functional languages like Scheme and
ML in that values of expressions remain static and
side-effect-free. A new form of abstraction called ob-
server is designed to encapsulate state-oriented com-
putation from the remaining purely applicative com-
putation. The type system ensures that observers
are combined linearly, allowing an implementation in
terms of a global store. The utility of this extension
is in manipulating shared dynamic data embedded in
data structures. Evaluation of well-typed programs
is Church-Rosser. Thus, programs produce the same
results whether an eager or lazy evaluation order is
used (assuming termination). A simple, sound logic
permits reasoning about well-typed programs. The
benefits of this work include greater expressive power
and efficiency (compared to applicative languages),
while retaining simplicity of reasoning.

Keywords Functional languages, imperative pro-
gramming, lambda calculus, type systems, strong
normalization, Church-Rosser property, referential
transparency, continuation-passing style.

1 Introduction

Functional languages are popular among computer
scientists because of their strong support of modu-
larity. They possess two powerful glues, higher-order
functions and laziness, that permit programs to be

∗To appear in the Proceedings of the Conference on Func-
tional Programming Languages and Computer Architecture,
August 1991.

†Supported by NASA grant NAG-1-613 (while at the Uni-
versity of Illinois at Urbana-Champaign).

‡Supported by a grant from Motorola Corporation.

modularized in new, useful ways. Hughes [Hug90]
convincingly argues that “. . . lazy evaluation is too
important to be relegated to second-class citizenship.
It is perhaps the most powerful glue functional pro-
grammers possess. One should not obstruct access
to such a vital tool.” However, side-effects are in-
compatible with laziness: programming with them
requires knowledge of global context, defeating the
very modularity that lazy evaluation is designed to
enhance.

Pure functional languages have nice properties that
make them easy to reason about. For instance, + is
commutative, = is reflexive, and most other familiar
mathematical properties hold of the computational
operators. This is a consequence of expressions rep-
resenting static values: values that do not change over
time. Thus, an expression’s value is independent of
the order in which its sub-expressions are evaluated.
Side-effects are incompatible with these properties,
as side-effects change the values of other expressions,
making the order of evaluation important.

Assignments are a means of describing dynamic
data : data whose values change over time. In their
conventional form, assignments have side-effects on
their environment, making their order of evaluation
important. Not only are such assignments incompati-
ble with laziness, but they also destroy the nice math-
ematical properties of pure languages. Hence lazy
functional languages shun assignments.

However, since assignments directly model the dy-
namic behavior of a physical computer’s store, they
yield efficient implementations of dynamic data. In
contrast, one models dynamic data in functional lan-
guages by representing the state explicitly or, possi-
bly, by creating streams of states. Compilation tech-
niques and language notations have been proposed
to permit explicit state manipulation to be imple-
mented efficiently [HB85, GH90, Wad90b, Wad90a].
Unfortunately, these methods do not achieve all the
effects of true dynamic data. For instance, dynamic

Page 1

data may be “shared”, i.e., embedded in data struc-
tures and accessed via different access paths. When
shared dynamic data are updated using assignments,
the change is visible to all program points that have
access to the data. In contrast, when state is be-
ing manipulated explicitly, updating shared data in-
volves constructing a fresh copy of the entire data
structure in which the data are embedded, and ex-
plicitly passing the copy to all program points that
need access to the data. This tends to be tedious
and error-prone, and results in poor modularity. One
particularly faces this difficulty while encoding graph
traversal algorithms such as topological sort, unifica-
tion and the graph reduction execution model of lazy
functional languages.

In this paper, we propose a theoretical framework
for extending functional languages with dynamic data
and assignments while retaining the desirable prop-
erties of static values. The resulting language has the
following key properties:

• Expressions have static values.
State-dependent and state-independent expres-
sions are distinguished via a type system. The
former are viewed as functions from states to
values and the functions themselves are static.
(Such functions are called observers and resem-
ble classical continuations [Sto77, SW74]). The
type system ensures that this view can be con-
sistently maintained, and limits the interaction
between observers in such a way that expressions
do not have side-effects 1.

• The language is a strict extension of lambda cal-
culus.
Function abstraction and application have pre-
cisely the same meaning as in lambda calculus.
This is a key property that is not respected by
call-by-value languages like Scheme (even in the
absence of side-effects). The operational seman-
tics is presented as a reduction system that con-
sists of the standard reduction rules of lambda
calculus together with a set of additional rules;
these rules exhibit symmetries similar to those
of lambda calculus. The reduction system is
confluent (or, equivalently, Church-Rosser), and
recursion-free terms are strongly normalizing.

1In the contemporary functional programming community,
the terms “assignment” and “side-effect” are sometimes used
synonymously. We use the term “side-effect” in its original
meaning: an expression has a side-effect if, in addition to yield-
ing a value, it changes the state in a manner that affects the
values of other expressions in the context. Assignments in our
proposed language do not have such side-effects. Similar com-
ments apply to terms like “procedure” and “object”.

This work can also be given a logical interpreta-
tion: it extends the correspondence between logic
and programming to include dynamic data. Enti-
ties that describe dynamic data, namely references,
play a role similar to that of variables in conventional
logic. The language described in this paper is the
language of constructions for a suitably formulated
constructive logic. This dual aspect is treated else-
where [SR91, Swa91].

The utility of the language is characterized by the
following properties:

• Shared dynamic data are available.
Dynamic data are represented by typed objects
called references. References can refer to other
references as well as to functions. They can be
embedded in data structures and used as inputs
and outputs of functions.

• Dynamic data may be implemented by a store.
This is achieved by a type system that sequen-
tializes access to regions of the state, much as in
effect systems [GL86] and the languages based
on linear logic [GH90, Wad90b, Wad91].

• The language is higher-order.
References, data structures, functions and ob-
servers are all permissible as arguments and re-
sults of functions. This permits, for instance, the
definition of new control structures, new storage
allocation mechanisms, and an object-oriented
style of programming.

• The language is integrated symmetrically.
The applicative sublanguage and the imperative
sublanguage are equally powerful and they em-
bed each other. Not only can applicative terms
be embedded in imperative terms, but impera-
tive terms can also be embedded in applicative
terms. This allows the definition of functions
that create and use state internally but are state-
independent externally.

The remainder of this paper is organized as follows.
Section 2 presents a core formal language called Im-
perative Lambda Calculus (ILC) that is an exten-
sion of the typed lambda calculus. Section 3 stud-
ies ILC’s use in programming. Section 4 discusses
the motivation and design issues behind ILC’s type
system. Section 5 presents the formal semantics of
ILC. This includes a typed denotational semantics
and an operational semantics presented as reduction
rules. Various formal properties are established, such
as type soundness, confluence and strong normaliza-
tion. Section 6 demonstrates the utility of ILC with
an extended example: the unification of first-order

Page 2

terms. Finally, Section 7 compares ILC with related
work in the literature.

2 Imperative Lambda Calcu-
lus (ILC)

Imperative Lambda Calculus (ILC) is an abstract
formal language obtained by extending the typed
lambda calculus [Mit90] with imperative program-
ming features. Its main property is that, in spite
of this extension, its applicative sublanguage has the
same semantic properties as the typed lambda calcu-
lus (eg. confluence and strong normalization). Fur-
thermore, these same properties also hold for the en-
tire language of ILC.

2.1 Types

Let β represent the primitive types of ILC. These
may include the natural numbers, characters, strings
etc. The syntax of ILC types is as follows:

(Applicative types)
τ ::= β | τ1 × τ2 | τ1 → τ2

(Mutable types)
θ ::= τ | Ref θ | θ1 × θ2 | θ1 → θ2

(Observer types)
ω ::= θ | Obs τ | ω1 × ω2 | ω1 → ω2

The type system is stratified into three layers. The
applicative layer τ contains the types of the simply
typed lambda calculus (extended with pairs). These
applicative types include the primitive types β and
are closed under product and function space construc-
tions. Note that we use the term “applicative” to
refer to the classical values manipulated in lambda
calculus; semantically, all three layers of ILC are ap-
plicative.

The mutable layer θ extends the applicative layer
with objects called references. References are typed
values that refer (i.e. point) to values of a particular
type. (Ref θ) denotes the type of references that refer
to values of type θ. References are used to construct a
mutable world (called a store) that is used for imper-
ative programming. The world itself is mutable and
goes through states. The mutable layer includes all
applicative types and is closed under the type con-
structors ×,→ and Ref. Note that references can
point to other references, thereby permitting linked
data structures. Tuples of references denote muta-
ble records, while reference-returning functions de-
note mutable arrays.

Finally, the world of the mutable layer needs to
be manipulated. In ILC, we take the position that
the only manipulation needed for states is observa-
tion (i.e. inspection). Consider the fact that in the
typed lambda calculus, environments are implicitly
extended and observed (via the use of variables), but
are never explicitly manipulated. Similarly, in ILC,
states are implicitly extended and observed (via the
use of references), but are never explicitly manipu-
lated. Thus, in a sense, the world exists only to be
observed. A state differs from an environment in that
it may be mutated while being observed; the muta-
tion is restricted to the observation and is not visible
to expressions outside the observation.

Observation of the state is accommodated in the
observer layer ω. This layer includes all applicative
and mutable types. In addition, it includes a new
type constructor denoted “Obs τ”. A value of type
Obs τ is called an observer. Such a value observes
(i.e. views or inspects) a state and returns a value
of type τ . It is significant that the value returned in
this fashion is of an applicative type τ . Since a state
exists only to be observed, all information about the
state is lost when its observation is completed. So,
the values observed in this fashion should be mean-
ingful independent of the state, i.e., they should be
applicative. An observer type Obs τ may be viewed
as an implicit function space from the set of states to
the type τ .

The three layers can be characterized as kinds and
given category-theoretic semantics. The product and
function space constructions have the same meaning
in all three layers (cf. Section 5). Thus, there is no
ambiguity involved in treating τ types as also being
θ and ω types. The name “Imperative Lambda Cal-
culus” is justified by the property that the semantics
of functions in all three layers is the same as that of
lambda calculus.

2.2 Terms

The abstract syntax of unchecked “preterms” is as
follows:

e ::= k | x | v∗ | λx: ω.e | f(e) | 〈e1, e2〉 | e.1 | e.2
| letref v∗: Ref θ := e in t

| get x: θ ⇐ l in t

| l := e ; t

where k are constants, x, v∗ are variables, e, e1, e2,
f, l, t are terms and ω, θ are types.

The constants of ILC are limited to be of applica-
tive type. Permissible constants include numbers,
booleans, characters and primitive functions on these

Page 3

Constant Weakening
Γ ` k: τ

(if k is a constant of type τ)
Γ ` e: π

Γ, x: π′ ` e: π

Variable hypothesis Reference hypothesis
Γ, x: π, Γ′ ` x: π Γ, v∗: Ref θ, Γ′ ` v∗: Ref θ

→-intro →-elim
Γ, x: π1 ` e: π2

Γ ` (λx: π1.e): π1 → π2

Γ ` f : π1 → π2 Γ ` e: π1

Γ ` f(e): π2

×-intro ×-elim
Γ ` e1: π1 Γ ` e2: π2

Γ ` 〈e1, e2〉: π1 × π2

Γ ` e: π1 × π2

Γ ` e.i: πi
for i = 1, 2

Obs-intro Obs-elim
Γ ` t: τ

Γ ` t: Obs τ

Γ ` t: Obs τ

Γ ` t: τ
(if Γ has only τ types)

Creation
Γ, v∗: Ref θ ` e: θ Γ, v∗: Ref θ ` t: Obs τ

Γ ` (letref v∗: Ref θ := e in t): Obs τ

Dereference
Γ ` l: Ref θ Γ, x: θ ` t: Obs τ

Γ ` (get x: θ ⇐ l in t): Obs τ

Assignment
Γ ` l: Ref θ Γ ` e: θ Γ ` t: Obs τ

Γ ` (l := e ; t): Obs τ

Figure 1: Type inference rules

Page 4

values. No imperative constants (i.e. no constants
involving mutable or observer types) are permitted.
This permits us to carefully control the creation and
use of the state. We (partially) relax this restriction
in section 5.1.

The terms of ILC use two countable sets of vari-
ables: conventional variables and reference variables .
Conventional variables are the usual variables of the
typed lambda calculus. Reference variables are a new
set of variables that share all the properties of conven-
tional variables. Further, distinct reference variables
within a term always denote distinct references. Ref-
erences are always introduced by binding them to ref-
erence variables; conventional variables can then be
bound to such references. This property permits us
to reason about the equality of references without re-
course to reference constants (which are absent from
the language). In the formal presentation, we use an
asterisk superscript to distinguish reference variables
u∗, v∗, w∗ from conventional variables x, y, z. Since
the context of a variable determines whether it is a
reference or conventional variable, we do not use as-
terisk superscripts in any of our examples.

Figure 1 presents the context sensitive type syntax
of ILC terms. The syntax is expressed as inference
rules for judgements of the form (Γ ` e: π), where e

is a term, π is a type (of any kind τ , θ or ω), and Γ is
a sequence of typing assumptions of the forms (x: π)
or (v∗: Ref θ). Γ contains typing assumptions for all
the free variables in e.

ILC includes the simply-typed lambda calculus ex-
tended with pairs. These terms have their usual
meaning in all three layers (rules →-intro, →-elim, ×-
intro, and ×-elim). In addition, ILC contains three
new observer terms to create a new reference (cre-
ation), access a reference’s content (dereference), and
modify a reference’s content (assignment). We now
discuss these terms in more detail.

We have seen that there are no reference constants
in the language. All references have to be explicitly
allocated and bound to a reference variable. This is
done by the letref construct:

letref v∗: Ref θ := e in t

Such a term is an observer of the same type as t (rule
Creation). When used to observe a state, it extends
the state by creating a new reference, extends the en-
vironment by binding v∗ to the reference, initializes
the reference to the value of e in the extended en-
vironment, and finally observes the value of t in the
extended environment and state.

The mutable world of references may be inspected
by dereferencing a reference, i.e. by inspecting the
value that the reference points to, or, using alternate

terminology, by inspecting the reference’s content. If
l is a reference-valued expression of type Ref θ, then
a term of the form

get x: θ ⇐ l in t

binds x to the content of l, and denotes the value of
t in the extended environment. Here, t must be an
observer of type Obs τ , and the entire term is again
an observer of type Obs τ (rule Dereference).

Finally, the content of a reference may be modified
via assignment observers of the form

l := e ; t

where l is of type Ref θ and e is of type θ, for some
θ (rule Assignment). When used to observe a state,
an assignment observer modifies the reference l to
refer to e, and observes the value of t in the modified
state. Note that “l := e” is not a term by itself as
in conventional languages. The state is modified for
the observer t, and the entire construct is again an
observer.

The lifetime of a mutable world (i.e. a collection
of references) is limited to its observation. So, the
creation of v∗ and the modification of l are observ-
able only within the bodies t of the creation and as-
signment observers respectively, and there are no side
effects produced by the observers. If there are no
free occurrences of reference variables or other state-
dependent variables in an observer term, then the
term is a trivial observer that is independent of any
state. Such an observer can be coerced to an ap-
plicative term (rule Obs-elim). Conversely, every ap-
plicative term (every term of a τ type) is trivially an
observer (rule Obs-intro).

It is important to note that all the primitive con-
structions on observers (get, letref and assignment)
involve exactly one subterm of an observer type. This
reflects the requirement that manipulations of state
should be performed in a sequential fashion, similar
in spirit to the proposal of single-threaded lambda
calculus [GH90]. Even though it is possible to ex-
press functions which accept more than one observer,
the state manipulations of such observers have to be
eventually sequentialized because there are no multi-
ary primitives on observers. (Recall that there are no
constants of mutable and observer types). This fact
has two consequences. First, programming in the im-
perative sublanguage of ILC requires a continuation-
passing style. Second, the state can be implemented
efficiently by means of a global store. We return to
these issues in section 4.

Page 5

3 ILC as a Programming Lan-
guage

ILC can be used as a programming language in dif-
ferent styles. It can be used as a purely applicative
language by restricting oneself to applicative types.
It can be used as a purely imperative language by
mainly using observers (this requires a continuation-
passing style of programming). These styles corre-
spond to traditional programming paradigms.

ILC also permits an interesting new style of pro-
gramming. It permits closed imperative observers to
be embedded in applicative terms (via the rule Obs-
elim). Applicative terms can be freely embedded in
imperative observers (via the rule Obs-intro). Higher-
order functions and laziness can be used to glue to-
gether both imperative and applicative subcomputa-
tions, though imperative computation is restricted to
continuation-passing style.

One extreme of this paradigm is to use ILC with
imperative observers at the top level, but with non-
trivial applicative subcomputations involving higher-
order functions. This use is similar to that of
Haskell where state-oriented input/output operations
are usually carried out at the top level. More gener-
ally, ILC can be used with imperative observers em-
bedded in applicative expressions (via the rule Obs-
elim). This corresponds to the use of side-effect-free
function procedures in Algol-like languages.

The examples in this paper further illustrate this
style of programming. Example 1 (factorial) displays
how imperative computations can be embedded in
applicative terms. Example 2 (a movable point ob-
ject) exhibits how imperative computations can be
encapsulated as closures. The unification example of
Section 6 demonstrates how the laziness of observers
permits them to be passed to functions and returned
as results.

3.1 Syntactic sugar for dereferencing

The need to use get’s for dereferencing is rather te-
dious: it forces us to choose new names, and more
importantly, it clutters up the code. The tedium can
be alleviated to a large extent through a simple no-
tational mechanism.

Abbreviation: If (get x ⇐ l in t[x]) is an observer
term with no occurrence of x in a proper observer
subterm of t, then we allow it to be abbreviated as
t[l ↑]. l ↑ may be read informally as “the current
content of reference l”.

Expansion: If t is an observer term with a partic-
ular occurrence of l ↑, then it is expanded by intro-
ducing a “get” at the smallest observer subterm of t

containing the occurrence of l↑.

The intuition behind this abbreviation is that an
observer term (get x ⇐ l in t) is a program point at
which the content of l is observed, while occurrences
of x in t are program points at which that content
is used. If l is never modified between the point of
dereference and a point of use, then we can safely
view the dereference as taking place at the point of
use. For example,

(p := n↑ ∗p↑; n := n↑ −1; c)
= get x ⇐ n in get y ⇐ p in

p := x ∗ y;
get z ⇐ n in

n := z − 1; c

l↑↑= (get x ⇐ l in x↑) = (get x ⇐ l in get y ⇐ x in y)

f(l↑) = (get x ⇐ l in f(x)) iff : τ1 → Obs τ2

f(l↑) = f(get x ⇐ l in x) iff : Obs τ1 → Obs τ2

3.2 Examples

For our examples, we assume that ILC is enhanced
with user-defined type constructors and record types
(drawn from standard ML [MTH90]). We also as-
sume that ILC is enhanced with explicit parametric
polymorphism with types ranging over the universe
of applicative (τ) types. Implicit polymorphism is
problematic in the presence of references and assign-
ments [Tof88] — explicit polymorphism does not suf-
fer from these problems. In our examples, we erase
explicit type quantification and type application, and
leave it to the reader to fill in the missing information.

We also assume primitives such as case, let,

letrec and if-then-else for all types. Note that
these primitives violate our earlier prohibition of
primitives over mutable and observer types. In sec-
tion 5.1, we shall see that such primitives are indeed
permissible.

Example 1: Factorial

This trivial example is meant to provide an initial
feel for the language, and illustrate how imperative
observers can be embedded in applicative expressions.
This example is not meant to illustrate the benefits
of ILC; indeed, a preferred solution is to write this
as a tail-recursive applicative function and have the

Page 6

compiler optimize the code into an iterative loop.

factorial =
λm: nat. letref n: Ref nat := m in

letref acc: Ref nat := 1 in

letrec fact: Obs nat =
if (n↑< 2) then acc↑
else acc := n↑∗ acc↑;

n := n↑−1;
fact

in fact

The function factorial has no free references or
state-dependent variables, and so has the applicative
type (nat → nat). This means that factorial can
be freely embedded in applicative expressions even
though it contains imperative subcomputations.

Example 2: Points

We implement a point object that hides its internal
state and exports operations. Let Point be the type
of objects that represent movable planar points.

Point =
{x coord : (Real → Obs T) → Obs T,

y coord : (Real → Obs T) → Obs T,

move : (Real× Real) → Obs T → Obs T,

equal : Point→ (Bool → Obs T) → Obs T}

The function mkpoint implements objects of type
Point.

mkpoint : (Real→ Real→ (Point→ Obs T) → Obs T)
= λx. λy. λk.

letref xc: Real := x in

letref yc: Real := y in

k({x coord = λk. k(xc↑),
y coord = λk. k(yc↑),
move = λ(dx, dy). λc.

xc := xc↑+dx; yc := yc↑+dy; c,

equal = λ{x coord,y coord,move,equal}. λk.

x coord(λx. y coord(λy.

k(x = xc↑ and y = yc↑)))
})

Note, first of all, that the mkpoint operation can-
not simply yield a value of type Point because it is
not an applicative value. The extent of xc and yc

is limited to the bodies of the letrefs which allo-
cate these references; hence the entire computation
which uses these references must occur in these bod-
ies. Therefore, mkpoint is defined to accept a point
observer function k and pass it the newly created
point. This is similar to the continuation-passing
style of programming. Observers here play the role of

continuations.2 Such continuation-passing style func-
tions can be defined more conveniently using Wadler’s
monad comprehension notation [Wad90a]. Note that
each operation in the object is similarly defined in the
continuation-passing style.

This example demonstrates that state-encapsu-
lating closures are available in ILC, albeit in the
continuation-passing style. Such closures are also rep-
resentable in semi-functional languages like Scheme
and Standard ML, but usually involve side-effects.

4 Discussion of ILC

The motivation behind ILC’s type system is three-
fold. First, we wish to exclude imperative terms that
“export” their local effects. Consider the unchecked
preterm (letref v := 0 in v). This term, if well-
typed, would export the locally created reference v

outside its scope resulting in a dangling pointer. Clo-
sures that capture references are prohibited for the
same reason — they export state information beyond
its local scope. The type system prohibits such terms
by requiring the value returned by an observer to be
applicative and hence free of state information. (Re-
call that observer types are of the form Obs τ where
τ is an applicative type).

Second, we wish to ensure that the imperative
sublanguage can be implemented efficiently without
causing side-effects. Consider the unchecked preterm

v := 0 ; ((v := 2 ; get x ⇐ v in x)+(get x ⇐ v in x))

In a language with a global store and global assign-
ments (eg. ML or Scheme), the value of the term
depends on the order of evaluation of +’s arguments.
Further, the term has the side-effect of changing the
value of the global reference v to 2. On the other
hand, if assignments are interpreted to have local ef-
fects, then the value of the term would be 2 regard-
less of the order of evaluation, and the term would
not have any side-effects. However, the state can no
longer be implemented by a (global) store. The state
needs to be copied and passed to each argument of
+, making the language quite inefficient.

The type system of ILC excludes such terms
from the language by requiring that all state-
manipulations be performed in a sequential fashion.
Well-typed terms of ILC do not require the state to
be copied, and hence the state can be implemented

2Technically speaking, observers are not continuations be-
cause they return values. But, they can be thought of as
continuations in the imperative sublanguage so that the “an-
swers” produced can then be consumed in the applicative
sublanguage.

Page 7

by a (global) store. The only legal way to express the
above example in ILC, is to sequentialize its assign-
ments. For example,

v := 0 ; get x ⇐ v in (v := 2 ; get y ⇐ v in (y+x))

is a well-typed term.
ILC distinguishes between state-dependent ob-

servers and applicative values. Both observers and
values can be passed to functions and returned as re-
sults — it is not necessary to evaluate an observer to
a value before passing it. In fact, an observer of the
form (get x ⇐ l in t) is in head normal form, just
as a lambda expression is in head normal form (see
section 5.2). This is a form of laziness and, in fact,
directly corresponds to Algol’s call by name. How-
ever, an observer passed to a function can only be
evaluated in a single state due to the single-threaded
nature of the type system. So, the ambiguities caused
by Algol’s call-by-name are not shared by ILC.

Finally, we wish the type system to ensure that all
recursion-free terms are strongly normalizable, i.e.,
their evaluation always terminates. We postpone a
discussion of this issue to section 5.2. For now, we
merely note that strong normalization is achieved by
making observers non-storable values. If strong nor-
malization is not considered critical, the θ and ω lay-
ers may be conflated.

The type system described thus far is overly re-
strictive. It prohibits all nonsequential combinations
of observers in order to ensure that the state is never
copied. For example, a term of the form

(v := 0 ; (get x ⇐ v in x) + (get x ⇐ v in x))

is excluded because the observer arguments of + are
combined nonsequentially. However, this term does
not require the state to be copied since the arguments
of + do not locally modify the state. This suggests
that the type system could be relaxed by distinguish-
ing between:

• creators, that locally extend the state;

• pure observers, that observe the state without
locally extending or modifying it; and

• mutators, that locally modify the state.

The type system could then permit certain state-
dependent terms to be combined. For example, two
pure observers could be safely combined. To be effec-
tive, such a solution would also have to incorporate a
comprehensive type system that captures “effects” of
expressions on “regions” of references (similar to that
of FX [LG88]). This would permit combining muta-
tors that mutate disjoint regions of the state. We do

not explore this solution in this paper because it is
orthogonal to the issues considered here. It is also
clear that such a type system does not completely
eliminate the need for sequencing.

5 Semantics of ILC

We present the denotational and operational seman-
tics of ILC, and sketch the proofs of several important
properties including soundness, strong normalization
and confluence.

5.1 Denotational semantics

The denotational semantics is defined using complete
partial orders (cpo’s) as domains. For every primi-
tive type β, choose a domain Dβ . Dτ×τ and Dτ→τ

are defined by the standard product and continuous
function space constructions on cpo’s.

For every reference type Ref θ, choose a countable
flat domain DRef θ. The defined elements of a DRef θ

domain should be disjoint from those of any other
such domain. The defined elements of these domains
may be thought of as “locations”. State is the set
of partial mappings σ from

⋃

θ DRef θ to
⋃

θ Dθ with
the constraint that, whenever α ∈ DRef θ, σ(α) ∈
Dθ and σ(⊥Ref θ) = ⊥θ. The subset of

⋃

θ DRef θ

mapped by σ is denoted dom(σ). σ0 is the “empty”
state, i.e., dom(σ0) contains only ⊥Ref θ elements.

The domain for an observation type is DObs τ =
[State → Dτ].

An environment η is a mapping from variables to
⋃

ω Dω. If Γ is a type assignment, we say that η

satisfies Γ if η(x) ∈ Dω for every x: ω ∈ Γ, η(v∗) ∈
DRef θ for every v∗: Ref θ ∈ Γ, and η(v∗) 6= η(w∗)
for every v∗, w∗: Ref θ ∈ Γ.

The denotational semantics of ILC (see figure 2) is
defined by induction on type derivations. The mean-
ing of an expression (Γ ` e: ω) is a mapping from
environments satisfying Γ to Dω. (See [Mit90] for a
discussion of this notation).

Lemma 1 [[Γ ` e: ω]] is well-defined.

This involves showing that continuous functions in
the interpretation of λ are unique and that the choice
of α in the interpretation of letref is immaterial.

Proposition 2 [[Γ ` e: ω]]η ∈ Dω whenever η satis-
fies Γ.

This is proved by a simple induction on type deriva-
tions. The main property to be verified is that η

and σ are always extended or modified in a manner
type-consistent with Γ. We present the proof case for

Page 8

[[Γ ` x: ω]] η = ηx

[[Γ ` (λx: ω1.e): ω1 → ω2]] η = λv ∈ Dω1
.[[Γ, x: ω1 ` e: ω2]] (η[x → v])

[[Γ ` f(e): ω2]] η = ([[Γ ` f : ω1 → ω2]] η)([[Γ ` e: ω1]] η)
[[Γ ` 〈e1, e2〉: ω1 × ω2]] η = 〈[[Γ ` e1: ω1]] η, [[Γ ` e2: ω2]] η〉
[[Γ ` e.1: ω1]] η = fst([[Γ ` e: ω1 × ω2]] η)
[[Γ ` e.2: ω2]] η = snd([[Γ ` e: ω1 × ω2]] η)

[[Γ ` e: τ]] η = [[Γ ` e: Obs τ]] η σ0

[[Γ ` e: Obs τ]] η = λσ.[[Γ ` e: τ]] η

[[Γ ` (letref v∗: Ref θ := e in t): Obs τ]] η = λσ.[[Γ, v∗: Ref θ ` t: Obs τ]] (η[v∗ → α]) (σ[α → ve])
where α is any element of DRef θ not in dom(σ)
and ve = [[Γ, v∗: Ref θ ` e: θ]] (η[v∗ → α])

[[Γ ` (get x: θ ⇐ l in t): Obs τ]] η = λσ.[[Γ, x: θ ` t: Obs τ]](η[x → σ([[Γ ` l: Ref θ]]η)]) σ

[[Γ ` (l: = e; t): Obs τ]] η = λσ.[[Γ ` t: Obs τ]] η (σ[vl → ve])
where vl = [[Γ ` l: Ref θ]]η and ve = [[Γ ` e: θ]]η

Figure 2: Denotational semantics

letref terms; other cases can be verified similarly.
Assume that η satisfies Γ.

• [[Γ ` (letref v∗: Ref θ := e in t): Obs τ]] η ∈
DObs τ

Let α ∈ DRef θ. Then, since η satis-
fies Γ, (η[v∗ → α]) satisfies Γ, v∗: Ref θ.
Thus, by induction hypothesis, [[Γ, v∗: Ref θ `
t: Obs τ]] (η[v∗ → α]) ∈ DObs τ and ve =
[[Γ, v∗: Ref θ ` e: θ]] (η[v∗ → α]) ∈ Dθ. Thus,
(σ[α → ve]) is a well-formed state, and hence
λσ.[[Γ, v∗: Ref θ ` t: Obs τ]] (η[v∗ → α]) (σ[α →
ve]) ∈ DObs τ as desired.

This property ensures that every expression of an
applicative type τ is free of state information. It also
shows that observers (of type Obs τ) do not have any
visible side-effects. This proves our claim that ILC is
free of side-effects.

We note that the semantics uses the state in a
single-threaded fashion [Sch85]. Whenever a state is
updated, the old state is discarded. Thus, the seman-
tics can indeed be realized by a global store and no
side effects need enter the implementation through
the “back door”.

At this stage, we can also point out what kind
of primitive constants of mutable and observer types
may be added to the language without violating the
basic framework. The acceptable constants should
be purely combinatorial, i.e., they should not use
any information about the semantic interpretations

of their parameters. For example, the constants
ifObs τ : Bool× Obs τ × Obs τ → Obs τ defined by

ifObs τ (p, t1, t2) =

{

t1, if p = true

t2, if p = false

are acceptable because they are not dependent on the
semantic interpretation of the Obs τ parameters. On
the other hand, the constant add: Obs τ × Obs τ →
Obs τ defined by

add(t1, t2) = λσ. (t1σ + t2σ)

is not acceptable as it interprets Obs τ parameters to
be functions of type [State→ Dτ].

5.2 Reduction semantics

We now present reduction rules for terms of ILC.
These rules are meant to reduce terms to normal form
such that every closed term of a primitive type β re-
duces to a constant of that type. Let V (t) be the set
of free variables of term t.

The reduction rules presented in figure 3 propagate
get terms outward until they encounter a letref or
assignment, and then discharge the get construct.
The letref and assignment constructs can be dis-
charged only after the state observation in their body
is completed, i.e., after the body reduces to applica-
tive term. At that stage, the body would be a “value
term” of the form k, λx: ω.e1 or 〈e1, e2〉. Rules (3)
and (6) handle this situation.

Page 9

Let u ::= k | λx: ω.e1 | 〈e1, e2〉
(1) (λx: ω.e1)(e2) −→ e1[e2/x]

(2) 〈e1, e2〉.i −→ ei for i = 1, 2

(3) letref v∗: θ := e in u −→ u if v∗ 6∈ V (u)

(4) letref v∗: θ := e in −→ letref v∗: θ := e in t[e/x]
get x: θ′ ⇐ v∗ in t

(5) letref v∗ : θ := e in −→ get x′: θ′ ⇐ w∗
in if v∗ 6= w∗ & x′ 6∈ V (e) ∪ V (t)

get x: θ′ ⇐ w∗
in t letref v∗ : θ := e in t[x′/x]

(6) v∗ := e ; u −→ u

(7) v∗ := e ; get x: θ ⇐ v∗
in t −→ v∗ := e ; t[e/x]

(8) v∗ := e ; get x: θ ⇐ w∗ in t −→ get x′: θ ⇐ w∗ in if v∗ 6= w∗ & x′ 6∈ V (e) ∪ V (t)
v∗ := e ; t[x′/x]

Figure 3: Reduction rules

Let
∗

−→ be the reflexive, transitive closure of −→.
We can easily show that one step reduction preserves
types, and by induction, so does

∗

−→.

Lemma 3 (Type preservation) If (Γ ` s: ω) is a
term, and s −→ t, then (Γ ` t: ω) is a term.

We can also show that one step reduction preserves
meaning.

Proposition 4 (Soundness) Let (Γ ` s: ω) and
(Γ ` t: ω) be terms, and let s −→ t. Then

[[Γ ` s: ω]] η ≡ [[Γ ` t: ω]] η

Proof: Rules (1) and (2) are classical. For (3) and
(6), note that if u is of the stated form, it can only
be a trivial observer which is also of an applicative
type τ . (Nontrivial observers have a letref, get or
“:=” at their principal position.) Hence, u is state-
independent. For example,

[[Γ ` (letref v∗: Ref θ := e in u): Obs τ]] η
= λσ.[[Γ, v∗: Ref θ ` u: Obs τ]](η[v∗ → α])(σ[α → ve])

where α is any element of DRef θ
not in dom(σ)

and ve = [[Γ, v∗: Ref θ ` e: θ]] (η[v∗ → α])
= λσ.[[Γ, v∗: Ref θ ` u: τ]] η[v∗ → α]
= λσ.[[Γ ` u: τ]] η since v∗ 6∈ V (u)
= [[Γ ` u: Obs τ]] η

For (4) and (5), recall that v∗ and w∗ are “refer-
ence variables” which are only bound in letref con-
structs. By the denotational semantics, any two such
variables denote distinct references unless they are

syntactically identical. For example,

[[Γ ` (letref v∗: Ref θ := e in (get x: θ ⇐ v∗ in t)): Obs τ]] η
= λσ.[[Γ, v∗: Ref θ ` (get x: θ ⇐ v∗

in t): Obs τ]](η[v∗ → α])
(σ[α → ve])

where α is any element of DRef θ
not in dom(σ)

and ve = [[Γ, v∗: Ref θ ` e: θ]] (η[v∗ → α])
= λσ.[[Γ, v∗: Ref θ, x: θ ` t: Obs τ]] (η[v∗ → α][x → ve])

(σ[α → ve])
= λσ.[[Γ, v∗: Ref θ ` t[e/x]: Obs τ]] (η[v∗ → α])(σ[α → ve])
= [[Γ ` (letref v∗: Ref θ := e in t[e/x]): Obs τ]] η

Rules (7) and (8) are similar. 2

Strong normalization is considered to be a desirable
property of typed programming languages. It asserts
that the evaluation of a well-typed recursion-free term
always terminates. Conceptually, its significance is
that all terms are meaningful; there are no undefined
terms [Pra71]. Its pragmatic implication is that non-
termination is limited to explicit recursion. Strong
normalization is ensured in ILC by making observers
non-storable. If observers were storable, Ref Obs nat

would be a well-formed type and the language would
contain the following infinite reduction sequence:

(letref u∗ : Ref Obs T := (u∗ ↑) in u∗ ↑)
−→ (letref u∗ : Ref Obs T := (u∗ ↑) in u∗↑)
−→ . . .

Since u∗ : Ref Obs nat, we can store in it an obser-
vation of itself (u∗ ↑). Indeed, recursion is defined in
Scheme by a similar device [RC86].

Proposition 5 (Strong Normalization) Let (Γ `
t : ω) be a recursion-free term. Then there is no
infinite reduction sequence t −→ t1 −→ t2 −→ . . . of
well-typed ILC terms.

Page 10

Proof: The proof of the above proposition is quite
elaborate and uses twin induction on types and terms,
along the classical lines of [Tai75, GLT89]. The proof
may be found in [Swa91].

The Church-Rosser property for the reduction sys-
tem may be established as follows. Let V be a count-
ably infinite set of reference variables. Treat the re-
duction rules (4) and (7) as schematic rules repre-
senting an infinite set of rules, one for each v∗ ∈ V .
Similarly, the rules (5) and (8) may be treated as be-
ing schematic for an infinite set of rules, one for each
distinct pair of v∗, w∗ ∈ V . The resulting reduction
system has no “critical overlaps”, i.e., no left hand
side has a common instance with a subterm of another
left hand side, unless the subterm is a metavariable.
So, it follows that:

Lemma 6 (Local Confluence) If (Γ ` r : ω) is a
term, and if r −→ s1 and r −→ s2, then there is a
term (Γ ` t : ω) such that s1

∗

−→ t and s2

∗

−→ t.

Hence, by Newman’s Lemma, we have

Proposition 7 (Confluence) If (Γ ` r : ω) is a

term, and if r
∗

−→ s1 and r
∗

−→ s2, then there is a
term (Γ ` t : ω) such that s1

∗

−→ t and s2

∗

−→ t.

This result can be extended to the language with re-
cursion as follows. Add the following reduction rule

(9) fix e −→ e(fix e)

where fix is the least fixed point operator for each
type ω. The resulting system still has no critical
overlaps. Further, it is left-linear, i.e., there are no re-
peated occurrences of metavariables on any left hand
side. Hence, by Huet [Hue80], Lemma 3.3, we have

Proposition 8 The reduction system (1-9) is con-
fluent.

This property, which is equivalent to the Church-
Rosser property, gives further evidence of the side--
effect-freedom of ILC. If there were side effects, then
the evaluation of a subexpression would affect the
meaning of its context, and the normal forms would
be dependent on the evaluation order.

The independence of results on the evaluation or-
der means, in particular, that call-by-value and call-
by-name evaluations produce the same results. This
observation must be interpreted carefully. In the
lambda calculus setting, the distinction between call-
by-value and call-by-name refers to when the argu-
ments to a function are evaluated. We are using these
terms in the same sense. However, in the imperative
programming framework, the terms call-by-value and

call-by-name are used to make a different distinction
— the question of when the arguments to a function
are observed. In the terminology of ILC, this involves
a coercion from a type Obs τ to a type τ . Since
Obs τ represents the function space [State → Dτ],
such a coercion involves change of semantics. ILC

permits no such coercion. Thus, in the imperative
programming sense, ILC’s parameter passing is call-
by-name. However, the linearity of observer construc-
tions means that a function accepting an observer can
use it to observe at most one state. This contrasts
with Algol 60, where a call-by-name parameter can be
used to observe many states with quite unpredictable
effects.

6 Extended Example : Unifi-
cation

To illustrate the expressive power and usability of the
language, we implement unification by an algorithm
that performs shared updates on a data structure.
Unification [Rob65] is a significant problem that finds
applications in diverse problems including type infer-
ence, implementation of Prolog and theorem provers,
and natural semantics.

Figure 4 contains an ILC program that computes
the most general common instance of two terms t1
and t2. A term is either a variable or a pair denot-
ing the application of a function symbol to a list of
subterms. A variable is represented by a reference.
The reference may contain either a term (if the vari-
able is already bound), or the special value Unbound.
This representation of terms illustrates the notion of
shared dynamic data mentioned in Section 1; a func-
tion accepting a term has indirect access to all the
references embedded in the term.

We assume the existence of a global reference called
sigma that accumulates the list of references bound
during an attempt at unification. If the unification is
successful, this yields the most general unifier, while
the representations of the terms t1 and t2 correspond
to the most general common instance. On failure,
this list is used to reset the values of the references
to Unbound.

The function unify attempts to compute the most
general common instance of two terms t and u. If the
unification is successful, it instantiates both t and u

to their most general common instance (by updat-
ing the references embedded in them), and evaluates
the success continuation sc. If the unification is un-
successful, it leaves the terms unchanged and evalu-
ates the failure continuation fc. Internally, it uses
the auxiliary function unify-aux which updates the

Page 11

datatype term = Var of Ref var
| Apply of (symbol × List term)

and var = Unbound | Bound of term

unify: term × term × Obs T × Obs T → Obs T

= λ(t, u, sc, fc). unify-aux(t, u, sc, undo(fc))

unify-aux: term × term × Obs T × Obs T → Obs T

= λ(t, u, sc, fc).
case (t, u) of

(Var(v1), Var(v1)) ⇒ sc

| (Var(v1), Apply(f, ts)) ⇒ bind(v1, u, sc, fc)
| (Apply(f, ts), Var(v2)) ⇒ bind(v2, t, sc, fc)
| (Apply(f, ts), Apply(g, us)) ⇒

if (f = g) then unify-lists(ts, us, sc, fc) else fc

unify-lists: List term × List term × Obs T × Obs T → Obs T

= λ(lt, lu, sc, fc). case (lt, lu) of
([], []) ⇒ sc

| (t :: ts, u :: us) ⇒
unify-aux(t, u, unify-lists(ts, us, sc, fc), fc)

| (,) ⇒ fc

bind: Ref var× term × Obs T × Obs T → Obs T

= λ(v, u, sc, fc). case v↑ of

Unbound ⇒ occurs(v, u, fc, (v := Bound(u);
sigma := v :: sigma↑;
sc))

| Bound(t) ⇒ unify-aux(t, u, sc, fc)

undo: Obs T → Obs T

= λfc. case sigma↑ of

[] ⇒ fc

| v :: vs ⇒ v := Unbound;
sigma := vs;
undo(fc)

occurs: Ref var × term × Obs T × Obs T → Obs T

= · · ·

Figure 4: Unification of first-order terms

Page 12

terms in both cases. By providing the failure con-
tinuation (undo fc) to this function, terms are re-
stored to their original values upon failure. The func-
tion unify-lists unifies two lists of terms (lt, lu),
bind unifies a variable v with a term u, occurs checks
whether a variable v occurs free in a term u, and undo

resets the values of variables that have been bound
during a failed attempt at unification. The definition
of occurs is straightforward and has been omitted.

The significant aspect of this program is that when
an unbound variable is unified with a term that does
not contain any free occurrence of the variable, unifi-
cation succeeds by assigning the term to the reference
that represents the variable (see function bind). This
modification is visible via other access paths to the
reference. It is this information sharing that affects
the unification of subsequent subterms, even though
no values are passed between these program points.
In contrast, in a pure functional language, every com-
puted value needs to be passed explicitly to all pro-
gram points which need it. In the unification exam-
ple, this means that whenever a variable is modified,
the modified value needs to be passed to all other sub-
terms that are yet to be unified, an expensive propo-
sition indeed.

7 Related Work

In this section, we compare our research with re-
lated work. We organize this comparison based on
the broad approach taken by the related work.

Linearity Substantial research has been devoted to
determining when values of pure functional languages
can be modified destructively rather than by copy-
ing. Guzman and Hudak [GH90] propose a typed ex-
tension of functional languages called single threaded
lambda calculus that can express the sequencing con-
straints required for the in-place update of array-like
data structures. Wadler [Wad90b] proposes a simi-
lar solution using types motivated by Girard’s Lin-
ear Logic and, later, shows the two approaches to be
equivalent [Wad91]. He also proposes an alternate so-
lution inspired by monad comprehensions [Wad90a].

These approaches differ radically from ours in that
they do not treat references as values. Programming
is still done in the functional style (that is, using our
τ types). Shared updates cannot be expressed, and
pointers (references to references) and objects (mu-
table data structures with function components) are
absent. Although it is possible to represent references
as indices into an array called the store, the result is
a low-level “Fortran-style” of programming, and it is

not apparent how references of different types can be
accommodated.

Continuation-based effects Our approach to in-
corporating state changes is closely related to (and in-
spired by) continuation-based input/output methods
used in functional languages [HW90, Kar81, Per90,
MH]. The early proposal of Haskell incorporated
continuation-based I/O as a primitive mechanism,
but Haskell version 1.0 defines it in terms of stream-
based I/O [HW90, HS88]. Our Obs types are a gener-
alization of the Haskell type Dialog. In ILC, Dialog
can be defined as Obs Unit where Unit is a one-
element type.

Effect systems An effect system of Gifford and
Lucassen [GL86] is a type system that describes the
side-effects that expressions can have. A compiler
can then use this information to determine when ex-
pressions can be evaluated in parallel, or when they
may be memoized without altering the meaning of
the program. The side-effect information computed
by Gifford and Lucassen assumes an eager order of
evaluation; this contrasts with our goal of handling
assignments in lazy languages.

Equational axiomatizations Felleisen [Fel88,
FF87, FH89], Mason and Talcott [MT89a, MT89b]
give equational calculi for untyped Scheme-like lan-
guages with side effects. The calculi are based on
the notion of observational equivalence: two terms
are equivalent if they yield the same result in all con-
texts of atomic type. Our reduction system bears
some degree of similarity to these calculi. However,
the calculi are considerably more complex than our
reduction system because of the possibility of side ef-
fects. We are investigating the formal relationships
between the different approaches.

Laws of programming In a recent paper, Hoare
et. al. [HHJ+87] present an equational calculus for a
simple imperative language without procedures. The
equations can be oriented as reduction rules and used
to normalize recursion-free command phrases. Our
work is inspired, in part, by this equational calculus.

Algol-like languages In a series of papers [Rey81,
Rey82], Reynolds describes a language framework
called Idealized Algol which is later developed into the
programming language Forsythe [Rey88]. Forsythe
has a two-layered operational semantics: the reduc-
tion semantics of the typed lambda calculus, and a

Page 13

state transition semantics. The former expands pro-
cedure calls to (potentially infinite) normal forms,
while the latter executes the commands that occur
in the normal forms. Forsythe is based on the princi-
ple that the lambda calculus layer is independent of
the state transition layer. In particular, references to
functions are not permitted because assignments to
such references would affect β-expansion.

In contrast, our operational semantics involves a
single unified reduction system that includes both
β-expansion and command execution. Therefore,
Forsythe’s restrictions do not appear in our formula-
tion. At the level of terms, ILC contains an applica-
tive sublanguage (in terms of τ types) which is absent
in Forsythe. Further, ILC permits state-independent
imperative terms to be coerced to applicative types
thereby allowing functions that create and use local
state. No similar coercion is available in Forsythe.

8 Conclusion

We have presented a formal basis for adding mu-
table references and assignments to applicative lan-
guages without violating the principle of referential
transparency. This is achieved through a rich type
system that distinguishes between state-dependent
and state-independent expressions and sequentializes
modifications to the state. The language possesses
the desired properties of applicative languages such
as strong normalization and confluence. At the same
time, it allows the efficient encoding of state-oriented
algorithms and linked data structures.

We hope this work forms the beginning of a sys-
tematic and disciplined integration of functional and
imperative programming paradigms. Their differing
strengths are orthogonal, but not conflicting. Much
further work remains to be done regarding the ap-
proach presented here. The issues of polymorphism
over mutable and observer types must be investi-
gated. A complete equational calculus must be found
for supporting formal reasoning. This, in turn, re-
quires a formalization of the models of ILC and the
development of proof methods like logical relations.
The incorporation of an effect system and use of the
monad comprehension notation would make the lan-
guage more flexible and convenient to use. Finally,
the issues of implementation need to be addressed.

Acknowledgements We thank John Gray, Jim
Hook, Matthias Felleisen, Sam Kamin, Dave Mac-
Queen, Ian Mason, John Ramsdell, John Reynolds,
Peter Sestoft, Harald Sondergard, Carolyn Talcott,
Satish Thatte and Phil Wadler for numerous discus-

sions which led to vast improvements in our presen-
tation.

References

[Fel88] M. Felleisen. lambda-v-cs: An extended
lambda-calculus for scheme. In ACM
Symp. on LISP and Functional Program-
ming, 1988.

[FF87] M. Felleisen and D. P. Friedman. A cal-
culus for assignments in higher-order lan-
guages. In ACM Symp. on Principles of
Programming Languages, pages 314–325,
1987.

[FH89] M. Felleisen and R. Hieb. The revised re-
port on the syntactic theories of sequen-
tial control and state. Technical Report
COMP TR89-100, Rice University, 1989.

[GH90] J.C. Guzman and P. Hudak. Single-
threaded polymorphic lambda calculus. In
IEEE Symp. on Logic in Computer Sci-
ence, pages 333–343, 1990.

[GL86] D.K. Gifford and J.M. Lucassen. Integrat-
ing functional and imperative program-
ming. In ACM Symp. on LISP and Func-
tional Programming, pages 28–38, 1986.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul
Taylor. Proofs and Types. Cambridge Uni-
versity Press, 1989.

[HB85] P. Hudak and A. Bloss. The aggregate up-
date problem in functional programming
systems. In ACM Symp. on Principles of
Programming Languages, pages 300–314,
1985.

[HHJ+87] C. A. R. Hoare, I. J. Hayes, He Jifeng,
C. C. Morgan, A. W. Roscoe, J. W.
Sanders, I. H. Sorensen, J. M. Spivey, and
B. A. Sufrin. Laws of programming. Com-
munications of the ACM, 30(8):672–686,
August 1987.

[HS88] P. Hudak and R. Sundaresh. On the ex-
pressiveness of purely functional I/O sys-
tems. Technical Report YALEU/DCS/-
RR665, Yale University, Dec 1988.

[Hue80] G. Huet. Confluent reductions: ab-
stract properties and applications to term
rewriting systems. Journal of the ACM,
27(4):797–821, October 1980. (Previous

Page 14

version in Proc. Symp. Foundations of
Computer Science, Oct 1977).

[Hug90] J. Hughes. Why functional programming
matters. In Research Topics in Functional
Programming, Univ. of Texas at Austin
Year of Programming Series, chapter 2,
pages 17–42. Addison-Wesley, 1990.

[HW90] P. Hudak and P. Wadler (editors).
Report on the programming language
Haskell, A non-strict purely functional
language (Version 1.0). Technical Report
YALEU/DCS/RR-777, Dep. of Computer
Sc., Yale University, Apr 1990.

[Kar81] K. Karlsson. Nebula, A functional operat-
ing system. Tech. report, Chalmers Uni-
versity, 1981.

[LG88] J.M. Lucassen and D.K. Gifford. Poly-
morphic effect systems. In ACM Symp.
on Principles of Programming Languages,
pages 47–57, 1988.

[MH] L. M. McLoughlin and S. Hayes. Inter-
language working from a pure functional
language. Functional Programming mail-
ing list, Nov 1988.

[Mit90] J. C. Mitchell. Type systems for program-
ming languages. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Sci-
ence. North-Holland, Amsterdam, 1990.
(also Report No. STAN-CS-89-1277, De-
partment of Computer Science, Stanford
University).

[MT89a] I. A. Mason and C. Talcott. Axiomatizing
operational equivalence in the presence of
side effects. In IEEE Symp. on Logic in
Computer Science, pages 284–293. IEEE,
1989.

[MT89b] I. A. Mason and C. Talcott. A sound
and complete axiomatization of opera-
tional equivalence between programs with
memory. Technical Report STAN-CS-89-
1250, Stanford University, 1989. (to ap-
pear in Theoretical Computer Science).

[MTH90] R. Milner, M. Tofte, and R. Harper. The
definition of Standard ML. The MIT
Press, Cambridge, Massachusetts, 1990.

[Per90] N. Perry. The Implementation of Practical
Functional Programming Languages. PhD

thesis, Imperial College of Science, Tech-
nology and Medicine, University of Lon-
don, 1990.

[Pra71] D. Prawitz. Ideas and results in proof the-
ory. In Proc. Second Scandinavian Logic
Symposium, 1971.

[RC86] J. Rees and W. Clinger (editors). Re-
vised3 report on the algorithmic lan-
guage scheme. ACM SIGPLAN Notices,
21(12):37–79, Dec 1986.

[Rey81] J. C. Reynolds. The essence of Algol. In
J. W. de Bakker and J. C. van Vliet, ed-
itors, Algorithmic Languages, pages 345–
372. North-Holland, 1981.

[Rey82] J. C. Reynolds. Idealized Algol and its
specification logic. In Neel. D., editor,
Tools and Notions for Program Construc-
tion, pages 121–161. Cambridge Univ.
Press, 1982.

[Rey88] J.C. Reynolds. Preliminary design of the
programming language Forsythe. Tech-
nical Report CMU-CS-88-159, Carnegie
Mellon University, June 1988.

[Rob65] J. A. Robinson. A machine-oriented logic
based on the resolution principle. Journal
of the ACM, 12:23–41, 1965.

[Sch85] D. A. Schmidt. Detecting global vari-
ables in denotational specifications. ACM
Transactions on Programming Languages
and Systems, 7(2):299–310, Apr 1985.

[SR91] V. Swarup and U.S. Reddy. A logical view
of assignments. In Conf. on Constructivity
in Computer Science, 1991. (To appear).

[Sto77] J. E. Stoy. Denotational Semantics: The
Scott–Strachey Approach to Programming
Language Theory. MIT Press, 1977.

[SW74] C. Strachey and C. P. Wadsworth. Con-
tinuations - a mathematical semantics for
handling full jumps. Tech. Monograph
PRG-11, Programming Research Group,
University of Oxford, 1974.

[Swa91] V. Swarup. Type theoretic properties of as-
signments. PhD thesis, University of Illi-
nois at Urbana-Champaign, 1991. (To ap-
pear).

Page 15

[Tai75] W. W. Tait. A realizability interpretation
of the theory of species. In R. Parikh, edi-
tor, Proceedings of Logic Colloquium, vol-
ume 453 of Lecture Notes in Mathematics,
pages 240–251. Springer, Berlin, 1975.

[Tof88] M. Tofte. Operational semantics and poly-
morphic type inference. PhD thesis, Ed-
inburgh University, 1988. Available as
Edinburgh Univ. Lab. for Foundations of
Computer Science Technical Report ECS-
LFCS-88-54.

[Wad90a] P. Wadler. Comprehending monads. In
ACM Symp. on LISP and Functional Pro-
gramming, 1990.

[Wad90b] P. Wadler. Linear types can change the
world. In IFIP Working Conf. on Pro-
gramming Concepts and Methods, Sea of
Gallilee, Israel, Apr 1990.

[Wad91] P. Wadler. Is there a use for linear
logic? In Proc. ACM SIGPLAN Conf. on
Partial Evaluation and Semantics-Based
Program Manipulation, New York, 1991.
ACM. (SIGPLAN Notices, to appear).

Page 16

