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With the development of artificial intelligence technologies, it is possible to use computer to read digital medical images. Because
Alzheimer’s disease (AD) has the characteristics of high incidence and high disability, it has attracted the attention of many
scholars, and its diagnosis and treatment have gradually become a hot topic. In this paper, a multimodal diagnosis method for AD
based on three-dimensional shufflenet (3DShuffleNet) and principal component analysis network (PCANet) is proposed. First,
the data on structural magnetic resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) are preprocessed
to remove the influence resulting from the differences in image size and shape of different individuals, head movement, noise, and
so on. )en, the original two-dimensional (2D) ShuffleNet is developed three-dimensional (3D), which is more suitable for 3D
sMRI data to extract the features. In addition, the PCANet network is applied to the brain function connection analysis, and the
features on fMRI data are obtained. Next, kernel canonical correlation analysis (KCCA) is used to fuse the features coming from
sMRI and fMRI, respectively. Finally, a good classification effect is obtained through the support vector machines (SVM) method
classifier, which proves the feasibility and effectiveness of the proposed method.

1. Introduction

Magnetic resonance imaging (MRI) is a medical imaging
technology with rapid development in recent years. It has
many advantages such as high contrast for soft tissues, high
resolution, and noninvasive way. It is widely used in various
types of cardiovascular and cerebrovascular diseases and has
promoted the progress and development of contemporary
medicine. At present, structural MRI (sMRI) and functional
MRI (fMRI) are widely used in the diagnosis of Alzheimer’s
disease (AD).

A complete and clear intracranial anatomical structure
through hierarchical scanning using sMRI can be obtained,
which is helpful to analyze the morphological structure of
brain gray matter, white matter, and cerebrospinal fluid and
to determine whether a disease or injury exists. )e brain
structure imaging analysis of patients with AD and normal
people (normal control, NC) has found that the gray matter
volume of AD patients was significantly lower than that of

normal people, and the gray matter in the hippocampus,
temporal poles, and temporal islands also has significant
shrinkage [1]. Comparing the different stages of AD patients,
it is found that hippocampus atrophy is significant in the
initial stage. )en, the inferior lateral area of the temporal
lobe changes obviously, and finally, the frontal lobe begins to
shrink [2]. fMRI is used to measure the changes in hemo-
dynamics caused by neuronal activity which can show the
location and extent of brain activation and can detect dy-
namic changes in the brain over a period of time.

)e application of artificial intelligence (AI) in medical
treatment has become a research hotspot for scholars at
home and abroad [3, 4]. AI combined with machine learning
methods is applied to medical image processing to obtain
biomarkers and to assist doctors in making correct diag-
noses. Deep learning is an important branch of machine
learning, and its application in the field of medical imaging
has attracted widespread attention. Ehsan Hosseini-Asl [5]
and Adrien Payan [6] used 3D convolutional neural
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networks and autoencoders to capture AD biomarkers.
Zhenbing Liu [7] used a multiscale residual neural network
to collect multiscale information on a series of image slices
and to classify AD, mild cognitive impairment (MCI), and
NC. Ciprian D. Billones [8] improved the VGG-16 network
for constructing classification model of AD, MCI, and NC.
Deep learning algorithms are also widely used in fMRI-
assisted diagnosis of brain diseases. Junchao Xiao [9] used
stacked automatic encoders and functional connection
matrices to classify migraine patients and normal people.
Meszlényi Regina [10] proposed a dynamic time normali-
zation distance matrix, Pearson correlation coefficient ma-
trix, warping path distance matrix, and convolutional neural
network to realize AD-assisted diagnosis.

With the development of deep learning research, the
number of network layers has been continuously deepened.
)e network structure has gradually become more and more
complex, and the requirements for the hardware environ-
ment have gradually increased. In order to reduce the en-
vironmental demand of the model and to promote the
application and improvement of the model, lightweight
network operations such as MobileNet [11] and ShuffleNet
[12] were born. In this paper, the ShuffleNet model is im-
proved and an AD-assisted diagnosis model based on
3DShuffleNet is proposed, which directly uses the sMRI
image preprocessed by the VBM-DARTEL [13] method and
uses the deep features of the image to classify AD, MCI, and
NC. )e proposed method not only reduces the voting link
of the slicing method to obtain the test results but also is
more conducive to the promotion and application of the
model in a low computing power environment because of
the use of a lightweight network.

)e high-dimensional and small sample characteristics
of datasets often bring difficulties of classification and
modeling such as fMRI data. )erefore, in this paper, the
anatomical automatic labeling (AAL) template is used to
calculate the functional linkmatrix after preprocessing of the
original image. Functional connection matrix is a universal
and effective method to analyze the correlation character-
istics of each brain and can greatly reduce the data di-
mension. )e feature redundancy in the functional
connection matrix exists. )us, data dimensionality re-
duction and feature extraction are usually improved.
Principal component analysis network (PCANet) is an
unsupervised deep learning feature extraction algorithm,
which can effectively solve the problem of insufficient ex-
perimental samples. In this study, PCANet network is used
to extract the matrix features and support vector machine
(SVM) classifier is used to classify.

In addition, kernel canonical correlation analysis
(KCCA) is used to fuse the features of two different mo-
dalities to achieve complementary information before the
classifier is used, so as to reduce the impact of inherent
defects because of a single-modal feature.

2. Data Introduction and Preprocessing

sMRI data are helpful for observing the changes in brain
structure during the course of illness. fMRI reflects the

influence of illness on brain function by detecting brain
activity. )e sMRI and fMRI images come from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI), and in
order to facilitate the fusion of the two modal data infor-
mation, the experimental data are required to contain both
types and the data are obtained at close times. At the same
time, because early MCI and late MCI belong to the MCI
process and have only slight differences, so they are regarded
as the same category. Datasets including 34 cases of AD, 36
cases of MCI (including 18 cases of early MCI, 18 cases of
late MCI), and 50 cases of NC were finally selected as ex-
perimental data.

VBM-DARTEL [13] method is used to preprocess
sMRI images including segmentation, generating specific
templates generation, flow fields generation, and nor-
malization. )e above preprocessing steps are all imple-
mented using SPM8 software. Medical image processing
software DPABI is used to preprocess fMRI images in-
cluding the data removal of the first 10 time points, slice
timing, realignment, normalization, smoothing,
detrending, filtering, and extracting time series to cal-
culate function link matrix. Figure 1(a) shows the coronal,
sagittal, and cross-sectional views of gray matter images
obtained by sMRI preprocessing, and Figure 1(b) is an
example of the functional connection matrix obtained by
preprocessing fMRI.

3. Method

)e amount of experiment data in this paper is very small; in
order to avoid as much as possible the overfitting phe-
nomenon that often occurs in convolutional deep neural
networks, this paper uses a lightweight network ShuffleNet
with fewer parameters and PCANet that does not require
feedback adjustment parameters to implement deep features
extraction and classification.

3.1. MRI Feature Extraction and ShuffleNet. ShuffleNet is a
deep learning network designed especially for mobile devices
with limited computing power. It uses point-by-point
grouping convolution and channel shuffling to achieve its
high-efficiency architecture [12]. It reduces computational
complexity while ensuring that the network still has a good
classification performance. )e network consists of one
convolution layer, one maximum pooling layer, three sets of
ShuffleUnit structure, one global pooling layer, and one full
connection (FC) layer. Each group of ShuffleUnit structure
consists of one ShuffleUnit module like Figure 2(b) and
several ShuffleUnit modules like Figure 2(c) connected, and
the number of series units is set by the Repeat parameter.
ShuffleNet has outstanding performance in image classifi-
cation [15] and has been applied to face recognition [16].
)is network integrates the strengths of many classic net-
works. It inherits the bottleneck module in the classic deep
learning network ResNet [14], as shown in Figure 2(a). It
uses the idea of residual learning to speed up model con-
vergence and enhance model performance. It combines
MobileNet’s deep capabilities resulting from Separate
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convolution and AlexNet [17] network grouping method to
reduce computational complexity.

ShuffleUnit is shown in Figure 2, improved from bot-
tleneck in the ResNet network, and the unit output uses the
idea of residual learning. )e residual learning unit learns
the difference between the input layer and the output layer
through the parameterized network layer during training
process of the network. Reference [16] proves that residual
learning is easier to train and classification accuracy of the
model is higher than that which directly learns the mapping
of input and output. ShuffleUnit not only uses the idea of
summation to ensure the transmission of original infor-
mation to the back layer but also proposes that the first unit

in each group of ShuffleUnit uses concat to increase the
number of channels and to achieve the purpose of fusion of
original information and global information.

)e depth separable convolution mentioned by Mobi-
leNet is applied to the convolution of ShuffleUnit. Depth
separable convolution splits the ordinary convolution pro-
cess into two steps. First, each channel corresponding to a
3 × 3 convolution kernel is used to obtain a single channel
feature map. )en, point-by-point convolution is used to
combine full channel features. Depth separable convolution
can obtain similar effects as ordinary convolution and at the
same time greatly reduce the amount of calculation. )e
reduction factor of the calculation amount is shown in
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Figure 1: Preprocessing results of (a) sMRI data and (b) fMRI data.
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Figure 2: Bottleneck and ShuffleUnit [12, 14], (a) ResNet bottleneck, (b) ShuffleUnit1, and (c) ShuffleUnit2.
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where H ×W refers to the size of the feature map. Cin and
Cout, respectively, represent the number of input channels
and output channels of the convolutional layer.

)e idea of grouped convolution was originally derived
from the limitation of hardware resources when running the
AlexNet network, and Hinton splits the information into
two GPUs to run [17]. Considering that point-by-point
convolution still has a large amount of calculation, Shuf-
fleUnit adopts a grouping operation for point-by-point
convolution to further reduce the amount of calculation.)e
reduction factor of the calculation amount is shown in
formula (2). In order to strengthen the flow of information
between groups, reduce the constraints between channels,
and enhance the ability of information presentation, the
channel shuffle method is used to realize information ex-
change between groups.

H ×W ×(Cin/g) ×(Cout/g) × g

H ×W × Cin × Cout
�
1

g
, (2)

where g refers to the number of groups in point-by-point
grouping convolution.

Most of the convolutional networks proposed at present
are suitable for color images and use 2D convolution to
extract image features. In order to adapt to the character-
istics of the network, the slicing method is proposed in [5]
and [6]. Although the slicing method is convenient for the
training and application of existing 2D convolutional neural
networks, the result can only represent the category of the
corresponding slice of the brain, rather than the overall
category. )erefore, the slicing method often requires the
majority voting method to integrate the results of each part
and further to evaluate the overall category. )e process is
complicated. In order to avoid the above-mentioned com-
plicated process, the classification features of the entire
sample are directly obtained, which facilitates subsequent
fusion with fMRI features. )en, a 3D form of ShuffleNet is
implemented, and it is also beneficial to retain more three-
dimensional spatial information.

In 3DShuffleNet, the number of groups in grouped
convolution is set to 3, and in order to adapt to the 3D
structure of gray matter images, the 2D convolution is
changed to 3D convolution. )e parameters of the model
structure are shown in Table 1.

Amyloid deposition and neurofibrillary tangles in the
brain are typical pathological changes in patients with AD,
which can cause brain nerve cell atrophy and death or
abnormal signal transmission between cells. Experienced
doctors can distinguish AD by observing the degree of at-
rophy of specific parts of the sMRI imaging. )e gray matter
of the brain is a dense part of neuronal cell bodies and is the
center of information processing. )rough it, the distribu-
tion and number of neuronal cells in the test patient can be
analyzed to screen for AD. In this paper, the sMRI gray
matter image obtained after preprocessing is read into this

3DShuffleNet to obtain auxiliary diagnosis results, and the
outputs of the penultimate layer and the inputs before the
classification layer are regarded as classification features.

3.2. fMRI Feature Extraction. )e changes in cerebral he-
modynamics over a period of time are recorded in fMRI, so
the characteristics of high-dimensional small samples are
particularly prominent among them. How to effectively
extract the information expressed by brain imaging and
reduce the dimensionality has become the primary problem
in establishing auxiliary diagnostic models. ALFF value
analysis, functional connection matrix analysis, and local
consistency analysis are included in the present fMRI data
processing methods. Among them, the most common
method is functional connection matrix. It measures the
coordination and consistency of the work of two brain
regions by calculating the Pearson correlation coefficient of
the brain interval time series, and it can greatly reduce the
data dimension. Because diseases can cause changes in the
connection characteristics of certain brain areas, it retains
the most AD diagnostic information. In this paper, the
functional connection matrix obtained by fMRI pre-
processing is used as the input of the auxiliary diagnosis
network.

PCANet is a simple deep learning baseline proposed by
Chang Tsung-Han [18] which consists of cascaded principal
component analysis, binary hash, and block histogram and is
widely used in face recognition [19], age evaluation [20],
deception detection [21], and other fields. )is network has
good deep feature extraction capabilities. It can be roughly
divided into three stages, among which the first and second
stages are PCA convolution, and the third stage is the feature
output stage [22].

In the first stage, PCA and convolution are used to
achieve features. Suppose the number of input samples isN,
the size of the sample matrix is [m, n], and the size of the
sliding window is [k1, k2]. (m − k1 + 1) × (n − k2 + 1) image
blocks are obtained by sliding window as shown in the
following equation:

Xi � xi,1, xi,2, . . . , xi,mn[ ] ∈ Rk1k2× m− k1+1( ) n− k2+1( ). (3)

)en, the image matrix after removing the mean value of
each dimension of all image blocks can be gotten by

X � X1, X2, . . . , XN[ ] ∈ Rk1k2×N m− k1+1( ) n− k2+1( ). (4)

Table 1: Model structure of 3DShuffleNet.

Layer Ksize Stride Repeat Output (g� 3)

Image 1∗ 121∗ 145∗121
Conv1 3∗ 3∗ 3 2 1 24∗ 61∗ 73∗ 61
MaxPool 3∗ 3∗ 3 2 1 24∗ 31∗ 37∗ 31
Stage1 2,1 1,3 240∗16∗19∗16
Stage2 2,1 1,7 480∗ 8∗10∗ 8
Stage3 2,1 1,3 960∗ 4∗ 5∗ 4
GlobalPool 4∗ 5∗ 4 1 960∗1∗ 1∗ 1
FC 1 2
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Assume that the number of convolution filters in the first
step is L1. PCA is used to learn the convolution filter, and the
parameters of the convolution filter are

W1
l � matk1 ,k2 ql XX

T( )( ) ∈ Rk1k2 , l � 1, 2, . . . , L1, (5)

where matk,k(ql(XX
T
)) represents the mapping from a

vector of size k1 × k2 to a matrix W1
l of size [k1, k2] and

ql(XX
T
) represents the eigenvector of the l-th principal

component.
)e second stage is similar to the first stage. Assume that

the size of the second-stage filter is [k3, k4] and the number is
L2. In the first stage, the output of the l-th convolution filter
of the i-th image is

Ili � Ii ∗W
1
l , (6)

where l � 1, 2, . . . , L1 and i � 1, 2, . . . , N. )e signal ∗
represents two-dimensional convolution.

Using the same operation like the first stage on the l-th
convolution, the output of each sample is described as

Xl
� Xl

1, X
l
2, . . . , X

l
N[ ] ∈ Rk3k4×N m− k3+1( ) n− k4+1( ). (7)

)e results of each convolution kernel performing the
operation shown in equation (7) are combined together; we
can get

X � X1, X2, . . . , XL1[ ] ∈ Rk3k4×L1N m− k3+1( ) n− k4+1( ). (8)

)en, the convolution filter parameters can be obtained
using the following equation:

W2
r � matk3 ,k4 qr XX

T( )( ) ∈ Rk3k4 , r � 1, 2, . . . , L2.

(9)
)e output of the second stage is

Sl,ri � Ili ∗W
2
r , (10)

where r � 1, 2, ..., L2. In this way, each feature map of the
input of the second stage produces L2 outputs.

)e third stage is the feature output stage which includes
binary hash coding, block histograms for encoding, and
downsampling operations.

)e binarized image of outputted feature map in the
second stage is obtained by the Heaviside function, and
different weights are assigned to get the encoded decimal
feature map as shown in the following equation:

Tli �∑
L2

r�1

2r− 1H Sl,ri( ), (11)

where H(.) represents the Heaviside function.
)e feature map T is divided into several blocks with the

same size, and histogram statistics are made for each block.
All block histogram statistics are concatenated to obtain the
output feature as described by

Oi � B T1
i( ), B T2

i( ), . . . , B T
L1
i( )[ ] ∈ R 2L2( )L1b, (12)

where B(.) stands for block histogram statistics.
PCANet is applied to extract effective classification

features of AD, and functional connection matrix is cal-
culated as input, using linear SVM classifier to output
auxiliary diagnosis results.

3.3. Multimodal Features Fusion Method. sMRI and fMRI
images have their own characteristics, which provide in-
formation for AD from different angles.)e information can
be complemented by feature fusion, so as to obtain a more
accurate description of samples.

At present, there are few researches on feature fusion in
the field of AD-assisted diagnosis and mainly through the
concatenation of features to improve the diagnosis effect. In
this paper, we take the features extracted from sMRI and
fMRI data as the fusion object. Since the images are from the
same subject and were obtained on very close dates, it can be
considered that there are some certain correlations between
the description of the disease in sMRI and fMRI, and the two
can be fused by analyzing typical correlation relationship of
two feature vectors. At the same time, considering that the
correlation is not only linear but also nonlinear, these
features from two modal data can be fused by KCCA [23]
methods.

KCCA is similar to CCA. It is the promotion of the CCA
method in kernel space. )e difference is that the two sets of
variables are first projected into high-dimensional space
before CCA. Radial basis function (rbf) kernel function is
usually chosen, as shown in equation (13), to realize the
space mapping.

k xi, xj( ) � exp −μ||xi − xj||
2( ). (13)

CCA [24] is a multivariate statistical analysis method
which uses the correlation between the comprehensive
variable pairs to reflect the overall correlation between the
two sets of indicators. )e specific implementation steps are
as follows.

)e first pair of linear combinations with the greatest
correlation is found separately from each group of variables
as typical variables and is described by

u1 � a
T
1Y,

v1 � b
T
1Z,

(14)

where u1 and v1 represent typical variables and a1 and b1 are
the canonical correlation coefficients.

)e following constraints are required:

Var u1( ) � aT1Var(Y)a1 � 1,

Var v1( ) � bT1Var(Z)b1 � 1,

max ρu1v1[ ] � max cov u1, v1( )[ ] � max aT1 cov(Y,Z)b1[ ],
(15)

where Var represents the correlation coefficient matrix. Y �
[y1, y2, . . . , yn] and Z � [z1, z2, . . . , zn], respectively,
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represent a group of variables. cov(Y,Z) represents the
covariance matrix between the two groups of variables.

Secondly, the second pair of typical variables which are
not related to the first pair of typical variables in this group
are found, and it is a pair of linear combinations with the
second largest correlation.

)e process of finding canonical correlation variables is
repeated, and the newly found canonical correlation vari-
ables are not correlated with the existing ones in the group
until all the variables are extracted.

Assuming that Y and Z are sMRI data and fMRI data
features, A and B are the corresponding kernel canonical
correlation coefficients. Difference in the unit scale between
the features of different modal data maybe exists. If the
features of the two modalities are directly fused, the feature
with a large unit scale will play a decisive role, while the
function of the feature with a small scale may be ignored. In
order to eliminate the influence of unit and scale differences
between features and to achieve the goal of treating each
dimension feature equally, the most common feature pro-
cessing method, namely, z-score standardization, is used to
map feature vectors to the same distribution.

x∗ �
x − x

σ
, (16)

where x is the mean value of the data and σ is the standard
deviation of the data.

Knowing that the several canonical correlation variables
corresponding to each group of variables in KCCA are not
correlated with each other, it can be known that the linear
combination of the canonical correlation coefficients of the
two groups of variables is also not correlated. )e fusion of
the two modal characteristics can be achieved by adding the
canonical correlation variables corresponding to the two sets
of variables as shown in the following equation:

F1 � u + v � AT BT[ ] Y

Z
[ ]. (17)

4. Experimental Setup and Model Evaluation

)e experimental results in this paper are all obtained under
the server equipped with Nvidia TITAN Xp GPU, 32GB
RAM, 256GB SSD, 2 TB HDD, quad-core Intel Xeon E5-
2620 v3 2.4GHz processor, win10 system, and CUDA10.2
environment configuration. )e experimental training set
and testing set account for 70% and 30% of the data,
respectively.

In sMRI feature extraction and classification experi-
ments, the preprocessed gray matter images are input into
the 3DShuffleNet network for training (classification). )e
model training batch size is set to 4. )e Adam optimization
algorithm is used. )e weight decay value is set to 1e-3, the
initial value of the learning rate is set to 1e-3, and it decays
exponentially as the number of trainings increases. )e total
number of iterations is 50, and the attenuation rate is set to
0.9. )e 3DShuffleNet model initializes the 3D convolution
weights by the normal distribution method. )e weights of

the BatchNorm3D layer are initialized to a fixed value of 1.
)e weights of the fully connected layer are initialized to a
normal distribution with a mean value of 0 and a variance of
0.001. )e bias values are all set to 0. In addition, in order to
improve the reliability of the experimental results, the model
in this paper and the comparative test model were repeatedly
trained and tested for 10 times.

In fMRI feature extraction and classification experi-
ments, by setting different size and number of PCA kernels
and block size, the influence on the diagnosis results is
explored.

In multimode data fusion experiment, we use the grid
search method to adjust KCCA parameters. After that, the
classification results of the proposed method in this paper
and the experimental dataset in CCA and series fusion
method are compared and analyzed.

In order to effectively evaluate the method proposed in
this paper, Acc, Sen, Spec, Precision, Recall, F1 score, and
AUC are calculated.

5. Experimental Results and Analysis

5.1. ClassificationExperiments of sMRI. In order to prove the
superiority of the 3D model proposed in this paper, some
classic models are compared, and the results on sMRI data
using 3DShuffleNet are shown in Table 2.

It is found from Table 2 that the 3DShuffleNet proposed
in this paper has significant advantages, and better classi-
fication results on AD versus NC and AD versus MCI are
achieved. But the classification effect of MCI versus NC is
poor. It is speculated that, on the one hand, because MCI is
the early stage of the AD patient, the brain gray matter
structure has not changed significantly, and the network is
difficult to locate the disease characteristics. On the other
hand, because the experimental samples are relatively scarce,
the model is not fully trained. Similarly, because the dif-
ference between LMCI and EMCI is very slight, the result of
LMCI versus EMCI is worst.

In addition, the complexity is evaluated with FLOPs and
the number of floating-point multiplication adds. For
proving the advantages of the 3DShuffleNet proposed in this
paper over other networks, the experimental results of the
proposed model on FLOPs are compared with those of the
3D forms of ResNet and DenseNet, which are widely used in
image classification. 3DShuffleNet needs 0.79 GFLOPS of
computational force, which is much smaller than the
comparison models including 3DResNet network with 10
layers and 3DDenseNet network with 121 layers, which
requires 38.97 and 89.71 GFLOPs. At the same time, the
parameters amount of the network is obtained. 3DShuf-
fleNet has 957.72 thousand parameters; 3DResNet with 10
layers and 3DDenseNet with 121 layers, respectively, have
14.36 and 11.24 million parameters. )e proposed network
has obtained relatively good classification results with a
small computational cost.

5.2. Classification Experiments of fMRI. If the AAL template
is used to calculate the function connection, a 90∗ 90 or
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116∗116 function connection matrix will be obtained, re-
spectively, using 90 or 116 regions of cerebrum. )erefore
two datasets with different sample sizes are obtained. )e
whole brain function connection matrix is selected as the
experimental data, and the effects of three variables on the
classification results are analyzed, respectively.

First of all, the impact of different PCA kernel sizes on the
experimental results is compared and analyzed. )e initial
number of PCA kernels is set to L1� L2� 8, and the block size
to 16. Because the data have unbalanced categories phenom-
enon, the average value of sensitivity and specificity is used as
evaluation criterion.)e detailed results are shown in Figure 3.

From Figure 3, we can see that, as the PCA kernel’s size
continues to increase, the classification result firstly becomes
better and then worse. It is speculated that this phenomenon
is related to the receptive field theory which is similar to
traditional convolutional neural networks. )e larger the
receptive field is, the more image information can be ob-
tained. So PCANet can obtain better expression ability.
However, as the PCA kernel size continues to increase, the
number of parameters soars, which reduces the computing
efficiency.

Next, the impact of the number of PCA kernels on the
classification results is discussed, and the results are shown
in Figure 4. Considering that, in different classification
combinations, the PCA kernel’s size corresponding to the
best classification effect is different, the size of PCA kernel in
different classification combinations is set as 3∗ 3, 5∗ 5,
7∗ 7, and 3∗ 3, and the block size keeps unchanged.

)e experimental results show that, in a certain range,
the increase in the number of PCA kernels retains more data
information as the dimension increases, which makes po-
sitioning of the disease more accurate. When the number of
PCA kernels reaches a certain level, the experimental result
decreases. )e reason is that too many PCA kernels will
cause the introduction of noise.

Finally, the influence of block size (for histogram cal-
culation) on the robustness of experimental results is ana-
lyzed.When the PCA kernel size is set to 3 ∗ 3, 5 ∗ 5, 7 ∗ 7,
and 3 ∗ 3 and the number of PCA cores is set to 8, 8, 6, and
6, the experimental results in Figure 5 are obtained.

)e results show that an appropriate block size provides
better robustness, but blindly increasing the block size will
sacrifice model performance. After the above-mentioned
optimization method of control variables, the experimental
results are shown in Table 3.

Considering that the size of the PCA kernel, the number
of the PCA convolution kernels, and the block size of cal-
culation histogram may affect each other, the grid search
method is used for further experiments.)e gradient of PCA
kernel size is set as [3, 5, 7,...,11], and the gradient of the
number of PCA kernels is [1, 2,...,11]. )e side length of the
block of histogram is set to amultiple of 4, and themaximum
value is set to half of the side length of the function con-
nection matrix. )e experimental results are shown in
Table 4.

)e control variable method and the grid search method
are used to adjust the parameters, and the global brain
function connection matrix is used as the experimental data.
It can be seen from Tables 3 and 4 that the grid search
method is better than the control variable method in
adjusting the parameters, because there is a close relation-
ship between the three variables and they influence each
other.

Table 2: Experimental results of sMRI data (%).

AD versus NC Acc Sen Spec Precision Recall
f1-

score
AUC

ResNet_10 80.4 77.0 82.7 74.9 77.0 75.8 80.9
DenseNet_121 74.0 53.0 88.0 77.1 53.0 61.0 79.5
3DShuffleNet 85.2 69.0 96.0 93.3 69.0 79.0 86.9

AD versus
MCI

Acc Sen Spec Precision Recall
f1-

score
AUC

ResNet_10 77.5 77.0 78.0 78.0 77.0 77.4 86.2
DenseNet_121 62.0 61.0 63.0 64.2 61.0 61.1 68.3
3DShuffleNet 84.0 84.0 84.0 84.9 84.0 84.1 91.9

MCI versus
NC

Acc Sen Spec Precision Recall
f1-

score
AUC

ResNet_10 64.8 38.0 82.7 61.6 38.0 45.8 65.5
DenseNet_121 53.6 52.0 54.6 47.5 52.0 47.1 55.5
3DShuffleNet 64.8 43.0 79.3 60.2 43.0 48.0 67.3

EMCI versus
LMCI

Acc Sen Spec Precision Recall
f1-

score
AUC

ResNet_10 54.0 56.0 52.0 53.7 56.0 54.1 65.2
DenseNet_121 54.0 28.0 80.0 62.5 28.0 36.7 48.2
3DShuffleNet 53.0 40.0 66.0 56.7 40.0 45.6 58.0
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Figure 3: Accuracy of different PCA kernel size.
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Figure 4: Accuracy of different PCA kernel number.
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)e experimental results obtained from the global brain
and cerebrum function connectionmatrix are compared and
analyzed. In general, better performance can be obtained
using the whole brain function connection matrix as an
experimental sample. Among them, the classification ac-
curacy of AD versus NC and MCI versus NC both increased
by 4%, and the classification accuracy of AD versus MCI was
equal. )e presumed reason is that although AD focuses on
appears in the part of cerebrum when one brain area is
affected and the other brain areas are intact, the connection
characteristics will also change. )erefore, by adding the
cerebellum part to enrich the features information, a better
diagnosis result can be obtained. In addition to the above
results, we also apply our method to classify EMCI and
LMCI. It can be seen from the results that the PCANet
network is sensitive to the disease progresses from EMCI to
LMCI, and functional characteristics changes in brain can be
observed, which proves the feasibility and effectiveness of
feature extraction using PCANet.

5.3. Classification Experiments of Feature Fusion. In this
paper, the z-score standardization method is selected to
normalize the features of the two modalities to the same
scale, the KCCA feature fusion algorithm is selected to
obtain the fused features of sMRI and fMRI, and SVM
classifier is used for training and recognition.

In order to prove the effectiveness of the KCCA fusion
algorithm, in addition to comparing the difference between
the single-modal feature and the fusion feature classification
effect, at the same time, the experimental results obtained by
using CCA and the series method are compared. In the SVM
classifier, the sigmoid kernel is used to train and obtain the
recognition results. )e experimental results are shown in
Table 5. )e sMRI features extracted by the 3DShuffleNet
network are fused with the fMRI features extracted by the
PCANet.

It can be seen from Table 5 that, compared with the CCA
fusion method, the KCCA with rbf kernel has a significant
improvement on the recognition results, and by this way,
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Figure 5: Accuracy of different block size.

Table 3: Experimental results of adjusting parameters by controlled variable method (%).

Class Model Acc Sen Spec Precision Recall f1-score AUC

AD versus NC Global brain 88.0 80.0 93.3 88.9 80.0 84.2 88.7
AD versus MCI Global brain 80.0 70.0 90.0 87.5 70.0 77.8 76.0
MCI versus NC Global brain 68.0 60.0 73.3 60.0 60.0 60.0 66.7
LMCI versus EMCI Global brain 90.0 80.0 100.0 100.0 80.0 88.9 96.0

Table 4: Experimental results of adjusting parameters by grid search method (%).

Class Model Acc Sen Spec Precision Recall f1-score AUC

AD versus NC Cerebrum 84.00 80.0 86.7 80.0 80.0 80.0 86.0
AD versus MCI Cerebrum 85.0 90.0 80.0 81.8 90.0 85.7 78.0
MCI versus NC Cerebrum 76.0 80.0 73.3 66.7 80.0 72.7 84.0
EMCI versus LMCI Cerebrum 100.0 100.0 100.0 100.0 100.0 100.0 100.0
AD versus NC Global brain 88.0 80.0 93.3 88.9 80.0 84.2 88.7
AD versus MCI Global brain 85.0 90.0 80.0 81.8 90.0 85.7 87.0
MCI versus NC Global brain 80.0 80.0 80.0 72.7 80.0 76.2 83.3
EMCI versus LMCI Global brain 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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information complementary of two modal is realized. )e
KCCA algorithm considers the influence of nonlinear fea-
tures during feature fusion, which makes the feature de-
scription more reasonable and enhances the identification
ability of subsequent classifiers. )is also explains why the
effect of feature fusion using CCA is not satisfactory.
Compared with the traditional serial fusion method, the
KCCA fusion algorithm still has advantages in experiments.

6. Conclusions

Using deep learning algorithms to assist doctors in diag-
nosing AD has broad research prospects. Furthermore, the
idea of features fusion can achieve an obvious improvement.
In this paper, 3DShuffleNet is used to build an sMRI-assisted
diagnosis model, and PCANet is used to build an fMRI-
assisted diagnosis model. Both methods can achieve better
results and can provide help on correct diagnosis and early
detection of AD. At the same time, the features fusion of two
kinds of data is realized, and compared with single modality,
better classification results on multiple modalities are ob-
tained. )e addition of fMRI features not only further
improves the diagnostic advantages of the sMRI-assisted
diagnosis model on AD versus NC and AD versus MCI but

also avoids the disadvantages of sMRI on theMCI versus NC
and LMCI versus EMCI experiments. In addition, multiple
modalities methods overcome the shortcomings of single-
modal recognition which cannot make full use of target
features. )e method proposed in this paper also has the
characteristics of low requirements for equipment com-
puting capabilities, which is helpful for its promotion in
practical applications.

Data Availability

)e data in this paper come from the Alzheimer’s Disease
Neuroimaging Initiative database, which is an open-source
third-party database. )e specific dataset of the experiment
cannot be provided due to copyright reasons. For the ex-
perimental data in this paper, subjects who have both fMRI
and sMRI are selected. )e amount of experimental data is
34 cases of AD, 18 cases of early MCI, 18 cases of late MCI,
and 50 cases of NC. ADNI database link: http://adni.loni.usc.
edu/.
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