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ABSTRACT

This article presents the first practice of assimilating real-world all-sky GOES-16 ABI infrared brightness

temperature (BT) observations using an ensemble-based data assimilation system coupled with the Weather

Research and Forecasting (WRF) Model at a convection-allowing (1 km) horizontal resolution, focusing on

the tornadic thunderstorm event across Wyoming and Nebraska on 12 June 2017. It is found that spurious

clouds created before observed convection initiation are rapidly removed, and the analysis and forecasts of

thunderstorms are significantly improved, when all-sky BT observations are assimilated with the adaptive

observation error inflation (AOEI) and adaptive background error inflation (ABEI) techniques. Better

forecasts of the timing and location of convection initiation can be achieved after only 30min of assimilating

BT observations; both deterministic and probabilistic WRF forecasts of midlevel mesocyclones and low-level

vortices, started from the final analysis with 100min of BT assimilation, closely coincide with the tornado

reports. These improvements result not only from the effective suppression of spurious clouds, but also from

the better estimations of hydrometeors owing to the frequent assimilation of all-sky BT observations that

yield amore accurate analysis of the storm.Results show that BT observations generally have a greater impact

on ice particles than liquid water species, which might provide guidance on how to better constrain modeled

clouds using these spaceborne observations.

1. Introduction

Severe thunderstorms that produce damaging winds,

flash floods, hail, and tornadoes have long been one of

the major threats to human life and property. When

examining billion-dollar weather and climate disasters

in the United States during 1980–2017, it is shown that

severe thunderstorms are responsible for over 40% of

the total number of these events, almost 1/7 the total

economic losses, and about 1/6 of the deaths (NCDC

2018). Monitoring and predicting severe thunder-

storms is one of the most important and most difficult

parts of operational weather forecast and warning op-

erations. The average warning lead time for torna-

does has increased from 3min in 1978 to 14min in

2011 (Wurman et al. 2012; Stensrud et al. 2013), thanks

in large part to the establishment of the nationwide

Weather Surveillance Radar-1988 Doppler (WSR-

88D) network.

Doppler weather radars play a critical role in the

current severe weather warning paradigm, either via

direct utilization of their reflectivity and radial velocity

observations or in combination with numerical weather

prediction models through data assimilation techniques

(e.g., Polger et al. 1994; Clark et al. 2012). The next-

generation geostationary weather satellites, including

Himawari-8/9 of the Japan Meteorological Agency

(Bessho et al. 2016), the GOES-R series of NASA

(Schmit et al. 2005), the FY-4 series of the China Me-

teorological Administration (Yang et al. 2017), and the

Meteosat Third-Generation (MTG) series of the

EUMETSAT (Stuhlmann et al. 2005), will provide a

similarly important opportunity to enhance the moni-

toring and prediction of severe weather events with

more spectral bands and higher spatial and temporal

resolutions than their predecessors. Himawari-8,

GOES-16, and FY-4A launched on 7 October 2014,

9 November 2016, and 10 December 2016, respectively,

and are already providing high-quality, continuous im-

ages of the atmosphere.Corresponding author: Fuqing Zhang, fzhang@psu.edu
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Infrared imagers on board geostationary weather

satellites, such as the Advanced Baseline Imager (ABI)

on board GOES-16, have some unique advantages over

ground-based Doppler weather radars. Cloud develop-

ment and extent is observed earlier by satellite imagers

that focus on radiance near Earth’s surface than by

Doppler weather radars where precipitating hydrome-

teors must be present for detection. Unlike Doppler

radars that suffer from limited horizontal coverage and

beam blocking from built structures, satellite imagers

can provide nephograms without ‘‘gaps.’’ Imagers like

ABI can provide scans of the continental United States

(CONUS) every 5min, comparable to the interval of

each WSR-88D volume scan in precipitation mode

(5–6min), with a subpoint horizontal resolution of 2 km

for infrared channels. This 2-km resolution is sufficient to

monitor the initiation and development of convective

clouds (Schmit et al. 2017). Because of these potential

benefits, it is desirable to directly assimilate infrared

brightness temperature (BT; will be used interchangeably

with ‘‘radiance’’ in this article) observations from geo-

stationary satellites into numerical weather prediction

(NWP) models with the goal to improve severe weather

forecasts.

Previous studies have assimilated synthetic infrared

BT observations from ABI using ensemble-based tech-

niques like the ensemble Kalman filter (EnKF; Evensen

1994; Houtekamer and Zhang 2016). The EnKF has the

advantage of providing flow-dependent time-varying

estimation of background error covariances, compared

with variational-based assimilation techniques like

3DVar (Zhang et al. 2011), and thus is widely used in

data assimilation applications for severe thunder-

storms at convection-allowing storm scales (e.g.,

Snyder and Zhang 2003; Aksoy et al. 2009; Dowell

et al. 2011; Wheatley et al. 2015; Yussouf et al. 2015;

Yokota et al. 2016). Observing system simulation

experiments (OSSEs) of the direct assimilation of syn-

thetic ABI BT observations using EnKF have mostly

focused on extratropical cyclones (Otkin 2010, 2012;

Zupanski et al. 2011; Jones et al. 2013), mesoscale con-

vective systems (Jones et al. 2014; Cintineo et al. 2016),

or tropical cyclones (F. Zhang et al. 2016; Minamide and

Zhang 2017, 2018a); recently, Honda et al. (2018a,b)

assimilated real-data all-sky radiance observations from

the Advanced Himawari Imager (AHI) on board the

Himawari-8 satellite, which has similar infrared chan-

nels as the ABI onboard the GOES-16 satellites, to

improve predictions of tropical cyclones and associated

torrential precipitation and floods. However, storm-

scale data assimilation studies using geostationary

satellite observations only assimilated temperature

and moisture profile retrievals (Jones et al. 2017),

cloud-top temperature (Kerr et al. 2015), water paths

of different hydrometeor species (Jones and Stensrud

2015; Jones et al. 2015, 2016), and GOES-13 clear-sky

infrared radiance (Jones et al. 2018), rather than all-sky

(clear sky and cloud affected) infrared radiance obser-

vations from high spatiotemporal imagers like the ABI.

This study is the first attempt to directly assimilate real-

world all-sky ABI infrared BT observations using an

EnKF approach with a numerical model running at a

convection-allowing 1-km horizontal resolution (finer

than all previous studies) to improve model forecasts

of a tornadic thunderstorm event.

The tornadic thunderstorm event from 12 June 2017

in Wyoming and Nebraska is briefly summarized in

section 2. The observations, numerical model, and ex-

periment design are presented in section 3. Verification of

the EnKF is discussed in section 4, followed in section 5

by an evaluation of the performance of the determin-

istic and ensemble forecasts initialized at various times

from the EnKF analysis. Results are summarized in

section 6.

2. Overview of the 12 June 2017 severe

weather outbreak

During themorning of 12 June 2017, an upper-level low

was moving eastward from northern Nevada into Utah,

with an upper-level jet located to its southeast and

stretching from southern Nevada and northern New

Mexico intoWyoming andNebraska. Southeasterly winds

in the low levels to the east of the Rocky Mountains

transported abundant moisture into eastern Colorado and

southeastern Wyoming during the previous day. Strong

instability with surface-based CAPE above 3000Jkg21

and little to no CIN was present in this region by early

afternoon of 12 June. The 0–6-km wind shear exceeded

10ms21 in northeasternColorado, southeasternWyoming,

and the Nebraska panhandle, accompanied by a very

large supercell composite parameter (Thompson et al.

2003) greater than 8 as well as a very large significant

tornado parameter (Thompson et al. 2003) greater than 2

in the adjacent regions of these three states at local noon

[mountain standard time (MST); MST 5 UTC 2 0700].

The NOAA Storm Prediction Center (SPC) predicted a

moderate risk of severe thunderstorms with tornado

probability greater than 15% (with possible significant

tornadoes) and large hail probability greater than 45% in

easternWyoming and surrounding areas in its 1630 UTC

day 1 convective outlook issued on 12 June 2017. SPC

later issued a tornado watch at 1910 UTC for northeast

Colorado, western Nebraska, and southeast Wyoming

effective until 0200UTC 13 June, indicating a particularly

dangerous situation (PDS) for possible intense tornadoes,
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large hail, and damaging winds—the first PDS tornado

watch ever issued for Wyoming.

Remotely sensed observations of this severe weather

event from before convection initiation until after

the final tornado report are shown in Figs. 1 and 2. The

composite reflectivity images of this event (Fig. 1) are

generated by interpolating the level 2 reflectivity of

threeWSR-88Ds located at Denver, Colorado (KFTG),

Cheyenne,Wyoming (KCYS), andNorth Platte, Nebraska

(KLNX), onto a domain that is used for numerical

experiments with a horizontal resolution of 1 km (see

section 3 for the model settings) and taking the maxi-

mum values vertically as well as 2.5min before and after

each plotting time. TheBT images from channel 10 (Fig. 2),

the lower-level tropospheric water vapor channel of ABI

with a central wavelength of 7.3mm, are interpolated onto

same plotting grid as in Fig. 1.

Widespread convection initiated along the slopes of

the Rocky Mountains in north-central Colorado near

the border between Colorado and Wyoming, as well as

farther north in centralWyoming during early afternoon

around 2000 UTC (Figs. 1b, 2b). Several storms de-

veloped parallel to the mountain slopes (Figs. 1c,d), and

their overshooting tops can be clearly identified in sat-

ellite BT images (Figs. 2c,d). The storms moved north-

eastward intoWyoming and Nebraska (Figs. 1d–f, 2d–f),

with the southernmost storm generating the first EF-2

tornado of the day from 2258 to 2308 UTC with a

track across the Colorado–Wyoming border. There was

also another EF-2 tornado, which formed at 2309 UTC

from a separate storm farther to the north and lasted

until 0001 UTC 13 June. Between 2300 and 0100 UTC,

some of the stormsmerged (Fig. 1f), and new storms also

initiated alongside the existing storms (Figs. 1f–h),

generating multiple EF-0 and EF-1 tornadoes; several

studies imply that there might be relationships between

storm mergers and subsequent tornadogenesis (e.g.,

Wurman et al. 2007; Hastings and Richardson 2016;

Honda and Kawano 2016). All these storms eventually

combined to form a single very intense supercell thun-

derstorm (Figs. 1h, 2h). This supercell produced a long-

lived EF-2 tornado from 0119 to 0225 UTC that tracked

FIG. 1. Composite reflectivity at (a) 1900, (b) 2000, (c) 2040, (d) 2100, (e) 2200, and (f) 2300 UTC 12 Jun, and (g) 0000, (h) 0100, and

(i) 0200 UTC 13 Jun 2017. Shading of background indicates elevations. Filled triangles in all panels are tornado reports from SPC, with

different colors indicating reports from different tornadoes. Locations of WY, NE, and CO and the three WSR-88Ds that were used to

generate composite reflectivity are also marked in (a).
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nearly 40 mi. This storm continued moving northeast-

ward (Figs. 1h,i)—weakening and becoming disorga-

nized, producing widespread anvil clouds (Figs. 2h,i)—

and eventually dissipated in South Dakota.

While convection initiation (CI) processes and storm

overshooting tops can be clearly observed in the satellite

images, it is hard to determine the precise storm evolution

and storm interactions from satellite observations. There is

also no clear relationship between the height of the over-

shooting tops and the severity of the storms. For example,

the storm associated with the highest overshooting top

during storm development from 2200 to 0000 UTC

(Figs. 2e–g) was comparably weak in radar reflectivity

(Figs. 1e–g) and only spawned an EF-0 tornado with 4-min

lifespan to the northeast of Cheyenne, Wyoming.

3. Data, model, and experiments

a. GOES-16, ABI, and the observations

GOES-16, the first satellite of theGOES-R series, was

launched by an Atlas V rocket at Cape Canaveral,

Florida, on 19 November 2016. It underwent multiple

examinations, calibrations, and validations for a year

while holding at its checkout location at 89.58W above

the equator, which is the location of the satellite during

the event of this study. It was shifted to the GOES-East

operational location at 75.28W on 11 December 2017

and was announced as the operational GOES-East

satellite on 18 December 2017, succeeding GOES-13.

The successor of current GOES-West (GOES-15),

GOES-17, was launched on 1 March 2018, and is ex-

pected to become operational in late 2018.

Among themultiple instruments on boardGOES-16 that

sense theEarth, the sun, and space environment, theABI is

the primary instrument for imaging Earth’s weather and

climate. It has two visible, four near-infrared, and 10 in-

frared channels with subpoint resolutions of 0.5–2km, up to

4 times finer than its predecessors. The ABI is able to

produce a full disk scan every 15min, a CONUS scan

(5000km 3 3000km) every 5min, and a mesoscale scan

(1000km 3 1000km) every 30s using a ‘‘flex’’ scan mode,

or it can produce a full disk scan every 5min using a

‘‘continuous full disk’’ scan mode. Previous GOES imagers

took at least 25min to finish a full disk scan. Further details

FIG. 2. Brightness temperature of channel 10 ofGOES-16ABI at (a) 1857, (b) 1957, (c) 2037, (d) 2100, (e) 2200, and (f) 2300 UTC 12 Jun,

and (g) 0000, (h) 0100, and (l) 0200 UTC 13 Jun 2017.
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on the ABI and characteristics of its channels can be found

in Schmit et al. (2005, 2017).

Observations used in this study are retrieved from

NOAA’sComprehensive LargeArray-Data Stewardship

System (CLASS). Channel 10 of the ABI has a weighting

function that peaks at roughly 620hPa in clear-sky con-

ditions (Schmit et al. 2017), and observations from this

channel are assimilated. The ABI measured level 1b ra-

diances are converted to BT observations as the Cloud

and Moisture Imagery product (CMIP). The BT obser-

vations have been calibrated and geolocated, and raw BT

observations with a horizontal resolution of ;2.5km in

Colorado, Wyoming, and Nebraska taken during the

event will be used without data thinning. It should be

pointed out that observational errors of high-resolution

observations like BT fromGOES-16ABI usually contain

spatial correlations; however, in order to take the most

advantage of the higher resolutions of ABI compared

with its predecessors, especially the high-resolution de-

tails of the convective-scale structures of the developing

thunderstorms, we choose to use raw BT observations

without data thinning, while using a relatively large ob-

servational error together with the adaptive observation

error inflation (AOEI) technique [Minamide and Zhang

(2017); will be explained in more detail in section 3b] to

implicitly take spatially correlated observational errors

into account. We do not perform any additional quality

control procedures on the raw observations.

b. Numerical model and data assimilation systems

The Pennsylvania State University (PSU) WRF–EnKF

cycling data assimilation system (Zhang et al. 2009;

Weng and Zhang 2016)—evolved from an early devel-

opment of Meng and Zhang (2008a,b) based on the fully

compressible, nonhydrostatic Advanced Research core

of the Weather Research and Forecasting (WRF-ARW)

numerical model (Skamarock et al. 2008), version 3.8.1—

is used in this study. A single model domain consisting of

4013 3013 61 grid points with a horizontal grid spacing

of 1km, 61 vertical layerswith 19 in the lowest 1kmabove

ground level (AGL) and the uppermost level at 50 hPa,

is used. This domain covers northern Colorado, south-

eastern Wyoming, and southwest Nebraska, where the

tornadic thunderstorm formed and developed (Fig. 1).

Physical parameterization schemes are chosen based on

sensitivity experiments and are similar to the suite used

in the High-Resolution Rapid Refresh (HRRR) model,

including the Thompson et al. (2008) microphysics

scheme with mixing ratios of water vapor (Qv), cloud

water (Qc), cloud ice (Qi), rainwater (Qr), snow

(Qs), and graupel (Qg) and number concentration of

ice and rainwater; unified Noah land surface model

(Ek et al. 2003); Monin–Obukhov–Janjić Eta scheme

(Janjić 1996) for surface layer parameterization;

Mellor–Yamada–Janjić TKE scheme (Janjić 1994) for

PBL processes; and the Rapid Radiative Transfer

Model for general circulation models (RRTMG)

schemes (Iacono et al. 2008) for longwave and short-

wave radiation. Simulated radar reflectivity is calculated

using the built-in module of the Thompson microphysics

scheme.

The Community Radiative Transfer Model (CRTM;

Han et al. 2006) is a rapid radiative transfer model that

is widely used in the satellite data assimilation com-

munity as the observation operator to calculate simu-

lated brightness temperature from numerical model

variables. This study uses CRTM to generate simulated

satellite infrared BT from the WRF-ARW variables

with the successive order of interaction (SOI) forward

solver (Heidinger et al. 2006) using the OPTRAN code.

The default standard tropical region profile in CRTM

was used above the model top of 50 hPa; this profile

choice has a minor impact on the calculations, given

that atmosphere above 50hPa contributes little to the

simulated BT according to the weighting function of

channel 10.

The data assimilation part of the cycling PSU WRF–

EnKF system uses the ensemble square root filter

(EnSRF; Whitaker and Hamill 2002) variation of EnKF.

TheAOEI technique (Minamide andZhang 2017) is used

to limit potentially erroneous innovations for all-sky ra-

diance assimilation and is shown to provide better analysis

and forecasts than a fixed observation error; it adaptively

inflates observation error for BT observations if the in-

crement is large, while keeping a minimum 3-K error

when the increment is small. The adaptive background

error inflation (ABEI) technique (Minamide and Zhang

2018b, manuscript submitted to Quart. J. Roy. Meteor.

Soc.) is used to help initiate clouds and is proven to be

effective; it provides inflation factors proportional to the

discrepancies between simulated and observed brightness

temperatures where observed clouds are not simulated,

while truncated at a maximum value of 1.4 corresponding

to a discrepancy of 44.4K for channel 10 of ABI, same as

in Minamide and Zhang (2018b, manuscript submitted to

Quart. J. Roy. Meteor. Soc.). The covariance relaxation

method (Zhang et al. 2004) is used to maintain ensemble

spread, combining 80% of prior perturbation and 20% of

posterior perturbation in the EnKF analysis. Using a cri-

terion similar to F. Zhang et al. (2016), every channel 10

BT observation is first assessed to determine whether it is

in a clear-sky region, as defined when channel 14 (window

channel) BT are higher than 285K, or in a cloudy region,

as definedwhen channel 14BTare lower than 285K.Each

observation height is then assigned to be either 620hPa,

the peak of weighting function of channel 10 in clear-sky
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condition, or 250hPa, the approximate height of cloud

top, depending upon whether the observation is in a

clear-sky or cloudy region, respectively. A broad radius

of influence (ROI) for vertical localization of 5 times

the altitude AGL of each observation is used during the

EnKF; considering that BT is an accumulated nonlocal

type of observation, the length scale of vertical ROI is

selected so that influences fromobservationswill reduce by

about 25% at both the model bottom and top under clear-

sky conditions. The horizontal ROI is fixed to 30km for

all BT observations, which is slightly narrower than the

40–60-km horizontal ROI that has been used in previous

simulated and real ABI radiance assimilation studies

with horizontal model grid spacing of 3–6 km (Jones

et al. 2015; Cintineo et al. 2016; Honda et al. 2018b); this

study uses a much higher 1-km resolution for the numer-

ical model together with raw ABI radiance observations.

c. Experiment design

Two sets of simulations without data assimilation are

first carried out as references. One deterministic fore-

cast is run from 1800 UTC 12 June to 0000 UTC 13 June

using the hourly HRRR analysis as initial and lateral

boundary conditions (referred to as ‘‘DETER’’ hereafter).

Another simulation is a set of ensemble forecasts gen-

erated by first running 6- and 12-h 20-member ensem-

ble forecasts from 1200 and 0600 UTC 12 June using

corresponding GEFS analysis and forecasts; then, 40

ensemble initial conditions are generated by subtracting

the mean of these 40 GEFS simulations at 1800 UTC

from each simulation and adding these 40 ‘‘perturba-

tions’’ to the 1800 UTC HRRR analysis. The pertur-

bations are downscaled before adding them to the

HRRR analysis to generate the ensemble initial condi-

tions and have a domain-averaged standard devia-

tion of 0.55K, 1.05 g kg21, 1.14m s21, and 1.12ms21 for

temperature, water vapor mixing ratio, and the two

horizontal components of wind, respectively. The cal-

culations of moisture are performed on dewpoint tem-

perature instead of water vapor mixing ratio to avoid

negative mixing ratio values, assuming unchanged

pressure of dry air during conversion between water

vapor mixing ratio and dewpoint temperature. Last,

a 40-member ensemble forecast is carried out from

1800 until 0000 UTC 13 June using these 40 initial

conditions and corresponding updated boundary con-

ditions (referred to as ‘‘NODA’’ hereafter). These two

sets of simulations are briefly described in section 3d.

CyclingEnKF is started at 1900UTC from theNODA

ensemble forecast valid at the same time, an hour before

observed CI around 2000 UTC. The EnKF is performed

every 5min, consistent with the 5-min interval of BT

observations, and only BT observations are assimilated.

There is a change from ‘‘flex’’ scan mode to ‘‘continuous

full disk’’ scan mode for the ABI data from 2040 to

2100 UTC, during which observations were unavailable;

thus, the cycling EnKF ends at 2040 UTC, providing

100min of EnKF cycles (referred to as ‘‘ENKF’’ here-

after). Deterministic forecasts are initialized from

the 1930, 2000, and 2040 UTC EnKF analysis mean

(referred to as ‘‘Fcst1930,’’ ‘‘Fcst2000,’’ and ‘‘Fcst2040,’’

respectively, hereafter), and ensemble forecasts are also

initialized at these times using EnKF analysis ensembles

(referred to as ‘‘EF1930,’’ ‘‘EF2000,’’ and ‘‘EF2040,’’

respectively, hereafter). A schematic diagram showing

the experiment design is provided in Fig. 3.

d. Simulations without data assimilation

The reference deterministic and ensemble simula-

tions without data assimilation are examined in this

subsection. Figure 4 shows composite reflectivity from

the DETER forecast. Storms are initiated along the

slopes of the Rocky Mountains shortly after initializa-

tion at 1800 UTC, more than 1h earlier compared with

the observed CI (Fig. 1b), and form into several strong

storms as early as 1900 UTC (Fig. 4a). These storms

undergo a merging process similar to the observed

storms (Figs. 4c,d). Although large discrepancies are

present in the timing of CI in the DETER forecast com-

pared with observations, the general location of CI and

movement of the storms are close to the actual storms, as

these characteristics are primarily regulated by mesoscale

to synoptic-scale environmental conditions, which are

generally well simulated by rapid-cycling convection-

allowing HRRR system. The DETER forecast also

simulates a well-defined track of 2–5-km updraft helicity

(UH; Fig. 5a) in close proximity to the tornado reports, in-

dicating the existence of an intense mesocyclone. However,

there are also several UH tracks alongside the longest

one in the eastern half of the model domain. Further-

more, a low-level vortex (represented by maximum

FIG. 3. Schematic diagram of the experiment design for cycling

EnKF assimilatingGOES-16ABI BT observations and associated

deterministic and ensemble forecasts.
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vertical vorticity within 1 km AGL) associated with

these UH tracks is intermittent, and strong near-surface

rotation only existed for a short period of time (Fig. 5c).

Similar to the DETER forecast, there also are earlier

storm initiations along the slopes of the Rockies in the

NODA ensemble forecast (Fig. 6a). Furthermore, the

ensemble has very large uncertainties at later times,

especially after 2200 UTC (Figs. 6d–f), with previously

higher probabilities (greater than 60%) gradually di-

minishing to values lower than 50%, indicating a loss of

confidence in the storm prediction. As can be expected

from the large spread of composite reflectivity, ensemble

FIG. 4. Simulated composite reflectivity of DETER forecast at (a) 1900, (b) 2000, (c) 2100, (d) 2200, and (e) 2300 UTC 12 Jun, and

(f) 0000 UTC 13 Jun 2017.

FIG. 5. Deterministic forecasts of (a) maximum of 2–5-km UH and (c) maximum of 0–1-km maximum vertical

vorticity of DETER forecast. Probabilistic forecasts of (b) 180m2 s22 2–5-km UH and (d) 0.004 s21 0–1-km

maximum vertical vorticity of NODA ensemble forecast. Temporal maximum values throughout the entire sim-

ulations were used.
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probability of midlevel mesocyclone in NODA is wide-

spread and generally weak (lower than 50%; Fig. 5b),

although there is a region with slightly higher probability

in southeast Wyoming, coincident with the tornado re-

ports. However, consistent with that of DETER forecast,

there are no organized low-level vortex tracks in high-

UH-probability regions (Fig. 5d), indicating large un-

certainties in the prediction of near-surface rotation in

the NODA ensemble forecast.

4. The accuracy of EnKF analysis

a. Quantitative verifications

The performance of the WRF–EnKF system is first in-

vestigated using observation–space diagnostic metrics, in-

cluding root-mean-square innovation/fit (RMSI/RMSF),

bias, and ensemble spread. RMSI/RMSF is calculated as

RMSI/RMSF5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(d2 d)2
D E

r

,

where d5 yo 2H(xb) or d5 yo 2H(xa) represents the

innovation of background mean [H(xb)] or fit of analy-

sis mean [H(xa)], compared with observations (yo) in

observation space, respectively; H is the observation

operator (which is the CRTM model here); and x is the

model state vector with superscripts b and a indicating

the background (prior) and analysis (posterior) estimates.

Bias is calculated as

Bias5 h2di ,

where d is the same as defined in RMSI/RMSF calcu-

lations. Ensemble spread is calculated as

Spread5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

1
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�
N

n51

H(x
n
)2H(x

n
)

h i2
�

s

,

whereN is the ensemble size (which is 40 here), and n is

the index of each ensemble member.

These verification metrics during EnKF cycles are

shown in Fig. 7a. The BT RMSI/RMSF experiences a

very steep drop from 23 to 7K at the first (1900 UTC)

EnKF cycle, and a similar reduction of bias from 16 to

2K occurs simultaneously. RMSI/RMSF remains at a

relatively small magnitude afterward and shows a very

slight increase after 2000 UTC due to storm initiation.

The persistent decrease of the magnitude of bias

throughout the entire EnKF cycles indicates a reduction

of spurious convection (will also be examined later).

Ensemble spread also drops rapidly during the first

several EnKF cycles and remains at almost constant

values around 2K after 1945 UTC, while root-mean-

square observational errors (
ffiffiffiffiffiffiffiffiffi

hs2
oi

p

) generally follow

the trend of RMSI/RMSF, consistent with its formula-

tion. The quasi-steady state of all these metrics after

several EnKF cycles indicates that the EnKF system is

working properly and maintains a close representation

of the observations.

We further divide mean bias of ensemble mean into

averages of positive bias and negative bias. A positive

bias resulted from higher brightness temperature in the

FIG. 6. Ensemble probability of 40-dBZ composite reflectivity of NODA ensemble forecast at (a) 1900, (b) 2000, (c) 2100, (d) 2200, and

(e) 2300 UTC 12 Jun, and (f) 0000 UTC 13 Jun 2017. Black contours in all panels are observed 40-dBZ composite reflectivity.
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observation than prior or posterior ensemble mean

indicates spuriously simulated clouds, while a negative

bias indicates insufficient coverage of clouds or lower

cloud tops in the simulation, compared with observa-

tions. It can be seen in Fig. 7b that the negative bias

persistently remained at a relatively small value of

;3K after the first several cycles, indicating an effec-

tive removal of spuriously simulated clouds during

EnKF cycles and subsequent short-term ensemble

forecasts between EnKF cycles. On the other hand,

although the positive bias also remained below 3K

throughout all EnKF cycles, there is a slight increase in

the magnitude of positive bias after 1945 UTC, resulted

from a comparably slower initiation of clouds in the

EnKF cycles, compared with the observations. How-

ever, magnitudes of both positive and negative biases

experience notable reduction during every EnKF cycle

(became closer to 0), proving that our technique can

both suppress and initiate clouds, and the increase of

positive bias could potentially be reduced by tuning

ABEI parameters.

The rank histogram (Anderson 1996; Hamill and

Colucci 1996, 1997; Harrison et al. 1995; Talagrand et al.

1997; Hamill 2001) is used to examine whether the en-

semble spread is reasonable and representative to

background uncertainties (Fig. 8). It plots the distribu-

tion of the ranks of each observation among corre-

sponding predicted background or analysis values in the

observation space. A flatter histogram indicates a suffi-

cient variance, a U-shaped histogram indicates an in-

sufficient variance, and a left- or right-skewed histogram

indicates a positive or negative ensemble bias, re-

spectively. At the beginning of the EnKF cycles, the

ensemble has insufficient variance and negative bias

(observation values larger than simulated values;

Fig. 8a), consistent with Fig. 7a. The bias is greatly re-

duced after the first EnKF cycle, with the number of

observations ranked at the upper end reduced by 70%

(from 11 851 to 3442). The insufficient variance is also

partly reduced, although still skewed rightward. Several

cycles later at 2000 UTC, the shape of the rank histo-

gram is much flatter than the first cycle at 1900UTC, and

there is even a little overdispersion at this time when the

leftmost and rightmost biases are excluded (Fig. 8b). At

the end of the EnKF cycles (Fig. 8c), the shape of

the rank histogram is considerably flatter than earlier

cycles, indicating that EnKF helps to maintain a rea-

sonably good ensemble spread, although there are

some amounts of both right bias (resulted from spurious

clouds) and left bias (resulted from insufficient coverage

of observed clouds).

Ensemble equitable threat scores (ETSs; Wilks 2011)

of composite reflectivity are used to examine the im-

provement of assimilating BT observations. The ETS is

calculated as

ETS5
H2R

H1M1F2R
,

R5
(H1M)(H1F)

n
,

whereH,M, and F are the numbers of total hits, misses,

and false alarms of all (40) ensemble members com-

bined, and n is the total number of grid points of all

ensemble members combined, which equals 403 4003

300 5 4 800 000 here. ETS of deterministic forecasts

are calculated similarly using one forecast instead of the

40-member ensemble to determine hits, false alarms,

misses, and the total number of grid points. Two thresh-

olds of 20 and 40dBZ for composite reflectivity are

evaluated, representing regions of general precipitation

and convective precipitation, respectively. From Fig. 9, it

is clear that before 2000 UTC, because there is no orga-

nized storm, ETS for 40-dBZ reflectivity remains near

FIG. 7. Evolutions of (a) observation–space diagnostics of RMSI/

RMSF (red) and mean bias (blue) of ensemble mean, ensemble

spread (purple), and RMS observation error (black), and (b) mean

positive bias (blue) andmean negative bias (red) of ensemblemean

throughout the EnKF cycles.
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0 (Fig. 9b) for EnKF, NODA, and DETER, while the

ETS values for 20-dBZ reflectivity show fluctuations

(Fig. 9a).After 2000UTC, a persistent increase occurs for

both scores, indicating increasing skill in the analysis

of hydrometeors, although neither these variables nor

composite reflectivity is directly assimilated. Meanwhile,

it is clear that EnKF ETS values are constantly higher

than those of the NODA ensemble at both reflectivity

thresholds throughout the entire EnKF cycles, indicating

an improved analysis of the initiation and early devel-

opment of the storms, resulting from the efficient removal

of spurious clouds as well as triggering of new clouds,

which is examined next by comparing EnKF analysis with

observations.

b. Comparisons with observations

Simulated ABI channel 10 BT of prior (background)

and posterior (analysis) mean of the EnKF experiment

at 1900, 2000, and 2040 UTC is shown in Fig. 10,

while their respective differences with assimilated ob-

servations (O2B andO2A, which have opposite signs

compared with bias defined in previous subsection)

are shown in Fig. 11. Because of much earlier CI in the

1-h ensemble forecast before the first EnKF cycle at

1900 UTC (Fig. 6a), there is a vast region within the

model domain that is covered with clouds (Fig. 10a) with

large positive innovations (Fig. 11a), while there is no

cloud in observations at all (Fig. 2a). However, it is ap-

parent that the spurious clouds are significantly reduced

after the first EnKF cycle (Fig. 10b): the large regions of

positive innovations in prior mean (Fig. 11a) are greatly

reduced, and only localized regions of clouds with pos-

itive innovations along the mountain slopes exist after

EnKF in posterior mean (Fig. 11b). There are a few new

clouds that form during the 5-min ensemble forecasts

between each cycle, but assimilating BT observations

effectively reduces the number of clouds that are in-

consistent with the observations, and the spurious clouds

are almost completely removed 1h later at 2000 UTC

(Fig. 10d). New clouds also are effectively generated

by assimilating BT observations as the coverage of

clouds at the last EnKF cycle (Figs. 10e,f) is close to the

FIG. 8. Rank histograms of ENKF prior ensemble (blue) and posterior ensemble (red) at (a) 1900, (b) 2000, and (c) 2040 UTC.

FIG. 9. ETS scores for (a) 20- and (b) 40-dBZ composite reflectivity regions of DETER (black solid), NODA

(black dashed), ENKF (black dotted), deterministic forecasts from EnKF analysis at 1930 (blue solid), 2000 (green

solid), and 2040 (red solid) UTC, and ensemble forecasts at 1930 (blue dashed), 2000 (green dashed), and 2040 (red

dashed) UTC.
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observed clouds (Fig. 2c). The differenceO2A at this

time (Fig. 11f) also indicates a good representation of

clouds in EnKF analysis mean compared to the ob-

served clouds, with only a slightly smaller coverage and

warmer temperature, and the reduction of negative

difference in O 2 A (Fig. 11f) compared with O 2 B

(Fig. 11e), proves that our techniques are initiating

clouds using BT observations, consistent with evolu-

tion of biases in Fig. 7b.

The influence of assimilating BT on hydrometeors

is further investigated by examining the evolution of

domain-averaged liquid water path (LWP; mass-

weighted vertical integration of cloud water and rain-

water), ice water path (IWP; integration of cloud ice,

snow and graupel), and total water path (TWP; com-

bining both LWP and IWP) in Fig. 12. At the first EnKF

cycle at 1900 UTC, the domain-averaged LWP is re-

duced by about 60%, while ice water path is reduced by

FIG. 10. Simulated brightness temperature of ABI channel 10 of (a),(c),(e) prior mean and (b),(d),(f) posterior mean of EnKF at (left)

1900, (middle) 2000, and (right) 2040 UTC.

FIG. 11. Differences between observations and simulated BT of ABI channel 10 (observation minus EnKF) of (a),(c),(e) prior mean and

(b),(d),(f) posterior mean of EnKF at (left) 1900, (middle) 2000, and (right) 2040 UTC.
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almost 95%. With the attempted formation of new

clouds or recovery of the EnKF removed clouds, there

are some slight increases in both water and ice contents

during the subsequent 5-min free forecast period, but

the reduction with the BT assimilation at the next cycle

is bigger than such increases due to cloud formation or

recovery. Such increase in LWP and IWP became little

in the free forecast periods after 1930 UTC, indicating

continuous cycling BT assimilating cannot only remove

spurious clouds, but also make them harder to form.

Subsequently, after 2000 UTC, both IWP and LWP

show persistent increases during both ensemble fore-

casts and EnKF, but the increase of LWP is much slower

than that of IWP. It can also be seen from changes of

IWP and LWP during each EnKF cycle throughout

the entire experiment that assimilating BT observa-

tions might have a greater impact on ice hydrometeors

than liquid hydrometeors, which is consistent with

previous studies of Zupanski et al. (2011) that up-

dating ice particles when assimilating BT generally

have greater improvements than updating liquid wa-

ter particles. The different impact of BT on liquid

versus ice water particles might suggest ways to fur-

ther improve the performance of BT assimilation in

the future.

Assimilating infrared BT observations using EnKF

can influence mesoscale environmental conditions as

well. However, due to the generally weak correla-

tions between BT and atmospheric state variables,

the influence is limited for this event and does not

pose statistically significant improvement compared

with NODA (figure not shown). The combined im-

pact of simultaneous assimilation of satellite and

conventional observations will be explored in future

studies.

5. Improvements in forecasts

a. Deterministic forecasts

Deterministic forecasts are carried out from the 1930,

2000, and 2040 UTC EnKF analysis mean (referred to as

Fcst1930, Fcst2000, and Fcst2040, respectively). Simulated

composite reflectivity and ABI channel 10 BT of these

three experiments are shown in Figs. 13 and 14. All three

deterministic forecasts share some similar characteristics,

yet also are different from each other in the detailed de-

velopment of the storms. For example, they all have storm

initiation along the Rocky Mountain slopes and are lo-

cated similarly as of 2100 UTC (Figs. 13a,e,i); however,

Fcst1930 has two strong individual storms (Fig. 13a), while

in Fcst2000, the southern storm just to the north of 408N is

significantly weaker than the other storm closer to the

Wyoming–Colorado border (Fig. 13e), and in Fcst2040

multiple storms are initiated (Fig. 13i). The strength

and juxtaposition of early storms also influences later

development, as detailed by Y. Zhang et al. (2016): at

2200 UTC, there is an intense and large storm just across

the Wyoming–Colorado border in Fcst2040 accompanied

by several weaker ones to the northwest (Fig. 13j), while in

Fcst2000, a cluster of strong storms appeared (Fig. 13f),

and for Fcst1930, the major storm is located farther

southwest with a lower translation speed (Fig. 13b). The

major storm in Fcst1930 later triggered new storms

ahead (Fig. 13c) and dissipated gradually (Fig. 13d). For

Fcst2000, the storm cluster also triggered new storms

ahead (Fig. 13g), which were maintained (Fig. 13h), while

for Fcst2040, the strong storm was maintained with fewer

new storms initiated (Figs. 13k,l). It can also be seen that

simulated BT of Fcst2040 at 2100 UTC (Fig. 14i) is closest

to the observed storms (Fig. 2d), compared with the other

two; however, it is hard to infer storm development and

organization beneath cloud tops from satellite images.

The ETS of these three deterministic forecasts are

also calculated and presented in Fig. 9. A sharp decrease

of ETS occurs after the initialization of each forecast,

resulting from the model adjustment of imbalances in

EnKF analysis, as well as subsequent adjustment of

hydrometeors according to the thermodynamic condi-

tions. The ETS of the general precipitative region

(20dBZ) show no distinct differences among the three

forecasts (Fig. 9a). For the convective region (40 dBZ;

Fig. 9b), Fcst2000 has the largest values around 2200UTC,

and Fcst1930 has the smallest values during this period.

This results from a better collocation of the 40-dBZ

regions in Fcst2000, as compared with observations

(Fig. 13f), than the other two forecasts (Figs. 13b,j). Al-

though the ETS of all three forecasts for 40-dBZ re-

flectivity decreases after 2200 UTC, ETS of Fcst2040

increases again after 2300 UTC, owing to a slightly

FIG. 12. Evolution of domain-averaged LWP (blue), IWP (red),

and TWP (black) during EnKF.
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better forecast of the storm interactions. However, it

should be noted that 40-dBZ ETS values are almost

constantly smaller than 0.3 for all forecasts, and none of

them can be regarded as skillful, although all three

experiments show much better scores than DETER

before 2200 UTC. It is also worth noting that although

the ETS for the general precipitative region of all three

forecasts show persistent increases during the entire

FIG. 13. Simulated composite reflectivity of (a)–(d) Fcst1930, (e)–(h) Fcst2000, and (i)–(l) Fcst2040 at (first column) 2100, (second

column) 2200, and (third column) 2300UTC 12 Jun, and (fourth column) 0000UTC 13 Jun 2017. Black contours in all panels are observed

40-dBZ composite reflectivity.

FIG. 14. Simulated BT of ABI channel 10 of (a)–(d) Fcst1930, (e)–(h) Fcst2000, and (i)–(l) Fcst2040 at (first column) 2100, (second

column) 2200, and (third column) 2300 UTC 12 Jun, and (fourth column) 0000 UTC 13 Jun 2017.
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forecast period (Fig. 9a), in the convective regions the

ETS values peak around 2200 UTC and decrease af-

terward (except for Fcst2040, as stated earlier; Fig. 9b),

indicating different predictability characteristics for the

two kinds of precipitation structures.

Although composite reflectivity of the three forecasts

is similar both qualitatively and quantitatively, their

predictions of mesocyclone and low-level tornado vor-

tex signatures were significantly different, with a clear

improvement seen when more satellite observations are

assimilated. The major UH tracks in Fcst1930 (Fig. 15a)

are located to the southwest of the observed tornado

reports, and there is only a slight signature of near-

surface rotation along the UH tracks (Fig. 15b). Some

improvement in the location of the UH tracks occurs in

Fcst2000 (Fig. 15c), although there are still no continu-

ous low-level vortex tracks in this deterministic forecast

(Fig. 15d). The UH tracks are further improved in

Fcst2040 (Fig. 15e), becoming stronger and wider and

tracking farther into Nebraska as observed for the tor-

nadoes, and there is a clear track of low-level vortices

overlaid on top of the same UH track (Fig. 15f), in-

dicating the existence of a strong near-surface vortex

signature beneath the midlevel mesocyclone in this

specific prediction. These results indicate that a better

prediction of the tornadoes could be achieved withmore

cycles of infrared BT assimilation for this event.

b. Ensemble forecasts

The probabilistic forecasts of this event from the EnKF

analysis are also examined. The ensemble probabilities of

ensemble forecasts show some similarity to the de-

terministic forecasts from the EnKF analysis at the

same time. For EF1930, high probabilities at 2100 UTC

(Fig. 16a) show a similar shape as the storms in Fcst1930

at the same time (Fig. 13a), but become dislocated from

observed storms at 2300 UTC (Fig. 16c). The dislocation

of higher probability becomes smaller in EF2000 at both

2100 (Fig. 16e) and 2200UTC (Fig. 16f), and the southern

high probability region in EF2000 at 2100 UTC further

shrinks in EF2040 (Fig. 16i). The spurious storms in

northeast Colorado in EF1930 and EF2000 are also much

weaker in EF2040 both at 2100 (Fig. 16i) and 2200 UTC

(Fig. 16j). Furthermore, EF1930 and EF2000 trigger new

storms ahead of the old ones at 2300 UTC (Figs. 16c,g),

and the old storms dissipate gradually (Figs. 16d,h); al-

thoughEF2040 experiences similar processes at 2300UTC

(Fig. 16k), old storms in EF2040 did not undergo rapid

dissipation, better matching with the observations.

Similar to the results from the deterministic forecasts,

the ETS of composite reflectivity for EF1900 and

EF2000 also decrease significantly after initialization

(Fig. 9a), but the magnitudes are smaller. For the gen-

eral precipitation region (Fig. 9a), EF1930 and EF2000

generally have similar values throughout the ensemble

forecasts, while EF2040 has higher values before about

2130 UTC. On the other hand, for the convective pre-

cipitation region (Fig. 9b), although ETS for the three

ensemble forecasts are similar before 2100 UTC, EF2040

has smaller ETS values than the other two ensembles

after 2100 UTC, owing to its smaller spread in the

prediction of storm locations (Figs. 16k,l). Given that

FIG. 15. (a)–(c) Maximum of 2–5-km UH and (d)–(f) maximum of 0–1-km maximum vertical vorticity of (left) Fcst1930, (middle)

Fcst2000, and (right) Fcst2040. Black triangles indicate tornado reports (as in Fig. 1).
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satellite infrared imagers provide information only above

cloud tops and are unable to provide information on storm

structures beneath the cloud tops, these results are not

surprising. All three ensemble forecasts show higher ETS

scores than NODA in precipitative regions, although

similar to ETS of deterministic forecasts, and 40-dBZETS

of all ensemble forecasts remain below 0.25.

Despite similar quantitative scores for the simulated

composite reflectivity of the three ensemble forecasts, a

persistent improvement on the probabilistic forecasts of

mesocyclone and low-level vortex signature can be seen

when more BT observations are assimilated. Probabi-

listic forecast of UH of EF1930 (Fig. 17a) is primarily

located in Colorado. Probabilistic forecast of UH of

EF2040 (Fig. 17c) has a similar track to that of EF2000

(Fig. 17b), but EF2040 has consistently higher proba-

bilities, and the track is better defined and more com-

pact. Probabilistic track of vertical vorticity of EF2040

(Fig. 17f) is also much longer than the other two en-

semble forecasts (Figs. 17b,d), extending farther into

Nebraska. These improvements, especially the higher

and more compact probabilities, indicate a higher con-

fidence in the probabilistic predictions of midlevel me-

socyclones and near-surface rotation in EF2040 than

EF1930 and EF2000.

In summary, both deterministic forecasts and ensem-

ble forecasts fromEnKF analysis show that prediction of

the midlevel mesocyclone and low-level rotation can be

improvedwhen satellite infrared radiance observations are

assimilated using EnKF, although the quantitative mea-

surements of simulated composite reflectivity of forecasts

from the EnKF analysis at different times are similar.

6. Summary

Using an EnKF data assimilation system coupled with

the WRF-ARWModel running at a convection-allowing

resolution, this study presents the first attempt to assim-

ilate real-world all-sky infrared BT observations of the

ABI onboard the GOES-16 satellite for a tornadic

thunderstorm event. The analysis and prediction of the

severe convective storms and associated severe weather

signatures in Colorado, Wyoming, and Nebraska on

12 June 2017, with and without BT data assimilation, are

examined.

Observation–space diagnostics including RMS in-

novation and fit, bias, ensemble spread, and rank his-

togram indicate that the EnKF system works properly

and maintains a reasonable variance among ensemble

members. Errors at the beginning of the EnKF cycles

at 1900 UTC result from spreading spurious clouds

that are rapidly reduced within the first several cycles

when hydrometeors, especially ice-phased particles, are

effectively removed and spurious clouds suppressed.

FIG. 16. Ensemble probability of 40-dBZ simulated composite reflectivity of (a)–(d) EF1930, (e)–(h)EF2000, and (i)–(l) EF2040 at (first

column) 2100, (second column) 2200, and (third column) 2300UTC 12 Jun, and (fourth column) 0000UTC 13 Jun 2017. Black contours in

all panels are observed 40-dBZ composite reflectivity.
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The magnitude of errors, as well as the amount of wa-

ter condensates, remains at relatively low values be-

fore observed convection initiation at approximately

2000 UTC. After the storms initiate, errors show a slight

increase but still remain below 6K, indicating the effec-

tiveness of both removing and generating clouds of our

techniques. Nonetheless, ensembleETS of stratiform and

convective precipitation regions indicate that the EnKF

assimilation of ABI BT observations provides a better

estimation of the storms than the NODA ensemble

forecast that did not include data assimilation.

Both deterministic and ensemble forecasts are carried

out from the 1930, 2000, and 2040 UTC EnKF analysis.

ETS values indicate that both the general precipitative

region (composite reflectivity greater than 20 dBZ)

and the convective precipitation region (composite re-

flectivity greater than 40dBZ) forecasts from different

EnKF analyses generally have similar skill. It is worth

noting that none of the forecasts have 40-dBZ ETS

above 0.3. Although more EnKF cycles do not improve

deterministic or probabilistic forecast skill of the storms

in terms of composite reflectivity, there is a substantial

improvement of the prediction of midlevel mesocyclone

and low-level vortex signatures when more BT obser-

vations are assimilated. Deterministic forecasts from

1930 and 2000 UTC EnKF analysis produce curvy UH

tracks and unorganized short low-level vertical vorticity

tracks at the wrong locations, and corresponding en-

semble probabilistic forecasts of UH and vertical vor-

ticity are also short, ending before the storms enter

Nebraska. In contrast, a well-defined low-level vertical

vorticity track accompanying a straight and long-lasting

UH track is generated by the deterministic forecast from

2040UTCEnKF analysis, and the probabilistic forecasts of

both UH and low-level vertical vorticity from 2040 UTC

EnKF analysis are also better defined and longer lasting

than ensemble forecasts from the other two times, in-

dicating improvement on the structure and the develop-

ment of the storms. Generally speaking, greater confidence

on the prediction of low-level rotation as well as other se-

vere weather signatures associated with thunderstorms can

be gained when more BT observations are assimilated.

The results presented in this study indicate that assimi-

latingABI BT observations using EnKF techniques has the

potential to improve the prediction of severe thunderstorms

that may lead to improvements in the operational warning

processes for severe weather. Spaceborne instruments pro-

vide unique observations that complement those from

ground-based Doppler weather radars and might be espe-

cially useful during convection initiationwhen assimilated in

combination with radar observations; the simultaneous as-

similation of radar, satellite, and conventional observations

for severe thunderstorm events will be explored in the fu-

ture. Besides, how to better utilize infrared BT observations

to extract more information—including but not limited to

bias correction, vertical and horizontal localization, simul-

taneous assimilation of multiple channels, and treatment of

spatially correlated observational errors—will also need

further exploration.
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