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Abstract. This study examines whether the assimilation

of remotely sensed near-surface soil moisture observations

might benefit an operational hydrological model, specifically

Météo-France’s SAFRAN-ISBA-MODCOU (SIM) model.

Soil moisture data derived from ASCAT backscatter obser-

vations are assimilated into SIM using a Simplified Extended

Kalman Filter (SEKF) over 3.5 years. The benefit of the as-

similation is tested by comparison to a delayed cut-off ver-

sion of SIM, in which the land surface is forced with more

accurate atmospheric analyses, due to the availability of ad-

ditional atmospheric observations after the near-real time

data cut-off. However, comparing the near-real time and

delayed cut-off SIM models revealed that the main differ-

ence between them is a dry bias in the near-real time pre-

cipitation forcing, which resulted in a dry bias in the root-

zone soil moisture and associated surface moisture flux fore-

casts. While assimilating the ASCAT data did reduce the

root-zone soil moisture dry bias (by nearly 50 %), this was

more likely due to a bias within the SEKF, than due to the

assimilation having accurately responded to the precipitation

errors. Several improvements to the assimilation are identi-

fied to address this, and a bias-aware strategy is suggested

for explicitly correcting the model bias. However, in this ex-

periment the moisture added by the SEKF was quickly lost

from the model surface due to the enhanced surface fluxes

(particularly drainage) induced by the wetter soil moisture

states. Consequently, by the end of each winter, during which

frozen conditions prevent the ASCAT data from being as-

similated, the model land surface had returned to its original

(dry-biased) climate. This highlights that it would be more

effective to address the precipitation bias directly, than to cor-

rect it by constraining the model soil moisture through data

assimilation.

Correspondence to: C. Draper

(clara.draper@nasa.gov)

1 Introduction

The last decade has seen considerable interest in the possi-

bility of improving hydrological and meteorological model

forecasts by assimilating remotely sensed near-surface soil

moisture data (Houser et al., 1998; Crow and Wood, 2003;

Reichle and Koster, 2005; Balsamo et al., 2007; Drusch,

2007). This interest has motivated recent advances in soil

moisture remote sensing, from both purpose designed L-

band sensors (Kerr et al., 2001; Entekhabi et al., 2004), and

preexisting suboptimal C- and X-band sensors (Wagner et al.,

1999; Owe et al., 2001). As a result remotely sensed near-

surface soil moisture data are available for the first time with

sufficient quality and legacy to be used in operational models,

and in particular EUMETSAT is now providing the first oper-

ationally supported remotely sensed near-surface soil mois-

ture product. This product, which is derived from Advanced

Scatterometer (ASCAT) microwave radiometer observations,

is now being assimilated into the UK Met Office’s opera-

tional NWP system (Dharssi et al., 2011), and will soon be

introduced into ECMWF’s system (de Rosnay et al., 2009).

At the Met Office, assimilating the ASCAT data has been

shown to improve both the model soil moisture analyses (rel-

ative to in situ soil moisture data over the US), and screen-

level temperature and humidity forecasts in some regions

(Dharssi et al., 2011).

This study seeks to determine whether an operational

hydrological model, specifically Météo-France’s SAFRAN-

ISBA-MODCOU (SIM) model, might also benefit from the

assimilation of these ASCAT near-surface soil moisture ob-

servations. SIM is a three-part model, consisting of (i) a low-

level atmospheric analysis (the Système d’Analyse Four-

nissant des Renseignements Atmosphériques à la Neige;

SAFRAN), which provides the forcing for (ii) a land sur-

face model (Interactions between Surface, Biosphere, and

Atmosphere; ISBA), which in turn provides surface mois-

ture fluxes to (iii) a hydrogeological model (MODCOU),
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which provides forecasts of aquifer levels and streamflow.

SIM is run operationally at Météo-France in near-real time,

with a three hour data cut-off, which allows observations

from approximately 1200 automatic weather stations to be

used in the SAFRAN atmospheric analysis. The output from

the near-real time SIM is used for water resource moni-

toring (e.g. see http://climat.meteofrance.com/chgt climat2/

bilans climatiques), and to provide the initial conditions for

an ensemble streamflow prediction system that will be used

for operational flood forecasting (Thirel et al., 2010).

In addition to the near-real time stream, SIM is also run

in delayed mode, using additional observations from 3000

climatological observing stations that report once-monthly.

Evaluation studies based on this delayed cut-off stream of

SIM have shown that the SAFRAN analysis provides accu-

rate meteorological variables for forcing the ISBA land sur-

face model (Quintana-Seguı́ et al., 2008; Vidal et al., 2010),

resulting in accurate forecasts of the spatial and temporal

variability of observed water fluxes and streamflow (Ha-

bets et al., 2008). However, the near-real time (operational)

SAFRAN analysis is known to be less accurate. To prevent

the near-real time SAFRAN errors from accumulating in the

model land surface, the ISBA state variables in the near-real

time SIM system are updated once a month with the corre-

sponding delayed cut-off ISBA states.

In this study, ASCAT surface soil moisture observations

from January 2007 to May 2010 are assimilated into a re-

search copy of the near-real time SIM model using a Simpli-

fied Extended Kalman Filter (SEKF). The potential benefit

of the assimilation is first tested by comparison to in situ soil

moisture observations from the SMOSMANIA monitoring

network in south France. However, an evaluation based on

in situ soil moisture only is limited by representativity dif-

ferences between the in situ and modeled soil moisture, and

so will only be informative of the temporal behaviour of the

modeled soil moisture. In situ soil moisture observations are

also greatly limited by their spatial coverage: for example

the SMOSMANIA monitoring network used here observes

at just 12 locations.

In response to these shortcomings, Crow et al. (2009) and

Bolten et al. (2010) instead evaluate the impact of assim-

ilating near-surface soil moisture by determining whether

the assimilation can correct the model soil moisture for er-

rors applied to the precipitation forcing. A similar approach

has been taken here, by evaluating the ASCAT assimilation

(into the near-real time SIM stream) against the delayed cut-

off stream, which is identical except for its more accurate

SAFRAN analysis. This allows the evaluation to be extended

to the full model domain, while also allowing variables other

than soil moisture to be assessed, including the surface mois-

ture fluxes which are typically of greatest interest to model

users. In contrast to Crow et al. (2009) and Bolten et al.

(2010), the best atmospheric data available to the near-real

time SIM model are used here, and the results are tested

against more accurate forcing that become available later on.

Consequently, the benchmark for evaluating success in this

experiment is set rather high, and the results directly measure

to the benefit of the assimilation to the operational model.

2 Data and methods

2.1 The SIM hydrological model

SIM (Habets et al., 2008) is run at approximately 0.07◦ res-

olution over France. The SAFRAN (Quintana-Seguı́ et al.,

2008) analyses of the low-level atmosphere are performed

every 6 h, and then the 6-hourly analyses are interpolated

onto hourly time-steps and used to force ISBA. ISBA (Noil-

han and Planton, 1989; Noilhan and Mahfouf, 1996) then

outputs hourly estimates of the land surface states, and the

exchanges of heat and moisture between the low-level at-

mosphere, vegetation, and soil. The three layer version of

ISBA (Boone et al., 1999) is used in SIM. Finally, MOD-

COU (Ledoux et al., 1989) is run once daily, to compute the

daily evolution of aquifer storages and three-hourly stream-

flow forecasts.

2.2 ASCAT remotely sensed soil moisture

ASCAT is a real aperture backscatter radar observing at

5.255 GHz (C-band), with approximately 25 km resolu-

tion. It orbits on EUMETSAT’s Meteorological Operational

(MetOp) satellite, which was launched in 2007 to replace the

ageing European Remote Sensing (ERS) satellites. MetOp

is in a sun-synchronous orbit, with equator crossing times of

approximately 09:30 (descending overpass) and 21:30 (as-

cending overpass) local time. ASCAT provides good spatial

coverage, observing approximately 80 % of the globe each

day.

Soil moisture estimates are derived from ASCAT radar

backscatter coefficients using the empirical change detection

approach developed at the Vienna University of Technology

(TU-Wien) by Wagner et al. (1999). This approach is based

on the assumption that over a long data record, the highest

observed reflectivity can be equated to the maximum soil

moisture, while the lowest reflectivity can be equated to the

minimum soil moisture, and a linear relationship can be used

to interpolate the values in between. For full details refer to

Wagner et al. (1999) and Naeimi et al. (2009).

The output from the change detection method is an obser-

vation loosely referred to as the “surface degree of satura-

tion” (SDS), and defined by:

SDS = (wsfc −wmin)/(wmax −wmin) (1)

where wsfc is the moisture in the near-surface soil layer, and

wmin and wmax are the minimum and maximum wsfc occur-

ring at that location. C-band microwave observations are

sensitive to soil moisture in a thin surface layer, of up to

1 cm depth, hence the SDS relates only to this thin surface
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layer. The SDS is reported exclusively in percentage units

here, to avoid confusion with volumetric (m3 m−3) measures

of soil moisture. Note that the SDS is localised, in that equiv-

alent values at different locations do not necessarily indicate

equivalent soil moisture, due to spatial differences in the soil

moisture bounds.

In response to differences in the ERS and ASCAT ob-

serving behaviour, the change detection model parameters

used in the ASCAT retrieval algorithm were recently updated

(Wagner et al., 2010) to use parameters derived from the AS-

CAT data record, rather than the ERS values that were ini-

tially adopted for ASCAT (Naeimi et al., 2009). This up-

date has further improved the soil moisture observations re-

trieved from ASCAT, resulting in excellent agreement with

other soil moisture estimates. For example, Brocca et al.

(2010b) found correlations and anomaly correlations of 0.67

and 0.58 against in situ data in Italy (one site, 13 months)

and of 0.75 and 0.60 against modeled estimates (six sites,

13 months), while Brocca et al. (2010a) calculated a mean

correlation of 0.65 against in situ data throughout Europe

(14 sites, 2 years at most locations) and 0.76 against mod-

eled estimates (20 sites, 2 years).

The ASCAT level 2 surface degree of saturation (SM

OBS1) product supplied by TU-Wien has been used here.

This product includes the aforementioned update to the

change detection model parameters. Since there is some ev-

idence that scatterometer observations taken in the evening

are less accurate than early morning observations (Wagner

et al., 1999; Albergel et al., 2009), and since there is a spuri-

ous relationship in ISBA between the near-surface and root-

zone soil moisture after periods of active evapotranspiration

(Draper et al., 2011), only the descending overpass ASCAT

observations have been used here.

Observations of densely vegetated regions have been re-

moved, based on an ASCAT estimated soil moisture error

(provided with the ASCAT data) threshold of 20 %. Ad-

ditionally, observations with an urban fraction greater than

15 % in the ECOCLIMAP database (Masson et al., 2003)

have been removed, as have observations with a topographic

complexity flag (provided with the ASCAT data) greater than

15 %, and/or a wetland fraction (provided with the ASCAT

data) greater than 5 %.

The remaining data were projected from the 0.125◦ Dis-

crete Global Grid used by TU-Wien to the ∼0.07◦ SIM grid

using a nearest neighbour approach. Observations of frozen

surface conditions, temporary surface water, or snow-cover

were initially identified based on the probabilistic surface

state flag provided with the ASCAT data. However an initial

investigation revealed that this probabilistic method did not

reliably remove the occurrence of surface freezing. Frozen

surface conditions manifest in the data as anomalously low

soil moisture observations, which can have a significant

detrimental impact on the assimilation. Consequently, an ad-

ditional screening for frozen surface conditions has been ap-

plied, by excluding the ASCAT data whenever SIM forecasts

nonzero frozen near-surface soil moisture. Where the above

data processing resulted in less than 100 observations for a

model grid cell (less than 10 % coverage over the 3.5 year

study period) the remaining data have not been used.

The ASCAT data were initially converted to volumetric

soil moisture by inverting Eq. (1), using the soil moisture

bounds from the near-real time SIM model. However, even

though this scaled the ASCAT data to match the SIM w1

range, there were still substantial differences between the

ASCAT and SIM soil moisture values, due to differences in

the shape of their distributions. For the 3.5 year study pe-

riod, the mean across the domain of the absolute difference

at each grid cell was 0.016 m3 m−3. On average, ASCAT

was drier than SIM, with a mean (and standard deviation) of

0.229 m3 m−3 (0.070 m3 m−3), compared to 0.236 m3 m−3

(0.073 m3 m−3) for SIM. Consequently, the ASCAT data

were rescaled to better match the near-real time SIM cli-

matology prior to the assimilation, using the CDF-matching

technique of Reichle and Koster (2004). This effectively re-

moved the differences in the mean and standard deviation of

the ASCAT and SIM soil moisture, and the resulting values

for the rescaled ASCAT w1 are the same as reported above

for SIM.

2.3 The SMOSMANIA in situ observations

The SMOSMANIA network (Calvet et al., 2007; Albergel

et al., 2008) consists of 12 soil monitoring stations, span-

ning between the Mediterranean and Atlantic coasts in south-

west France, and spaced approximately 45 km apart. At

each SMOSMANIA site the near-surface soil moisture is ob-

served at 5 cm below the surface. In the comparisons be-

low, the near-surface SMOSMANIA observations have been

compared to the ASCAT and SIM near-surface soil moisture

time series, both of which relate the approximately the up-

permost 1cm of soil. Time series of near-surface soil mois-

ture from SMOSMANIA and from ASCAT and SIM show

similar scales of temporal variability, indicating that despite

the difference in their depths, they can be reasonably inter-

compared. In contrast, the deepest soil moisture sensors at

the SMOSMANIA sites observe at 30 cm, much shallower

than the root-zone soil moisture depths used in ISBA (ap-

proximately 1 m), and the time series from each are qualita-

tively very different. Consequently, the SMOSMANIA data

has been compared to the SIM (and ASCAT) near-surface

soil moisture only.

2.4 The simplified extended Kalman filter

he SEKF was initially formulated by Balsamo et al. (2004)

and Mahfouf et al. (2009) for use in NWP. The equations for

the i-th model state forecast and update, occurring at time ti
(in hours), are:

xb(ti) =Mi−1[x
a(ti−1)] (2)

www.hydrol-earth-syst-sci.net/15/3829/2011/ Hydrol. Earth Syst. Sci., 15, 3829–3841, 2011
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and

xa(ti) = xb(ti)+Ki

(

yo(ti +24)−Hi[x
b(ti)]

)

(3)

where x indicates the model state, and y is the observation

vector. The superscripts a, b, and o indicate the analysis,

background, and observations, respectively. M is the non-

linear state forecast model, and, H is the nonlinear obser-

vation operator. For each model grid cell, ISBA partitions

soil moisture into three variables: the near-surface soil mois-

ture (w1; defined over the depth of bare soil evaporation), the

root-zone soil moisture (w2; defined over the depth of tran-

spiration), and the deep-layer soil moisture (w3; representing

long term surface moisture storage). In these experiments the

state update vector consisted of w1 and w2. The observations

occurred 24 h after the analysis time, and H was a 24-h inte-

gration of the forecast model, followed by conversion to the

observation equivalent variable (w1). The impact of w2 on

w1 increases with time, and a 24-h forecast length was cho-

sen for the observation operator, as a compromise between a

long enough forecast that w2 has a reasonable impact on w1,

and short enough that the forecast can be linearised without

significant loss of accuracy.

K is the Kalman gain, given by:

Ki = PHT
i

(

HiPHT
i +Ri

)−1
(4)

where H is the linearisation of H, obtained by finite differ-

ences, and P and R are the covariance matrices of the model

background and observation errors, respectively.

The traditional EKF evolves the background error covari-

ance matrix through a forecast and analysis cycle, while

for the simplified EKF P is instead assumed to have a con-

stant value at the start of each assimilation cycle. However,

some temporal evolution of P is obtained by the inclusion

of a model integration in H, and consequently Draper et al.

(2009) found that for assimilating near-surface soil moisture

into ISBA, the analysed soil moisture generated by the EKF

and the SEKF are not substantially different. Hence the sim-

plified EKF was used here, since it is easier to implement.

Finally, the assimilation is performed as an individual 1-D

assimilation at each model grid, since ISBA does not model

horizontal exchanges.

2.5 The assimilation experiment

Three simulations of SIM from January 2007 to May 2010

are compared in this paper, and each is summarised in Ta-

ble 1. For the assimilation of the ASCAT data, referred to

as SIM ASCAT, ISBA was forced with the near-real time

(NRT) SAFRAN analysis. The performance of SIM ASCAT

is bench-marked against the performance of an ISBA open-

loop forced with the NRT SAFRAN analysis, and referred

to as SIM NRT. In Sect. 3.3, the assimilation is evaluated

by comparison to an open-loop ISBA simulation generated

with the more accurate delayed cut-off (DEL) SAFRAN

Table 1. Details of each SIM simulation.

SAFRAN Assimilated

forcing data

SIM DEL DEL none

SIM NRT NRT none

SIM ASCAT NRT ASCAT SDS

analysis, referred to as SIM DEL. For the SIM ASCAT

and SIM NRT experiments, ISBA was initialised and forced

with archived fields from Météo-France’s near-real time SIM

chain, while the SIM DEL ISBA output was extracted di-

rectly from Météo-France’s archives.

For the SIM ASCAT assimilation, the observation error

variances were based on the (temporally variable) error es-

timates provided with the ASCAT SDS data, which are ob-

tained by calculating the sensitivity of the change detection

model to noise in the ASCAT backscatter observations and

model parameters. This is the first study to make use of

these error estimates, and an initial investigation confirmed

that they have some skill in detecting errors in the ASCAT

soil moisture.

The ASCAT estimated errors are provided in SDS units

and are relative to the ASCAT soil moisture climatology.

Consequently, they were linearly rescaled to be consistent

with the model soil moisture climatology, by multiplica-

tion by the ratio of the standard deviations of the SIM NRT

w1 and the ASCAT SDS. The original ASCAT SDS er-

ror estimates ranged between 3.5 and 20 % (since observa-

tions with an error greater than 20 % were screened out),

with a median value of 9.0 %. The rescaled error estimates

ranged between 0.02 and 0.20 m3 m−3, with a median value

of 0.05 m3 m−3. This median value is consistent with errors

typically expected for remotely sensed soil moisture, and is

slightly higher than the average root mean square difference

of 0.04 m3 m−3 between the assimilated ASCAT data and the

SMOSMANIA near-surface soil moisture observations de-

scribed in Sect. 2.3.

The background error covariance matrix was based on that

used by Draper et al. (2011) to assimilate AMSR-E near-

surface soil moisture observations into a two-layer version

of ISBA: P was assumed diagonal, and the w1 and w2 er-

ror standard deviations were set at 0.5× (wfc − wwilt) and

0.2 × (wfc − wwilt), where wfc and wwilt are the soil mois-

ture at field capacity and wilting, respectively. These values

generate mean error standard deviations close to 0.04 and

0.02 m3 m−3, for w1 and w2, respectively.

3 Results and discussion

Before presenting the assimilation results, the tempo-

ral agreement between the ASCAT SDS and the SIM
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Fig. 1. Maps of (a) absolute correlation and (b) anomaly correla-

tion between (near-real time) SIM w1 and ASCAT SDS from Jan-

uary 2007 to May 2010.

near-surface soil moisture is checked in Sect. 3.1. Then the

results of assimilating the ASCAT data are compared against

the SMOSMANIA in situ data in Sect. 3.2, and against the

delayed cut-off SIM model output in Sect. 3.3.

3.1 Preliminary comparison of ASCAT and SIM near-

surface soil moisture

Figure 1 shows maps of the correlation (rabs) and anomaly

correlation (ranm; with anomalies defined as the difference

from the 31 day moving average) between the SIM NRT w1

and ASCAT SDS time series at each grid cell. Both maps

show a strong association between the two soil moisture esti-

mates, with consistently very high correlations across nearly

all of the SIM domain. For rabs, the mean value across France

was 0.68, and 81 % of the grid cells had a value greater than

0.60, while for ranm, the mean was 0.62, and 68 % of the grid

cells had a value greater than 0.60. Both maps show simi-

lar spatial patterns, in terms of the regions of relatively high

Table 2. Absolute (rabs) and anomaly (ranm) correlations be-

tween the in situ observations from SMOSMANIA, and w1 from

each of SIM NRT, SIM ASCAT, and SIM DEL, from May 2007 to

April 2010. All correlations are significant at 1 %.

SIM NRT SIM ASCAT SIM DEL

rabs ranm rabs ranm rabs ranm

SBR 0.77 0.65 0.78 0.65 0.80 0.68

URG 0.64 0.66 0.67 0.67 0.71 0.69

CRD 0.70 0.56 0.73 0.57 0.72 0.57

PRG 0.68 0.46 0.70 0.47 0.71 0.47

CDM 0.76 0.55 0.72 0.54 0.71 0.54

LHS 0.65 0.45 0.65 0.45 0.71 0.47

SVN 0.63 0.53 0.64 0.53 0.68 0.52

MNT 0.55 0.52 0.56 0.52 0.64 0.54

SFL 0.67 0.45 0.67 0.46 0.72 0.48

MTM 0.50 0.41 0.55 0.46 0.60 0.47

LZC 0.71 0.62 0.72 0.62 0.74 0.62

NBN 0.67 0.49 0.67 0.49 0.66 0.48

and low values, including several locations with low corre-

lations (<0.3) in regions of mountainous terrain. In each

case these were adjacent to locations where the ASCAT data

were screened out due to complex terrain and/or vegetation

cover, suggesting that the low correlations were associated

with ASCAT errors, and the parameters used to screen-out

the ASCAT data were insufficiently rigorous.

Since the SIM and ASCAT soil moisture are derived us-

ing totally independent methods, this strong temporal agree-

ment between them is extremely encouraging. It both con-

firms the viability of assimilating the ASCAT data into SIM,

while also confirming that both SIM and ASCAT are accu-

rately estimating near-surface soil moisture dynamics over

nearly all of France. The SIM NRT w1 was used in the above

comparison, however similar results were obtained using the

SIM DEL w1 also. Using the latter die not result in visible

differences in the correlation maps, while the mean correla-

tions between ASCAT and SIM were very slightly increased

(by 0.01 in each case).

3.2 Evaluation against SMOSMANIA in situ

observations

Consistent with previous studies comparing ASCAT soil

moisture to in situ observations (Albergel et al., 2009; Brocca

et al., 2010a), there is a strong agreement between the

ASCAT SDS data and the SMOSMANIA in situ obser-

vations. Prior to the assimilation, the ASCAT data had

higher anomaly correlations to the in situ data than SIM NRT

did for 10 of the 12 SMOSMANIA stations, giving mean

anomaly correlations across the 12 stations of 0.62 for AS-

CAT and 0.57 for SIM NRT (based on the SIM NRT w1

sampled at the same times as the ASCAT observations).

However, the absolute correlations to the SMOSMANIA

www.hydrol-earth-syst-sci.net/15/3829/2011/ Hydrol. Earth Syst. Sci., 15, 3829–3841, 2011
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Fig. 2. Net bias from May 2007 to April 2010 between SIM NRT

and SIM DEL for (a) w1 (mm), (b) w2 (mm), and (c) precipitation

forcing (mm yr−1).

data were more evenly spread, and ASCAT had a slightly

lower mean correlation (0.70) than SIM NRT (0.71).

Table 2 shows the correlation statistics comparing the

near-surface soil moisture from each of the SIM experiments

to the SMOSMANIA in situ data. While assimilating the

ASCAT data did improve the SIM NRT correlations at most

of the sites (only CDM was degraded), these improvements

were very small (<0.01 in some instances), and generated

only a very small improvement in the mean rabs (ranm) to

0.67 (0.54) for SIM ASCAT, compared to 0.66 (0.53) for

SIM NRT. While the consistency of the higher correlations

for SIM ASCAT is encouraging, these very small improve-

ments are far from statistically (or practically) significant.

The limited impact of the assimilation against the SMOS-

MANIA data is likely a consequence of the comparison hav-

ing been based on near-surface soil moisture. The ISBA w1

variable is strongly determined by the atmospheric forcing,

and is less affected by the analyses updates than w2 (as will

be demonstrated in Sect. 3.3.2).

Additionally, it is interesting to note that in Table 2,

SIM DEL consistently had higher correlations with the

SMOSMANIA time series than SIM NRT did, giving higher

mean rabs (ranm) for SIM DEL of 0.70 (0.59). This supports

the assumption in the following section that the SIM DEL

soil moisture is more accurate than that of SIM NRT, while

also indicating that the SMOSMANIA observations are suffi-

ciently accurate to detect the difference in accuracy between

SIM NRT and SIM DEL.

3.3 Evaluation against the delayed cut-off SIM forecasts

3.3.1 SIM NRT and SIM DEL

Before comparing the ASCAT assimilation results to

SIM DEL, SIM NRT and SIM DEL are first compared to

each other to establish the impact of the NRT SAFRAN er-

rors on the ISBA model output. Since there is a strong sea-

sonal cycle in the impact of the assimilation, all statistics

from this point forward are calculated from three complete

years of data, from May 2007 to April 2010 (using the full

3.5 year period does not change the relative performance of

each simulation).

The temporal behaviour of the SIM NRT and SIM DEL

soil moisture forecasts was very similar. For w1, rabs aver-

aged across the domain for the three years from May 2007

was 0.95, and 98 % of the grid cells had a value above 0.90.

Likewise ranm had a mean of 0.95, with 96 % of the grid cells

above 0.90. For w2, the mean rabs was 0.95, with 88 % of

the grid cells above 0.90, while the mean ranm was 0.94,

with 87 % of the grid cells above 0.90. The lower mean

correlations for w2 were caused by lower values in moun-

tainous regions, where the variable terrain increases the spa-

tial variability in the near-surface atmosphere, emphasising

the impact of the enhanced observation density in the DEL

SAFRAN analysis.

It is extremely unlikely, and also unnecessary, for the as-

similation to correct the small errors in the temporal be-

haviour between SIM NRT and SIM DEL. However, while

their temporal variability was similar, there were substan-

tial differences between the absolute soil moisture sim-

ulated by SIM DEL and SIM NRT, particularly for w2.

For w1, the spatial mean of the temporal Root Mean

Square Error (RMSE) between SIM NRT and SIM DEL was

0.028 m3 m−3 (−0.28 mm, compared to a spatial mean tem-

poral standard deviation of 0.8 mm), while for w2 the mean

RMSE was 0.010 m3 m−3 (16.6 mm, compared to a mean

temporal standard deviation of 47.0 mm). The main con-

tributor to these large RMSE values was a substantial dry
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Fig. 3. Monthly water balance in mm month−1 for SIM DEL (black), SIM NRT (red), and SIM ASCAT (blue). Each panel shows (a) pre-

cipitation, (b) runoff, (c) drainage, (d) evapotranspiration, (e) change in surface moisture storage (all soil layers, liquid plus solid), and (f) the

analysis increments (for SIM ASCAT).

bias in the SIM NRT soil moisture. Figure 2 shows maps

of the mean difference in w1 and w2 between the two simu-

lations, demonstrating that SIM NRT was on average drier

than SIM DEL across nearly all of France. Relative to

SIM DEL, the mean temporal bias in the SIM NRT w1 was

−0.011 m3 m−3 (or 0.11 mm), while for w2 the mean bias

was −0.009 m3 m−3 (or −12.1 mm).

This dry bias in the NRT soil moisture was caused by a dry

bias in the NRT SAFRAN precipitation analysis. Figure 2c

shows that the NRT precipitation is also biased low (com-

pared to the DEL precipitation) across nearly all of France,

with the bias reaching 200 mm yr−1 at some locations. Addi-

tionally, there is a reasonably strong spatial correspondence

between the precipitation and soil moisture biases in Fig. 2,

including the same isolated regions of positive bias. The

precipitation bias is thought to be due to the underestima-

tion of precipitation by automatic weather station rain gauges

(Canellas, 2005), and the tendency for the sparser observa-

tion network to detect fewer rain events.

Figure 3 shows time series of the monthly mean surface

water balance terms, from SIM DEL and SIM NRT, while

Fig. 4 shows time series of the monthly mean difference

between the SIM DEL and SIM NRT forecasts. Precipi-

tation is generated by SAFRAN, while the remaining sur-

face water balance terms are generated by ISBA. Figure 4a

shows that the dry SIM NRT precipitation bias occurred per-

sistently throughout the year, with a tendency for larger bi-

ases around winter, generating a large mean monthly bias of

−10.0 mm month−1 for the three years from May 2007. Fig-

ure 5 shows the temporal evolution of the spatially averaged

w2, demonstrating that the precipitation bias induced a w2

bias of −10 to −20 mm throughout the year.

In ISBA, drainage and runoff are triggered when soil mois-

ture exceeds saturation, so that both reach their maxima dur-

ing winter, coinciding with the soil moisture maxima. In

response to the dry biased soil moisture in SIM NRT both

of these terms are biased low, with the greatest biases oc-

curring in winter. Since the drainage itself is much larger

than the runoff, the mean monthly drainage SIM NRT bias

(−5.8 mm month−1) was much larger than the mean monthly

runoff bias (−1.6 mm month−1). In fact the drainage bias ac-

counted for over half of the dry SIM NRT precipitation bias.

Evapotranspiration has the opposite seasonal cycle with

maxima in summer, coinciding with maximum insolation.

In each year the SIM NRT evapotranspiration was biased

low in late summer, when surface drying causes transpira-

tion to become moisture limited. This negative evaporation

bias during summer (larger than −5 mm month−1) was off-

set by a small positive bias during the wetter months (of

approximately 1 mm month−1), generating a mean bias of

just −2.4 mm month−1. This is relatively small given that

evapotranspiration is the largest water balance term after

precipitation.

The seasonal behaviour of the monthly change in surface

moisture storage is less consistent than the other terms, with

periods of positive and negative errors offsetting each other

to give a very small net change over multi-annual time peri-

ods. Since the applied precipitation bias is almost completely
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Fig. 5. Time series of the spatial mean (a) w2, and (b) w2 bias

(dotted lines) and w2 RMSE (solid lines) relative to SIM DEL.

SIM DEL is plotted in black, SIM NRT in red, and SIM ASCAT

in blue, and both plots are in mm.

balanced by the resultant biases (over annual time scales) in

drainage, runoff, and evapotranspiration, the mean bias in the

change in moisture storage is just −0.1 mm month−1. The

very small bias in the SIM NRT 1S/1t demonstrates how

the dry-biased NRT precipitation caused ISBA to shift to an

alternative biased climate (rather than continue to dry down

in response to the underestimated precipitation).

Finally, to demonstrate the practical relevance of these er-

rors, the drainage and runoff forecasts from SIM NRT and

Fig. 6. Discharge (m3 day−1) from SIM DEL (black), SIM NRT

(red), SIM ASCAT (blue), for the River Seine at Poses.

SIM DEL have been routed through the surface river net-

work with the MODCOU model, and an example hydro-

graph is shown in Fig. 6. SIM NRT simulated the tim-

ing of flood events from SIM DEL very well, while con-

sistently underestimating the magnitude of the peak flows,

resulting in a discharge ratio relative to SIM DEL (fore-

cast discharge/SIM DEL discharge) of 0.76, while the Nash-

Sutcliffe Efficiency (E) relative to SIM DEL was 0.74. These

statistics are representative of the streamflow forecasts across

France, and the mean discharge ratio relative to SIM DEL

across the 907 stations modeled by MODCOU was 0.68,

while the mean Nash-Sutcliffe efficiency was 0.62.

When considered in the context of the SIM DEL model, it

is apparent that the SIM NRT model used in this study was

biased, and yet a bias-blind assimilation has been used here,

with the ASCAT observations rescaled to match the biased

SIM NRT (as is standard practice in soil moisture assimi-

lation). Since Sects. 3.1 and 3.2 showed that the ASCAT
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Fig. 7. Time series of the spatial mean volume of moisture

(mm day−1) added to the surface (w1 plus w2) through assimila-

tion of the ASCAT SDS.

observations are reasonably accurate, we will proceed to

compare SIM ASCAT against SIM DEL in the hope that,

even after being rescaled to match the mean SIM NRT (over

the full data record), the ASCAT observations have still de-

tected the occurrence of underestimated or absent precipita-

tion events. While in a nonlinear model, a bias blind assim-

ilation would not be expected to affect a bias, land surface

models are highly nonlinear, and it is not uncommon to see

change in the mean soil moisture from assimilation of unbi-

ased (relative to the model) observations (e.g. Muñoz Sabater

et al., 2007).

3.3.2 SIM ASCAT and SIM DEL

Despite the assimilated ASCAT observations being unbi-

ased relative to the model, the assimilation had a strong ten-

dency to add moisture to w2, with a mean net increment of

0.1 mm day−1. Figure 7 shows time series of the average

volume of moisture added across France each day. Very little

moisture was added or subtracted during the winter months,

due to the widespread occurrence of frozen surface condi-

tions, as well as the reduced vertical soil moisture coupling

in ISBA during winter.

Spatially, the assimilation added net moisture at nearly all

model grid cells, with only a handful of isolated occurrences

of net moisture removal. These locations do not correspond

to the locations of positive precipitation and soil moisture

biases in Fig. 2. Nor do the regions of strongest moisture

addition correspond to the regions of strongest precipitation

and soil moisture biases, although this could be due to any

number of confounding factors.

Figure 8 shows maps of the soil moisture bias between

SIM ASCAT and SIM DEL, while Fig. 9 shows maps of the

reduction in the RMSE, relative to SIM DEL, generated by

assimilating the ASCAT soil moisture. Comparing Fig. 8 to

Fig. 2 shows that the positive soil moisture increments added

by SIM ASCAT reduced the negative SIM NRT soil mois-

ture biases. For w1, there were very small reductions in the

net bias at most grid cells (at 78 % of cells across the domain,

and at 94 % of the cells which have ASCAT observations),

with slightly larger reductions of approximately 0.02 mm in

the north of France. Overall, the mean bias for the three years

from May 2007 was slightly reduced to −0.09 mm (from
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Fig. 8. Net bias from May 2007 to April 2010 (in mm) between

SIM ASCAT and SIM DEL for (a) w1, and (b) w2.

−0.11 mm for SIM NRT). This reduced the RMSE also: at

59 % of the grid cells (and at 71 % of cells with ASCAT data),

although the reductions were extremely small, and the mean

RMSE was unchanged from 0.28 mm for both SIM NRT and

SIM ASCAT.

Since w2 has a much longer memory, the impact of the

assimilation on w2 was much greater. While the magnitude

of the negative w2 bias was reduced across most of France, a

small positive bias was introduced in the northeast and south-

west in Fig. 8 (in the northeast this caused a relatively large

increase in the RMSE in Fig. 9). Overall, the assimilation

reduced the mean bias for w2 to −5.6 mm (from −12.1 mm),

while the absolute bias was reduced at 73 % of the grid cells

(and at 89 % of the cells with ASCAT data). Consequently,

the w2 RMSE was reduced at 57 % of the model grid cells

(and at 69 % of cells with ASCAT data), decreasing the mean

w2 RMSE to 15.8 mm (from 16.6 mm for SIM NRT).

Temporally, the assimilation reduced the magnitude of the

negative w2 biases in the time series in Fig. 5, with the great-

est reductions (of around 10 mm) occurring through the sum-

mer, and persisting into early winter, before being lost in late
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Fig. 9. Reduction in the RMSE relative to SIM DEL (in mm) from

the assimilation of ASCAT, for (a) w1 and (b) w2, from May 2007

to April 2010.

winter. The assimilation also reduced the spatial RMSE be-

tween the simulated w2 and SIM DEL (by up to 5 mm) on

most days.

While the reduced soil moisture bias is consistent with the

assimilation having correctly updated the model in response

to the underestimated NRT SAFRAN precipitation, an inves-

tigation of the assimilation system and model physics indi-

cated that there are additional reasons for the net addition

of moisture. The Kalman gain for updating w2 (K2) had a

strong tendency to be higher when the observation departure

was more positive. For example, averaged across the whole

experiment, the mean K2 for positive observation departures

was 0.063 m3 m−3, while for negative observation departures

it was 0.030 m3 m−3.

The main cause of the asymmetric behaviour in K2 was

the observation operator, which was a 24 h integration of the

forecast model (SIM), followed by conversion to the obser-

vation equivalent variable (w1). That is, for yo = w1 and x =

[w1,w2]
T , H = [δw1(t+24)/δw1(t),δw1(t+24)/δw2(t)]

T .

During precipitation events, H 2 = δw1(t +24)/δw2(t) is re-

duced, since the signal of w2 in w1 is overwhelmed by the

precipitation. As a result, H2 and consequently K2 tends to

be smaller when the model forecast w1 is wetter. The ob-

servation error variances used in R, which were temporally

variable estimates provided with the ASCAT data, had an ad-

ditional (although lesser) influence on K2. Scatterplots of

the observation error variances at individual locations (not

shown) show that the error variances generally decrease as

the ASCAT observations become wetter (within the range of

the ASCAT data used here), resulting in larger K2 for wetter

yo. In combination these two factors (smaller K2 for wet-

ter w1, and larger K2 for wetter yo) produced a tendency for

larger K2 when the observation departure (yo−w1) was more

positive, giving the assimilation a bias towards adding posi-

tive soil moisture analysis increments.

Several adjustments to the EKF could help to address this

bias in the SEKF. The monotonic relationship between the

ASCAT observations and their error variances would be most

easily addressed by reverting to a constant R, as is more of-

ten used in soil moisture assimilation. For H2, since w1 is

not influenced by w2 during precipitation, this tendency to

decrease is physically sensible. However, the model fore-

cast error variances should also be larger during precipita-

tion, to reflect the uncertainty in the SAFRAN precipitation

analysis (recall from Sect. 3.3.1 that the timing of precipita-

tion events is reasonable, while the volume is less certain).

This cannot be easily accounted for in the simplified EKF,

and a more sophisticated assimilation strategy, such as an en-

semble Kalman filter could better address this. Alternatively,

adopting an additive forecast error term (Q) parameterised

to depend on the precipitation forcing in the (nonsimplified)

EKF could help provide a more symmetric relationship be-

tween K2 and forecast w1. Work is under way to incorporate

a rainfall-dependent Q into the EKF for use in NWP (Mah-

fouf, 2010) that could be adapted for SIM.

Even though the ASCAT assimilation is not thought to

have accurately responded to the NRT SAFRAN errors, the

impact of the assimilation on the surface moisture fluxes is

examined below to demonstrate how the model responded

to the reduced w2 biases induced by the assimilation. The

monthly mean water balance terms for SIM ASCAT are in-

cluded in Figs. 3 and 4. As discussed previously the analy-

sis increments tended to be positive, giving a mean monthly

increment of +4.2 mm month−1. The wetter soil moisture

in SIM ASCAT then led to reductions in the magnitude of

the negative biases in the resultant moisture flux forecasts,

to −4.1 mm month−1 for drainage (a reduction of 1.7 mm),

−1.4 mm month−1 for runoff (a reduction of 0.2 mm), and

−0.2 mm month−1 for evaporation (a reduction of 2.2 mm).

Since the addition of soil moisture by the assimilation was

balanced by reductions in the drainage, runoff, and evapo-

transpiration biases, there was no net change in the bias (over

annual time periods) in the monthly change in moisture stor-

age of 0.1 mm month−1. Hence in Fig. 5, the SIM ASCAT

and SIM NRT w2 time series converge during winter when
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the assimilation is less active, due largely to the enhanced

SIM ASCAT drainage forecasts.

Note that the assimilation had the greatest (absolute) im-

pact on the drainage forecasts, and just over 40 % of the soil

moisture increments were subsequently lost from the surface

as additional drainage forecasts. This demonstrates the po-

tential for improved soil moisture to have a significant impact

on hydrological forecasting applications. A similar result

was obtained by van den Hurk et al. (2008) from a soil mois-

ture analysis in the ECMWF IFS model, in that at many (non-

Mediterranean) locations the majority of the analysis incre-

ments added to the soil were translated into drainage/runoff,

rather than changes in soil moisture storage or evapotranspi-

ration.

As expected, the increased drainage and runoff forecast

from SIM ASCAT increased the forecast peak streamflows

in Fig. 6, increasing the discharge ratio relative to SIM DEL

to 0.78 (from 0.76 for SIM NRT), and increasing the Nash-

Sutcliffe Efficiency to 0.77 (from 0.74 for SIM NRT). Sim-

ilar results were obtained across the majority of the gaug-

ing stations modeled by MODCOU. SIM ASCAT reduced

the absolute error in the discharge ratio (i.e. difference from

unity) at 88 % of the gauging stations, increasing the mean

discharge ratio relative to SIM DEL to 0.76 (from 0.68

for SIM NRT). Additionally, the Nash-Sutcliffe Efficiency,

which is more sensitive to the accuracy of the timing (and

magnitude) of the peak flows, increased at 82 % of the sta-

tions, increasing the mean to 0.68 (from 0.62 for SIM NRT).

4 Summary and conclusions

This study sought to investigate whether the assimilation

of ASCAT surface degree of saturation data might benefit

Météo-France’s SAFRAN-ISBA-MODCOU (SIM) hydro-

logical model. SIM is run operationally at Météo-France in

near-real time to provide output for use in ensemble stream-

flow prediction and flood forecasting systems. The benefit

of the ASCAT data was tested by assimilating it from Jan-

uary 2007–May 2010 into a research copy of the near-real

time operational SIM model with a simplified EKF.

The ASCAT surface degree of saturation data were shown

to be accurate, with good absolute and anomaly correla-

tions with in situ data from the SMOSMANIA monitoring

network, and also with (completely independent) SIM near-

surface soil moisture forecasts across nearly all of the France.

Assimilating the ASCAT observations into the near-real time

SIM model generated very small improvements in the model

near-surface soil moisture, compared to the SMOSMANIA

in situ observations, although these improvements were not

sufficient to be practically or statistically significant.

The potential for the ASCAT assimilation to correct for

errors in the near-real time SIM forcing was then tested by

comparison against the more accurate delayed cut-off SIM

stream. However, comparing the SIM NRT and SIM DEL

model output revealed that the most significant difference be-

tween them is a substantial dry bias in the near-real time pre-

cipitation. This caused a dry bias in the SIM NRT soil mois-

ture and resultant surface moisture flux forecasts, including

streamflow (of most importance to operational users of SIM).

This dry bias in the near-real time SIM model (revealed by

comparison to the delayed cut-off stream) represents a bias

in the forecast model that has been used in the ASCAT as-

similation experiments. A bias in the forecast model (or as-

similated observations) invalidates key assumptions of (bias-

blind) data assimilation, leading to sub-optimal filter perfor-

mance (Dee, 2005). However, since the true soil moisture

climatology is unknown at large spatial scales (Reichle et al.,

2004), it is common in soil moisture assimilation to at least

ensure that the model and observations are unbiased relative

to each other. In theory, eliminating the bias between the

forecast model and the observations will allow the assimila-

tion to correct for other errors in the model, as was possibly

indicated by the very small increase in correlations against

the in situ SMOSMANIA data obtained here.

While a bias-blind assimilation of the ASCAT data was

not expected to address the SIM NRT forecast model biases,

it did in fact reduce the model bias. However, this was likely

due to a bias in the assimilation system, rather than the assim-

ilation having accurately responded to the NRT precipitation

errors, and so this is not regarded as a successful outcome for

these experiments.

The obvious alternative to the bias-blind assimilation strat-

egy used here is to implement a bias-aware assimilation (e.g.

De Lannoy et al., 2007). However, the success of a bias

aware assimilation is strongly dependent on the method used

to estimate the forecast model biases, to the extent that Dee

(2005) recommends foregoing a bias-aware assimilation un-

less the biases can be confidently estimated. For the oper-

ational SIM model, a model for predicting the biases could

potentially be based on the SIM DEL model (which was set

aside for evaluation in this study). However, when the SEKF

added moisture to the surface in this experiment, this resulted

in enhanced surface flux forecasts (particularly for drainage

which accounted for 40 % of the analysis increments). As a

result the model had a strong tendency to dry back to its orig-

inal biased climatology, as dictated by the precipitation forc-

ing. Consequently, even with a perfectly functioning bias-

aware assimilation, in instances when vegetation, frozen con-

ditions, or some other cause prevents observations from be-

ing assimilated, the model will quickly return to its preferred

(biased) climatology.

This highlights that in general it is better to address the

cause of a model bias, rather than rely on an assimilation to

correct it. Accordingly, work is under way to address the

dry bias in the near-real time SAFRAN precipitation analy-

sis. This bias is not consistent in time, and is difficult to treat

with a bias-correction scheme. Consequently, the possibil-

ity of replacing the current SAFRAN precipitation analysis

with one based on the CANARI OI scheme (Taillefer, 2002)
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is currently being investigated. However, even with the pre-

cipitation bias accounted for, other errors will persist in the

model soil moisture (e.g. Berg and Famiglietti, 2003), and ul-

timately SIM will likely benefit from a combination of a soil

moisture analysis scheme and improved precipitation forc-

ing. For example (while precipitation bias is not explicitly

addressed) Liu et al. (2011) showed that assimilating near-

surface soil moisture and applying a rain-gauge based correc-

tion to precipitation forcing generated greater improvements

in modeled soil moisture skill than applying either of these

techniques separately.
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