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Assisted Diagnosis of Cervical
Intraepithelial Neoplasia (CIN)

Yinhai Wang, Danny Crookes, Member, IEEE, Osama Sharaf Eldin, Shilan Wang, Peter Hamilton, and
Jim Diamond

Abstract—This paper introduces an automated computer-
assisted system for the diagnosis of cervical intraepithelial neo-
plasia (CIN) using ultra-large cervical histological digital slides.
The system contains two parts: the segmentation of squamous
epithelium and the diagnosis of CIN. For the segmentation, to
reduce processing time, a multiresolution method is developed.
The squamous epithelium layer is first segmented at a low (2X)
resolution. The boundaries are further fine tuned at a higher
(20X) resolution. The block-based segmentation method uses
robust texture feature vectors in combination with support vector
machines (SVMs) to perform classification. Medical rules are
finally applied. In testing, segmentation using 31 digital slides
achieves 94.25% accuracy. For the diagnosis of CIN, changes in
nuclei structure and morphology along lines perpendicular to the
main axis of the squamous epithelium are quantified and classified.
Using multi-category SVM, perpendicular lines are classified into
Normal, CIN I, CIN II, and CIN III. The robustness of the system
in term of regional diagnosis is measured against pathologists’
diagnoses and inter-observer variability between two pathologists
is considered. Initial results suggest that the system has potential
as a tool both to assist in pathologists’ diagnoses, and in training.

Index Terms—Cervical cancer, CIN, diagnosis, digital pathology,
digital slide, image processing, SVM.

I. INTRODUCTION

C
ERVICAL cancer is the second most common cancer

in women worldwide, and it is the principal cancer of

women in most developing countries, where 80 percent of

cases occur [1]. Cervical intraepithelial neoplasia (CIN) is a

pre-malignant condition where abnormal cells are restricted

to the epithelial layer. CIN demonstrates progressive stages

with increasing numbers of abnormal cells and can lead to

cancer once the neoplastic cells extend beyond the epithelium

basement membrane, invade adjacent tissues and spread to

other tissues and organs. The diagnosis and grading of CIN

is based on the interpretation of visually assessed features of

cervical histological slides. Diagnostic decisions are generally
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Fig. 1. Example of a digital slide. (a) Digital slide of 53 450� 38 090 pixels at
40X magnification. (b) Zoomed-in view of the region in square.

made by a pathologist. This process can be extremely subjec-

tive, resulting in inter- and intra-observer variation and poor

reproducibility in the grading of cervical lesions [2]–[4].

Digital pathology is the management and interpretation

of pathology information from virtual, digital microscopy

[5]. Compared to traditional pathology, a major advantage of

digital pathology is that slides can be analysed using software

rather than limited manual analysis [5], [6]. A digital slide is a

high-resolution scan of a microscope tissue sample. A typical

cervical histological slide, which has a tissue area of 30 mm

20 mm, is scanned to give an image of 120 000 80 000

pixels, or 28 GB [7] of uncompressed color image data. An

example of a digital slide can be seen in Fig. 1.

In recent research in digital pathology, studies [8]–[10] inves-

tigate the qualities of scanned digital slides compared with tra-

ditional glass slides. Other studies are on viewing digital slides,

such as for education [11]–[13] and telepathology [14], [15].

The analysis of digital slides is still at a preliminary stage, with

investigations on tissue microarrays (TMAs) [16]–[18] as well

as the analysis of whole slides [19], [20].

In this study, we present one of the first major investigations

into the analysis of digital slides by proposing an automated

system for the diagnosis of CIN using digital slides. The pro-

posed system contains two phases: the segmentation of squa-

mous epithelium and the diagnosis of CIN.

II. METHODOLOGY

Glass slides were scanned at 40X objective magnification (a

resolution of 0.25 ) using an Aperio ScanScope CS

scanner and archived in 24-bit color JPEG format. Based on 31

available digital slides, the sizes of scanned slides vary and are

up to 31.4 GB of uncompressed data, which reflects a region of

1932-4553/$25.00 © 2009 IEEE
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16.65 mm 35.70 mm of a glass slide. All 31 slides were di-

agnosed, region by region, by one pathologist. 20 of them were

diagnosed by two pathologists independently.

For the segmentation of squamous epithelium, a region-based

multi-resolution texture classification method is used. Given the

large nature of digital slides, it is very time consuming to do seg-

mentation at the maximum resolution (40X magnification). Our

strategy is therefore to do an initial block-based coarse segmen-

tation at a low resolution, and then fine tune the boundary blocks

at a higher resolution.

This immediately raises two issues to be investigated: what

is the best resolution and block size, both for coarse segmenta-

tion and for boundary tuning. These parameters are important

for reducing processing time, while retaining the quality of seg-

mentation. These questions are answered in Section III-E.

The presence of CIN in a squamous epithelium region can

be determined by exploring the quantitative changes that occur

progressively along lines perpendicular to the medial axis of

the squamous epithelium. Feature vectors for pixel blocks along

each perpendicular line are obtained from the measurements of

nuclei patterns along each line. The feature vectors for each line

are classified using multicategory SVM. Combining perpendic-

ular line classification results within each region gives a regional

diagnosis of CIN for a digital slide.

III. SEGMENTATION OF SQUAMOUS EPITHELIUM

At first sight, it might appear that a simple segmentation

approach based on color and morphology might be sufficient.

However, such is the range and variability of these features

across different batches (and even within the same image), a

more sophisticated and robust approach proved necessary.

A test image dataset is used to identify texture features in

conjunction with SVM for segmentation. We then present an

8-stage multi-resolution segmentation process and demonstrate

its performance with a set of test results.

A. Test Image Dataset for Segmentation

A first batch of 20 H&E stained cervical histological slides

were selected for the training and testing. These slides reflect

varying diagnostic outcomes, including Normal, CIN I, CIN II,

and CIN III. Under supervision of a pathologist, each slide was

examined and annotated to be five major different regions: squa-

mous epithelium, stroma, background, columnar epithelium and

red blood cells (RBCs). These annotated slides were used as the

“ground truth” for training and testing.

B. Image Block Database

To segment a complete digital slide, we divide the image into

a large set of blocks, and classify each block into one of the

above five categories. Each block needs to be large enough to

demonstrate the characteristics of a particular region type (e.g.,

stroma). However, since a block is normally the lowest resolu-

tion of segmentation, a block must be small enough to give suf-

ficient accuracy, particularly along boundaries. For this reason,

image blocks were initially chosen to be 500 500 pixels at

40X magnification. A selection of representative blocks from

the 20 slides was made for each category, which resulted in 1618

blocks per category (this figure was based on the incidence of

the rarer categories in our set of digital slides).

C. Texture Features

A range of possible texture features was initially identified

based on the literature and on their use in similar research areas.

Based on subsequent tests, the most useful features were se-

lected to form feature vectors.

Texture features can be measured using statistical, structural

and spectral approaches [21]. The statistical approach, which

uses statistical moments and gray level co-occurrence matrix

(GLCM), is perhaps the most widely used. Therefore, texture

features from this category were investigated and selected.

Statistical moments estimate individual pixel properties, such

as used in [22], [23]. We select six statistical moments—average

intensity , average contrast , smoothness , third mo-

ment , uniformity and entropy . GLCM related tex-

tures estimate properties of two or more pixel values occurring

at specific locations relative to each other. They have been used

for various classification tasks [24]–[29]. Studies [24], [27], [28]

suggest GLCM features can be used to distinguish different

tissue regions, especially contrast , correlation ,

angular second moment , and inverse difference mo-

ment . Therefore, they are also selected. For the calcu-

lation of GLCM, the immediate neighbourhood pixels within a

distance of 1 in both vertical and horizontal directions are se-

lected. This gives eight GLCM related textures.

D. Support Vector Machine

Support Vector Machine was initially introduced in [30] and

has been developed further since then. It is a robust learning

machine for two or more category classification problems. For

classification into two categories, SVM solves the problem of

obtaining the optimal boundary hyperplane which separates the

feature vectors of the two categories. The basic idea of SVM is

to locate the boundary which is most distant from the nearest

vectors of both of the two categories.

To classify into our five categories using SVM, a hierarchy of

four binary classifications is identified. These four binary SVM

classifications use different sets of texture features. The optimal

set of features for each classifier is selected by systematic testing

on the test data set. The differentiation between background and

tissue component only needs eight features, namely , , ,

, , , and ( , and are

calculated with their GLCM offsets in the horizontal direction

only). The other three binary classifications need all 14 texture

features.

Binary classification of background and tissue is performed

first. Then tissue is subclassified as either squamous epithe-

lium or stroma. The resulting squamous epithelium may contain

some columnar epithelium and/or RBCs, and so two final clas-

sifications identify columnar epithelium and RBCs.

The popular LibSVM [31] tool is used to perform SVM clas-

sifications, with the widely used Gaussian RBF kernel. There

are two parameters to be decided to get optimised support vec-

tors: the penalty parameter from the soft margin method, and

from the Gaussian RBF kernel. N-fold cross-validation and

grid-search is performed to get the best combination of and .
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TABLE I
GRID-SEARCH FOR BLOCK SIZE AND RESOLUTION FOR THE CLASSIFICATION

BETWEEN SQUAMOUS EPITHELIUM AND STROMA

E. Image Size and Resolution

To reduce processing time and memory requirements, it was

decided to perform a coarse block-based segmentation at a lower

resolution, followed by a fine tuning of boundary blocks (sub-

dividing the coarse blocks into four subblocks, and reclassi-

fying at a higher resolution). These image blocks need to be

large enough to include the features necessary for the coarse

segmentation, but small enough to give a meaningful boundary.

The question becomes one of choosing the best combination of

image resolution and block size.

To determine the best block sizes and resolutions, a grid of 88

image resolutions and block sizes is built. Block sizes smaller

than 10 10 pixels are not considered.

For each iteration of the grid-search for image size and reso-

lution, 1000 blocks from each combination are selected. Texture

feature vectors for the 1000 blocks are calculated and then clas-

sified using SVM and a fivefold cross-validation.

The classification between squamous epithelium and stroma

is the most important and difficult one. Therefore, grid-search

is firstly performed between these two categories. Results are

shown in Table I. When the 500 500 base blocks at 40X mag-

nification are down-sampled to give 25 25 pixels at 2X mag-

nification, classification still achieves 89.2% accuracy. So for

coarse segmentation, we choose 500 500 blocks at 2X magni-

fication (noticing the drop-off at 1X). For boundary fine tuning,

we notice that (the fourth row) blocks of size 250 250 achieve

good accuracy (maximum 90.0%) at 20X.

The grid-search processes for the other three binary classifi-

cations follow a similar process (see below).

F. Segmentation of Squamous Epithelium

After the grid-search for the best block sizes and resolutions

for the four binary classification tasks, we are able to use the

following eight steps for the segmentation of squamous epithe-

lium from digital slides. Each step is explained below. In order

to illustrate the eight-step segmentation process, a small dig-

ital slide (Fig. 2(a)) is used as an example. This digital slide is

23 000 20 000 pixels at 40X magnification, which is roughly

the glass slide region of 5.4 mm 4.6 mm.

1) Step 1: Image Partitioning: Scanned digital slides are par-

titioned into 500 500 pixel blocks at 40X magnification, and

stored in JPEG format.

Fig. 2. Illustration of the eight-step segmentation process. (a) Original digital
slide of 23 000� 20 000 pixels. (b) Result from step 2 (tissue is black). (c) Re-
sult from step 3 (squamous epithelium is black and stroma is gray). (d) Re-
classified 2-block thick boundary from step 4 (black is the newly generated
background). (e) Boundary refined result from step 4 and 5. (f) Boundary ex-
panding-shrinking from step 5. (g) Result from step 6 (columnar epithelium is
gray). (h) Result from step 7 (RBCs are gray). (i) Final result from step 8.

2) Step 2: Tissue versus Background at 2X: Digital slides are

classified as either background or tissue. First, the 500 500

pixel blocks at 40X are converted to gray scale, and then down-

sampled to give 25 25 pixel blocks at 2X. The eight texture

features for each 2X block are then calculated, and classified

using SVM. An example is shown in Fig. 2(b).

3) Step 3: Squamous Epithelium versus Stroma at 2X: All

14 texture features for each 2X tissue block are calculated. The

eight texture features already calculated in step 2 are reused.

Then, the tissue block is classified. An example is shown in

Fig. 2(c).

4) Step 4: Tissue versus Background Boundaries at 20X:

Blocks at the boundary between background and tissue (the bor-

ders inside and outside the tissue region) are reclassified.

A boundary 500 500 pixel block at 40X is firstly partitioned

into four 250 250 pixel blocks. These four blocks are then

down-sampled to give four 125 125 pixel blocks at 20X. As

in step 2, eight texture features are used, and the four subblocks

are reclassified to be either tissue or background. An example is

shown in Fig. 2(d).

5) Step 5: Squamous Epithelium Versus Stroma at 20X: Step

5 consists of two tasks. First, the boundary tissue blocks be-

tween squamous epithelium and stroma are subdivided into four,

and classified to be either squamous epithelium or stroma, as

in step 4. Secondly, a boundary expanding-shrinking process is

used to refine the boundaries between squamous epithelium and

stroma. An example of the result of these two tasks is shown in

Fig. 2(e) and (f).

6) Step 6: Squamous Epithelium versus Columnar Epithe-

lium at 8X: The segmented squamous epithelium from step 5 is

further processed. 250 250 pixel squamous epithelium blocks

at 40X are down-sampled to be 50 50 pixels at 8X magnifica-

tion. As before, they are classified to be either columnar epithe-

lium or squamous epithelium [Fig. 2(g)].
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7) Step 7: Squamous Epithelium versus RBCs at 10X: Sim-

ilar to step 6, the segmented squamous epithelium from step

5 are processed to identify RBCs. Blocks at 40X are down-

sampled to be 62 62 pixels at 10X. An example is shown in

Fig. 2(h).

8) Step 8: Remove Misclassifications: The texture-based seg-

mentation can occasionally give erroneous results because of

misclassifications. Some of these “rogue” blocks can be identi-

fied and reclassified using medical pathology rules, such as the

following.

• Isolated tissue blocks surrounded by background are con-

verted to background.

• Tissue-surrounded isolated background blocks are con-

verted to tissue.

• Small regions of squamous epithelium surrounded by

background/nonsquamous epithelium tissue are replaced

by their surrounding material.

• Small regions of nonsquamous epithelium tissue sur-

rounded by background/squamous epithelium are replaced

by their surrounding material.

The application of these rules is illustrated in Fig. 2(i).

G. Results and Analysis

1) Ground Truth Image Data: For measuring the robustness

of segmentation, ground truth images (GT) are acquired from

manual segmentation, where boundary blocks are also regarded

as squamous epithelium. Under the supervision of pathologists,

manual segmentation is performed by drawing regions using

Aperio’s ImageScope software.

In this application, we choose the following three measure-

ments to indicate how good the proposed segmentation method

is.

• Accuracy (Acc): how many blocks correctly classified as

either squamous epithelium or nonsquamous epithelium.

• False Positive Proportion (FP): the proportion (%) of

nonsquamous epithelium blocks wrongly classified as

squamous epithelium.

• False Negative Proportion (FN): the proportion (%) of

squamous epithelium blocks wrongly classified as non-

squamous epithelium.

2) Results: Each of the images is segmented automatically

using the proposed method, and the resulting block classifica-

tions are compared with the ground truth segmentations. Tests

are performed firstly using the 20 “seen” digital slides, which

were used for the training of the support vectors. Results for

these 20 slides are shown in Table II (slides J3 and J19 were not

included as their segmentation was not supervised by patholo-

gists). Then, the tests are performed on the 11 “unseen” images.

Results are shown in Table III. Results for digital slide J15 is

illustrated in Fig. 3.

As expected, results for the 11 unseen test cases are slightly

poorer than the results from the 20 known cases, with the av-

erage accuracy dropping about 2%. The reason for the decrease

of accuracy is that the 11 test slides were not used in the training

of the support vectors. Therefore, SVM has not encountered the

texture feature differences between training and testing data,

which in turn affects the performance. This problem can be im-

proved by building up a larger training set.

Fig. 3. Segmentation result of digital slide J15: (a) J15 of the size
152 000� 41 500 pixels, (b) system segmentation result, (c) GT (black
regions are squamous epithelium and white are nonsquamous epithelium.).

TABLE II
SEGMENTATION RESULTS FOR THE 20 “SEEN” DIGITAL SLIDES

TABLE III
SEGMENTATION RESULTS FOR THE 11 “UNSEEN” DIGITAL SLIDES

3) Execution Speed: The segmentation system is currently

implemented in Matlab, and running on a PC with a dual-core

Pentium 4 3.40 GHz processor and 2 GB RAM. The execution

of the entire segmentation process is time consuming. In the test

of a typical digital slide (Fig. 3(a) 152 000 41 500 pixels), the

entire segmentation process takes approx. 2 h 52 min. The image

partitioning process is the bottleneck and takes 63% of the entire

processing time. There is considerable scope for optimization of

this phase.



116 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 3, NO. 1, FEBRUARY 2009

Fig. 4. (a) Skeleton of squamous epithelium. (b)Main axis of the skeleton. (c)
Perpendicular line function. (d) Top and bottom boundaries of squamous ep-
ithelium. (e) Sectors and isolated squamous epithelium points not belonging to
any perpendicular lines. (f) Improved perpendicular lines.

IV. MEASUREMENTS OF SQUAMOUS EPITHELIUM

AND DIAGNOSIS OF CIN

The diagnosis of CIN is based on measurements from the

segmented squamous epithelium, using manual classification by

pathologists as “ground truth” training data. Pathologists were

observed to return their results in terms of regions of squamous

epithelium, giving a diagnosis for each region (i.e., Normal, CIN

I, CIN II or CIN III). Our approach aims to emulate this. First,

small lines of blocks through the squamous epithelium (perpen-

dicular to its medial axis) are first identified and classified into

one of the above four diagnostic categories. Then, regions are

formed by combining neighbouring lines into regions based on

individual diagnostic outcome, and an overall regional diagnosis

is produced.

A. Perpendicular Lines

A perpendicular line is a line of blocks passing through

the squamous epithelium, perpendicular to its medial axis.

The blocks are 250 250 pixel blocks at 40X magnification.

The line traces an 8-connected path through the squamous

epithelium. The two ends of the line intersect with the top and

bottom boundary of squamous epithelium.

Pathologists diagnose the presence and different stages of

CIN by judging the precancerous changes and abnormal cel-

lular growth in the squamous epithelium layer from the bottom

(basal) layer to the top (superficial) layer. As the lines follow

this direction of progression, the measurement of precancerous

changes in squamous epithelium can be modeled by measuring

these changes along the lines.

The perpendicular lines are obtained in six steps.

1) Step 1: Skeletonisation of Squamous Epithelium: First,

the segmentation result image [see above and Fig. 3(b)] is par-

titioned into connected regions so that each region contains one

piece of continuous squamous epithelium.

For each separate region, skeletonisation using the medial

axis transformation is applied [see Fig. 4(a)].

2) Step 2: Main Axis Identification: The resulting skeleton

can have many branches which need to be trimmed off. Exper-

iments show that the longest path reflects the major axis. An

example is in Fig. 4(b).

3) Step 3: Sequential Path Along the Main Axis: The pixels

on the main axis are formed into an ordered sequence, and the

start and end points of the axis are identified, based on their

connectivity. The start point is distinguished from the end point

based on clockwise direction.

4) Step 4: Perpendicular Line Function: A perpendicular

line for each point on the main axis is defined. Given a point

on the axis, the slope of the axis at that point is calcu-

lated based on its four neighbouring pixels along the axis. Two

pixels on either side are used to smooth variations. The slope of

the perpendicular line is calculated, and the perpendicular

line for each point is defined by

(1)

where

(2)

5) Step 5: Identifying Blocks on Each Perpendicular Line:

Using the perpendicular line function above, we can identify

a line of 250 250 blocks of pixels along (i.e., closest to) a

perpendicular line. This is done for each point on the axis. An

example is shown in Fig. 4(c). The path begins at the “bottom”

(basal) boundary of the squamous epithelium, and ends at its

intersection with the “top”. Normally, the bottom boundary is

adjacent to stroma, and is identified by this. Fig. 4(d) illustrates

the result.

6) Step 6: Refining Perpendicular Lines: Not all squamous

epithelium blocks are covered by perpendicular lines, which

leave a number of squamous epithelium blocks, as shown in

Fig. 4(e). We call these points uncovered points. To reduce the

number of uncovered points, this step focuses on uncovered

points on the top and bottom boundaries, and seeks to connect

them with additional perpendicular lines through the axis. After

this step, the number of uncovered points is not significant (in

this example, 72 points and 9.81% of squamous epithelium). An

example is shown in Fig. 4(f).

B. Segmentation of Nuclei

Some of the pathological diagnostic clues for CIN are:

pleomorphism, superficial maturation and loss of polarity

[32]. These can be quantitatively assessed by measuring

tissue-level and cellular-level changes in squamous epithe-

lium. These changes are all related to the measurements

of nuclei, such as individual nuclei morphologies and their

inter-relationships. Therefore, for the diagnosis of CIN, the

nuclei must be segmented. In this study we use an incre-

mental color-based thresholding method for segmentation after

performing pre-processing, namely color normalization and

contrast-limited adaptive histogram equalization (CLAHE).

1) Pre-Processing: Pre-processing is necessary to normalize

out the color, intensity and contrast differences of digital slides,

which can be the result of the staining process and other factors.

The color transfer technique proposed in [33] is used to perform



WANG et al.: ASSISTED DIAGNOSIS OF CIN 117

Fig. 5. Example of nuclei segmentation. (a) Image block. (b) Color normalized
(a). (c) Segmented nuclei block.

color normalization. Study [34] suggests the usefulness of it in

normalizing H&E stained histological images. CLAHE [35] is

also used to further enhance the contrast of image blocks. Study

[36] and experiments show that the use of 20 bins is appropriate.

2) Incremental Thresholding: Incremental thresholding is

the technique which segments nuclei from each of the bins of the

histogram obtained using CLAHE. All segmented nuclei across

all the bins are combined to give the final result, illustrated in

Fig. 5.

C. Perpendicular Line Features

Cellular-level and tissue-level characteristics measure not

only the individual nuclei features, but also inter-relationships

among nuclei. Many features are used in the literature [36],

[37], such as average nuclei area and features derived from

Delaunay triangulation (DT). We choose the following four

features for each of the 250 250 pixel block at 40X magni-

fication:

• nucSize: average area of nuclei (cellular-level);

• nucDen: number of nuclei in a block (tissue-level);

• mArea: average area of DT (tissue-level);

• mEdge: average edge length of DT (tissue-level).

Tests show that the length of perpendicular lines can range

from 1 to more than 20 blocks, depending on the thickness

of squamous epithelium. 1-D linear interpolation is used to

standardise all perpendicular line feature vectors to a standard

length. The interpolated feature vectors have 16 values.

D. Perpendicular Line Classification

Perpendicular lines are classified into one of four categories:

Normal, CIN I, CIN II and CIN III. Multi-category SVM is

chosen to perform this task.

1) Perpendicular Line Feature Database: The 20 digital

slides from the first batch (batch-J) are diagnosed and marked

by a pathologist (Pathologist A). The other 11 digital slides

from the second batch (batch-C) are diagnosed and marked

by two pathologists independently (Pathologist A and B). The

perpendicular lines are found in all 31 slides. Apart from some

regions which are marked as Koilocytosis, the perpendicular

lines (26430 lines in total) are taken for training or testing.

8915 lines are selected for training.

If we take the diagnosis made by Pathologist A, for the se-

lected 8915 training cases, the percentage of each diagnostic

category is listed in Table IV.

2) Imbalanced Data: Table IV suggests that the number of

training cases for each diagnostic category is imbalanced, espe-

cially for CIN I and CIN II cases, because the 31 digital slides,

although large by current standards, do not cover a sufficiently

TABLE IV
NUMBER OF TRAINING CASES FOR EACH DIAGNOSTIC CATEGORY

wide range of situations. Over-sampling [38] is used to deal with

this data imbalance problem. After over-sampling, the data set

for the training contains perpendicular lines.

3) Test Strategies: The chosen test strategies should be able

to reflect the following three types of data differences when se-

lecting the SVM training set and testing set. The types of differ-

ence are:

I: between lines taken from the same digital slide;

II: between lines taken from different slides, but from the

same batch;

III: between lines taken from different slides and batches.

As summarized in [39], popular test strategies are: k-fold

cross-validation; the use of separate training and testing sets;

and not using a separate evaluation set. In this study we use the

latter two test strategies in order to reveal the above mentioned

three types of data differences. “Not using a separate evaluation

set” means the training and testing data can be from the same

digital slide, which could be used to test the Type I difference.

Type II and III differences can be tested using separate training

and testing sets. If the training and testing sets are from the same

batch, Type II difference is tested, whereas if they are taken from

different batches, Type III difference can be tested. Therefore,

the following test strategies are designed.

• Test Strategy I (J20C11): select a subset of perpen-

dicular lines from all 31 slides for SVM training. The re-

maining lines are used for testing. This test

strategy reflects Type I Difference.

• Test Strategy II (J13C7): select a subset of lines from

20 digital slides (13 from batch-J and seven from batch-C)

for training. The remaining lines are used for

testing. These testing lines are taken from 11 slides (seven

from batch-J and four from batch-C) which are not used

for SVM training. This strategy reflects Type II difference.

• Test Strategy III (J20): select a subset of lines only

taken from the 20 slides in batch-J. These lines are used

for training. The remaining lines are taken

from the 11 digital slides from batch-C and are used for

testing. This test strategy reflects Type III Difference.

4) Classification of Perpendicular Lines: Multi-category

SVM uses the RBF kernel for this targeted classification task.

The LibSVM tool is used. SVM parameters and are ob-

tained using grid-search cross-validations for the perpendicular

line features for all the three test strategies.

Four pairs of and are obtained from the cross-valida-

tion for the training of four independent support vectors. Using

the cross-validation accuracies from each of the four

independent measurements as weights, a perpendicular line is

then classified using a combination of the posterior probabilities
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Fig. 6. Diagnosis of CIN. (a) Original RGB image. (b) Diagnoses marked by a pathologist. (c) Combined perpendicular line diagnoses. (d) Removal of misclas-
sifications. (e) Diagnoses for missed image blocks. (For image (b)–(e), white stands for Normal, red is CIN I, green is CIN II, and blue is CIN III).

from SVM predictions and . The perpendic-

ular line is then classified to be the category which achieves the

highest value in

(3)

E. Diagnosis of CIN

The diagnosis of the various stages of CIN is achieved by

combining the perpendicular line classification results, followed

by post-processing and visualization.

The post-processing includes three tasks. First, obvious

misclassifications of lines are eliminated. Secondly, those

pixel blocks at the intersection of differently classified lines

are resolved by a simple voting scheme. Finally, uncovered

squamous epithelium blocks borrow their nearest neighbors’

diagnoses. An example is shown in Fig. 6, where Fig. 6(e) is

the visualized final result.

F. Results and Analysis

This section first evaluates the results of perpendicular line

identification and segmentation of nuclei. Then, the four in-

dividual perpendicular line features are analyzed, followed by

the result and evaluation of perpendicular line classifications.

Inter-observer variability is then considered. Finally, the results

for the overall diagnosis of CIN is presented and evaluated.

1) Perpendicular Line Identification: The qualitative mea-

surements of how accurate perpendicular lines are identified use

visual assessment.

Most perpendicular lines are identified correctly over 31 dig-

ital slides. Skeletonisation is clearly effective. In most cases,

lines are perpendicular to the top and bottom boundaries. In

the test of all 31 digital slides, on average 8.86% (14.06% max-

imum) of the blocks are uncovered.

In some nonstandard tissue configurations, the accuracy of

the perpendicular line identification process can depend on the

morphology of the segmented squamous epithelium. Usually,

wrong identification can arise in the following situations.

• For short, thick squamous epithelium regions, it is not clear

where the main axis should be, so the orientation of the

longest branch skeleton is sometimes perpendicular to the

correct direction.

• Some regions of squamous epithelium can be detached

from stroma. All neighboring pixels around the boundary

will be background rather than stroma.

Fig. 7. Six examples of segmented nuclei.

TABLE V
ACCURACIES FOR INDIVIDUAL PERPENDICULAR LINE FEATURES

TABLE VI
PERPENDICULAR LINE CLASSIFICATION RESULTS FOR THREE TEST STRATEGIES

TABLE VII
INTER-OBSERVER VARIABILITY OVER 11 SLIDES FROM 2ND BATCH (BATCH-C)

2) Nuclei Segmentation Results: The accuracy of the nuclei

segmentation is measured by comparing automatic segmenta-

tion results with manually segmented nuclei. In tests, our nuclei

segmentation method identified 86.7%–91.2% of nuclei. Some

examples of nuclei segmentation results are shown in Fig. 7.

3) Individual Perpendicular Line Features: In the test of in-

dividual perpendicular line features, Pathologist A’s diagnoses

over all 31 slides are used as ground truth. The system’s classifi-

cations are compared with these. Results are shown in Table V.

Results show that, except for mArea in Test Strategy II,

accuracy is achieved. These findings show that the four
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TABLE VIII
RESULTS FOR THE DIAGNOSIS OF CIN OVER ENTIRE DIGITAL SLIDES USING THREE TEST STRATEGIES

proposed perpendicular line features are valid measurements.

For all three test strategies, nucSize is the most accurate feature

. These four line features are measuring the patholog-

ical diagnostic clues: pleomorphism, superficial maturation and

loss of polarity. The assessment of the individual line features

confirms the validity and importance of these diagnostic clues.

4) Classification of Perpendicular Lines: To evaluate the

four perpendicular line features, accuracy and Cohen’s Kappa

statistics (both unweighted and quadratic weighted) are used.

Cohen’s Kappa is a statistical measurement to evaluate the

agreement between two observers who classify a number of

items into N mutually exclusive categories. Kappa values

greater than 0.75 are considered to represent excellent agree-

ment between observers. Values between 0.40 and 0.75 are

regarded as fair to good agreement, and values less than 0.40

are called poor agreement [40].

For all the three test strategies, the perpendicular line features

are classified and compared with Pathologist A’s manual classi-

fication results.

Results (Table VI) show that when testing samples are from

the same set of slides as the training set, though using different

lines (2nd, 3rd and 5th columns of Table VI), excellent results

are obtained, with corresponding accuracies close to 100%,

and all Kappa values close to 1 (excellent agreement). When

testing lines come from different digital slides but the same

batch (fourth column of Table VI), the accuracy value drops to

65.39%, unweighted Kappa becomes poor agreement (0.3827)

and quadratic weighted Kappa becomes fair to good agreement.

Finally, when testing perpendicular lines from different batches

(last column of Table VI), the accuracy value worsens to be

52.12%, unweighted Kappa get poor agreement (0.3827), and

quadratic weighted Kappa gets fair to good agreement.

We conclude that the classification of perpendicular lines is

robust if the lines for testing are representative of samples from

the same slides and from the same batch as the training data.

System performance decreases when the lines for testing are

from “unseen” images, even from the same batch, which may

have different morphological characteristics. This suggests the

key factor is to have sufficient and representative training data

which covers as many likely tissue scenarios as possible. This

is, in retrospect, not a surprising result, but is a reflection of the

practical difficulties of obtaining a large set of ground truth data

when using such large and complex images. However, the high

accuracies obtained when the training data is representative is

encouraging.

5) Inter-Observer Variability: One application of our au-

tomatic diagnosis system is to use it as a standard for com-

paring the diagnoses from different pathologists (inter-observer

variability)—or even comparing the performance of the same

pathologist at different times (intra-observer variability). We

have experimented with the former of these two possibilities.

A previous study [3] measured the inter-observer variability

in the diagnosis of CIN. It did two rounds of tests over 100 biop-

sies with seven experienced pathologists. Results showed poor

agreement with unweighted Kappa of 0.354 and 0.357, and ex-

cellent quadratic weighted Kappa of 0.772 and 0.778. When

looking at individual unweighted Kappa, except for CIN III

which achieved fair to good and excellent agreement (0.523–0.

797), all the other cases (Normal, CIN I, and CIN II) produced

poor agreement.

The 11 digital slides from batch-C were diagnosed and

marked by the two pathologists separately. Their inter-observer

variability for perpendicular lines is measured, with results

shown in Table VII. The figures in the diagonal line of the table

show complete agreement between the two pathologists for

5373 perpendicular lines (56.43%). When considering Kappa

for each diagnostic group, Normal and CIN III cases achieve

fair to good unweighted Kappa values, with Kappa values of

0.5213 and 0.5914. CIN I and CIN II cases get poor agreement

( and ).

6) Diagnosis of CIN: The robustness of the diagnosis of CIN

is measured using accuracy, unweighted Kappa and quadratic

weighted Kappa. For all three test strategies, system diagnoses

are compared with both pathologists’ diagnoses, where avail-

able. Results are shown in Table VIII.

For each test strategy, results obtained from comparing

with Pathologist A’s diagnoses are better than comparing with

Pathologist B. This is because the training of support vectors

take Pathologist A’s diagnoses as ground truth.

When comparing the inter-observer variability from the

results in the second, fourth, sixth, eighth, and ninth columns in

Table VIII with [3], the system diagnoses are likely to be better

in term of overall unweighted Kappa. A digital slide can have

many different regional diagnoses. Therefore, corresponding

Kappa values of regional diagnoses for [3] can be a lot lower

than the Kappa values for entire digital slides. Study [3] reports

the overall unweighted Kappa to be 0.354 and 0.357 measuring

entire digital slides, whereas the smallest overall unweighted

Kappa in Table VIII is 0.3373 measuring regional diagnosis.

When comparing the inter-observer variability from the re-

sults in the second, fourth, sixth, eighth, and ninth columns in

Table VIII with Table VII, overall unweighted Kappa all achieve

poor agreement (0.3811 and 0.3373). The overall quadratic

Kappa value in Table VII (excellent agreement, 0.8034) is better

than its corresponding entry in Table VIII (fair to good agree-

ment, 0.4954). However, with more slides from different batches

for training, the system diagnosis might have the potential to

address the problem of inter-observer variability.
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V. CONCLUSION

The traditional way of diagnosing CIN is subjective, resulting

in great inter/intra-observer variability and poor reproducibility.

With the use of high-resolution slide scanning devices, ultra-

large complex cervical histological slides can be presented in

digital form. In this project, the feasibility and process of de-

signing and developing a computer assisted system for the di-

agnosis of CIN using histological digital slides is investigated.

This paper has described the first reported major study into

the automatic classification of CIN, and the first reported work

in the segmentation of ROIs from complex histological scenes

using ultra-large digital slides. A novel method for the diagnosis

of CIN was developed. This method is based on the classifica-

tion of line features to classify progression of CIN characteris-

tics through squamous epithelium.

This is also the first reported work to quantitatively measure

linguistic diagnostic clues of CIN. Correlations between lin-

guistic diagnostic clues of CIN and individual line features were

built and quantitatively measured.

Evaluation of the perpendicular line feature proves that it is

robust in classifying lines for the diagnosis of CIN. The robust-

ness of the system’s diagnosis is comparable with pathologists

when comparing inter-observer variability between the system

and pathologists, and among pathologists.

Given sufficient training data, from a suitable set of represen-

tative digital slides, the proposed diagnostic system could be the

basis of a clinical tool for the assisted diagnosis of CIN, and also

as a training tool.

More manual diagnoses by several experts, both in quantity

and in reliability, are needed to enhance the robustness of

the proposed assisted diagnostic system. The potential of the

system to address the problems of inter-observer variability

among pathologists is particularly promising.

The processing of digital slides is very time consuming and

currently too slow to be used as a clinical diagnostic device.

High performance computing techniques are needed (and are

being developed) to speed up the system.
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