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In spite of their outstanding experimental relevance, Gaussian operations in continuous-variable quantum
systems are subjected to fundamental limitations, as it is known that general resources cannot be distilled within
the Gaussian paradigm. We show that these limitations can be overcome by considering a collaborative setting
where one party increases the amount of local resource with the aid of another party, whose operations are
assumed to be Gaussian but are otherwise unrestricted; the two parties can only communicate classically. We
show that in single-shot scenarios, unlike in the well-known case of entanglement theory, two-way classical
communication does not lead to any improvement over one-way classical communication from the aiding party
to the aided party. We then provide a concise general expression for the Gaussian resource of assistance, i.e.,
the maximum amount of resource that can be obtained when the aiding party holds a purification of the aided
party’s state, as measured by a general monotone. To demonstrate its usefulness, we apply our result to two
important kinds of resources, squeezing and entanglement, and find some simple analytic solutions. In the case
of entanglement theory, we are able to find general upper bounds on the regularized Gaussian entanglement of
assistance, and to establish additivity for tensor powers of thermal states. This allows us to draw a quantitative and
enlightening comparison with the performance of assisted entanglement distillation in the non-Gaussian setting.
On the technical side, we develop some variational expressions to handle functions of symplectic eigenvalues
that may be of independent interest. Our results suggest further potential for Gaussian operations to play a major
role in practical quantum information processing protocols.
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I. INTRODUCTION

In recent decades, quantum optics has become one of the
most prominent platforms for the implementation of quantum
technologies and the realization of quantum communication
experiments [1–6]. On the other hand, exploiting quantum
effects and correlations such as entanglement over long dis-
tances requires taming the omnipresent noise that would
otherwise drive a system’s behavior toward classical physics.
With the goal of addressing near-term practical goals, it is of
paramount importance to identify what we can and cannot do
with limited quantum resources. Fortunately, the recently es-
tablished framework of quantum resource theories [7–12] al-
lows us to deal with questions of this kind in a systematic way.

In continuous variable quantum systems, Gaussian states
and Gaussian operations have proven relatively easy to gener-
ate, control, and manipulate, and are therefore ideal candidates
for the above theoretical program [3,4]. We can therefore
consider the special class of Gaussian quantum resource
theories, whose free states and operations are required to be all
Gaussian. Such a concept has been formalized in Ref. [8]. Un-
fortunately, it has been known for a long time that many fun-
damental protocols are impossible to realize within this Gaus-
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sian setting: these include universal fault-tolerant quantum
computation [1], entanglement distillation [13–15], and error
correction [16] (although some experimental progress has
been reported for resource distillation and error correction un-
der non-Gaussian noises, see, e.g., Refs. [17–20]). In fact, the
impossibility of certain state transformations turns out to be a
general feature of Gaussian quantum resource theories [8].

In spite of this lack of universality, in this paper we point
out that the Gaussian framework still suffices to accomplish
somehow “easier” tasks that are however of wide interest
in quantum information. Namely, we focus on the assisted
paradigm for resource distillation, previously introduced in
the context of entanglement theory [21–24] and more recently
for quantum coherence [25,26] and quantum thermodynamics
[27]. This scenario features two parties, conventionally named
Alice and Bob, who hold a bipartite state ρAB and whose goal
is to produce a target state σA on Alice’s system. The difficulty
lies in the fact that Alice is restricted to free operations, and σA

will generally contain more resource than the initial reduced
state ρA, thus being out of reach if Alice were to operate alone.
However, she can rely on Bob’s remote help. Bob is usually
assumed to have access to more sophisticated equipment than
Alice, meaning that he is not restricted to free operations;
however, he can communicate with Alice only classically.
Here the analysis bifurcates, as there are two distinct cases of
interest, depending on whether Bob can only send messages
to Alice (see Fig. 1) or also Alice-to-Bob communication
is possible while the protocol is still running (see Fig. 2).
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The first case is usually referred to as the one-way assisted
setting, while the second is called collaborative setting. In
all the examples above, it is known that already one-way
assistance enables more efficient distillation of most bipartite
states [21–27]. Furthermore, the example of entanglement
[24] shows that two-way communication can help to distill
even more resource. Assisted scenarios for remote preparation
and distillation of quantum resources have recently been
explored experimentally, e.g., with photonics and supercon-
ducting microwave cavity setups [28–30].

In this paper we analyze the problem of assisted state
transformation in Gaussian quantum resource theories, as-
suming that Bob is also applying Gaussian operations, though
not necessarily free as is the case for Alice. As the term
“distillation” usually refers to the preparation of “golden
units” of resource,1 a process that is generally impossible
within the Gaussian framework [8], the goal of our protocols
is typically that of increasing the amount of resource, as
measured by some chosen monotone. We prefer to refer to this
task as “resource concentration.” We introduce in this setting
the regularized Gaussian measures of assistance that quantify
assisted resource concentration when Alice and Bob have an
asymptotic number of copies of a given state available, and
can manipulate all of them at the same time in a Gaussian but
coherent fashion.

We start by proving that one-way communication suffices
for the most general collaborative protocol in this simplified
Gaussian setting, thus reconciling the aforementioned two
conceptual branches. Next, we tackle two case studies. First,
we look at the simplest Gaussian resource theory, i.e., that
of squeezing. For any given multimode Gaussian state on
Alice’s system we are able to explicitly compute the maximal
Gaussian squeezing of assistance, i.e., the maximal squeez-
ing that can be induced via assistance by an all-Gaussian
Bob, assuming that he holds a purification of that state. The
squeezing measure we adopt here is directly related to the
minimal quadrature variance along all possible directions in
phase space. Here we demonstrate by a simple example the
irreversibility of Bob’s action: namely, the post-measurement
states that Alice obtains are in general inequivalent from the
point of view of interconvertibility via free operations.

We then move on to our second case study, the resource
theory of Gaussian entanglement. When assistance is taken
into account, this setting features three parties: the two sharing
the entanglement, Alice and Bob, and the assisting party,
now named Charlie. When Charlie is restricted to single-
mode Gaussian measurements, the maximal entanglement
he can induce between Alice and Bob has previously been
studied under the name of Gaussian localizable entanglement
[31–34]. We instead look at the scenario where he is allowed
to apply any global Gaussian measurement, and give analyt-
ical formulas to compute the maximum Gaussian entangle-
ment of assistance thus obtainable between Alice and Bob in
the following two theoretically and experimentally relevant
cases. (1) When Alice and Bob hold a mode each and their
reduced state is a product state, which is the setting relevant

1A golden unit is a state from which any other state can be prepared
by means of free operations alone.

for entanglement swapping, we confirm that the previously
considered ideal Bell measurements on Charlie’s two modes
[35,36] are indeed the optimal strategy. This result, to the
best of our knowledge unknown before, provides rigorous
foundation for the most commonly studied procedures of
entanglement swapping in the Gaussian setting. (2) When
Alice and Bob’s reduced state is in the class of Gaussian
least entangled mixed states (GLEMS) [37,38]. This is an
important class of states providing a rigorous lower bound
on entanglement for given global and local purities, which
can be measured without a costly full tomography [39,40].
It is also a relevant class for a simple physical situation where
Alice, Bob, and Charlie hold a three-mode pure state, Charlie
gets separated apart from Alice and Bob, and Charlie assists
Alice and Bob to gain their entanglement later. Finally, using
some innovative techniques we derive a general upper bound
on the Gaussian entanglement of assistance that is valid for all
bipartite Gaussian states and for a wide class of entanglement
measures. This latter result allows us to compute the regular-
ized Gaussian entanglement of assistance of a tensor product
of identical Gaussian thermal states, and to compare it with its
non-Gaussian counterpart [23]. The comparison demonstrates
that general non-Gaussian protocols are more efficient than
Gaussian ones; the gap turns out to be comparatively large
when the local entropies are small, and to reduce to a constant
in the opposite limit. To the extent of our knowledge, this is
the first instance of a precise quantitative comparison between
the efficiency of a nontrivial protocol in the standard and in the
Gaussian settings.

The rest of the paper is structured as follows: in Sec. II
we recall the definition of a Gaussian resource theory, and
introduce the concept of assisted concentration of resources.
In Sec. III we present our first general results on the assisted
Gaussian framework. Section IV deals with our first case
study, the resource theory of squeezing. Section V is instead
devoted to entanglement theory. In Sec. VI we address the
limitations of the Gaussian setting by considering assistance
via non-Gaussian protocols. Finally, in Sec. VII we discuss
our results, draw some conclusions, and point out directions
of future research.

II. PRELIMINARIES

A. Gaussian quantum resource theories

We start by recalling the basic theory of Gaussian quantum
states [4,6,41]. Consider a system of n harmonic oscillators
with canonical operators x j, pk , customarily arranged as a
(column) vector R := (x1, . . . , xn, p1, . . . , pn)ᵀ. The canon-
ical commutation relations can be written in compact form
as [R, Rᵀ] = i�, where � := ( 0 1

−1 0

)
is the standard sym-

plectic form. Gaussian states are by definition (limits of)
thermal states of quadratic Hamiltonians, i.e., Hamiltonians
of the form H = 1

2 RᵀHR − sᵀHR for some 2n × 2n positive
semidefinite matrix H and some real vector s ∈ R2n. A Gaus-
sian state ρ := ρG[V, t] is uniquely described by its mean or
displacement vector t := Tr[ρR] ∈ R2n and its quantum co-
variance matrix (QCM) V := Tr [ρ {R − t, (R − t )ᵀ}], which
is a 2n × 2n real symmetric matrix. It turns out that legitimate
QCMs of (Gaussian) states are exactly those matrices V that
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satisfy the Robertson-Schrödinger uncertainty principle [42]:

V � i�, (1)

where the inequality has to be intended in the sense of positive
semidefiniteness.

We now move on to Gaussian operations. The simplest
example of a Gaussian operation is a symplectic unitary,
i.e., a unitary that is generated by a quadratic Hamiltonian.
Such a unitary U acts as a symplectic2 linear transformation
URU † = SR on the vector of canonical operators, while on
Gaussian states one has that U †ρG[V, t]U = ρG[SV Sᵀ, St].
Interestingly, symplectic unitaries can be used to bring any
Gaussian state into a particularly simple normal form called
Williamson’s form. The QCM of a state in Williamson’s form
is simply V = (D D

)
, where D � 1 is a diagonal matrix

whose entries—called symplectic eigenvalues—depend on V
only [43].

Gaussian measurements are represented in the positive
operator-valued measure (POVM) formalism by the family
of operators {ρG[γ , t]}t∈R2n , where γ is a QCM called the
seed of the measurement. Note that the normalization con-
dition

∫
d2nt

(2π )n ρG[γ , t] = 1 is satisfied; here 1 represents the
identity acting on the whole Hilbert space. Performing a
Gaussian measurement with seed γB on the B system of a
bipartite Gaussian state with QCM VAB yields an outcome
distributed normally with covariance matrix (VB + γB)/2. The
post-measurement state on A is again Gaussian, and its QCM
(VAB + γB)/(VB + γB) is independent of the measurement out-

come. Here, for a 2 × 2 block matrix M = ( A X
Xᵀ B

)
, the Schur

complement M/B of M with respect to one of its (invertible)
subblocks B is defined as M/B := A − XB−1Xᵀ [44]. General
nondeterministic Gaussian operations are obtained by append-
ing ancillary Gaussian states, applying symplectic unitaries,
and performing Gaussian measurements. When a Gaussian
operation �A→B with input system A and output system B is
performed on a Gaussian state, the QCM transforms as

�A→B : VA �−→ (�AB + 	AVA	A)
/

(�A + 	AVA	A), (2)

where �AB is a QCM pertaining to the joint system AB and
characterizing �A→B, and 	 := (1 −1

)
is the matrix that

reverts the sign of the momenta [15, Eq. (10a)].
We now review the formalism of Gaussian resource the-

ories [8]. Throughout this paper we will assume that the
six postulates proposed in Ref. [8] are satisfied. Central
concepts in the resource theory formalism are a set of free
states and a class of free quantum operations. Here we
are interested in a hybrid theory, which takes into account
quantum resources restricted to the Gaussian regime. Let
F (λ) be the set of free states where λ = (λ1, . . . , λl ) is a
vector variable that specifies the structure of all the “spatially
separated” subsystems involved, here labeled from 1 to l .
For instance, one such variable will be the total number
of modes n j of each subsystem j. Let GN be the set of
Gaussian states over N modes. Then, the intersection between

2A 2n × 2n matrix S is said to be symplectic if it preserves the form
�, i.e., if S�Sᵀ = �.

the set of free states of the interested resource and the set
of Gaussian states, F G(λ) = F (λ) ∩ GN where N =∑ j n j ,
defines the set of free Gaussian states, which is our basic
object of study. Since in our setting displacement unitaries
are always free, F G(λ) is entirely described by the set of
free QCMs V G(λ) := {V : ∃ t ∈ R2N : ρG[V, t] ∈ F G(λ)}, in
formula F G(λ) = {ρG[V, t] : V ∈ V G(λ), t ∈ R2N }.

The second ingredient of a Gaussian resource theory is a
class of Gaussian quantum channels that are considered to be
free. This set can be a priori arbitrary, but we will always
require that a free Gaussian operation does not transform free
Gaussian states into nonfree ones. It will always be clear from
the context what particular class of free operations we are
looking at.

Before we define the quantities we will study here, we need
to fix some terminology. Given a Gaussian quantum resource
theory, a Gaussian monotone is by definition a function R
defined on all Gaussian states and taking on real values, which
is nonincreasing under the chosen set of Gaussian free opera-
tions. This readily implies that any such function must in fact
be invariant under any free Gaussian operation whose inverse
is also free. Since displacement unitaries are free, we deduce
that for a Gaussian state ρG[V, t], the function E (ρG[V, t]) is in
fact only a function of the quantum covariance matrix V . With
a slight abuse of notation, we will therefore write E (V ) instead
of E (ρG[V, t]) in what follows. Combining [8, Lemma S.2]
and [45, Lemma 1] we see that R is continuous as a function of
the Gaussian state (with respect to the trace norm) if and only
if it is continuous as a function of the covariance matrix. When
this happens, R is said to be continuous. Another important
property is Gaussian convexity: if whenever ρ =∑i piρi is a
Gaussian state that can be written as a convex combination3

of other Gaussian states ρi, it holds that R(ρ) �∑i piR(ρi ),
then R is said to be Gaussian convex.

B. Assisted resource concentration

Here we are interested in the cooperative scenario featuring
two parties, Alice and Bob, whose corresponding quantum
systems we denote with A, B. The extension (maybe even
the purification) of Alice’s Gaussian state with covariance
matrix VA is held by Bob, who will help her to implement
the desired state transformation VA → WA. We imagine that
Bob is restricted to Gaussian operations only but assume that
he can implement all Gaussian operations, not only free ones.
Concerning classical communication between Alice and Bob,
it is customary to consider two different settings: (a) there is
one-way communication from B to A (Fig. 1); and (b) we
allow for back-and-forth communication at any stage of the
protocol (Fig. 2). In the context of entanglement, setting (a)
identifies the measure known as entanglement of assistance
[21,22], while (b) leads to the definition of the entanglement
of collaboration [24]. Although the latter is always an upper
bound for the former, it has been shown that there can be strict
inequality [24]. This tells us that in general two-way classical
communication must be included into the picture.

3We include implicitly also the case where a limit of convex
combinations, often written as an integral, has to be taken.
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A

B

VAB

γB

A′ V ′
A′

FIG. 1. A pictorial representation of the one-way collaborative
Gaussian concentration paradigm. Alice and Bob’s initial Gaussian
state has QCM VAB. Bob applies a Gaussian measurement with seed
γB to his share of the system and then communicates the outcome
to Alice, who then obtains a Gaussian state with QCM V ′

A′ = (VAB +
γB )/(VB + γB ).

Both scenarios (a) and (b) can be easily generalized to the
case of arbitrary resources. In the case of (b), the set of opera-
tions A and B can perform can be dubbed Gaussian local free
operations and classical communication and abbreviated as
GLFCC. We formally quantify the effectiveness of Gaussian
resource concentration in these two settings as follows.

Definition 1. Let R be a Gaussian monotone of a Gaussian
resource theory over system A. Let the AB bipartite system
be in an initial Gaussian state with covariance matrix VAB. We
assume that A is restricted to free Gaussian operations, while
B can perform arbitrary Gaussian operations.

(a) If only B → A classical communication is allowed, the
maximal amount of resource generated by A is given by the
Gaussian resource of one-way collaboration:

RG
c,←(VAB) := sup

γB�i�B

R((VAB+γB)/(VB+γB)). (3)

In particular, if B holds a purification of A, we call

RG
a (VA) := RG

c,←(VAB) (4)

the Gaussian resource of assistance.
(b) Allowing for two-way classical communication in-

stead, we obtain the Gaussian resource of collaboration:

RG
c (VAB) := sup

�AB→A′ ∈GLFCC
R(�AB→A′ (VAB)). (5)

A

B

VAB

A′ V ′
A′

FIG. 2. A pictorial representation of a two-way collaborative
Gaussian concentration scheme. Now Alice and Bob are allowed to
manipulate their initial Gaussian state with QCM VAB using arbitrary
Gaussian operations on Bob’s side (filled boxes), free Gaussian
operations on Alice’s (patterned boxes), and two-way classical com-
munication.

To justify (3), remember that the Schur complement on the
right-hand side (r.h.s.) represents the post-measurement QCM
obtained when Bob makes a Gaussian measurement with seed
γB on his share of the system.

The setting considered so far involves one-shot manipula-
tion of a single copy of a Gaussian state. From the quantum
information theory perspective, it is also natural to investigate
the opposite case, i.e., that of asymptotic state manipulation.
In this modified scenario, Alice and Bob share � copies of a
Gaussian state with QCM VAB, the global QCM thus taking
the form V ⊕�

AB , and may manipulate them jointly, with the help
of either one-way or two-way communication. We are thus led
to define the following regularized measures.

(a′) The regularized Gaussian resource of one-way collab-
oration:

RG,∞
c,←(VAB) := lim

�→∞
1

�
RG

c,←
(
V ⊕�

AB

)
. (6)

When B holds a purification of A we obtain the regularized
Gaussian resource of assistance:

RG,∞
a (VA) := lim

�→∞
1

�
RG

a

(
V ⊕�

AB

)
. (7)

(b′) The regularized Gaussian resource of collaboration:

RG,∞
c (VA) := lim

�→∞
1

�
RG

c

(
V ⊕�

AB

)
. (8)

Since the measures in Eqs. (3)–(5) are defined via opti-
mizations, it is not difficult to verify that they never decrease
under regularization. Naturally this corresponds to the fact
that a possible strategy for Bob is always to measure each copy
of the state separately.

In the next section we put order in this zoo of measures, by
showing that the Gaussian resource of collaboration and one-
way collaboration always coincide. The same is then naturally
true for their regularized versions. Introducing and discussing
them separately was however no futile exercise, as it helps to
keep them conceptually separated. It is indeed important to
appreciate that the fact that several of them coincide is really
a peculiarity of the Gaussian framework, and will not be the
case in other settings. For example, we already mentioned that
entanglement of assistance and entanglement of collaboration
do not coincide in general [24].

III. GAUSSIAN ASSISTED RESOURCE CONCENTRATION:
FIRST RESULTS

We start by presenting the main result of this section, i.e.,
the equality between Gaussian resource of collaboration and
one-way collaboration. The operational interpretation of the
result is straightforward: one-way communication from Bob
(the assisting party) to Alice (the assisted party) is sufficient
for optimal resource extraction. In other words, the scenarios
depicted in Figs. 1 and 2 are operationally equivalent.

Theorem 2. The Gaussian resource of collaboration and
the Gaussian resource of one-way collaboration coincide, in
formula

RG
c,←(VAB) ≡ RG

c (VAB). (9)

In particular, RG
c,← is a GLFCC monotone.
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In light of its new status, it is important to simplify the
computation of the Gaussian resource of one-way collabora-
tion. We now show that the Gaussian measurement on B in
Eq. (3) can always be assumed to have a pure seed.

Proposition 3. The supremum in Eq. (3) can be restricted
to pure QCMs γB without loss of generality:

RG
c (VAB) = RG

c,←(VAB)

= sup
γB � i�B

γB pure

R((VAB + γB)/(VB + γB)). (10)

Proof. The first equality is just (9). As for the second,
consider that for every matrix γB � i�B we can find some
pure γ ′

B such that γB � γ ′
B � i�B. Schur complements are

monotonic with respect to the positive semidefinite order, and
hence

(VAB + γB)/(VB + γB) � (VAB + γ ′
B)/(VB + γ ′

B).

The proof is concluded by noticing that convex monotones
must be decreasing with respect to the positive semidefinite
order as increasing the covariance matrix corresponds to
acting with random displacements on the underlying quantum
state. �

Until now, our results do not make any special assumption
on the bipartite state on AB, and thus apply also to the typical
experimental setting. The picture becomes a bit clearer, and
the assistance protocol more effective, when the global initial
state is pure, i.e., when B holds the whole purification of A’s
reduced state. The analysis of this scenario allows to bench-
mark the ultimate performances of our Gaussian framework.
From the mathematical point of view, it leads to a significant
simplification of the optimization (4).

Proposition 4. Let R be a continuous resource monotone.
Then the Gaussian resource of assistance of a QCM VA is
given by

RG
a (VA) = sup

τA �VA pure QCM
R(τA). (11)

Proof. By virtue of [46, Proposition 4], for all pure QCMs
VAB we have the equality

{(VAB + γB)/(VB + γB) : γB pure QCM}
= {τA : τA � VA, τA pure QCM},

where S denotes the closure of the set S . Since the function
R is continuous, the closure does not affect the optimization,
hence (10) becomes (11). �

The above proof reveals a very intuitive fact: for a given
Gaussian state ρG[V, t] on system A, and a purification of it on
the bipartite system AB, every ensemble on A composed by
displaced copies of the same Gaussian pure state ρG[τ, 0], with
average ρG[V, t], can be obtained by performing a suitable
Gaussian measurement on B (or a limit of such measure-
ments). Observe that the possible QCMs τ here are exactly
those satisfying τ � V . This is nothing but the Gaussian
version of a classic result by Schrödinger himself [47]. For
this reason, in what follows we will often identify a possible
strategy by Bob by giving the pure state τ instead of the
measurement γ on B.

IV. CASE STUDY I: SQUEEZING

The Gaussian resource theory of squeezing on an n-
mode system is defined by the set of free QCMs V G

S (n) :=
{V : V � 1}. This is arguably one of the simplest examples of
a Gaussian resource theory. In spite of its simplicity, it already
exhibits some interesting features that make it an excellent
candidate to investigate and answer some natural questions
that arise in the study of Gaussian resources.

An example of such a question is the following: is the op-
timal measurement on Bob’s system in Eq. (3)—equivalently,
in Eq. (10)—always independent of the particular monotone
R one chooses? In other words, is it always true that one
can find an optimal measurement on B, whose corresponding
induced state on A can be transformed into any other such
induced state by means of free operations? Interestingly, this
is not the case: the following proposition states that the point
achieving the maximum in the optimization (11) can depend
in a nontrivial way on the monotone, and hence that the
set of states induced on A by measurements on B does not
have a maximum with respect to the ordering dictated by
convertibility via free operations.

Proposition 5. Consider the resource theory of Gaussian
squeezing over a single system. There exists a QCM V and
two pure QCMs τ1, τ2 � V such that no pure QCM τ with
τ � V satisfies τ → τ1 other than τ1 itself, but τ1 �→ τ2 by
means of free operations.

We now move on to the problem of computing the Gaus-
sian squeezing of assistance. As usual, we have to select a
monotone to perform the calculation. A commonly employed
quantifier in this setting is the so-called maximal squeezing,
given by [48]

S(V ) := max{1, λmin(V )−1}, (12)

where λmin(V ) denotes the minimal eigenvalue of V , i.e.,
twice the minimal quadrature variance of ρG[V, t] across all
possible directions in phase space. Observe that S admits the
variational representation S(V ) = max{s � 1 : sV � 1}, and
is thus a special case of the general monotone considered in
Ref. [8], defined for an arbitrary Gaussian resource theory
by κ (V ) = max{s � 1 : sV ∈ V G(λ)}. We now show that the
optimization (11) can be solved explicitly for the resource
theory of squeezing when the monotone employed is the
maximal squeezing. This provides a nontrivial example of an
explicit computation which gives the optimal assistance.

Theorem 6. Consider the Gaussian resource theory of
squeezing over a single system. The Gaussian maximal
squeezing of assistance defined in Eq. (11) is given by the
maximal eigenvalue of the QCM:

SG
a (VA) = λmax(VA). (13)

Since the maximal squeezing S is a special case of the
general monotone κ defined in Ref. [8], it obeys the so-called
tensorization property, i.e., it holds that S(V ⊕�) ≡ S(V ) for
any number � of copies of the state. It does not come as a sur-
prise that the same is true for the maximal Gaussian squeezing
of assistance: SG

a (V ⊕�) ≡ SG
a (V ) for all �. Clearly the maximal

squeezing is highly nonextensive, and is therefore not apt
to capture the asymptotic behavior of the state [one would
formally obtain SG,∞

a (V ) ≡ 0].
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The above result can be used to obtain the Gaussian
squeezing of assistance with respect to other nonclassicality
measures that are increasing functions of S for pure states. Ex-
amples falling into this class include all measures of nonclas-
sicality for single-mode states. Let us for instance look at the
entanglement potential introduced as a computable measure
for nonclassicality of light [49]. This measures the capability
of generating two-mode entanglement with a classical state by
a balanced beam splitter. Namely, it is defined by

EP(ρ) := EN (σρ ) = log2

∥∥σ TA
ρ

∥∥
1, (14)

where σρ := UBS(ρ ⊗ |0〉〈0|)U †
BS, UBS is the 50:50 beam split-

ter, |0〉〈0| is the vacuum mode, and EN is the negativity of en-
tanglement [50]. If one takes the relative entropy measure in-
stead of the negativity, the resulting measure is called entropic
entanglement potential. The (entropic) entanglement potential
can be analytically computed for single-mode Gaussian states
as well as photon number states [49]. We then obtain the
Gaussian entanglement potential of assistance as follows.

Corollary 7. Consider the Gaussian resource theory of
squeezing over a single-mode system. Let EP be the entan-
glement potential. Then we get

(EP )G
a(VA) = 1

2 log2 λmax(VA). (15)

Proof. For a pure Gaussian state with QCM V =
Rφ diag(λ−1, λ)R†

φ , where λ � 1 and Rφ is some phase shift
operator, the entanglement potential takes the form EP(V ) =
1
2 log2 λ [49]. Since this is an increasing function of λ = S(V ),
the pure states that achieve the supremum in Eq. (11) for
the maximal squeezing and for the entanglement potential
coincides, which leads to (15). �

Note that a similar argument can be applied to all the Gaus-
sian resource of assistance measures that are monotonically
increasing functions of the S quantifier for pure Gaussian
states.

We provide an example where Theorem 6 is particularly
useful; it helps us to observe an interesting difference between
finite-dimensional systems and the Gaussian regime in terms
of resource conversion between coherence and quantum corre-
lation. In a finite-dimensional system, the cyclic interconver-
sion between coherence and quantum correlation is possible
starting from any coherent state [51,52]. More specifically,
given a coherent state ρA, it is always possible to first convert
it to a state with nonzero quantum discord ρ̃AB by attaching
the ancillary state |0〉 and applying an incoherent operation on
ρA ⊗ |0〉〈0|, and convert it back to the original state ρA by local
quantum incoherent operations and classical communication
(LQICC). A natural question would be whether one can do
the same in the Gaussian regime. There, squeezing can be con-
sidered the concept analogous to coherence in the sense that
it enables to create entanglement together with passive op-
tical elements such as beam splitter. Let us consider the
corresponding cyclic interconversion process where we start
from some squeezed state, attach an ancillary state and apply
the beam splitter, and try to convert it back to the original
state by GLFCC. Let ρA = ρG[VA, 0] be a pure single-mode
Gaussian state with QCM VA = diag(λ, λ−1), with λ > 1. Set
ṼAB = BS(τ )(VA ⊕ 1B)BS(τ )ᵀ, where the identity matrix is
the QCM of the vacuum state and BS(τ ) is the symplectic

matrix that represents the action of a beam splitter with trans-
missivity τ . After a straightforward calculation, one obtains
that ṼA = τVA + (1 − τ )1. Using Theorem 6 we get that

SG
a (ṼA) = λmax(ṼA) = τλ + 1 − τ � λ = S(VA), (16)

where the inequality is strict unless τ = 1. Thus, cyclic inter-
conversion is not always possible in the Gaussian regime.

V. CASE STUDY II: ENTANGLEMENT

We now look at the Gaussian resource theory of entangle-
ment over a bipartite system AB of nA + nB modes. In this case
free QCMs are those that correspond to separable states, i.e.
[53,54],

V G
E (nA, nB) := {VAB : ∃ γA, γB : VAB � γA ⊕ γB � i�AB}

= {VAB : ∃ γA : VAB � γA ⊕ i�B � i�AB}.
Free transformations are usually taken to be local operations
and classical communication (LOCC), which in our setting
are required to be also Gaussian (GLOCC) [55]. Let us now
consider the problem of Gaussian entanglement generation
on a bipartite system AB via assistance by a party (C for
Charlie) holding a purification of the state. Instead of selecting
a specific monotone, we keep the derivation general and
consider any function E (γAB) defined on the set of pure QCMs
γAB and satisfying a few general properties.

(i) Non-negativity and faithfulness, i.e., E (γAB) � 0 for all
pure QCMs γAB, with equality if and only if γAB = γA ⊕ γB.

(ii) Monotonicity under GLOCC.
(iii) Additivity on pure QCMs, i.e., E (γAB ⊕ τA′B′ ) =

E (γAB) + E (τA′B′ ) for all pure QCMs γAB, τAB.
We obtain the following characterization of such functions.
Lemma 8. A function E (γAB) defined on bipartite pure

QCMs γAB obeys conditions (i)–(iii) if and only if it is of the
form

E (γAB) =
∑

j

f (ν j ) (17)

for some nondecreasing function f : [1,∞) → [0,∞) such
that f (1) = 0. Here {ν j} j are the local symplectic eigenvalues
of γAB, i.e., the symplectic eigenvalues of γA.

Notable examples of functions f are: (1) f (ν) = s1(ν) :=
ν+1

2 log ( ν+1
2 ) − ν−1

2 log ( ν−1
2 ), in which case E becomes the

standard entanglement entropy [56]; (2) f (ν) = s2(ν) :=
log ν, in which case E becomes the Rényi-2 entanglement
entropy, whose convex roof enjoys a wealth of properties
[46,57–59]. Incidentally, both s1 and s2 are not only mono-
tonically increasing but also concave. Also, observe that all
choices of f are anyway equivalent when nA = nB = 1, in the
sense that there is a monotonic function connecting any two
of them.

Let us first consider the simplest case of a product state
over a two-mode state. The corresponding QCM will thus be
of the form VA ⊕ VB. Clearly product states do not possess any
entanglement, but it is possible to produce nonzero entangle-
ment with the help the party holding the purifying system.

Proposition 9. Let the two-mode QCM VAB represents a
product state of the form VAB = VA ⊕ VB. Denote with a and
b the symplectic eigenvalues of VA and VB, respectively. Then,
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for a monotone E as in Eq. (17),

E G
a (VAB) = f

(
1 + ab

a + b

)
. (18)

Another class of states for which the Gaussian entangle-
ment of assistance can be explicitly calculated is the class
of Gaussian least entangled states for given global and local
purities (GLEMS) [37,38]. This class comprises all two-mode
states that have at most one symplectic eigenvalue different
from unity, i.e., those that admit a single-mode purifying
system.

Proposition 10. Let the two-mode QCM VAB represents
a state in the GLEMS class in the standard form VAB =(aI �

� bI

)
, where � = diag(kx, kp). Then, for a monotone E as

in Eq. (17),

E G
a (VAB) = f

(
1 + k2

x

ab − k2
x

)
. (19)

Let us remark once more that (18) and (19) represent the
maximum average entanglement, as measured by a monotone
E obeying requirements (i)–(iii) above, that can be obtained
by Alice and Bob with the assistance of Charlie. The setting
is the usual: the tripartite state is pure Gaussian, and Char-
lie can perform a local Gaussian measurement followed by
communication of the outcome. While until now we worked
in the single-copy setting, we now look at the asymptotic
version of the same task, where the three parties possess many
independent copies of a fixed state. The relevant measure is
then obtained by taking the regularization of E G

a , according to
the prescription in Eq. (7):

E G,∞
a (VAB) := lim

�→∞
1

�
E G

a

(
V ⊕�

AB

)
. (20)

As discussed above, it follows from general principles that
E G,∞

a (VAB) � E G
a (VAB) for all bipartite QCMs VAB. Unfortu-

nately, we are not yet able to decide whether there can be strict
inequality there for some interesting monotone E , although
we suspect this can happen in general. Note that we do not
have a formula to evaluate the limit in Eq. (20), not even for
the simplest (nontrivial) choices of f . One should compare
this situation with that of standard (non-Gaussian) quantum
information: in this case it is known that the regularized
entanglement of assistance always equals the minimal local
entropy [23, Theorem 1]; moreover, in [23, Example 4] an
explicit state for which the entanglement of assistance is
strictly superadditive is exhibited.

The Gaussian constraints make it difficult to generalize the
approach of [23] to the present case. We are however able to
compute (20) in the simplest case of all, i.e., when VAB = κ1

is a multiple of the identity—equivalently, when the state held
by Alice and Bob is a product of thermal states with the same
mean photon number—and f is any concave function. A by-
product of the calculation is a (partially) additive upper bound
that holds for all QCMs, and that is of interest on its own.

Theorem 11. Let the function E be as in Eq. (17) for some
concave f . Then for all bipartite QCMs VAB � i�AB it holds
that

E G
a (VAB) � E G,∞

a (VAB) � n f

(‖VAB‖2
∞ + 1

2‖VAB‖∞

)
, (21)

C

A

B

|0〉C

|ψ〉AB

|φ〉ABC

FIG. 3. Equivalence between the entanglement potential of assis-
tance and the localizable entanglement: if one thinks of the measure-
ment as performed before the beam splitter, then the amount of entan-
glement between A and C at the output is the entanglement potential
of assistance. If instead one sees the measurement as performed after
the beam splitter, then the maximum entanglement between A and C
is the localizable entanglement of |φ〉ABC := U AC

BS |ψ〉AB |0〉C .

where ‖ · ‖∞ stands for the operator norm. In particular, for
all k � 1

E G
a (k1AB) = E G,∞

a (k1AB) = n f

(
k2 + 1

2k

)
, (22)

where n = min{nA, nB} and nA, nB are the number of modes
on the systems.

Theorem 11 in particular implies that E G
a is additive on

multiples of the identity. Another particularly important les-
son that we can learn from this result is highlighted at the end
of Sec. VI.

VI. NON-GAUSSIAN OPERATIONS

Finally, let us comment on the possibility of increasing
the performance of assisted concentration when the aiding
party is allowed to make non-Gaussian operations. Consider
the resource theory of optical nonclassicality defined on a
single system (that is equivalent to the theory of squeezing
when it is restricted to the Gaussian states) [60]. Recall that
the entanglement potential is the amount of entanglement that
the state can create by mixing with the vacuum mode in a
50:50 beam splitter. Suppose A and B hold a pure two-mode
state |ψ〉AB and C holds the vacuum mode |0〉C as depicted
in Fig. 3. Then the entanglement potential of assistance for A
aided by B is the amount of entanglement created by the beam
splitter between the vacuum mode on C and the state on A
after the measurement on B. On the other hand, it is equivalent
to the localizable entanglement [31–34] induced on A and C
from the tripartite pure state |φ〉ABC := U AC

BS |ψ〉AB ⊗ |0〉C by
a measurement on B, where U AC

BS is the unitary corresponding
to a 50:50 beam splitter on AC. In Ref. [33] it was shown
that the photon number counting can induce larger localiz-
able entanglement than the optimal Gaussian measurement
when |ψ〉AB is chosen as a two-mode squeezed vacuum state.
This observation directly leads to the fact that entanglement
potential of assistance can be increased when non-Gaussian
operations are allowed on the aiding system.

Let us now investigate the role of non-Gaussian opera-
tions in the assisted preparation of entanglement. We find it
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particularly instructive to look at the asymptotic case, which
can be done for certain states thanks to Theorem 11. Let
f (ν) = s1(ν) = ν+1

2 log ( ν+1
2 ) − ν−1

2 log ( ν−1
2 ) be the func-

tion f such that the corresponding E is the standard entangle-
ment entropy. With the help of (22) we then see that for all k >

1 the maximal entanglement that Charlie can induce between
Alice and Bob with Gaussian protocols in the asymptotic limit
is strictly smaller than the maximal entanglement achievable
with arbitrary LOCC protocols, which is known to coincide
with the minimal local entropy [23]. In formula,

E G,∞
a (k1AB) = n s1

(
k2 + 1

2k

)
< n s1(k) = E∞

a (k1AB). (23)

Interestingly, the ratio between the r.h.s. and the left-hand
side (l.h.s.) of (23) approaches infinity when k → 1, that
is, when the local states of Alice and Bob are almost pure.
In the opposite limit of k → ∞, i.e., when Alice and Bob
both (separately) share a large amount of entanglement with
Charlie, the difference between the r.h.s. and the l.h.s. of
(23) tends to a constant log 2, and hence Gaussian protocols
perform only slightly worse than general LOCCs.

To the extent of our knowledge, this is one of the few exam-
ples of an operational task that can be carried out both in the
general and in the Gaussian paradigm, with the corresponding
performances being rigorously quantifiable.

VII. CONCLUSIONS

We considered resource concentration in the collaborative
Gaussian setting where one party who only has access to
local Gaussian free operations is aided by another party who
performs arbitrary local Gaussian operations. We showed that,
although two-way classical communications outperform one-
way classical communications for the assisted distillation in
general, their capability coincide for the Gaussian resource
concentration settings considered in this work. We in partic-
ular analyzed the situation where the aiding party possesses
a purification of the aided party, and provided a simplified
expression for the general Gaussian resources of assistance.
We applied this formula to the cases of Gaussian squeezing
and two-mode entanglement, and provided analytical solu-
tions for several classes of states and resource measures. We
finally showed the additivity of the Gaussian entanglement of
assistance for product states with respect to a wide class of
entanglement measures, providing the analytic formula for the
asymptotic scenario.

Our work illuminates the way of avoiding the well-known
no-go obstacle to using the Gaussian operations—i.e., impos-
sibility of distilling any Gaussian resources—by introducing
an aiding party that indeed allows the aided party to con-
centrate the resources. This suggests a further potential for
Gaussian operations to be still valuable in various quantum
information processing protocols that require Gaussian re-
source concentration. Our results also provide useful tools
for quantitatively assessing the amount of Gaussian resource
those protocols can produce.

While we showed the additivity of the Gaussian entangle-
ment of assistance for product states, whether the same holds
for other classes of states is not clear, and we leave this for
future work. Another interesting question to address in the

future might be to clarify an operational meaning for the class
of entanglement measures considered in this work, which
would provide further physical significance of our results.
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APPENDIX A: PROOF OF THEOREM 2

We first need a preliminary lemma that generalizes some
of the results obtained in Ref. [15] for the special case of
entanglement to the case of general resources.

Lemma 12. Let O(A → A′) and O(B → B′) be two sets
of free Gaussian operations that include all classical noise
additions and all displacement unitaries. Given two known
bipartite QCMs VAB and WA′B′ , the transformation VAB →
WA′B′ is possible with general nondeterministic GLFCC if and
only if it is possible with a deterministic protocol composed of
the following three consecutive stages: (i) local free Gaussian
operations; (ii) two-way classical communication; and finally
(iii) the application of local displacements.

Proof. One implication is trivial, so we only have to show
that any (possibly nondeterministic) GLFCC transformation
VAB → WA′B′ can be accomplished by (i) → (ii) → (iii). At
the level of states we will write said transformation as ρAB →
σA′B′ , where the QCMs of ρAB, σA′B′ are VAB,WA′B′ , respec-
tively (remember that mean vectors are irrelevant as they can
always be adjusted via displacement unitaries).

Let the GLFCC operation � that accomplishes the (prob-
abilistic) transformation ρAB → σA′B′ consist of N rounds of
local free Gaussian operations and classical communications.
The first round features Alice applying a Gaussian free opera-
tion �1, obtaining a classical measurement outcome modeled
by the random variable T1, and communicating it to Bob. In
the second round it is Bob instead who applies a Gaussian free
operation �2(T1)—which can depend on Alice’s message—
obtains a measurement outcome T2, and sends it to Alice. The
protocols proceeds in this way for N rounds, where we can
assume N to be even without loss of generality. The operation
chosen by either party at the ith round is allowed to depend
on all previously exchanged messages. Assume that the state
σA′B′ is obtained probabilistically conditioned on the sequence
of measurement outcomes (T1, . . . , TN ) = (t1, . . . , tN ). We
now describe a protocol to obtain it deterministically via a
transformation of the form (i) → (ii) → (iii).

The protocol is very simple. Step (i) consists of Al-
ice applying operations �1, then �3(t1, t2), etc., until
�N−1(t1, . . . , tN−2); at the same time, Bob applies �2(t1),
then �4(t1, t2, t3), all the way to �N (t1, . . . , tN−1). The mea-
surement outcomes obtained are recorded and stored locally
by Alice and Bob. Denote with ωA′B′ the state obtained in
this way from ρAB, for a specific sequence of measurement
outcomes. In step (ii) of the protocol, Alice and Bob reveal
to each other the measurement outcomes they obtained. This
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allows them to reconstruct the mean vector of ωA′B′ , which can
then be transformed via local displacements in step (iii) so as
to match that of σA′B′ . Call ω̃A′B′ the final output state of this
protocol. We claim that indeed ω̃A′B′ = σA′B′ .

To see why this is the case, we make use of a crucial
property of nondeterministic Gaussian operations: the output
QCM does not depend on the measurement outcome that
results from the implementation of said operation; in other
words, it can be predicted via rule (2). This immediately
tells us that the QCM of ωA′B′ (equivalently, the QCM of
ω̃A′B′ ) and that of σA′B′ are the same. Since also the mean
vectors of ω̃A′B′ and that of σA′B′ coincide, and both states are
Gaussian by construction, we see that indeed ω̃A′B′ = σA′B′ ,
as claimed. �

Now we are in a position to prove Theorem 2.
Proof of Theorem 2. The intuition behind the proof is very

simple. Since apart from adding (possibly correlated) classical
noise the best transformations A and B can apply are local, and
a local free operation on A will always decrease the monotone
R, the optimal protocol consists in fact of a measurement
on B’s side. In what follows we formalize this intuition
appropriately.

Lemma 12 entails that the transformation VAB → WA′B′ is
possible with GLFCC if and only if there are QCMs �AA′ and
�BB′ such that: (i) the Gaussian operations corresponding
to �AA′ and �BB′ via (2) are free; and (ii) WA′B′ �
(�AA′ ⊕ �BB′ + 	ABVAB	AB)/(�A ⊕ �B + 	ABVAB	AB). From
(ii) we deduce that

WA′ � �A′[(�AA′ ⊕ �BB′ + 	ABVAB	AB)/

(�A ⊕ �B + 	ABVAB	AB)]�ᵀ
A′

=(�AA′ ⊕ �B + 	ABVAB	AB)/

(�A ⊕ �B + 	ABVAB	AB)

= (�AA′ + 	AV ′
A	A)/(�A + 	AV ′

A	A),

where V ′
A := (VAB + 	B�B	B)/(VB + 	B�B	B). This im-

plies that the transformation V ′
A → WA′ is possible with a local

free operation. Applying the monotonicity properties of R,
we deduce that R(WA′ ) � R(V ′

A). This, together with the form
of V ′

A, implies that for any state on A induced by a GLFCC
transformation, B can choose a local Gaussian measurement
that induces the state on A with larger resource. Thus, RG

c �
RG

c,←. Since the converse inequality is trivial, we obtain RG
c =

RG
c,←. This is clearly monotone under GLFCC because of the

definition of RG
c and the fact that the concatenation of two

successive GLFCC operations is also a GLFCC operation. �

APPENDIX B: PROOF OF THEOREM 6 AND
OF PROPOSITION 5

This Appendix is devoted to the proof of the results con-
cerning the Gaussian resource theory of squeezing. We start
with some preliminary technical lemmata, then we move on
to the proof of Theorem 6, and finally we prove Proposition 5.

In what follows, 〈·, ·〉 denotes the standard Euclidean prod-
uct on R2n. We start by recalling a well-known fact concerning
the group of 2n × 2n orthogonal symplectic matrices, denoted
by K(n).

Lemma 13. Let |x1〉 , . . . , |xr〉 ∈ R2n and |x′
1〉 , . . . , |x′

r〉 ∈
R2n be such that:

(i) 〈v j |vk〉 = 〈v′
j |v′

k〉 for all j, k = 1, . . . , r; and
(ii) 〈v j |�|vk〉 = 〈v′

j |�|v′
k〉 for all j, k = 1, . . . , r.

Then there exists an orthogonal symplectic transformation
K ∈ K(n) such that |x′

j〉 = K |x j〉 for all j = 1, . . . , r. In
particular, the action of K(n) on the Euclidean unit sphere of
R2n is transitive.

Proof. It becomes clear once one complexifies everything.
Namely, write |x j〉 = (|x jx〉

|x j p〉), and construct |z j〉 := |x jx〉 +
i |x j p〉. Do the same for |x′

j〉, obtaining |z′
j〉. Remember that

orthogonal symplectic transformations at the level of |x〉 be-
come unitaries at the level of |z〉. Condition (i) now becomes
Re 〈z j |zk〉 = Re 〈z′

j |z′
k〉, and (ii) can be cast as Im 〈z j |zk〉 =

Im 〈z′
j |z′

k〉, so together they imply that 〈z j |zk〉 = 〈z′
j |z′

k〉 as
complex numbers. This implies the existence of a unitary U
such that U |z j〉 = |z′

j〉 for all j, completing the proof. �
Lemma 14. Let V � i� be a QCM. Pick an eigenvector

|x〉 of V , i.e., V |x〉 = λ |x〉 for some λ > 0. Then there exists
a pure QCM τ such that:

(a) τ � V ; and
(b) τ |x〉 = λ |x〉.
Proof. Let us write the symplectic form as

� =
n⊕

j=1

(
0 1

−1 0

)
.

Since it is clear that we can rotate V with orthogonal symplec-
tics without changing the problem, we use the transitivity of
the group K(n) to assume that |x〉 = |1〉. Then we have

V =
⎛⎝λ 0 0

0 a sᵀ

0 s V ′

⎞⎠,

where a ∈ R, s ∈ R2(n−1), and V ′ is an 2(n − 1) × 2(n − 1)
matrix. Now we enforce the constraint V � i�. First of all, we
deduce that a � 1/λ. If there is equality, then the first mode
of V is already in a pure state, hence s = 0 and we are done.
Otherwise, we can take the Schur complement and obtain

0 � V ′ − i� − (0 s)

(
λ −i
i a

)−1(
0
sᵀ

)
= V ′ − i� − 1

a − 1/λ
ssᵀ.

We infer that V ′ − 1
a−1/λ

ssᵀ is a quantum covariance matrix,
and in turn that there exists a pure state τ ′ such that τ ′ � V ′ −

1
a−1/λ

ssᵀ. We can set

τ :=
(

λ 0
0 1/λ

)
⊕ τ ′,

and then verify that V � τ and τ |x〉 = τ |1〉 = λ |1〉 hold
true. �

We are now ready to prove Theorem 6.
Proof of Theorem 6. Start by observing that every pure

QCM τ � V is a symplectic matrix, i.e., τ�τ = � or equiv-
alently �ᵀτ� = τ−1. An immediate consequence of this is
that det τ = 1, which implies that λmin(τ ) � 1 and hence that
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S(τ ) = λ−1
min(τ ). Continuing, we obtain

S(τ ) = λmin(τ )−1 (1)= λmin(�ᵀτ�)−1

(2)= λmin(τ−1)−1 (3)= λmax(τ ),

where we used in order: (1) the invariance of the eigenvalues
under congruence by an orthogonal matrix; (2) the fact that
τ is symplectic; and (3) the elementary observation that the
eigenvalues of the inverse of a matrix are the reciprocal of the
initial eigenvalues. The above identity allows us to rewrite

SG
a (V ) = sup

τ � V pure QCM
λmax(τ ).

From the above expression it is clear that SG
a (V ) � λmax(V ).

In fact, the so-called Weyl’s monotonicity principle states
that A � B � 0 implies that the ordered eigenvalues satisfy
λ

↓
i (A) � λ

↓
i (B).

Conversely, pick a vector |x〉 such that V |x〉 = λmax(V ) |x〉.
Then Lemma 14 guarantees the existence of a pure QCM
τ � V such that τ |x〉 = λmax(V ) |x〉, which in particular im-
plies that λmax(τ ) = λmax(V ). We deduce immediately that
SG

a (V ) � λmax(V ), completing the proof. �
We conclude by presenting the proof of Proposition 5. Let

us start by a preliminary lemma.
Lemma 15. In the resource theory of Gaussian squeezing,

if V → W can be accomplished by means of any set of free
operations that preserves the set of free states, then

min{λ↑
i (V ), 1} � min{λ↑

i (W ), 1} (B1)

for all i � 1, where λ
↑
i denotes the ith smallest eigenvalue.

Proof. Let V G
S = {V : V � 1} be the set of free QCMs.

For a symmetric matrix X , let N−(X ) denote the number of
eigenvalues of X that are strictly negative. For integers i � 1,
define the quantifiers

κi(V ) := min
{
k � 1 : ∃V ′ ∈ V G

S : N−(kV − V ′) � i − 1
}

= min{k � 1 : N−(kV − 1) � i − 1}
= min{k � 1 : λ

↑
i (kV − 1) � 0}

= min{k � 1 : kλ
↑
i (V ) � 1}

= max{λ↑
i (V )−1, 1}.

We have to show that V → W under free operations implies
that κi(V ) � κi(W ). In order to do this, let the free operation
�A→B accomplishing this transformation have input system A
and output system B. Its action is described by a QCM �AB

via (2), thus we have that

WB = (�AB + 	AVA	A)/(�A + 	AVA	A). (B2)

If �AB has to map free QCMs into free QCMs, it must be the
case that

�A→B : 1A �−→ (�AB + 1A)/(�A + 1A) � 1B.

By the properties of Schur complements [44], this is equiva-
lent to requiring that

�AB � (−1A) ⊕ 1B. (B3)

Now set k := κi(V ) and write

N−(kWB − 1B)

1= N−[k(�AB + 	AVA	A)/(�A + 	AVA	A) − 1B]

2= N−[k�AB + (k	AVA	A) ⊕ (−1B)]−N−(�A + 	AVA	A)

3= N−[k�AB + (k	AVA	A) ⊕ (−1B)]

4
� N−[�AB + (k	AVA	A) ⊕ (−1B)]

5
� N−[(−1A) ⊕ 1B + (k	AVA	A) ⊕ (−1B)]

= N−[(−1A) ⊕ 0B + (k	AVA	A) ⊕ 0B]

6= N−(k	AVA	A − 1A)

7= N−(kVA − 1A)

8
� i − 1.

These steps are justified as follows: 1: Is obtained via (B2).
2: Is an application of the law of additivity of inertia [44,
Theorem 1.6]. 3: Follows because �A + 	AVA	A � 0, as the
l.h.s. is a sum of positive semidefinite matrices. 4: Descends
from two observations: first, that as �AB > 0 and k � 1 we
have that k�AB � �AB; and second, that the eigenvalues are
monotonic function over the set of symmetric matrices—
this is Weyl’s monotonicity principle. 5: and 6: Comes from
(B3). 5: Same reasoning applied to the inequality (B3). 6: Is
another more elementary instance of the law of additivity of
inertia. 7: Follows because the eigenvalues are invariant under
conjugation by a unitary matrix such as 	A. Finally, 8: is
by definition of k = κi(V ). Comparing the above inequalities
with the variational representation of κi presented above, we
conclude that κi(W ) � k = κi(V ), concluding the proof. �

Proof of Proposition 5. Set

V :=

⎛⎜⎜⎜⎝
1/2 0 0 0

0 a b 0

0 b a 0

0 0 0 2

⎞⎟⎟⎟⎠, � =

⎛⎜⎜⎜⎝
0 1

−1 0

0 1

−1 0

⎞⎟⎟⎟⎠,

with a > 2 and

b :=
√

(a − 2)(a − 1/2).

It is elementary to see that 5
4 < a − b < 2 for all a > 2. The

minimal symplectic eigenvalue of V satisfies νmin(V ) = 1,
so that V � i� is a valid QCM. As for the ordinary eigen-
values, one has λmax(V ) = a + b with eigenvector |x1〉 :=

1√
2
(|2〉 + |3〉) where we use the notation {|1〉 , |2〉 , |3〉 , |4〉}

for the basis vectors corresponding to the above matrix repre-
sentation.

We now show that one can find two pure QCMs τ1, τ2 � V
such that: (a) τ1 is maximal with respect to the ordering
induced by convertibility via free operations, i.e., for every
pure QCM τ � V we have that τ → τ1 via free operations
if and only if τ = τ1; but (b) τ1 �→ τ2 by means of free
operations.
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To construct τ1 we can take inspiration from Lemma 14,
which says that we can always fix λmax(τ1) = λmax(V ) = a +
b > 2. Since a + b has multiplicity one in the spectrum of V ,
the only way the inequality τ1 � V can be obeyed is if the
eigenvectors corresponding to a + b in V and τ1 coincide, i.e.,
if τ1 |x1〉 = (a + b) |x1〉. Since τ1 is symplectic, we obtain also

τ1� |x1〉 = �τ−1
1 |x1〉 = 1

a + b
� |x1〉 ,

i.e., � |x1〉 is another eigenvector of τ1. Thus

V − (a + b) |x1〉〈x1| − 1

a + b
� |x1〉〈x1| �ᵀ

=

⎛⎜⎜⎜⎜⎝
1
2

(
1 − 1

a+b

)
0 0 1

2(a+b)

0 a−b
2 − a−b

2 0

0 − a−b
2

a−b
2 0

1
2(a+b) 0 0 2 − 1

2
1

a+b

⎞⎟⎟⎟⎟⎠,

which is positive by Lemma 14 and also by direct inspection.
Now, since 1/(a + b) < 1/2 � 1, the second largest eigen-
value λ

↓
2 (τ1) of τ1 satisfies

λ
↓
2 (τ1) � λmax

(
V − (a + b) |x1〉〈x1| − 1

a + b
� |x1〉〈x1| �ᵀ

)
(B4)

= max {η+, η−, a − b, 0}, (B5)

where η± = 1
4 (5 − 4t ± √

9 + 16t2) and t = a + b. Since
lima→2 a − b = 2 and lima→2 η+ = 1 + √

10/4 < 2, and
they are continuous with respect to a, there exists ã > 2 such
that a − b > η+ holds for any a with 2 < a � ã. Thus, if we
focus on V with a satisfying 2 < a � ã, (B5) always equals
a − b. Moreover, the inequality is saturated if and only if
|x2〉 := 1√

2
(|2〉 − |3〉) is an eigenvector of τ1 with eigenvalue

a − b, because of the condition τ1 � V . Noting that � |x2〉 is
also an eigenvector of τ1 with eigenvalue 1/(a − b), we obtain

τ1 = (a + b) |x1〉〈x1| + 1

a + b
� |x1〉〈x1| �ᵀ

+ (a − b) |x2〉〈x2| + 1

a − b
� |x2〉〈x2| �ᵀ

=

⎛⎜⎜⎜⎜⎝
a

a2−b2 0 0 b
a2−b2

0 a b 0

0 b a 0
b

a2−b2 0 0 a
a2−b2

⎞⎟⎟⎟⎟⎠.

Until now, we have effectively proved that the above matrix
is the only one meeting the following three requirements:
(i) τ1 � V must be a pure QCM; (ii) λmax(τ1) = a + b; and
(iii) λ

↓
2 (τ1) is maximal among all values compatible with (i)

and (ii). We now see that τ1 must be maximal with respect
to the ordering induced by convertibility via free operations.
In fact, any other pure QCM τ � V such that τ → τ1 via
free operations will be such that: (i) is met by construction;
(ii) is also obeyed, because using Weyl’s monotonicity princi-
ple and the monotonicity of λmax under free operations we de-
duce that λmax(V ) � λmax(τ ) � λmax(τ1) = λmax(V ) and thus

that λmax(τ ) = λmax(V ); and finally (iii) is satisfied by an anal-
ogous argument. Since also τ meets these three requirements,
it must be that τ = τ1 by the above reasoning.

The proof of our claim is complete once we exhibit another
pure QCM τ2 � V such that τ1 �→ τ2 by means of free opera-
tions. Our candidate is

τ2 :=

⎛⎜⎜⎜⎝
1/2 0 0 0

0 2 0 0

0 0 1/2 0

0 0 0 2

⎞⎟⎟⎟⎠.

Verifying that τ2 � V is entirely elementary. Also, τ2 is just
the direct sum of two pure QCMs on the two local modes cor-
responding to the first two and last two rows and columns, thus
it is itself a pure QCM. Finally, one has λ

↓
2 (τ2) = 2 > a − b =

λ
↓
2 (τ1), which shows that τ1 �→ τ2 with free operations thanks

to Lemma 15. �

APPENDIX C: PROOF OF LEMMA 8 AND
PROPOSITIONS 9 AND 10

Proof of Lemma 8. Let ν1, . . . , νm be the nontrivial local
symplectic eigenvalues of γAB, i.e., those that are strictly
larger than 1. Since f (1) = 0, we can always restrict the
sum in Eq. (17) to those only. It is a classic fact that γAB is
equivalent, up to local symplectic operations, to the direct sum⊕m

j=1 γ (ν j ) of the two-mode squeezed vacuum QCMs γ (ν j ),
plus additional irrelevant local vacuum states. Here we set

γ (ν) :=
(

ν12

√
ν2 − 1σz√

ν2 − 1σz ν12

)
, (C1)

and σz is the third Pauli matrix. Since (ii) implies invariance
under local symplectic operations, E must be a function of
the set {ν1, . . . , νm} only. Additivity (iii) entails that E (γAB) =∑m

j=1 f (ν j ) for some function f : [1,∞) → [0,∞). Remem-
ber that one can transform a pure QCM with local symplec-
tic eigenvalues {ν j} j into another one with local symplectic
eigenvalues {μ j} j via GLOCC if and only if ν

↓
j � μ

↓
j for all

j, where a superscript ↓ denotes rearrangement in decreasing
order. Invoking once more monotonicity under GLOCC (ii),
we see that the function f must necessarily be nondecreasing.
The converse statement follows immediately along the same
lines. �

We now move on to the proof of Proposition 9, which states
that the Gaussian entanglement of assistance with a monotone
E as in Eq. (17) of a two-mode Gaussian product state with
QCM VAB = VA ⊕ VB evaluates to E G

a (VAB) = 2 f ( 1+ab
a+b ). Here

a := √
det VA and b := √

det VB are the symplectic eigenval-
ues of VA and VB, respectively.

Proof of Proposition 9. We start by lower bounding
E G

a (VAB). Assume that VA and VB are both in Williamson’s
form, so that VA = a12 and VB = b12. Take

τ = τc =
(

c12

√
c2 − 1σz

s
√

c2 − 1σz c12

)
(C2)
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as a two-mode squeezed vacuum. The constraint τc �
(a12) ⊕ (b12) boils down to c � ab+1

a+b , showing that
E G

a (VAB) � f ( ab+1
a+b ).

To prove the converse, consider a state τ � VA ⊕ VB. Since
we are free to apply any local symplectic operation, we can
assume that τ = τc has the form in Eq. (C2). In general, this
does not mean that either VA or VB are in Williamson’s form.
However, we have still a bit of freedom in choosing VA and
VB, because

(O ⊕ σzOσz ) τc (O ⊕ σzOσz )ᵀ = τc

for all 2 × 2 orthogonal matrices O. We can then effect any
transformation of the form

VA �→ OVAOᵀ, VB �→ σzOσzVBσzO
ᵀσz.

We use this freedom to diagonalize VA, i.e., we assume

VA = a

(
λ

λ−1

)
for some λ > 0. At this point VB is fixed. Let its diagonal be

�(VB) =
(

μ

μ′

)
.

Since det VB � det �(VB), we see immediately that μμ′ � b2,
which in turn implies that

μ + μ′ � 2b. (C3)

Now let us take the Schur complement with respect to the
first two rows and columns of the positive semidefinite matrix
VA ⊕ VB − τc � 0. Using the inversion formula

(M + x1)−1 = �(M + x1)�ᵀ

det(M + x1)
= �(M + x1)�ᵀ

det M + x2 + x Tr M
,

valid for 2 × 2 symmetric matrices M, we obtain

0 � VA − c12 − (c2 − 1)
σz�VB�ᵀσz − c1

b2 + c2 − c Tr VB

= VA − c12 − (c2 − 1)
σxVBσx − c1

b2 + c2 − c Tr VB
.

Taking the diagonal part of this inequality yields

aλ − c � (c2 − 1)(μ′ − c)

b2 + c2 − c(μ + μ′)
, (C4)

aλ−1 − c � (c2 − 1)(μ − c)

b2 + c2 − c(μ + μ′)
. (C5)

Multiplying these two inequalities one gets

c2 + a2 − ac(λ + λ−1)

� (c2 − 1)2[μμ′ + c2 − c(μ + μ′)]
[b2 + c2 − c(μ + μ′)]2

� (c2 − 1)2[b2 + c2 − c(μ + μ′)]
[b2 + c2 − c(μ + μ′)]2

= (c2 − 1)2

b2 + c2 − c(μ + μ′)
,

where the second inequality comes from the fact that μμ′ �
b2. Using the estimates λ + λ−1 � 2 and μ + μ′ � 2b, we

arrive at

c2 − 1 �
√

[c2 + a2 − ac(λ + λ−1)][b2 + c2 − c(μ + μ′)]

�
√

(c2 + a2 − 2ac)(b2 + c2 − 2bc)

= (a − c)(b − c),

which leads once again to c � ab+1
a+b , as claimed. �

We now prove Proposition 10 by noticing that a similar
optimization technique employed for computing the Gaussian
entanglement of formation developed in [61] can be also used
for calculating the Gaussian entanglement of assistance for
GLEMS.

Proof of Proposition 10. Recall that a general two-mode
QCM can be brought into the standard form(

a kx

kx b

)
⊕
(

a kp

kp b

)
= Cx ⊕ Cp

by local symplectic transformations. Note that we ordered
the elements so that the block structure with respect to x
quadrature and p quadrature becomes explicit. Since local
symplectic transformations do not alter the entanglement, one
can assume that VAB is already brought into the standard form
without loss of generality. In general, we say that V is in the
x − p separate form if it has a block structure with respect to
position part and momentum part. Note that the standard form
is a special case of x − p separate form. We first show that if
the pure state that achieves the maximum in Eq. (11) takes the
x − p separate form, the optimization can be simplified in an
analogous way of [61], and we finally show that it is the case
for GLEMS. It is shown in Ref. [61] that n-mode pure QCM

has the specific form;
(

X XY
Y X Y XY +X −1

)
where X > 0 and Y are

n × n real symmetric matrix. Thus, a pure QCM is in the x − p
separate form if and only if it has the form τ (X ) := X ⊕ X −1.
Let VAB = Cx ⊕ Cp and suppose the maximum in Eq. (11) is
achieved at a pure state in the x − p separate form. Then, since
two-mode entanglement measures are increasing function of
the determinant of the QCM for the reduced density matrix,
one is to maximize det τA(X ) over X under the constraint

C−1
p � X � Cx. (C6)

In fact, the optimal X saturates both inequalities. It can be seen
by first observing that

det τA(X ) = 1 + X 2
12

det X
= 1 + (X −1)2

12

det(X −1)
. (C7)

Suppose X satisfies C−1
p < X � Cx. Then one can take an-

other positive matrix Xε := X − εI , ε > 0, which still satisfies
(C6) but has larger entanglement because of (C7). Thus, one
can increase the entanglement by increasing ε until C−1

p �
Xε is saturated, i.e., an optimal X always satisfies det(X −
C−1

p ) = 0. On the other hand, suppose X satisfies C−1
p � X <

Cx, which is equivalent to C−1
x < X −1 � Cp. Then one can

always take Xε := (X −1 − εI )−1
> 0, which has larger entan-

glement because of (C7) while satisfying (C6). By the same
argument, ε can be increased until C−1

x � X −1
ε is saturated,

i.e., an optimal X always satisfies det(X − Cx ) = 0. Hence,
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we conclude that the maximum entanglement is realized when
both the inequalities in Eq. (C6) are saturated, i.e., det(X −
C−1

p ) = det(X − Cx ) = 0. It implies that the maximization
can be restricted to the intersection of two cones coming out

of C−1
p and Cx in the Minkowski space with the coordinate

being the coefficients of Pauli expansion and the norm being
the determinant. Then it can be expressed as the maximization
over θ for the following function [62]:

m(θ ) = 1 + (− kp − k2
pkx + kxnab +

√(
a + k2

pb − ab2
)[

b + a
(
k2

p − ab
)]

cos θ
)2

×
⎡⎣2
(
k2

p − ab
)⎛⎝−2kpkx − a2 − b2 +

{
2k3

pab − kxab(−2 + a2 + b2) + k2
pkx(a2 + b2) + kp[b2 + a2(1 − 2b2)]

}
cos θ√(

a + k2
pb − ab2

)[
b + a

(
k2

p − ab
)]

−(a2 − b2)

√√√√1 −
(
kp − k2

pkx + kxab
)2(

a + k2
pb − ab2

)[
b + a

(
k2

p − ab
)] sin θ

⎞⎟⎠
⎤⎥⎦

−1

.

We now consider GLEMS. It is the class of two-mode states that are marginals of three-mode pure states. Suppose, without
loss of generality, the QCM for the given state in GLEMS is represented by the standard form VAB = ( a kx

kx b ) ⊕ ( a kp
kp b ) with

kx � |kp|. Then, again without loss of generality, QCM for a three-mode pure state purifying VAB can be written in the standard
form

VABC =

⎛⎜⎝ a kx k′
x

kx b k′′
x

k′
x k′′

x c

⎞⎟⎠⊕

⎛⎜⎝ a kp k′
p

kp b k′′
p

k′
p k′′

p c

⎞⎟⎠
because any three-mode pure state can be brought into this standard form by local symplectic transformations [63]. Observe that
the Gaussian entanglement of assistance for the two-mode state VAB is equivalent to the Gaussian localizable entanglement [33]
induced from VABC by making a measurement on C. In Ref. [33] it was shown that the optimal Gaussian measurement on C for
three-mode pure states in the standard form is always taken to be a homodyne measurement projecting onto the eigenstates of the
quadrature x or p, which keeps the post-measurement state on AB in x − p separate form. Thus, the optimization trick described
above can be applied for GLEMS. Note that in the case of GLEMS, kx and kp are completely determined by a, b, and (inverse

of) global purity g := (Tr[ρ2
AB])−1 =

√
(ab − k2

x )(ab − k2
p) as

kx = 1

4
√

ab
(
√

[(a − b)2 − (g + 1)2][(a − b)2 − (g − 1)2] +
√

[(a + b)2 − (g + 1)2][(a + b)2 − (g − 1)2]), (C8)

kp = 1

4
√

ab
(
√

[(a − b)2 − (g + 1)2][(a − b)2 − (g − 1)2] −
√

[(a + b)2 − (g + 1)2][(a + b)2 − (g − 1)2]). (C9)

In Ref. [62] it was observed that in this case the term with
sin θ in m(θ ) vanishes, and it reduces to the simpler form

m(θ )GLEMS = 1 + (A cos θ + B)2

2
(
ab − k2

p

)
[(g2 − 1) cos θ + g2 + 1]

,

(C10)

where A = kx(ab − k2
p) + kp, B = kx(ab − k2

p) − kp. Straight-
forward calculation yields that ∂θm(θ ) = 0 is realized for
θ = 0, π,±θ∗ where

±θ∗ = arccos

[
3 + g2

1 − g2
− 2kp

kx
(
ab − k2

p

)+ kp

]
.

Observe that ab − k2
p > 0 due to the positivity of VAB, ab −

k2
p �
√

ab − k2
x

√
ab − k2

p = g because kx � |kp|, and g � 1.
One can then obtain

m(0) − m(π ) =
−k2

p + k2
x (ab−k2

p )2

g2

ab − k2
p

� 0, (C11)

m(0) − m(±θ∗)

= {abkx(1 + g2) − kp[−2g2 + kxkp(1 + g2)]}2(
ab − k2

p

)
g2(−1 + g2)2

� 0. (C12)

Thus, θ = 0 achieves the global maximum and we obtain for
GLEMS

E G
a (VAB) = f

[
1 + k2

x

ab − k2
x

]
. (C13)

�

APPENDIX D: PROOF OF THEOREM 11

Here we provide a complete proof of Theorem 11, which
establishes an additive upper bound on E G

a (and thus on E G,∞
a )

for all monotones E that derive from a concave function f via
(17). Before we delve into the proof, let us fix some notation
and establish some preliminary results. Any function f : R →
R can be extended to N × N real symmetric matrices via
spectral calculus, i.e., by setting f (A) :=∑i f (λi), where
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λ1, . . . , λN are the eigenvalues of A. If N = 2n is even and
A > 0 is strictly positive definite, it is also possible to consider
the symplectic extension

F (A) :=
n∑

i=1

f (νi ), (D1)

where ν1, . . . , νn are the symplectic eigenvalues of A. The
following lemma, whose proof is inspired by the techniques
in Ref. [64], presents a remarkable variational formula for
F in the relevant case when f is concave and monotonically
nondecreasing.

Lemma 16. Let f : R+ → R be a concave nondecreasing
function, and consider its symplectic extension F as defined
by (D1). Then one has that

F (A) = min
M∈Sp(2n)

f [�s(MAMᵀ)], (D2)

where Sp(2n) denotes the symplectic group, and
�s[(

X Z
Zᵀ P)] := 1

2

∑n
i=1 (Xii + Pii ) |i〉〈i|.

Proof. This argument is inspired by the techniques intro-
duced by Bhatia and Jain in Ref. [64]. First of all, take as
M the symplectic matrix M0 that brings A in Williamson’s
form [43]. Since M0AMᵀ

0 = (D 0
0 D) for a diagonal D =∑n

i=1 νi |i〉〈i|, one has that

inf
M∈Sp(2n)

f [�s(MAMᵀ)] � f
[
�s
(
M0AMᵀ

0

)] = f (D) = F (A).

It remains to prove the reverse inequality. In what follows,
we will employ few concepts from the theory of majorization;
for an introduction, we refer the reader to the excellent mono-
graph [65, Chap. 1]. Since in the r.h.s. of (D2) one is anyway
optimizing over all symplectic matrices, we can without loss
of generality assume that A is in Williamson’s form, i.e., that
A = (D 0

0 D) with D =∑n
i=1 νi |i〉〈i|. Now consider a symplec-

tic matrix partitioned as M = (P Q
R S ). Observe that

�s(MAMᵀ) = �s

[(
PDPᵀ + QDQᵀ PDRᵀQDSᵀ

RDPᵀ + SDQᵀ RDRᵀ + SDSᵀ

)]

= 1

2

n∑
i=1

(PDPᵀ+QDQᵀ+RDRᵀ+SDSᵀ)ii |i〉〈i|

= 1

2

n∑
i=1

n∑
j=1

(
P2

i j + Q2
i j + R2

i j + S2
i j

)
ν j |i〉〈i|

=
n∑

i=1

(M̃ν)i |i〉〈i| ,

where we introduced the n × n matrix M̃ defined by

M̃i j := 1
2

(
P2

i j + Q2
i j + R2

i j + S2
i j

)
as well as the shorthand ν := (ν1, . . . , νn)ᵀ for the column
vector of symplectic eigenvalues. We then see that the entries
of �s(MAMᵀ) are obtained by applying the matrix M̃ to ν, in
formula

diag[�s(MAMᵀ)] = M̃ν.

It is shown in Ref. [64, Theorem 6] that when M is symplectic
the matrix M̃ is doubly superstochastic, which via [65, Propo-
sition 2.D.2.b] implies that

diag[�s(MAMᵀ)] ≺w ν,

with ≺w denoting weak supermajorization. Using [65,
3.C.1.b] (with g = − f , which is convex and nonincreasing),
we then see that

f [�s(MAMᵀ)] =
n∑

i=1

f [�s(MAMᵀ)ii] �
n∑

i=1

f (νi ) = F (A).

Since M was an arbitrary symplectic matrix, this completes
the proof. �

Corollary 17. Let f : R+ → R be a concave nondecreas-
ing function. Then its symplectic extension F defined by (D1)
is monotonically nondecreasing and concave on the set of
(strictly) positive definite matrices.

Proof. The fact that F is a monotonic function is very clear
from (D2), and is also a consequence of the monotonicity
principle for symplectic eigenvalues established in Ref. [55].
We now move on to the proof of concavity. Let A, B > 0
be strictly positive definite. Take a symplectic matrix M that
achieves the minimum in Eq. (D2) for (A + B)/2 [e.g., the one
that brings (A + B)/2 into Williamson’s form]. Then, using
the concavity of f , we obtain that

F

(
A + B

2

)
= f

[
�s

(
M

A + B

2
Mᵀ
)]

= f

(
1

2
�s(MAMᵀ) + 1

2
�s(MBMᵀ)

)
=

n∑
i=1

f

(
1

2
�s(MAMᵀ)ii + 1

2
�s(MBMᵀ)ii

)

�
n∑

i=1

{
1

2
f [�s(MAMᵀ)ii]+

1

2
f [�s(MBMᵀ)ii]

}

= 1

2
f [�s(MAMᵀ)] + 1

2
f [�s(MBMᵀ)]

� 1

2
F (A) + 1

2
F (B),

as claimed. �
We are now ready to give a full proof of Theorem 11.
Proof of Theorem 11. We start by proving (21). We only

have to show that given any QCM VAB and any pure QCM
τAB � VAB, one has that

E (τAB) = F (τA) � n f

(‖VAB‖2
∞ + 1

2‖VAB‖∞

)
. (D3)

In fact, the bound E G
a (VAB) � n f ( ‖VAB‖2

∞+1
2‖VAB‖∞

) will then follow
by taking the supremum over τAB. The regularized bound on
E G,∞

a is easily deduced as the r.h.s. of (D3) does not change
when VAB is replaced by V ⊕�

AB .
We now prove the inequality in Eq. (D3). We can as-

sume without loss of generality that n = nA � nB. Set t :=
λmax(τ ) = ‖τ‖∞, so that t � ‖VAB‖∞. Here we used the fact
that for positive matrices the operator norm coincides with the
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maximal eigenvalue, denoted with λmax. Let us write

n f

(‖VAB‖2
∞ + 1

2‖VAB‖∞

)
1
� n f

(
t2 + 1

2t

)
= n f

(
t + t−1

2

)
2= n f

[
λmax

(
τ + τ−1

2

)]
3= n f

[
λmax

(
τ + �τ�ᵀ

2

)]
4
� n f

{
λmax

[(
τ + �τ�ᵀ

2

)
A

]}
5
� n f

{
νmax

[(
τ + �τ�ᵀ

2

)
A

]}
6
� F

[(
τ + �τ�ᵀ

2

)
A

]
= F

(
τA + �AτA�

ᵀ
A

2

)
7
� 1

2
F (τA) + 1

2
F
(
�AτA�

ᵀ
A

)
8= F (τA).

The above steps are justified as follows. 1: Descends from
the fact that t �→ (t2 + 1)/(2t ) is an increasing function on
[1,∞), and indeed t � 1 because det τ = 1. 2: Since τ

and τ−1 commute, the spectrum of τ + τ−1 has the form

{λi + λ−1
i }i, with {λi}i being the spectrum of τ ; its maximum

is thus achieved for λi = λmax(τ ) = t . 3: Comes from the
observation that τ is a symplectic matrix, hence τ�τ = �

and therefore τ−1 = �τ�ᵀ. 4: Amounts to noting that the
maximal eigenvalues never increases when passing from a
matrix to one of its subblocks, see, e.g., [66, Lemma 3.3.1];
remember also that f is nondecreasing. 5: Here νmax denotes
the maximal symplectic eigenvalue, which is never larger than
the maximal eigenvalue by [64, Theorem 11]. 6: Is a direct
consequence of (D1). 7: Is an application of Corollary 17,
which establishes the concavity of F . 8: Derives from the
elementary observation that �A itself is a symplectic matrix,
hence the symplectic eigenvalues of τA and �AτA�

ᵀ
A are the

same. This concludes the proof of (21).
To see why (22) holds, start by observing that from (21)

we trivially deduce that E G,∞
a (k1AB) � n f ( k2+1

2k ). In order to
establish the converse, assume without loss of generality that
n = nA � nB, and write formally k1AB =⊕n

j=1 (k1Aj B j ) ⊕
(k1Bn+1...BnB

), where Aj is the jth mode on A, and analogously
for B. We then have that

E G
a (k1AB) = E G

a

⎛⎝ n⊕
j=1

(
k1Aj B j

)⊕ (k1Bn+1...BnB

)⎞⎠
9
�

n∑
j=1

E G
a

(
k1Aj B j

)
10= n f

(
k2 + 1

2k

)
.

Here, step 9 comes from superadditivity of E G
a , while step 10

is an application of the two-mode formula (18). This proves
(22). �
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